1/k-Eulerian polynomials and k-inversion sequences

Ting-Wei Chao

Institute of Mathematics, Academia Sinica, Taipei, Taiwan.

twchao@gate.sinica.edu.tw

Shi-Mei Ma[†]

School of Mathematics and Statistics Northeastern University at Qinhuangdao Hebei, P. R. China.

shimeimapapers@163.com

Jun Ma*

Department of mathematics Shanghai jiao tong university Shanghai, P. R. China.

majun904@sjtu.edu.cn

Yeong-Nan Yeh[‡]

Institute of Mathematics Academia Sinica Taipei, Taiwan.

mayeh@math.sinica.edu.tw

Submitted: Jan 20, 2019; Accepted: Aug 7, 2019; Published: Aug 16, 2019 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let $\mathbf{s} = (s_1, s_2, \dots, s_n, \dots)$ be a sequence of positive integers. An s-inversion sequence of length n is a sequence $\mathbf{e} = (e_1, e_2, \dots, e_n)$ of nonnegative integers such that $0 \leq e_i < s_i$ for $1 \leq i \leq n$. When $s_i = (i-1)k+1$ for any $i \geq 1$, we call the s-inversion sequences the k-inversion sequences. In this paper, we provide a bijective proof that the ascent number over k-inversion sequences of length n is equidistributed with a weighted variant of the ascent number of permutations of order n, which leads to an affirmative answer of a question of Savage (2016). A key ingredient of the proof is a bijection between k-inversion sequences of length n and $2 \times n$ arrays with particular restrictions. Moreover, we present a bijective proof of the fact that the ascent plateau number over k-Stirling permutations of order n is equidistributed with the ascent number over k-inversion sequences of length n.

Keywords: Eulerian polynomials; s-inversion sequences; Ascents; Permutations Mathematics Subject Classifications: 05A05, 05A15

^{*}Supported by NSFC grant 11571235.

[†]Supported by NSFC grant 11401083.

[‡]Supported by NSC grant 107-2115-M-001-009-MY3.

1 Introduction

Let \mathfrak{S}_n be the symmetric group on the set $[n] = \{1, 2, \dots, n\}$. Let

$$\pi = \pi(1)\pi(2)\cdots\pi(n) \in \mathfrak{S}_n.$$

A descent (resp. excedance, ascent) in π is an index $i \in [n-1]$ such that $\pi(i) > \pi(i+1)$ (resp. $\pi(i) > i$, $\pi(i) < \pi(i+1)$). A left-to-right minimum in π is an index i such that $\pi(i) < \pi(j)$ for any j < i or i = 1. Let $\operatorname{Asc}(\pi)$ and $\operatorname{Lrm}(\pi)$ denote the set of ascents and left-to-right minima of π , respectively. For example, $\operatorname{Asc}(324165) = \{2,4\}$ and $\operatorname{Lrm}(324165) = \{1,2,4\}$. Let $\operatorname{des}(\pi)$ (resp. $\operatorname{exc}(\pi)$, $\operatorname{asc}(\pi)$, $\operatorname{lrmin}(\pi)$, $\operatorname{cyc}(\pi)$) denote the number of descents (resp. excedances, ascents, left-to-right minima, cycles) of π . It is well known that descents and excedances are equidistributed over \mathfrak{S}_n . The classical Eulerian polynomial is defined by

$$A_n(x) = \sum_{\pi \in \mathfrak{S}_n} x^{\operatorname{exc}(\pi)}.$$

The exponential generating function of $A_n(x)$ is given as follows:

$$A(x,z) = 1 + \sum_{n \ge 1} A_n(x) \frac{z^n}{n!} = \frac{1-x}{e^{z(x-1)} - x}.$$

In [11], Savage and Schuster introduced the concept of s-inversion sequences in study of lecture hall polytopes. Let $\mathbf{s} = (s_1, s_2, \dots, s_n, \dots)$ be a sequence of positive integers. An s-inversion sequence of length n is a sequence $\mathbf{e} = (e_1, e_2, \dots, e_n)$ of nonnegative integers such that $0 \leq e_i < s_i$ for $1 \leq i \leq n$. Let $\mathbf{I}_n^{(\mathbf{s})}$ denote the set of s-inversion sequences of length n. An ascent in $\mathbf{e} = (e_1, e_2, \dots, e_n)$ is an index $i \in \{0, 1, \dots, n-1\}$ such that

$$\frac{e_i}{s_i} < \frac{e_{i+1}}{s_{i+1}},$$

with the convention that $e_0 = 0$ and $s_0 = 1$. Let Asc (e) be the set of ascents of e and let asc (e) = $|\text{Asc}(\mathbf{e})|$.

The s-inversion Eulerian polynomial is defined by

$$E_n^{(\mathbf{s})}(x) = \sum_{\mathbf{e} \in \mathcal{I}_n^{(\mathbf{s})}} x^{\mathrm{asc}(\mathbf{e})}.$$

Let

$$\mathcal{P}_n^{\mathbf{s}} = \{ \lambda \in \mathbb{R}^n \mid 0 \leqslant \frac{\lambda_1}{s_1} \leqslant \frac{\lambda_2}{s_2} \leqslant \cdots \frac{\lambda_n}{s_n} \leqslant 1 \}$$

be the s-lecture hall polytope. Savage and Schuster [11, Theorem 5] showed that the Ehrhart series of $\mathcal{P}_n^{\mathbf{s}}$ is

$$\frac{E_n^{(\mathbf{s})}(x)}{(1-x)^{n+1}}.$$

2

Following [13, Section 3], the polynomial $E_n^{(\mathbf{s})}(x)$ is the h^* -polynomial of $\mathcal{P}_n^{\mathbf{s}}$. For some special cases of \mathbf{s} , the s-inversion Eulerian polynomial has been extensively studied. For example, for $\mathbf{s} = (1, 4, 3, 8, 5, 12, \ldots)$, i.e., $s_{2i} = 4i$ and $s_{2i-1} = 2i - 1$ for $i \geq 1$, Chen et al. [4] proved that the ascent number over $I_{2n}^{(\mathbf{s})}$ is equidistributed with the descent number over P_n , where P_n is the set of signed permutations on the multiset $\{1^2, 2^2, \ldots, n^2\}$.

In the following discussion, we always assume that $s_i = (i-1)k + 1$ for any $i \ge 1$, where k is a positive integer. For convenience, we write $I_n^{(s)}$ as $I_{n,k}$. In other words,

$$I_{n,k} = \{ \mathbf{e} \in \mathbb{Z}^n : 0 \leqslant e_i \leqslant (i-1)k \}.$$

As usual, we call the **s**-inversion sequences the *k*-inversion sequences. Following [12], the 1/k-Eulerian polynomial $E_{n,k}(x)$ is defined by

$$E_{n,k}(x) = \sum_{\mathbf{e} \in \mathbf{I}_{n,k}} x^{\mathrm{asc}(\mathbf{e})},$$

The exponential generating function of $E_{n,k}(x)$ is given as follows:

$$\sum_{n>0} E_{n,k}(x) \frac{z^n}{n!} = \sqrt[k]{A(x,kz)}.$$

Using (1), Savage and Viswanathan [12, Section 1.5] found that

$$\sum_{\mathbf{e}\in I_{n,k}} x^{\mathrm{asc}(\mathbf{e})} = \sum_{\pi\in\mathfrak{S}_n} x^{\mathrm{exc}(\pi)} k^{n-\mathrm{cyc}(\pi)}.$$
 (1)

By using the fundamental transformation of Foata and Schützenberger [6], the pairs of statistics (exc, cyc) and (asc, lrmin) are equidistributed over \mathfrak{S}_n . Thus

$$\sum_{\mathbf{e}\in I_{n,k}} x^{\mathrm{asc}(\mathbf{e})} = \sum_{\pi\in\mathfrak{S}_n} x^{\mathrm{asc}(\pi)} k^{n-\mathrm{lrmin}(\pi)}.$$
 (2)

It is well known that any permutation $\pi \in \mathfrak{S}_n$ can be encoded by its inversion sequence $\theta(\pi) = (e_1, e_2, \dots, e_n) \in I_{n,1}$, where $e_i = |\{j \mid j < i \text{ and } \pi_j > \pi_i\}|$. Moreover, the map $\theta : \mathfrak{S}_n \mapsto I_{n,1}$ is a bijection.

