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Abstract
Let s = (s1,82,...,8n,...) be a sequence of positive integers. An s-inversion
sequence of length n is a sequence e = (e1, e, ..., e,) of nonnegative integers such

that 0 < e; < s; for 1 < i < n. When s; = (i — 1)k + 1 for any ¢ > 1, we call
the s-inversion sequences the k-inversion sequences. In this paper, we provide a
bijective proof that the ascent number over k-inversion sequences of length n is
equidistributed with a weighted variant of the ascent number of permutations of
order n, which leads to an affirmative answer of a question of Savage (2016). A key
ingredient of the proof is a bijection between k-inversion sequences of length n and
2 X n arrays with particular restrictions. Moreover, we present a bijective proof of
the fact that the ascent plateau number over k-Stirling permutations of order n is
equidistributed with the ascent number over k-inversion sequences of length n.
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1 Introduction

Let &,, be the symmetric group on the set [n] = {1,2,...,n}. Let
T=n(1)7(2)---7(n) € G,.

A descent (resp. excedance, ascent) in 7 is an index i € [n — 1] such that 7(¢) > 7(i + 1)
(resp. m(i) > 4, (i) < w(i 4+ 1)). A left-to-right minimum in 7 is an index ¢ such
that (i) < w(j) for any 7 < ¢ or @ = 1. Let Asc(m) and Lrm (7) denote the set of
ascents and left-to-right minima of 7, respectively. For example, Asc(324165) = {2,4}
and Lrm (324165) = {1,2,4}. Let des (m) (resp. exc (m), asc (7), Irmin(7), cyc (7)) denote
the number of descents (resp. excedances, ascents, left-to-right minima, cycles) of w. It
is well known that descents and excedances are equidistributed over &,,. The classical
Eulerian polynomial is defined by

An(z) = Y ae®,

7T€6n

The exponential generating function of A, (z) is given as follows:

2" 11—z
Az, z) = 1—1—214”(3:)5 =

z(z—1) _ o~
n>1

In [11], Savage and Schuster introduced the concept of s-inversion sequences in study

of lecture hall polytopes. Let s = (s1, 2, ..., Sn, .. .) be a sequence of positive integers. An
s-inversion sequence of length n is a sequence e = (e, €9, ..., €,) of nonnegative integers
such that 0 < e; < s; for 1 <7 < n. Let ISIS) denote the set of s-inversion sequences of
length n. An ascent in e = (ey,€s,...,€,) is an index i € {0,1,...,n — 1} such that

€ < €it+1 ’

S Si+1

with the convention that ey = 0 and sy = 1. Let Asc (e) be the set of ascents of e and let
asc (e) = |Asc (e)].

The s-inversion Fulerian polynomial is defined by

Egs)(l') _ Z xasc(e).

eeIg,s>
Let \ ) )
P;:{)\G]ang_lg_zg..._"gl}
S1 S92 Sn

be the s-lecture hall polytope. Savage and Schuster [11, Theorem 5] showed that the
Ehrhart series of P; is

EY (x)
(1 — )+t
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Following [13, Section 3], the polynomial EY (x) is the h*-polynomial of P3. For some
special cases of s, the s-inversion Eulerian polynomial has been extensively studied. For
example, for s = (1,4,3,8,5,12,...), i.e., So; = 4i and s9;_1 = 2i — 1 for ¢ > 1, Chen et

al. [4] proved that the ascent number over Igif is equidistributed with the descent number

over P,, where P, is the set of signed permutations on the multiset {1%,2% ... n?}.

In the following discussion, we always assume that s; = (i — 1)k + 1 for any i > 1,

. .. . . . s
where k is a positive integer. For convenience, we write ¥ as I, ;. In other words,

Ly={eeZ":0<e < (i —1)k}.