Proposition 1. For any $n \ge 1$, we have

$$\sum_{\mathbf{e}\in I_{n,k}} x^{\mathrm{asc}(\mathbf{e})} = \sum_{\mathbf{e}\in I_{n,1}} x^{n-1-\mathrm{asc}(\mathbf{e})} k^{n-\mathrm{max}(\mathbf{e})},$$

where $\max(\mathbf{e}) = |\{i \mid e_i = i - 1\}|.$

Proof. For any $\pi \in \mathfrak{S}_n$, let $\mathbf{e} = (e_1, e_2, \dots, e_n) = \theta(\pi)$. Then $i \in \mathrm{Asc}(\pi)$ if and only if $e_i \geq e_{i+1}$, and $i \in \mathrm{Lrm}(\pi)$ if and only if either i = 1 or $e_i = i - 1$. Moreover, when $e_i \geq e_{i+1}$, we have

$$(i+1)e_i - ie_{i+1} \ge (i+1)e_i - ie_i = e_i \ge 0;$$

when $e_i < e_{i+1}$, we have $e_i + 1 \leq e_{i+1}$ and

$$(i+1)e_i - ie_{i+1} \le (i+1)e_i - i(e_i+1) = e_i - i < 0.$$

This tells us that $e_i \geqslant e_{i+1}$ if and only if $i \notin Asc(\mathbf{e})$. Hence,

$$\sum_{\pi \in \mathfrak{S}_n} x^{\mathrm{asc}\,(\pi)} k^{n-\mathrm{lrmin}(\pi)} = \sum_{\mathbf{e} \in I_{n,1}} x^{n-1-\mathrm{asc}\,(\mathbf{e})} k^{n-\mathrm{max}\,(\mathbf{e})},$$

and it follows from (2)) that

$$\sum_{\mathbf{e}\in I_{n,k}} x^{\mathrm{asc}\,(\mathbf{e})} = \sum_{\mathbf{e}\in I_{n,1}} x^{n-1-\mathrm{asc}\,(\mathbf{e})} k^{n-max(\mathbf{e})}.$$

Recently, Savage [10] gave a survey for the study of lecture hall partitions. In particular, she posed the following question.

Question 2 ([10, p. 466]). Is there a bijective proof of (1)?

A bijective proof of (1) may arouse interests in the study of the connections between s-lecture hall polytope and other structures. In this paper, we give a bijective proof of (1). It suffices to present a bijective proof of (2). The method is to present a series of three bijections: the first bijection maps k-inversion sequences to $2 \times n$ arrays with particular restrictions. The second bijection maps these $2 \times n$ arrays to k-colored permutations $B = \begin{pmatrix} \mathbf{c} \\ \pi \end{pmatrix}$ in which $\pi \in \mathfrak{S}_n$ and \mathbf{c} is a map from [n] to [k] satisfying $1 \leqslant c(\pi(i)) \leqslant k$ if $i \notin \operatorname{Lrm}(\pi)$, otherwise $c(\pi(i)) = 1$. The final bijection maps k-colored permutations to themselves, but in a way that will create the correct correspondence between ascents in the original k-inversion sequence and ascents in the final k-colored permutation.

2 A bijective proof of (2)

Given an inversion sequence $\mathbf{e} = (e_1, e_2, \dots, e_n) \in I_{n,k}$. Let

$$c_i = \begin{cases} 1 & \text{if } e_i = 0\\ \lceil \frac{e_i}{i-1} \rceil & \text{if } e_i \geqslant 1 \end{cases} \text{ and } b_i = e_i - (c_i - 1)(i - 1) + 1$$

for any i = 1, 2, ..., n. Denote by $A(\mathbf{e})$ the following array

$$\begin{pmatrix} c_1 & c_2 & \dots & c_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix}.$$

Lemma 3. For any $\mathbf{e} = (e_1, e_2, \dots, e_n) \in I_{n,k}$, we have $A(\mathbf{e}) \in \mathcal{A}_{n,k}$, where $\mathcal{A}_{n,k}$ is the set of $2 \times n$ arrays

$$A = \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix}$$

such that $c_1 = b_1 = 1$ and for any $2 \le i \le n$,

$$c_i \in \{1, 2, \dots, k\} \text{ and } b_i \in \begin{cases} \{1, 2, \dots, i\} & \text{if } c_i = 1; \\ \{2, 3, \dots, i\} & \text{if } c_i \geqslant 2. \end{cases}$$

Proof. Let $\mathbf{e} = (e_1, e_2, \dots, e_n) \in I_{n,k}$. For each $i = 1, 2, \dots, n$, we have $0 \le e_i \le k(i-1)$. If $e_i = 0$, then $c_i = 1$; if $e_i \ge 1$, then $0 < \frac{e_i}{i-1} \le k$ for any $i \ge 2$, and so $c_i = \lceil \frac{e_i}{i-1} \rceil \in \{1, 2, \dots, k\}$.

When $c_i = 1$, we have $b_i = e_i + 1$. If $e_i = 0$, then $b_i = 1$. If $e_i > 0$, then $0 < \frac{e_i}{i-1} \le 1$ since $c_i = \lceil \frac{e_i}{i-1} \rceil = 1$, and so $0 < e_i \le i - 1$. This implies that $1 < b_i \le i$. Thus, if $c_i = 1$, then $b_i \in [i]$.

When $c_i \ge 2$, we have $c_i - 1 < \frac{e_i}{i-1} \le c_i$. This implies that $(c_i - 1)(i-1) < e_i \le c_i(i-1)$. Hence, $1 < b_i \le i$, and so $A(\mathbf{e}) \in \mathcal{A}_{n,k}$.

Define a map $\varphi_n: I_{n,k} \mapsto \mathcal{A}_{n,k}$ by letting $\varphi_n(\mathbf{e}) = A(\mathbf{e})$ for any $\mathbf{e} \in I_{n,k}$. For any $A \in \mathcal{A}_{n,k}$, we say that an index i is an ascent of A if either (i) $c_i < c_{i+1}$ or (ii) $c_i = c_{i+1}$ and $b_i < b_{i+1}$. Let $\mathrm{Asc}(A)$ be the set of ascents of A and let $\mathrm{asc}(A) = |\mathrm{Asc}(A)|$.

Example 4. Take n = 17 and k = 2. Let

$$\mathbf{e} = (0, 1, 3, 0, 5, 10, 3, 7, 16, 15, 0, 3, 13, 1, 2, 20, 12) \in I_{17,2}.$$

We have

It is clear that $Asc(A) = \{1, 2, 4, 5, 7, 8, 11, 12, 14, 15\}$ and asc(A) = 10.

The following lemma is fundamental.

Lemma 5. The map φ_n is a bijection from $I_{n,k}$ to $\mathcal{A}_{n,k}$. For any $\mathbf{e} \in I_{n,k}$, we have

$$\operatorname{Asc}(\mathbf{e}) = \operatorname{Asc}(\varphi_n(\mathbf{e})).$$

Therefore,

$$\sum_{\mathbf{e} \in I_{n,k}} x^{\mathrm{asc}(\mathbf{e})} = \sum_{A \in \mathcal{A}_{n,k}} x^{\mathrm{asc}(A)}.$$

Proof. For any

$$A = \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix} \in \mathcal{A}_{n,k},$$

let $\theta_n(A) = (e'_1, e'_2, \dots, e'_n)$, where $e'_i = b_i + (c_i - 1)(i - 1) - 1$. It is clear that the map θ_n is the inverse of φ_n .

For any $\mathbf{e} = (e_1, e_2, \dots, e_n) \in I_{n,k}$, if $i \in \mathrm{Asc}(\mathbf{e})$, then $\frac{e_i}{k(i-1)+1} < \frac{e_{i+1}}{ki+1}$. For any $i \in [n]$, let

$$c_i = \begin{cases} 1 & \text{if } e_i = 0\\ \lceil \frac{e_i}{i-1} \rceil & \text{if } e_i \geqslant 1 \end{cases} \text{ and } b_i = e_i - (c_i - 1)(i - 1) + 1.$$

Since $e_i = b_i + (c_i - 1)(i - 1) - 1$, we get

$$e_i(ki+1) - e_{i+1}(k(i-1)+1)$$
= $(ki+1)((c_i-c_{i+1})(i-1) + b_i - b_{i+1}) + k(b_{i+1}-1) - (c_{i+1}-1).$

When $c_i < c_{i+1}$, we have $c_{i+1} \ge 2$, $b_{i+1} \ge 2$ and $b_i \le i$. So,

$$e_i = (c_i - 1)(i - 1) + b_i - 1 \le c_i(i - 1)$$

and

$$e_{i+1} = (c_{i+1} - 1)i + b_{i+1} - 1 \ge (c_{i+1} - 1)i + 1.$$

Hence,

$$e_{i+1}(k(i-1)+1) - e_i(ki+1)$$

$$\geqslant ((c_{i+1}-1)i+1)(k(i-1)+1) - c_i(i-1)(ki+1)$$

$$= ki(i-1)(c_{i+1}-c_i-1) + (k-1)(i-1) + (c_{i+1}-c_i)i + c_i$$

$$> 0.$$

When $c_i > c_{i+1}$, we have $c_i \ge 2$, $c_{i+1} < k$, $b_i \ge 2$. Moreover, we have $b_{i+1} \le i$, since $b_{i+1} = i+1$ if and only if $c_{i+1} = k$. So,

$$e_i = (c_i - 1)(i - 1) + b_i - 1 \ge (c_i - 1)(i - 1) + 1$$

and

$$e_{i+1} = (c_{i+1} - 1)i + b_{i+1} - 1 \le c_{i+1}i - 1.$$

Hence,

$$e_{i+1}(k(i-1)+1) - e_i(ki+1)$$

$$\leq (c_{i+1}i-1)(k(i-1)+1) - ((c_i-1)(i-1)+1)(ki+1)$$

$$= (ki+1)(i-1)(c_{i+1}-c_i+1) + (c_{i+1}+k-2ki-2)$$

$$< 0.$$

When $c_i = c_{i+1}$ and $b_i < b_{i+1}$, we have

$$e_{i} = (c_{i} - 1)(i - 1) + b_{i} - 1$$

$$= (c_{i+1} - 1)(i - 1) + b_{i} - 1$$

$$\leqslant (c_{i+1} - 1)(i - 1) + b_{i+1} - 2$$

$$= e_{i+1} - c_{i+1}.$$

Hence,

$$e_{i+1}(k(i-1)+1) - e_i(ki+1)$$

$$\geq e_{i+1}(k(i-1)+1) - (e_{i+1}-c_{i+1})(ki+1)$$

$$= (ki+1)c_{i+1} - ke_{i+1}$$

$$\geq (ki+1)c_{i+1} - kic_{i+1} = c_{i+1} > 0.$$

When $c_i = c_{i+1}$ and $b_i \geqslant b_{i+1}$, we have

$$e_{i} = (c_{i} - 1)(i - 1) + b_{i} - 1$$

$$= (c_{i+1} - 1)(i - 1) + b_{i} - 1$$

$$\geq (c_{i+1} - 1)(i - 1) + b_{i+1} - 1$$

$$= e_{i+1} - c_{i+1} + 1.$$

Hence,

$$e_{i+1}(k(i-1)+1) - e_i(ki+1)$$

$$\leqslant e_{i+1}(k(i-1)+1) - (e_{i+1} - c_{i+1} + 1)(ki+1)$$

$$= (ki+1)(c_{i+1}-1) - ke_{i+1}$$

$$= k(1-b_{i+1}) + c_{i+1} - 1 \leqslant 0,$$

in which the last inequality is easily checked by using Lemma 3. Thus, we have $i \in \text{Asc}(\mathbf{e})$ if and only if $i \in \text{Asc}(\varphi_n(\mathbf{e}))$.

A block k-colored permutation on the set [n] is a pair $B = \begin{pmatrix} \mathbf{c} \\ \pi \end{pmatrix}$ such that $\pi \in \mathfrak{S}_n$ and \mathbf{c} is a map from [n] to [k] which satisfies $1 \leqslant c(\pi(i)) \leqslant k$ if $i \notin \operatorname{Lrm}(\pi)$, otherwise $c(\pi(i)) = 1$. Let $\mathcal{B}_{n,k}$ be the set of block k-colored permutations on the set [n]. We write an element $B = \begin{pmatrix} \mathbf{c} \\ \pi \end{pmatrix}$ in $\mathcal{B}_{n,k}$ as the following $2 \times n$ array

$$B = \begin{pmatrix} \mathbf{c} \\ \pi \end{pmatrix} = \begin{pmatrix} c(\pi(1)) & c(\pi(2)) & \dots & c(\pi(n)) \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix}.$$

For example, consider the permutation $\pi = 324165$ and let k = 3. Then the following 2×6 array

$$B = \begin{pmatrix} \mathbf{c} \\ \pi \end{pmatrix} = \begin{pmatrix} 1 & 1 & 3 & 1 & 1 & 2 \\ 3 & 2 & 4 & 1 & 6 & 5 \end{pmatrix}$$

is a block 3-colored permutation on the set [6].

Given an array

$$A = \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix} \in \mathcal{A}_{n,k},$$

we construct a permutation in \mathfrak{S}_n by the following **Algorithm B**. Let

$$\pi^{(i)} = \pi^{(i)}(1)\pi^{(i)}(2)\cdots\pi^{(i)}(i)$$

denote the permutation in \mathfrak{S}_i obtained by the algorithm at time i.

Algorithm B.

- Step 1. Let $\pi^{(1)}(1) = b_1$.
- Step 2. At time $i \ge 2$, suppose that $\pi^{(i-1)}$ is determined. For each $j = 1, 2, \ldots, i-1$, if $\pi^{(i-1)}(j) \ge b_i$, then let $\pi^{(i)}(j) = \pi^{(i)}(j) + 1$; otherwise, let $\pi^{(i)}(j) = \pi^{(i-1)}(j)$. Finally, set $\pi^{(i)}(i) = b_i$. Thus we get

$$\pi^{(i)} = \pi^{(i)}(1)\pi^{(i)}(2)\cdots\pi^{(i)}(i-1)\pi^{(i)}(i) \in \mathfrak{S}_i.$$

Iterating Step 2 until i = n, we obtain a permutation $\pi^{(n)} \in \mathfrak{S}_n$. Let **c** be a map from [n] to \mathbb{N} such that $c(\pi(i)) = c_i$ and let $B_A = \begin{pmatrix} \mathbf{c} \\ \pi \end{pmatrix}$. Then

$$B_A = \begin{pmatrix} \mathbf{c} \\ \pi^{(n)} \end{pmatrix} = \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ \pi^{(n)}(1) & \pi^{(n)}(2) & \dots & \pi^{(n)}(n) \end{pmatrix}.$$