As usual, we call the s-inversion sequences the k-inversion sequences. Following [12], the
1/k-Eulerian polynomial E, ;(x) is defined by

En,k(x) = Z l,asc(e)’

eeIn,k

The exponential generating function of E,, x(z) is given as follows:

n

ZEnk(x)% =/ A(z, k=2).

n=0
Using (1), Savage and Viswanathan [12, Section 1.5] found that

Z 225¢ (e) — Z X (m) fr—eye (7") (1)

ecl, i TeGy,

By using the fundamental transformation of Foata and Schiitzenberger [6], the pairs
of statistics (exc,cyc) and (asc,lrmin) are equidistributed over &,,. Thus

Z xasc(e) _ Z xasc(w)kn—lrmin(w)‘ (2)

eGInyk TeGy,

It is well known that any permutation 7 € &,, can be encoded by its inversion sequence
O(r) = (e1,e2,...,€,) € Ip1, where e; = |{j | j < ¢ and 7; > m;}|. Moreover, the map
0: 6, — I, is a bijection.

Proposition 1. For any n > 1, we have

Z Iasc(e) _ Z xn—l—asc(e)kn—max(e)7

ee[n,k ee[’n,l
where max (e) = [{i | e; =i — 1}|.

Proof. For any m € &, let € = (e1,€a,...,6e,) = 6(m). Then i € Asc(m) if and only if
e; = €1, and i € Lrm (7) if and only if either ¢ = 1 or ¢; = ¢ — 1. Moreover, when
€; = €;41, we have

(14 1)e; —iejr = (i+ 1)e; —ie; = e; = 0;
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when e; < e;11, we have e; + 1 < e;47 and
(Z + 1)61 — i6i+1 < (Z + 1)6z — z(ez + 1) =e; —1<0.
This tells us that e; > e;,1 if and only if ¢ ¢ Asc (e). Hence,
Z 725¢ (ﬂ)knflrmin(rr) _ Z g 1—asc (e)knfmax (e)’
TeS, eeln’l
and it follows from (2)) that
Z 225¢ (e) _ Z g 1-asc (e)knfmax(e). []
eEIn’k ee[n,l

Recently, Savage [10] gave a survey for the study of lecture hall partitions. In partic-
ular, she posed the following question.

Question 2 ([10, p. 466]). Is there a bijective proof of (1)?

A bijective proof of (1) may arouse interests in the study of the connections between
s-lecture hall polytope and other structures. In this paper, we give a bijective proof of (1).
It suffices to present a bijective proof of (2). The method is to present a series of three
bijections: the first bijection maps k-inversion sequences to 2 x n arrays with particular
restrictions. The second bijection maps these 2 X n arrays to k-colored permutations

B = (;) in which 7 € &,, and c¢ is a map from [n] to [k] satisfying 1 < ¢(7(i)) < k if

i ¢ Lrm (), otherwise ¢(m(i)) = 1. The final bijection maps k-colored permutations to
themselves, but in a way that will create the correct correspondence between ascents in
the original k-inversion sequence and ascents in the final k-colored permutation.

2 A bijective proof of (2)

Given an inversion sequence e = (ey, ea,...,€,) € I, ;. Let

1 if e,=0 .
ci:{ =1 i 21-21 and b; = ¢; — (¢; = 1)(i = 1) + 1

for any i = 1,2,...,n. Denote by A(e) the following array

Ci Cp ... Cp
by by ... b,/

Lemma 3. For any e = (e1,e2,...,¢€,) € Ik, we have A(e) € A, i, where A,y is the

set of 2 X n arrays
(A C ... Cp
A= (bl by ... bn)

such that c; = by =1 and for any 2 < i < n,

| e i a1
016{1727,k} andbze{{273’72} Zf 6122
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Proof. Let e = (e1,e2,...,e,) € I ;. Foreach i =1,2,...,n, we have 0 < e; < k(i — 1).
If e; = 0, then ¢; = 1; if ¢; > 1, then 0 < ;% < k for any i > 2, and so ¢; = [;%5] €
{1,2,...,k}.

When ¢; = 1, we have b; = ¢; + 1. If ¢; = 0, then b; = 1. If ¢; > 0, then 0 < ;%5 < 1

since ¢; = [-%-] =1, and so 0 < e; < i — 1. This implies that 1 < b; < i. Thus, if ¢; = 1,

i—1
then b; € [i].
When ¢; > 2, we have ¢; —1 < % < ¢;. This implies that (¢;—1)(i—1) < e; < ¢;(i—1).
Hence, 1 < b; <, and so A(e) € A, . O

Define a map ¢, : I, — A, by letting ¢, (e) = A(e) for any e € I,;. For any
A€ A, \, we say that an index i is an ascent of A if either (i) ¢; < ¢;41 or (it) ¢; = ¢inq
and b; < b;11. Let Asc(A) be the set of ascents of A and let asc (A) = |Asc (A)].