Example 6. Let A be the 2×17 array given in Example 4. By Algorithm B, we have

$\pi^{(1)}$	1																	
$\pi^{(2)}$	1	2																
$\pi^{(3)}$	1	3	2															
$\pi^{(4)}$	2	4	3	1														
$\pi^{(5)}$	3	5	4	1	2													
$\pi^{(6)}$	3	5	4	1	2	6												
$\pi^{(7)}$	3	6	5	1	2	7	4											
$\pi^{(8)}$	3	6	5	1	2	7	4	8										
$\pi^{(9)}$	3	6	5	1	2	7	4	8	9									
$\pi^{(10)}$	3	6	5	1	2	8	4	9	10	7								
$\pi^{(11)}$	4	7	6	2	3	9	5	10	11	8	1							
$\pi^{(12)}$	5	8	7	2	3	10	6	11	12	9	1	4						
$\pi^{(13)}$	6	9	8	3	4	11	7	12	13	10	1	5	2					
$\pi^{(14)}$	7	10	9	4	5	12	8	13	14	11	1	6	3	2				
$\pi^{(15)}$	8	11	10	5	6	13	9	14	15	12	1	7	4	2	3			
$\pi^{(16)}$	9	12	11	5	7	14	10	15	16	13	1	8	4	2	3	6		
$\pi^{(17)}$	9	12	11	5	7	15	10	16	17	14	1	8	4	2	3	6	13	

and so

Lemma 7. For any $A \in \mathcal{A}_{n,k}$, we have $B_A \in \mathcal{B}_{n,k}$.

Proof. Fix an array $A = \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix} \in \mathcal{A}_{n,k}$. For each $i \in [n]$, let

$$A^{(i)} = \begin{pmatrix} c_1 & c_2 & \dots & c_i \\ b_1 & b_2 & \dots & b_i \end{pmatrix}.$$

Then $A^{(i)} \in \mathcal{A}_{i,k}$. We prove the lemma by induction. For each i, suppose that

$$B_{A^{(i)}} = \begin{pmatrix} \mathbf{c}^{(i)} \\ \pi^{(i)} \end{pmatrix} = \begin{pmatrix} c_1 & c_2 & \dots & c_i \\ \pi^{(i)}(1) & \pi^{(i)}(2) & \dots & \pi^{(i)}(i) \end{pmatrix}.$$

Clearly, $B_{A^{(1)}} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathcal{B}_{1,k}$. Suppose that $B_{A^{(i)}} \in \mathcal{B}_{i,k}$. Let us consider $A^{(i+1)}$. By **Algorithm B**, we have

$$\operatorname{Lrm}(\pi^{(i+1)}) = \begin{cases} \operatorname{Lrm}(\pi^{(i)}) \cup \{i+1\} & \text{if} \quad b_{i+1} = 1\\ \operatorname{Lrm}(\pi^{(i)}) & \text{if} \quad b_{i+1} \geqslant 2 \end{cases}$$

Note that $c_{i+1}=1$ if $b_{i+1}=1$. By induction hypothesis, we obtain $B_{A^{(i+1)}}\in\mathcal{B}_{i+1,k}$.

Define a map $\alpha_n : \mathcal{A}_{n,k} \mapsto \mathcal{B}_{n,k}$ by letting $\alpha_n(A) = B_A$ for any $A \in \mathcal{A}_{n,k}$. For any $B \in \mathcal{B}_{n,k}$, we say that an index i is an ascent of B if either (i) $c(\pi(i)) < c(\pi(i+1))$ or (ii) $c(\pi(i)) = c(\pi(i+1))$ and $\pi(i) < \pi(i+1)$. Let Asc(B) be the set of ascents of B and asc(B) = |Asc(B)|. For example, for the array $B = B_A$ that is given in Example 6, we have $Asc(B) = \{1, 2, 4, 5, 7, 8, 11, 12, 14, 15\}$ and asc(B) = 10.

Lemma 8. The map $\alpha_n : \mathcal{A}_{n,k} \mapsto \mathcal{B}_{n,k}$ is a bijection. For any $A \in \mathcal{A}_{n,k}$, we have $\operatorname{Asc}(A) = \operatorname{Asc}(\alpha_n(A))$. Therefore,

$$\sum_{A \in \mathcal{A}_{n,k}} x^{\operatorname{asc}(A)} = \sum_{B \in \mathcal{B}_{n,k}} x^{\operatorname{asc}(B)}.$$

Proof. Given an array

$$B = \begin{pmatrix} \mathbf{c} \\ \pi \end{pmatrix} = \begin{pmatrix} c(\pi(1)) & c(\pi(2)) & \dots & c(\pi(n)) \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix} \in \mathcal{B}_{n,k},$$

we first construct a sequence b_1, b_2, \ldots, b_n by the following **Algorithm B***. Let

$$\pi^{(n-i+1)} = \pi^{(n-i+1)}(1)\pi^{(n-i+1)}(2)\cdots\pi^{(n-i+1)}(n-i+1)$$

denote the permutation in \mathfrak{S}_{n-i+1} obtained by the algorithm at time i.

Algorithm B*.

- Step 1. Let $\tilde{\pi}^{(n)}(j) = \pi(j)$ for any j = 1, 2, ..., n.
- Step 2. At time $i \ge 1$, suppose that

$$\tilde{\pi}^{(n-i+1)} = \tilde{\pi}^{(n-i+1)}(1)\tilde{\pi}^{(n-i+1)}(2)\cdots\tilde{\pi}^{(n-i+1)}(n-i+1)$$

is determined. Set $b_{n-i+1} = \tilde{\pi}^{(n-i+1)}(n-i+1)$. For each $j=1,2,\ldots,n-i$, if $\tilde{\pi}^{(n-i+1)}(j) > b_{n-i+1}$, then let $\tilde{\pi}^{(n-i)}(j) = \tilde{\pi}^{(n-i+1)}(j) - 1$; otherwise, let $\tilde{\pi}^{(n-i)}(j) = \tilde{\pi}^{(n-i+1)}(j)$. We have

$$\tilde{\pi}^{(n-i)} = \tilde{\pi}^{(n-i)}(1)\tilde{\pi}^{(n-i)}(2)\cdots\tilde{\pi}^{(n-i)}(n-i) \in \mathfrak{S}_{n-i}.$$

Iterating Step 2 until i = n, we obtain a sequence b_1, b_2, \ldots, b_n . Let $c(\pi(i)) = c_i$ for each i. We obtain a $2 \times n$ array $A = \begin{pmatrix} c_1 & c_2 & \ldots & c_n \\ b_1 & b_2 & \ldots & b_n \end{pmatrix}$. It is clear that $b_i = 1$ if and only if $i \in \text{Lrm}(\pi)$. Hence, $A \in \mathcal{A}_{n,k}$. For example, let us consider the array

$$B = \begin{pmatrix} \mathbf{c} \\ \pi \end{pmatrix} = \begin{pmatrix} 1 & 1 & 3 & 1 & 1 & 2 \\ 3 & 2 & 4 & 1 & 6 & 5 \end{pmatrix} \in \mathcal{B}_{6,3}.$$

By Algorithm B^* , we have

$\tilde{\pi}^{(6)}$	3	2	4	1	6	5	$b_6 = 5$
$\tilde{\pi}^{(5)}$	3	2	4	1	5		$b_5 = 5$
$\tilde{\pi}^{(4)}$	3	2	4	1			$b_4 = 1$
$\tilde{\pi}^{(3)}$	2	1	3				$b_3 = 3$
$\tilde{\pi}^{(2)}$	2	1					$b_2 = 1$
$\tilde{\pi}^{(1)}$	1						$b_1 = 1$

and so

$$A = \begin{pmatrix} 1 & 1 & 3 & 1 & 1 & 2 \\ 1 & 1 & 3 & 1 & 5 & 5 \end{pmatrix} \in \mathcal{A}_{6,3}.$$

Define a map $\theta_n: \mathcal{B}_{n,k} \to \mathcal{A}_{n,k}$ by letting $\theta_n(B) = A$ for any $B \in \mathcal{B}_{n,k}$. We claim that

$$\theta_n(\alpha_n(A)) = A$$

for any $A \in \mathcal{A}_{n,k}$. We prove this claim by induction on n. Clearly,

$$\theta_1\left(\alpha_1\left(\begin{pmatrix}1\\1\end{pmatrix}\right)\right) = \begin{pmatrix}1\\1\end{pmatrix}.$$

Fix an array $A = \begin{pmatrix} c_1 & c_2 & \dots & c_n & c_{n+1} \\ b_1 & b_2 & \dots & b_n & b_{n+1} \end{pmatrix} \in \mathcal{A}_{n+1,k}$. Suppose that

$$B = \alpha_{n+1}(A) = \begin{pmatrix} \mathbf{c} \\ \pi \end{pmatrix} = \begin{pmatrix} c(\pi(1)) & c(\pi(2)) & \dots & c(\pi(n)) & c(\pi(n+1)) \\ \pi(1) & \pi(2) & \dots & \pi(n) & \pi(n+1) \end{pmatrix}$$

and

$$A' = \theta_{n+1}(B) = \begin{pmatrix} c_1 & c_2 & \dots & c_n & c_{n+1} \\ b'_1 & b'_2 & \dots & b'_n & b'_{n+1} \end{pmatrix}.$$

For the array A, suppose that

$$\pi^{(n)} = \pi^{(n)}(1)\pi^{(n)}(2)\cdots\pi^{(n)}(n)$$

is the permutation obtained by **Algorithm B** at time n, and for the array B suppose that

$$\tilde{\pi}^{(n)} = \tilde{\pi}^{(n)}(1)\tilde{\pi}^{(n)}(2)\dots, \tilde{\pi}^{(n)}(n)$$

is the permutation obtained by **Algorithm B*** at time 2. Note that $\pi(n+1) = b_{n+1}$ at the time n+1 of **Algorithm B** and $b'_{n+1} = \pi(n+1)$ at the time 1 of **Algorithm B***. So, we have $b_{n+1} = b'_{n+1}$ and $\tilde{\pi}^{(n)} = \pi^{(n)}$. Furthermore, let

$$A^{(n)} = \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix} \in \mathcal{A}_{n,k}$$

and

$$\begin{pmatrix} \mathbf{c}^{(n)} \\ \pi^{(n)} \end{pmatrix} = \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ \pi^{(n)}(1) & \pi^{(n)}(2) & \dots & \pi^{(n)}(n) \end{pmatrix}.$$

Algorithm B tells us that $\alpha_n(A^{(n)}) = \begin{pmatrix} \mathbf{c}^{(n)} \\ \pi^{(n)} \end{pmatrix} = \begin{pmatrix} \mathbf{c}^{(n)} \\ \tilde{\pi}^{(n)} \end{pmatrix}$. **Algorithm B*** tells us that

$$\theta_n\left(\begin{pmatrix} \mathbf{c}^{(n)} \\ \tilde{\pi}^{(n)} \end{pmatrix}\right) = \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ b'_1 & b'_2 & \dots & b'_n \end{pmatrix}.$$

By the induction hypothesis, we have $\theta_n(\alpha_n(A^{(n)})) = A^{(n)}$. Hence,

$$\theta_{n+1}(\alpha_{n+1}(A)) = A,$$

which implies that $\alpha_n : \mathcal{A}_{n,k} \mapsto \mathcal{B}_{n,k}$ is a bijection. For any $A \in \mathcal{A}_{n,k}$, by using **Algorithm B**, we immediately get $\operatorname{Asc}(A) = \operatorname{Asc}(\alpha_n(A))$.

Let $B = \begin{pmatrix} \mathbf{c} \\ \pi \end{pmatrix} \in \mathcal{B}_{n,k}$. Note that $1 \in \text{Lrm}(\pi)$. Suppose that $\text{Lrm}(\pi) = \{k_1, k_2, \dots, k_r\}$ with $1 = k_1 < k_2 < \dots < k_r$ and let $k_{r+1} = n+1$. For each $i = 1, 2, \dots, r$, let τ_i be the subsequence $\pi(k_i)\pi(k_i+1)\dots\pi(k_{i+1}-1)$ of π . We call the sequence

$$\tau_1, \tau_2, \ldots, \tau_r$$

the left-to-right minimum decomposition of π and the subsequence τ_i the *i*-th block of π . For convenience, let $l_i = k_{i+1} - k_i$, which is called the length of τ_i , and let $\tau_{i,j} = \pi(k_i + j - 1)$ for i = 1, 2, ..., r and $j = 1, 2, ..., l_i$. Thus, we have $\tau_i = (\tau_{i,1}, \tau_{i,2}, ..., \tau_{i,l_i})$. We now define a total order in the set $\left\{ \begin{pmatrix} c(\tau_{i,j}) \\ \tau_{i,j} \end{pmatrix} \mid j = 1, 2, ..., l_i \right\}$: for any j_1, j_2 with $j_1 \neq j_2$, we say

 $j_1 \prec j_2$ if the indices j_1 and j_2 satisfy either (i) $c(\tau_{i,j_1}) < c(\tau_{i,j_2})$ or (ii) $c(\tau_{i,j_1}) = c(\tau_{i,j_2})$ and $\tau_{i,j_1} < \tau_{i,j_2}$. Let ϕ_i be an increasing bijection from the set $\left\{ \begin{pmatrix} c(\tau_{i,j}) \\ \tau_{i,j} \end{pmatrix} \mid j=1,2,\ldots,l_i \right\}$ to the set $\{\tau_{i,j} \mid j=1,2,\ldots,l_i\}$, i.e.,

$$\phi_i\left(\begin{pmatrix} c(\tau_{i,j_1}) \\ \tau_{i,j_1} \end{pmatrix}\right) < \phi_i\left(\begin{pmatrix} c(\tau_{i,j_2}) \\ \tau_{i,j_2} \end{pmatrix}\right)$$

if $\begin{pmatrix} c(\tau_{i,j_1}) \\ \tau_{i,j_1} \end{pmatrix} \prec \begin{pmatrix} c(\tau_{i,j_2}) \\ \tau_{i,j_2} \end{pmatrix}$ for any $j_1 \neq j_2$. For any $j = 1, 2, \dots, l_i$, let

$$\tilde{\tau}_{i,j} = \phi_i \left(\begin{pmatrix} c(\tau_{i,j}) \\ \tau_{i,j} \end{pmatrix} \right).$$

Then we get a sequence $\tilde{\tau}_i$ as follows:

$$\tilde{\tau}_i = (\tilde{\tau}_{i,1}, \tilde{\tau}_{i,2}, \dots, \tilde{\tau}_{i,l_i}).$$

Since $\tau_{i,1}$ is a left-to-right minimum of π , we have $c(\tau_{i,1}) = 1$, and so

$$\tilde{\tau}_{i,1} = \phi_i \left(\begin{pmatrix} c(\tau_{i,1}) \\ \tau_{i,1} \end{pmatrix} \right) = \tau_{i,1}.$$

Moreover, $\tilde{\tau}_{i,j} < \tilde{\tau}_{i,j+1}$ if and only if the index j satisfies either (I) $c(\tau_{i,j}) < c(\tau_{i,j+1})$ or (II) $c(\tau_{i,j}) = c(\tau_{i,j+1})$ and $\tau_{i,j} < \tau_{i,j}$. Finally, let

$$\tau = \tilde{\tau}_{1,1} \cdots \tilde{\tau}_{1,l_1} \tilde{\tau}_{2,1} \cdots \tilde{\tau}_{2,l_2} \cdots \tilde{\tau}_{r,1} \cdots \tilde{\tau}_{r,l_r} \in \mathfrak{S}_n$$

and

$$\tilde{B} = \begin{pmatrix} \mathbf{c}' \\ \tau \end{pmatrix} = \begin{pmatrix} c(\tilde{\tau}_{1,1}) & \dots & c(\tilde{\tau}_{1,l_1}) & c(\tilde{\tau}_{2,1}) & \dots & c(\tilde{\tau}_{2,l_2}) & \dots & c(\tilde{\tau}_{r,1}) & \dots & c(\tilde{\tau}_{r,l_r}) \\ \tilde{\tau}_{1,1} & \dots & \tilde{\tau}_{1,l_1} & \tilde{\tau}_{2,1} & \dots & \tilde{\tau}_{2,l_2} & \dots & \tilde{\tau}_{r,1} & \dots & \tilde{\tau}_{r,l_r} \end{pmatrix}.$$

We immediately get the following lemma.