Example 4. Take n = 17 and k = 2. Let
e=(0,1,3,0,5,10,3,7,16,15,0,3,13,1,2,20,12) € I 7.

We have

A=a@=(1 55 1564807145286 1) A
It is clear that Asc (A) ={1,2,4,5,7,8,11,12,14,15} and asc (4) = 10.

The following lemma is fundamental.
Lemma 5. The map ¢, is a bijection from I, to A, . For any e € I, we have
Asc (e) = Asc (pn(e)).

Therefore,

Z :L,asc(e) _ Z xasc(A)'

eEInyk AeAnJg

[ C ... Cp
A= (bl b2 bn) eAn’k’
let 0,,(A) = (e}, €,,...,¢), where €, = b; + (¢; — 1)(i — 1) — 1. It is clear that the map 0,
is the inverse of ¢,,.
For any e = (e1,e,...,¢€,) € Ly, if i € Asc(e), then ;
let

Proof. For any

i €i ;
T < my- Forany i€ [n],

1 if e,=0 .
CZ:{ lr»eil—l 1f 2121 andbzzez—(cz—l)(z—l)—i-l

Since e; = b; + (¢; — 1)(i — 1) — 1, we get

ei(ki+1)—eip1(k(i—1)+1)
= (ki+1)((¢; — cix1) (@ = 1) + b; — bis1) + k(biy1 — 1) = (cipa — 1).
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When ¢; < ¢;41, we have ¢;11 > 2, b;1q > 2 and b; < 7. So,

and
eir1= (g1 —1)i+by1 — 1> (cie1 — )i+ 1.
Hence,
eir1(k(i—1)+1) —e;(ki+1)
> (1 —1)i+1)(k(i—1)4+1) — (i — 1)(ki+ 1)
= kii—1)(cip1—c— 1)+ k—-10G—1)+ (cit1 — )i+ ¢
> 0.

When ¢; > ¢; 41, we have ¢; > 2, ¢;o1 < k, b; > 2. Moreover, we have b;;; < 1, since
bix1 =1+ 1 if and only if ¢;;1 = k. So,

ei=-1DGE-1)+b—-1=2(-1)@GE-1)+1

and
eir1 = (Ciy1 — 1)i+bipn — 1 < ¢pai — 1

Hence,

< (i —DkGE-1D)4+1) = (e, = 1D)(E—=1)+1)(ki+ 1)
= (ki+1)(i —1)(cip1 — ¢+ 1) + (i1 + k — 2ki — 2)
< 0.

When ¢; = Cit1 and b; < bi+1, we have

< (G = D= 1) 4 biyy — 2

= €i+1 — Ciy1-
Hence,

z ep(k(i — 1) +1) = (€01 — ci1) (ki + 1)
= (k’l + 1)Ci+1 — k€i+1
> (]CZ + 1>Ci+1 - kiCi+1 = Ci41 > 0.
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When ¢; = ¢;41 and b; > b1, we have

(e —1)(i—1)+b;— 1
(i1 — 1)(i—1)+b— 1
> (cipn — D)0 — 1) + by — 1

= €i+1 — Cit1 + 1.

€;

Hence,

eir1(k(t—1)+1) —e;(ki+ 1)
eir1(k(i—1)+1) — (ejp1 — cipn + 1) (ki + 1)
(ki +1)(ciy1 — 1) — keiq

= k(1 —=bip1) +ciy1 —1 <0,

/N

in which the last inequality is easily checked by using Lemma 3. Thus, we have i € Asc (e)
if and only if i € Asc (¢n(€)). O
A block k-colored permutation on the set [n] is a pair B = (;) such that 7 € G,

and c is a map from [n] to [k] which satisfies 1 < ¢(n(i)) < k if i ¢ Lrm (7), otherwise
c(m(i)) = 1. Let B, be the set of block k-colored permutations on the set [n]. We write

an element B = 7(; in B, as the following 2 x n array
_(c) _ (cx(@)) e(n(2)) ... c(m(n))
v (W) N ( (1) w2 ... 7w(n) )