Lemma 2.1. For any $B = \begin{pmatrix} \mathbf{c} \\ \pi \end{pmatrix} \in \mathcal{B}_{n,k}$, let $\tilde{B} = \begin{pmatrix} \mathbf{c}' \\ \tau \end{pmatrix}$. Then $\tilde{B} \in \mathcal{B}_{n,k}$, $\operatorname{Lrm}(\pi) = \operatorname{Lrm}(\tau)$, $\operatorname{Asc}(B) = \operatorname{Asc}(\tau)$ and c'(i) = c(i) for any $i = 1, 2, \ldots, n$.

Example 9. Consider

The left-to-right minimum decomposition of π is

$$\tau_1 = 9, 12, 11; \tau_2 = 5, 7, 15, 10, 16, 17, 14; \tau_3 = 1, 8, 4, 2, 3, 6, 13.$$

For the block τ_1 , we have $\begin{pmatrix} 1 \\ 9 \end{pmatrix} \prec \begin{pmatrix} 1 \\ 12 \end{pmatrix} \prec \begin{pmatrix} 2 \\ 11 \end{pmatrix}$ and list the increasing bijection ϕ_1 in the following table:

j	1	2	3
$\begin{pmatrix} c(\tau_{1,j}) \\ \tau_{1,j} \end{pmatrix}$	$\begin{pmatrix} 1 \\ 9 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 12 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 11 \end{pmatrix}$
$\phi_1(\begin{pmatrix} c(\tau_{1,j}) \\ \tau_{1,j} \end{pmatrix})$	9	11	12

Table 1. The increasing bijection ϕ_1 .

Hence,

$$\tilde{\tau}_1 = (9, 11, 12).$$

For the block τ_2 , we have $\begin{pmatrix} 1 \\ 5 \end{pmatrix} \prec \begin{pmatrix} 1 \\ 10 \end{pmatrix} \prec \begin{pmatrix} 1 \\ 16 \end{pmatrix} \prec \begin{pmatrix} 2 \\ 7 \end{pmatrix} \prec \begin{pmatrix} 2 \\ 14 \end{pmatrix} \prec \begin{pmatrix} 2 \\ 15 \end{pmatrix} \prec \begin{pmatrix} 2 \\ 17 \end{pmatrix}$ and list the increasing bijection ϕ_2 in the following table:

j	1	4	5	2	7	3	6
$\begin{pmatrix} c(\tau_{2,j}) \\ \tau_{2,j} \end{pmatrix}$	$\begin{pmatrix} 1 \\ 5 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 10 \end{pmatrix}$	$\begin{pmatrix} 1\\16 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 7 \end{pmatrix}$	$\begin{pmatrix} 2\\14 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 15 \end{pmatrix}$	$\binom{2}{17}$
$\phi_2\left(\begin{pmatrix}c(\tau_{2,j})\\\tau_{2,j}\end{pmatrix}\right)$	5	7	10	14	15	16	17

Table 2. The increasing bijection ϕ_2 .

Hence,

$$\tilde{\tau}_2 = (5, 14, 16, 7, 10, 17, 15).$$

For the block τ_3 , we have $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \prec \begin{pmatrix} 1 \\ 2 \end{pmatrix} \prec \begin{pmatrix} 1 \\ 3 \end{pmatrix} \prec \begin{pmatrix} 1 \\ 8 \end{pmatrix} \prec \begin{pmatrix} 1 \\ 13 \end{pmatrix} \prec \begin{pmatrix} 2 \\ 4 \end{pmatrix} \prec \begin{pmatrix} 2 \\ 6 \end{pmatrix}$ and list the increasing bijection ϕ_3 in the following table:

j	1	4	5	2	7	3	6
$\begin{pmatrix} c(\tau_{3,j}) \\ \tau_{3,j} \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 8 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 13 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 4 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 6 \end{pmatrix}$
$\phi_3\left(\begin{pmatrix}c(\tau_{1,j})\\\tau_{3,j}\end{pmatrix}\right)$	1	2	3	4	6	8	13

Table 3. The increasing bijection ϕ_3 .

Hence,

$$\tilde{\tau}_3 = (1, 4, 8, 2, 3, 13, 6).$$

So $\tau = 9, 11, 12, 5, 14, 16, 7, 10, 17, 15, 1, 4, 8, 2, 3, 13, 6$ and

Define a map $\beta_n : \mathcal{B}_{n,k} \to \mathcal{B}_{n,k}$ by letting $\beta_n(B) = \tilde{B}$ for any $B \in \mathcal{B}_{n,k}$.

Lemma 10. The map β_n is a bijection from $\mathcal{B}_{n,k}$ to itself.

Proof. We establish the inverse ψ_n of β_n as follows. For any

$$B = \begin{pmatrix} \mathbf{c} \\ \tau \end{pmatrix} = \begin{pmatrix} c(\tau(1)) & c(\tau(2)) & \dots & c(\tau(n)) \\ \tau(1) & \tau(2) & \dots & \tau(n) \end{pmatrix} \in \mathcal{B}_{n,k},$$

let $\tau_1, \tau_2, \dots, \tau_r$ be the left-to-right minimum decomposition of τ . Suppose that

$$\tau_i = (\tau_{i,1}, \tau_{i,2}, \dots, \tau_{i,l_i}).$$

where l_i is the length of the subsequence τ_i . Recall that ϕ_i is the increasing bijection from from the set $\left\{ \begin{pmatrix} c(\tau_{i,j}) \\ \tau_{i,j} \end{pmatrix} \mid j=1,2,\ldots,l_i \right\}$ to the set $\left\{ \tau_{i,j} \mid j=1,2,\ldots,l_i \right\}$. Let $\left(c(\tilde{\pi}_{i,j}) \atop \tilde{\pi}_{i,j} \right) = \phi_i^{-1}(\tau_{i,j})$ for each $j=1,2,\ldots,l_i$ and

$$\psi_n(B) = \begin{pmatrix} \mathbf{c}' \\ \pi \end{pmatrix} = \begin{pmatrix} c(\tilde{\pi}_{1,1}) & \dots & c(\tilde{\pi}_{1,l_1}) & c(\tilde{\pi}_{2,1}) & \dots & c(\tilde{\pi}_{2,l_2}) & \dots & c(\tilde{\pi}_{r,1}) & \dots & c(\tilde{\tau}_{r,l_r}) \\ \tilde{\pi}_{1,1} & \dots & \tilde{\pi}_{1,l_1} & \tilde{\pi}_{2,1} & \dots & \tilde{\pi}_{2,l_2} & \dots & \tilde{\pi}_{r,1} & \dots & \tilde{\pi}_{r,l_r} \end{pmatrix}.$$

For example, let us consider the array

The left-to-right minimum decomposition of τ is

$$\tau_1 = 9, 11, 12; \tau_2 = 5, 14, 16, 7, 10, 17, 15; \tau_3 = 1, 4, 8, 2, 3, 13, 6.$$

For the block τ_1 , the increasing bijection ϕ_1 is listed in Table 1. Hence, we have

$ au_{1,j}$	9	11	12
$ \begin{pmatrix} c(\tilde{\pi}_{1,j}) \\ \tilde{\pi}_{1,j} \end{pmatrix} = \phi_1^{-1}(\tau_{1,j}) $	$\begin{pmatrix} 1 \\ 9 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 12 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 11 \end{pmatrix}$