For example, consider the permutation m = 324165 and let £ = 3. Then the following
2 x 6 array
p_(°)_ 11311 2
T 32416 5
is a block 3-colored permutation on the set [6].
Given an array
_[a C ... Cy
A= (61 by ... bn) € Ank
we construct a permutation in &,, by the following Algorithm B. Let
7@ = 70 1)7x®(2) ... 7O (4)

denote the permutation in G; obtained by the algorithm at time 1.
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Algorithm B.
e Step 1. Let 7(1) = b;.

e Step 2. At time 7 > 2, suppose that 70~ is determined. Foreach j =1,2,...,i—1,
if 70=V(5) > b;, then let 7@ (5) = 7@(5) + 1; otherwise, let 7 (j) = 70D (5).
Finally, set 7(7(i) = b;. Thus we get

@ — 7T(i)(1>71'(i)(2) v (i — Da® (i) € &,.

Iterating Step 2 until 4 = n, we obtain a permutation 7™ € &,,. Let ¢ be a map from [n]

to N such that ¢(7(i)) = ¢; and let By = (;) Then

Ba= (me) B <7r<5>1<1> wiz) L W(”C)?"))'

Example 6. Let A be the 2 x 17 array given in Example 4. By Algorithm B, we have

D 11

7@ |1 2

a® 11 3 2

@ 12 4 3 1

7® 3 5 4 1 2

7® 135 4 1 2 6

7D 136 5 1 27 4

a® 13 6 5 1 27 4 8

136 5 127 4 8 0 ,

7913 6 5 1 28 4 9 10 7

AMl4 7 6 239 5 10 11 8 1

#1215 8 7 23 10 6 11 12 9 1 4

7@ 16 9 8 3 4 11 7 12 13 10 1 5 2

a7 10 9 4 5 12 8 13 14 11 1 6 3 2

778 11 10 5 6 13 9 14 15 12 1 7 4 2 3

71919 12 11 5 7 14 10 15 16 13 1 8 4 2 3 6

#0019 12 11 5 7 15 10 16 17 14 1 8 4 2 3 6 13

and so

B_(c)_<11212211221121121)
A7 \x) "9 12 11 5 7 15 10 16 17 14 1 8 4 2 3 6 13 )~

Lemma 7. For any A € A, i, we have By € B, .
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Ci Cp ... Cp

by by ... by

(7,): Ct Co ... C
A (b1 by ... b)

Then A® € A, .. We prove the lemma by induction. For each ¢, suppose that

B c@\ 1 o .G
AV A 7@ ) T\ 20y 7O@2) ... 20 )

€ By Suppose that B,s € By Let us consider AG+Y. By

Proof. Fix an array A = ( > € A, x. For each i € [n], let

Clearly, By = <1
Algorithm B, we have

. Lrm (7@)Y U {i + 1} if by =1
(i4+1) — ) i+1
Lrm <7T ) { Lrm (W(Z)) if bi+1 2 2
Note that ¢;4; = 1 if b;41 = 1. By induction hypothesis, we obtain B 4u+1) € Bjy1 . O

Define a map a,, : A, — B by letting ay,(A) = By for any A € A, . For any
B € B, we say that an index ¢ is an ascent of B if either (i) c¢(n(i)) < ¢(n(i + 1)) or
(17) ¢(m(i)) = c(m(i+ 1)) and 7(i) < w(i + 1). Let Asc(B) be the set of ascents of B and
asc (B) = |Asc(B)|. For example, for the array B = B4 that is given in Example 6, we
have Asc (B) = {1,2,4,5,7,8,11,12, 14,15} and asc (B) = 10.

Lemma 8. The map o, : Ani — By is a bijection. For any A € A, i, we have
Asc (A) = Asc (an(A)). Therefore,

Z l,asc(A): Z xasc(B).

AEAn,k BeBn,k

Proof. Given an array
_ (e _ (cx(1)) e(x(2) ... c(m(n))
B= (7r> = ( 1) w2 ... xn) )P
we first construct a sequence by, b, ..., b, by the following Algorithm B*. Let
7_‘_(n—i—i-l) _ 7r(n_i+1)(1)7r(n_i+l) (2) L W(n—i-}-l) (n —i+ 1)

denote the permutation in &,,_;,; obtained by the algorithm at time i.
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Algorithm B*.
e Step 1. Let #™(j) = n(j) for any j = 1,2,...,n.
e Step 2. At time 7 > 1, suppose that

7‘_‘;(77,71'4*1) — ﬁ(n7i+1)(1)7}(n7i+1) (2) L ﬁ_(ﬂ*i+l) (n — =+ 1)

is determined. Set b,_;;; = #" "V (n — i+ 1). For each j = 1,2,...,n — i, if
7D (G) > byiga, then let 709 (j) = 7= (j) — 1; otherwise, let 7"~ (j) =
7=+ (). We have

7,%(n,i) _ 7}(”*1’)(1)7?("71)(2) .. .ﬁ-("’i) (n — Z) €6,

Iterating Step 2 until ¢ = n, we obtain a sequence by, by, ..., b,. Let ¢(m(i)) = ¢; for each
1. We obtain a 2 x n array A = Zl 22 o Z" . It is clear that b; = 1 if and only if
1 2 .. n

i € Lrm (7). Hence, A € A, ;. For example, let us consider the array
c 11311 2
b= <w>'_ (3 2416 ) € Bos-

By Algorithm B*, we have

ot

7®13 2 41 6 5|bg=5
#®13 2 4 1 5 bs =5
@13 2 4 1 by =1
#® 12 1 3 by =3/
@12 1 by =1
7M1 by =1
and so
113112
A_(113 155)6%&

~—~

Define a map 6, : B, — A, by letting 0,(B) = A for any B € B,, . We claim that
On(an(A) =A

for any A € A, ;. We prove this claim by induction on n. Clearly,

o (+((0)))- ()

Fix an array A = CLC2 e O G o A1k Suppose that
bl b2 bn bn+1 ’

C>:(C(7T(1)) c(m(2) ... e(r(n)) c(7r(n+1)))

B = ap1(A4) = (W (1) m2) ... =w(n) m(n+1)
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and

o (& C ... Cn Cpiya
A= Onia(B) = (bg W ...l b;LH)'
For the array A, suppose that

is the permutation obtained by Algorithm B at time n, and for the array B suppose
that
7 = 7)™ (2) .. 7™ (n)

is the permutation obtained by Algorithm B* at time 2. Note that w(n + 1) = b, at
the time n + 1 of Algorlthm B and V), ,; = m(n + 1) at the time 1 of Algorithm B*.
So, we have b, = b/, , and 7 = 7" Furthermore, let

(n_ 1 Cy ... Cp
A <b1 by ... bn>€“4"’k

(7o) - <w<"<> ey i)

Algorithm B tells us that a,,(A ( ) ( ) Algorithm B* tells us that

c cL Cy ... Cp
On ~ (n) = \ly ¥ 1)
T by b, ... b,
By the induction hypothesis, we have 6,,(c,,(A™)) = A™ . Hence,

9n+1 (an+1 (A>> =4,

and

which implies that «,, : A, — B, is a bijection. For any A € A, ;, by using Algorithm
B, we immediately get Asc (A) = Asc (a,(A)). O

Let B = (;) € B, . Note that 1 € Lrm (7). Suppose that Lrm (7) = {ky, k2, ..., k. }
with 1 =k; < ky < ... <k, and let k,.; =n+ 1. Foreach?=1,2,...,r, let 7; be the
subsequence 7(k;)mw(k; +1)...7(kiy1 — 1) of 7. We call the sequence

T1,72y -y Ty

the left-to-right minimum decomposition of m and the subsequence 7; the i-th block of .
For convenience, let [; = k;1 —k;, which is called the length of 7;, and let 7, ; = 7(k;+7—1)
fori=1,2,...,rand j =1,2,...1;. Thus, we have 7, = (7,1, T2, ..., Tiy;). We now define

a total order in the set {(C(T”>> lji=1,2,..., ll}: for any 71, jo with j; # ja, we say

Z?]
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J1 = j2 if the indices j; and j, satisfy either (¢) ¢(7; 5,) < ¢(7;,j,) or (it) ¢(7; 5,) = ¢(7;,5,) and
Tijn < Tij,- Let ¢; be an increasing bijection from the set o(7ij) |i=1,2,... ,li} to