For the block τ_2 , the increasing bijection ϕ_2 is listed in Table 2. Hence, we have

$ au_{2,j}$	5	14	16	7	10	17	15
$ \begin{pmatrix} c(\tilde{\pi}_{2,j}) \\ \tilde{\pi}_{2,j} \end{pmatrix} = \phi_2^{-1}(\tau_{2,j}) $	$\begin{pmatrix} 1 \\ 5 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 7 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 15 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 10 \end{pmatrix}$	$\begin{pmatrix} 1\\16 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 17 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 14 \end{pmatrix}$

For the block τ_3 , the increasing bijection ϕ_3 is listed in Table 3. Hence, we have

$ au_{3,j}$	1	4	8	2	3	13	6
$ \left(\begin{array}{c} c(\tilde{\pi}_{3,j}) \\ \tilde{\pi}_{3,j} \end{array}\right) = \phi_3^{-1}(\tau_{3,j}) $	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 8 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 4 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 6 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 13 \end{pmatrix}$

Thus,

The proof of (2): By Lemma 5 and Lemma 8, we have

$$\sum_{\mathbf{e} \in I_{n,k}} x^{\mathrm{asc}\,(\mathbf{e})} = \sum_{A \in \mathcal{A}_{n,k}} x^{\mathrm{asc}\,(A)} = \sum_{B \in \mathcal{B}_{n,k}} x^{\mathrm{asc}\,(B)}.$$

By Lemma 2.1 and Lemma 10, we obtain

$$\sum_{B \in \mathcal{B}_{n,k}} x^{\operatorname{asc}(B)} = \sum_{\begin{pmatrix} \mathbf{c} \\ \pi \end{pmatrix} \in \mathcal{B}_{n,k}} x^{\operatorname{asc}(\pi)} = \sum_{\pi \in \mathfrak{S}_n} x^{\operatorname{asc}(\pi)} k^{n-\operatorname{lrmin}(\pi)}.$$

3 k-inversion sequences and k-Stirling permutations

A k-Stirling permutation of order n is a permutation of the multiset

$$\{\underbrace{1,\ldots,1}_{k},\underbrace{2,\ldots,2}_{k},\ldots,\underbrace{n,\ldots,n}_{k}\}$$

such that for each $i, 1 \leq i \leq kn$, all entries between the two occurrences of i are larger than i. Let $\mathcal{Q}_n^{(k)}$ be the set of k-Stirling permutations of order n and write an element σ in $\mathcal{Q}_n^{(k)}$ as $\sigma = \sigma_1 \sigma_2 \cdots \sigma_{kn}$. For example, $\mathcal{Q}_2^{(2)} = \{1122, 1221, 2211\}$. It is easy to obtain that the cardinality $|\mathcal{Q}_n^{(k)}|$ of $\mathcal{Q}_n^{(k)}$ is $\prod_{i=1}^n ((i-1)k+1)$, and so $|\mathcal{Q}_n^{(k)}| = |I_{n,k}|$.

Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_{kn} \in \mathcal{Q}_n^{(k)}$. For any integer $a \in [n]$, we say that a is an ascent plateau of σ if there is an index $i \in \{1, 2, \ldots, (n-1)k\}$ such that

$$\sigma_{i-1} < \sigma_i = \sigma_{i+1} = \ldots = \sigma_{i+k-1} = a.$$

Let $AP(\sigma)$ be the set of all ascent plateaus of σ and $ap(\sigma) = |AP(\sigma)|$.

In [8], Ma and Yeh provided a constructive proof that the number of ascent plateaus of 2-Stirling permutations of order n is equidistributed with a weighted variant of the number of excedances in permutations of length n, where the weight is $2^{n-\text{cyc}(\pi)}$. Very recently, Duh et al. [5, Lemma 8] established a bijection between 2-colored permutations and Stirling permutations. Expanding [5, Lemma 8] and combining Lemma 5 and Lemma 8, in this section, we will present a bijective proof that the ascent plateau number over k-Stirling permutations of order n is equidistributed with the ascent number over k-inversion sequences of length n.

Given a $\sigma = \sigma_1 \sigma_2 \cdots \sigma_{kn} \in \mathcal{Q}_n^{(k)}$, a left-to-right minimum in σ is an index $i \in [kn-1]$ such that $\sigma(i) < \sigma(j)$ for any j < i or i = 1. Denote by $\operatorname{Lrm}(\sigma)$ the set of left to right minimums of σ and $\operatorname{Lrm}^*(\sigma) = \{\sigma_i \mid i \in \operatorname{Lrm}(\sigma)\}$. A block of σ is a substring which begins with a left-to-right minimum, and contains exactly this one left-to-right minimum; moreover, the substring is maximal, i.e., not contained in any larger such substring. It is easily derived by induction that any k-Stirling permutation has a unique decomposition as a sequence of blocks.

Example 11. Consider the 3-stirling permutation $\sigma = 334666443225552777111 \in \mathcal{Q}_7^{(3)}$. We have $Lrm(\sigma) = \{1, 10, 19\}, Lrm^*(\sigma) = \{3, 2, 1\}, AP(\sigma) = \{6, 5, 7\}.$ The block decomposition of σ is [334666443][225552777][111].

Lemma 12. There is a bijection $\Phi = \Phi_n^{(k)}$ from $Q_n^{(k)}$ to $\mathcal{B}_{n,k}$ such that

$$\operatorname{Lrm}^*(\sigma) = \operatorname{Lrm}^*(\pi) \text{ and } AP(\sigma) = Asc^*(\pi),$$

where the permutation π satisfies $\Phi(\sigma) = \begin{pmatrix} \mathbf{c} \\ \pi \end{pmatrix}$, $\operatorname{Lrm}^*(\pi) = \{\pi(i) \mid i \in \operatorname{Lrm}(\pi)\}$ and $Asc^*(\pi) = \{\pi(i+1) \mid i \in Asc(\pi)\}.$

Proof. We construct the bijection $\Phi = \Phi_n^{(k)}$ from $\mathcal{Q}_n^{(k)}$ to $\mathcal{B}_{n,k}$ as follows. When n = 1, let $\Phi_1^{(k)}(\underbrace{1 \cdots 1}_{k}) = 1$. Fix $n \geq 2$, and assume that $\Phi_{n-1}^{(k)}$ is the bijection

between $\mathcal{Q}_{n-1}^{(k)}$ to $\mathcal{B}_{n-1,k}$. Let $\sigma' \in \mathcal{Q}_n^{(k)}$ be obtained from some $\sigma \in \mathcal{Q}_{n-1}^{(k)}$ by inserting the substring $\underbrace{nn \cdots n}$ into σ . By the assumption, we have

$$\Phi_{n-1}^{(k)}(\sigma) = \begin{pmatrix} \mathbf{c} \\ \pi \end{pmatrix} \in \mathcal{B}_{n-1,k}, \ Lrm^*(\sigma) = Lrm^*(\pi) \text{ and } AP(\sigma) = Asc^*(\pi).$$

If $\underbrace{nn\cdots n}_k$ is placed at the front of σ , that is, $\sigma' = \underbrace{nn\cdots n}_k \sigma$ then we let $\Phi_n^{(k)}(\sigma') =$ $\begin{pmatrix} 1 & \mathbf{c} \\ n & \pi \end{pmatrix}$. Note that $\operatorname{Lrm}^*(\sigma') = \{n\} \cup \operatorname{Lrm}^*(\sigma), AP(\sigma') = AP(\sigma)$ and

$$\operatorname{Lrm}^*(n\pi) = \{n\} \cup \operatorname{Lrm}^*(\pi), \operatorname{Asc}^*(n\pi) = \operatorname{Asc}^*(\pi).$$

In this case, we have $Lrm^*(\sigma') = Lrm^*(n\pi)$ and $AP(\sigma') = Asc^*(n\pi)$.