Ti,j

theset {r;; | j=1,2,...,0;}, ie.,

o () < (%))

if (C(Ti’jl)) < (C(Ti’h)) for any j; # jo. For any j =1,2,...,1;, let

Ti,j Ti,j2
~ C\T; 5
/L?J

Then we get a sequence 7; as follows:

T — (711'71,7:1'72, ce 77-i,li)-

Since 7;; is a left-to-right minimum of 7, we have ¢(7;1) = 1, and so

Ti1l = @i ((ng;lll))) =Ti1.

Moreover, 7; ; < 7; 41 if and only if the index j satisfies either (I) ¢(7;;) < ¢(7;j41) or
(II) C(TiJ) = C(Ti,j—i—l) and Tij < Tij- Finally, let

T=Ti1c T Ter Tag Tr T, € Gy

and

P <c’>: (c(ﬁ,l) oo o(Fiy) o(Fon) . c(Fop) oo clFer) .. c(%,ﬂ,lr)).

T T1,1 e 1,1 T2,1 e 72,19 e Tr,1 e Trl,

We immediately get the following lemma.

C/

Lemma 2.1. For any B = ; € By, let B= (7’) Then B € B, Lrm (7) = Lrm (7),
Asc (B) = Asc (1) and (i) = ¢(i) for any i = 1,2,... n.
Example 9. Consider
B:(c):<112122112211211
T 9 12 11 5 7 15 10 16 17 14 1 8 4 2 3

The left-to-right minimum decomposition of 7 is

2 1
6 13 /-

7 =0912,11;7 = 5,7,15,10,16,17, 14; 73 = 1,8,4, 2, 3,6, 13.
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1

12) < (121) and list the increasing bijection ¢; in

For the block 7, we have (é) < (
the following table:

; 1] 2 3
() ()
o1 ( (C(T?j )) )9 12

Table 1. The increasing bijection ¢;.

Hence,
7 =(9,11,12).

(5) (1) < (o) «(5) = (i) = (5) = (1) e

list the increasing bijection ¢, in the following table:

For the block 75, we have

j 1 [ 4 5 1 2 | 7 3 6
() 1) ()| Ge) L GG 1 Gs) G
s ((C(TZJ)» 5 1 7 |10 |14 15 | 16 | 17

Table 2. The increasing bijection ¢s.

Hence,
Ty = (5,14,16,7,10,17,15).

1 1 1 1 1 2 2 .
For the block 73, we have (1) < (2) < (3) < (8) =< (13) < (4) =< (6) and list

the increasing bijection ¢3 in the following table:

j 1 | 4 5 | 2 7 3] 6

(%) 166G

¢3(<C<ﬁ’j))> 1| 2| 3| 4] 6 | 8 |13
73,5
Table 3. The increasing bijection ¢s.
Hence,
73 =(1,4,8,2,3,13,6).
SoT=09,11,12,5,14,16,7,10,17,15,1,4,8,2,3,13,6 and
Ao () _ 12 1 12 1 21 2 2 121111 2
S\7) \9 11 12 5 14 16 7 10 17 15 1 4 8 2 3 13 6
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Define a map f3,, : By, — By, by letting /3, (B) = B for any B € B, .
Lemma 10. The map (3, is a bijection from B, to itself.

Proof. We establish the inverse 1, of [3,, as follows. For any

5 («3) _ <c(7'(1)) c(r(2)) ... c<7(n>>) B,

T 7(1) 7(2) ... 7(n)
let 71,79, ..., 7. be the left-to-right minimum decomposition of 7. Suppose that
T = (Ti,la T2y« - 7Ti,li)-

where [; is the length of the subsequence 7;. Recall that ¢; is the increasing bijection

from from the set {<C<T’])) | j = 172;...7li} to the set {7;; | 7 = 1,2,...,l;}. Let

Ti,j

Tij

™ 1,1 ce 1,14 72,1 . 2,15 c. Tr1 ce ram

vn(B) = (c/) _ (0(7}1,1) oo c(Ty) o(fen) ... c(Tay,) oo c(Tpa) ... C(%r,lr)) .
For example, let us consider the array
- (€)= 12 1 12 1 21 2 2 1211
“\r) \9 11 12 5 14 16 7 10 17 15 1 4 8 2
The left-to-right minimum decomposition of 7 is

7 =9,11,12; 7 = 5,14,16,7,10, 17, 15; 73 = 1,4,8,2,3, 13, 6.

W ==
—_ =
w
S N
~_
m
O]
i
BN
Do

For the block 71, the increasing bijection ¢, is listed in Table 1. Hence, we have

T1,j 9 11 12

C(ﬁ-l,j) o1 ) 1 1 2 .
( 71 ) = o1 () (9 12) | \11

For the block 75, the increasing bijection ¢, is listed in Table 2. Hence, we have

Toj 5 14 16 7 10 17 15

(5 e [ (o) L) 1) (o) o) 1) 163)]

For the block 73, the increasing bijection ¢5 is listed in Table 3. Hence, we have

SESIGICICNAIGCNR]

11 2 122 1 1 2 2 1121121
w”(B)_(g 12 11 5 7 15 10 16 17 1418423613)' -

Thus,
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The proof of (2): By Lemma 5 and Lemma 8, we have

Z 225¢ (e) _ Z 225¢ (4) _ Z 225¢ (B)

ecl, i AEAnﬁk BGBn,k

By Lemma 2.1 and Lemma 10, we obtain

Z 225¢ (B) _ Z 225¢ (m) _ Z 25¢ (ﬂ)kn—lrmin(ﬂ')‘

BEBn,k c €Sy,
EBn,k
s

3 k-inversion sequences and k-Stirling permutations

A Ek-Stirling permutation of order n is a permutation of the multiset

{1,...,1,2,...,2,...,n,...,n}
—_—— ——

such that for each 7, 1 < i < kn, all entries between the two occurrences of i are larger
than 7. Let Q%) be the set of k-Stirling permutations of order n and write an element o
in O as 0 = 0109 -+ - . For example, Qéz) = {1122,1221,2211}. It is easy to obtain

that the cardinality |Q%| of Q% is [[((i — 1)k + 1), and so | Q% | = | L k-
i=1

Let 0 = 0109+ 0 € OF). For any integer a € [n], we say that a is an ascent plateau
of o if there is an index 7 € {1,2,...,(n — 1)k} such that

0i—1 < 0; =041 = ... = Oj4f—1 = Q.

Let AP (o) be the set of all ascent plateaus of ¢ and ap(c) = |AP(0)|.

In [8], Ma and Yeh provided a constructive proof that the number of ascent plateaus of
2-Stirling permutations of order n is equidistributed with a weighted variant of the number
of excedances in permutations of length n, where the weight is 27" Very recently,
Duh et al. [5, Lemma 8] established a bijection between 2-colored permutations and
Stirling permutations. Expanding [5, Lemma 8] and combining Lemma 5 and Lemma 8,
in this section, we will present a bijective proof that the ascent plateau number over k-
Stirling permutations of order n is equidistributed with the ascent number over k-inversion
sequences of length n.

Given a 0 = 0109 -+ - Oy, € Q%k), a left-to-right minimum in o is an index i € [kn — 1]
such that (i) < o(j) for any 7 < i or i = 1. Denote by Lrm (o) the set of left to right
minimums of ¢ and Lrm*(0) = {o; | i« € Lrm (0)}. A block of o is a substring which
begins with a left-to-right minimum, and contains exactly this one left-to-right minimum;
moreover, the substring is maximal, i.e., not contained in any larger such substring. It is
easily derived by induction that any k-Stirling permutation has a unique decomposition
as a sequence of blocks.
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Example 11. Consider the 3-stirling permutation o = 334666443225552777111 € Qg?’).
We have Lrm(c) = {1,10,19}, Lrm*(c) = {3,2,1}, AP(c) = {6,5,7}. The block
decomposition of o is [334666443][225552777][111].