Otherwise, suppose σ' is obtained from by inserting $\underline{nn \cdots n}$ into the *i*-th block of σ .

Let $m \in \text{Lrm}(\sigma)$ be the left-to-right minimum contained in the *i*-th block of σ . There are three possible cases. We construct $\Phi_n^{(k)}(\sigma') = \begin{pmatrix} \mathbf{c}' \\ \pi' \end{pmatrix}$ as follows:

1. If $\underbrace{nn\cdots n}_{i}$ is inserted at the end of the *i*-th block, then let π' be obtained by inserting the integer n at the end of the i-th block of π and

$$c'(j) = \begin{cases} c(j) & \text{if } j \neq n \\ k & \text{if } j = n \end{cases}.$$

Note that $\operatorname{Lrm}^*(\sigma') = \operatorname{Lrm}^*(\sigma), AP(\sigma') = \{n\} \cup AP(\sigma) \text{ and }$

$$Lrm^*(\pi') = Lrm(\pi), Asc^*(\pi') = \{n\} \cup Asc^*(\pi).$$

In this case, we have $\operatorname{Lrm}^*(\sigma') = \operatorname{Lrm}^*(\pi')$ and $AP(\sigma') = Asc^*(\pi')$.

2. If $\underbrace{nn\cdots n}_{k}$ is inserted immediately before the *p*-th σ_{m} for some $p=2,3,\ldots,k$, then let π' be obtained by inserting the integer n at the end of the i-th block of π and

$$c'(j) = \begin{cases} c(j) & \text{if } j \neq n \\ k+1-p & \text{if } j=n \end{cases}.$$

Note that $\operatorname{Lrm}^*(\sigma') = \operatorname{Lrm}^*(\sigma), AP(\sigma') = \{n\} \cup AP(\sigma) \text{ and }$

$$\operatorname{Lrm}^*(\pi') = \operatorname{Lrm}(\pi), \operatorname{Asc}^*(\pi') = \{n\} \cup \operatorname{Asc}^*(\pi).$$

In this case, we have $\operatorname{Lrm}^*(\sigma') = \operatorname{Lrm}^*(\pi')$ and $AP(\sigma') = Asc^*(\pi')$.

3. If $\underbrace{nn\cdots n}_{k}$ is inserted immediately before the p-th integer $b, b \neq \sigma_{m}$, for some $p=1,2,\ldots,k$, then let π' be obtained by inserting n into the i-th block of π such that n is immediately before b and

$$c'(j) = \begin{cases} c(j) & \text{if } j \neq n \\ p & \text{if } j = n \end{cases}.$$

Note that $\operatorname{Lrm}^*(\sigma') = \operatorname{Lrm}^*(\sigma)$ and $\operatorname{Lrm}^*(\pi') = \operatorname{Lrm}^*(\pi)$. When $b \in AP(\sigma)$, we have $AP(\sigma') = (AP(\sigma) \setminus \{b\}) \cup \{n\}$ and $Asc^*(\pi') = (Asc^*(\pi) \setminus b) \cup \{n\}$; When $b \notin AP(\sigma)$, we have $AP(\sigma') = AP(\sigma) \cup \{n\}$ and $Asc^*(\pi') = Asc^*(\pi) \cup \{n\}$. In this case, we have $\operatorname{Lrm}^*(\sigma') = \operatorname{Lrm}^*(\pi')$ and $AP(\sigma') = Asc^*(\pi')$.

The above argument shows that $\Phi_n^{(k)} \in \mathcal{B}_{n,k}$, and that $\Phi_n^{(k)}$ is injective from $\mathcal{Q}_n^{(k)}$ to $\mathcal{B}_{n,k}$. Lemmas 5 and 8 tells us that $|I_{n,k}| = |\mathcal{B}_{n,k}|$, and so the cardinality of $\mathcal{Q}_n^{(k)}$ is the same as that of $\mathcal{B}_{n,k}$. Thus, $\Phi_n^{(k)}$ must be a bijection between $\mathcal{Q}_n^{(k)}$ and $\mathcal{B}_{n,k}$. By induction, we see that $\Phi_n^{(k)}$ is the desired bijection between k-Stirling permutations and block k-colored permutations.

Example 13. Consider $\sigma = 226662555133444311 \in \mathcal{Q}_{6}^{(3)}$. The correspondence between σ and $\Phi_{6}^{(3)}(\sigma) = \begin{pmatrix} 1 & 3 & 1 & 1 & 3 & 2 \\ 2 & 5 & 6 & 1 & 4 & 3 \end{pmatrix}$ is built up as follows:

Theorem 14. $\Psi_n = \varphi_n^{-1} \circ \alpha_n^{-1} \circ \beta_n^{-1} \circ \Phi_n^{(k)}$ is a bijection from $\mathcal{Q}_n^{(k)}$ to $I_{n,k}$ such that $ap(\sigma) = \operatorname{asc}(\Psi_n(\sigma))$.

Proof. Combining Lemmas 5, 8, 2.1, 10 and 12, we have Ψ_n is a bijection from $\mathcal{Q}_n^{(k)}$ to $I_{n,k}$ such that $ap(\sigma) = \operatorname{asc}(\Psi_n(\sigma))$.

Corollary 15. For any $n \ge 1$ and $k \ge 1$, we have $\sum_{\sigma \in \mathcal{Q}_n^{(k)}} x^{ap(\sigma)} = \sum_{\mathbf{e} \in I_{n,k}} x^{asc(\mathbf{e})}$.

Acknowledgements

We would like to thank the referees for recommending various improvements of the manuscript.

References

- [1] M. Bousquet-Mélou and K. Eriksson, Lecture hall partitions, Ramanujan J., 1(1) (1997), 101–111.
- [2] M. Bousquet-Mélou and K. Eriksson, Lecture hall partitions, II. Ramanujan J., 1(2) (1997), 165–185.
- [3] M. Bousquet-Mélou and K. Eriksson, A refinement of the lecture hall theorem, J. Comb. Theory, Ser. A, 86(1) (1999), 63–84.
- [4] W.Y.C. Chen, A.J.X. Guo, P.L. Guo, H.H.Y. Huang, and T.Y. H. Liu, s-Inversion sequences and P-partitions of type B, SIAM J. Discrete Math., 30 (2016), 1632–1643.
- [5] G.-H. Duh, Y.-C. Roger Lin, S.-M. Ma, Y.-N. Yeh, Some statistics on Stirling permutations and Stirling derangements, *Discrete Math.*, 341(9), 2018, 2478–2484.
- [6] D. Foata and M. P. Schützenberger, Théorie géometrique des polynômes eulériens, Lecture Notes in Math. vol. 138, Springer, Berlin, 1970.
- [7] S.-M. Ma and T. Mansour, The 1/k-Eulerian polynomials and k-Stirling permutations, *Discrete Math.*, 338 (2015), 1468–1472.
- [8] S.-M. Ma and Y.-N. Yeh, Stirling permutations, cycle structure of permutations and perfect matchings, *Electron. J. Combin.*, 22(4) (2015), #P4.42.
- [9] T.W. Pensyl and C.D. Savage, Rational lecture hall polytopes and inflated Eulerian polynomials, *Ramanujan J.*, 31 (2013), 97–114.
- [10] C.D. Savage, The mathematics of lecture hall partitions, J. Combin. Theory Ser. A, 144 (2016), 443–475.
- [11] C.D. Savage and M.J. Schuster, Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences, *J. Combin. Theory Ser. A* 119 (2012), 850–870.
- [12] C.D. Savage and G. Viswanathan, The 1/k-Eulerian polynomials, *Electron. J. Combin.*, 19 (2012), #R9.
- [13] R.P. Stanley, A monotonicity property of h-vectors and h^* -vectors, European J. Combin., 14(3) (1993), 251C258.