Lemma 12. There is a bijection ¢ = P from Q,(f) to B, such that

Lrm *(¢) = Lrm *(7) and AP (o) = Asc*(n),

where the permutation 7 satisfies (o) = <7CT>, Lrm™*(7) = {m(i) | ¢ € Lrm (m)} and
Asc*(m) ={m(i+1) | i€ Asc(nm)}.
Proof. We construct the bijection = % from O to B, as follows.
When n = 1, let q)gk)(l ---1) = 1. Fix n > 2, and assume that @i’?l is the bijection
k

between Qflk_)l to By_1. Let o’ € Q,(f) be obtained from some o € Qik_)l by inserting the
substring nn - - -n into . By the assumption, we have
~——

cI>(k)1((7) = (7(;) € B,_1x, Lrm*(c) = Lrm™(w) and AP(c) = Asc*(m).

If nn---n is placed at the front of o, that is, ¢/ = nn---no then we let @%k)(a’) =
k k

(1 ;) Note that Lrm *(¢’) = {n} ULrm *(0), AP(¢') = AP(0) and

Lrm*(n7m) = {n} U Lrm *(7), Asc*(nr) = Asc*(nm).

In this case, we have Lrm*(¢’) = Lrm*(nw) and AP(o') = Asc*(nm).
Otherwise, suppose ¢’ is obtained from by inserting nn - --n into the i-th block of o.

k
Let m € Lrm (o) be the left-to-right minimum contained in the i-th block of o. There are

/
three possible cases. We construct @%k)(a’ )= <7CT,) as follows:
1. If nn - - - n is inserted at the end of the i-th block, then let 7’ be obtained by inserting
k
the integer n at the end of the i-th block of 7 and

o={4i%1

Note that Lrm *(¢’) = Lrm *(0), AP(¢’) = {n} U AP(0) and
Lrm *(7') = Lrm (7), Asc*(7") = {n} U Asc*(m).

In this case, we have Lrm *(¢’) = Lrm *(7’) and AP(0’) = Asc*(n').
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2. If nn---n is inserted immediately before the p-th o, for some p = 2,3,...,k, then
~——

k
let 7’ be obtained by inserting the integer n at the end of the i-th block of 7 and
T ) if j#n
CO)_{ k+1—p if j=n -
Note that Lrm *(¢’) = Lrm *(0), AP(¢’) = {n} U AP(0) and
Lrm *(7") = Lrm (1), Asc*(7') = {n} U Asc* ().
In this case, we have Lrm *(¢’) = Lrm *(7’) and AP(0’) = Asc*(n').

3. If pn---n is inserted immediately before the p-th integer b, b # o,,, for some
~——

k
p=1,2,...,k, then let #’ be obtained by inserting n into the i-th block of 7 such
that n is immediately before b and

C,(j)_{;(j) i ;ig .
Note that Lrm*(¢’) = Lrm *(0) and Lrm*(7") = Lrm*(7). When b € AP(0), we
have AP(0’) = (AP(o0) \ {b}) U {n} and Asc*(n’) = (Asc*(m) \ b) U {n}; When
b¢ AP(c), we have AP(0') = AP(0) U {n} and Asc*(n’") = Asc*(m) U {n}. In this
case, we have Lrm *(0’) = Lrm *(7") and AP(0') = Asc* (7).

The above argument shows that <I>$f) € B, x, and that @%’“) is injective from Q%k) to By k-
Lemmas 5 and 8 tells us that |[,, x| = |B,x|, and so the cardinality of o is the same
as that of B, ;. Thus, <I>£Lk) must be a bijection between Q,(f) and B, ;. By induction, we

see that ® is the desired bijection between k-Stirling permutations and block k-colored
permutations. ]

Example 13. Consider o = 226662555133444311 € Qé?’). The correspondence between

o and q)((f)(g) = (; ? é 1 Z :23> is built up as follows:

111 & D
222111 & ; D
222133311 G 1 g)
222133444311 (; 1 i §)
222555133444311 & G g 1 i 3)
226662555133444311 & G ? é 1 i ?,)
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Theorem 14. ¥, = ¢-lo a0 B o @) is a bijection from QY to I, such that
ap(o) = asc (¥, (0)).
Proof. Combining Lemmas 5, 8, 2.1, 10 and 12, we have W, is a bijection from o™ to

I, . such that ap(c) = asc (¥, (0)). O
Corollary 15. For anyn > 1 and k > 1, we have ) xP0) = S gasele),

O.GQSC) eeln,k
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