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Abstract

Let s = (s1, s2, . . . , sn, . . .) be a sequence of positive integers. An s-inversion
sequence of length n is a sequence e = (e1, e2, . . . , en) of nonnegative integers such
that 0 6 ei < si for 1 6 i 6 n. When si = (i − 1)k + 1 for any i > 1, we call
the s-inversion sequences the k-inversion sequences. In this paper, we provide a
bijective proof that the ascent number over k-inversion sequences of length n is
equidistributed with a weighted variant of the ascent number of permutations of
order n, which leads to an affirmative answer of a question of Savage (2016). A key
ingredient of the proof is a bijection between k-inversion sequences of length n and
2× n arrays with particular restrictions. Moreover, we present a bijective proof of
the fact that the ascent plateau number over k-Stirling permutations of order n is
equidistributed with the ascent number over k-inversion sequences of length n.
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1 Introduction

Let Sn be the symmetric group on the set [n] = {1, 2, . . . , n}. Let

π = π(1)π(2) · · · π(n) ∈ Sn.

A descent (resp. excedance, ascent) in π is an index i ∈ [n− 1] such that π(i) > π(i+ 1)
(resp. π(i) > i, π(i) < π(i + 1)). A left-to-right minimum in π is an index i such
that π(i) < π(j) for any j < i or i = 1. Let Asc (π) and Lrm (π) denote the set of
ascents and left-to-right minima of π, respectively. For example, Asc (324165) = {2, 4}
and Lrm (324165) = {1, 2, 4}. Let des (π) (resp. exc (π), asc (π), lrmin(π), cyc (π)) denote
the number of descents (resp. excedances, ascents, left-to-right minima, cycles) of π. It
is well known that descents and excedances are equidistributed over Sn. The classical
Eulerian polynomial is defined by

An(x) =
∑
π∈Sn

xexc (π).

The exponential generating function of An(x) is given as follows:

A(x, z) = 1 +
∑
n>1

An(x)
zn

n!
=

1− x
ez(x−1) − x

.

In [11], Savage and Schuster introduced the concept of s-inversion sequences in study
of lecture hall polytopes. Let s = (s1, s2, . . . , sn, . . .) be a sequence of positive integers. An
s-inversion sequence of length n is a sequence e = (e1, e2, . . . , en) of nonnegative integers

such that 0 6 ei < si for 1 6 i 6 n. Let I
(s)
n denote the set of s-inversion sequences of

length n. An ascent in e = (e1, e2, . . . , en) is an index i ∈ {0, 1, . . . , n− 1} such that

ei
si
<
ei+1

si+1

,

with the convention that e0 = 0 and s0 = 1. Let Asc (e) be the set of ascents of e and let
asc (e) = |Asc (e)|.

The s-inversion Eulerian polynomial is defined by

E(s)
n (x) =

∑
e∈I(s)n

xasc (e).

Let

Ps
n = {λ ∈ Rn | 0 6

λ1
s1

6
λ2
s2

6 · · · λn
sn

6 1}

be the s-lecture hall polytope. Savage and Schuster [11, Theorem 5] showed that the
Ehrhart series of Ps

n is

E
(s)
n (x)

(1− x)n+1
.
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Following [13, Section 3], the polynomial E
(s)
n (x) is the h∗-polynomial of Ps

n. For some
special cases of s, the s-inversion Eulerian polynomial has been extensively studied. For
example, for s = (1, 4, 3, 8, 5, 12, . . .), i.e., s2i = 4i and s2i−1 = 2i − 1 for i > 1, Chen et

al. [4] proved that the ascent number over I
(s)
2n is equidistributed with the descent number

over Pn, where Pn is the set of signed permutations on the multiset {12, 22, . . . , n2}.
In the following discussion, we always assume that si = (i − 1)k + 1 for any i > 1,

where k is a positive integer. For convenience, we write I
(s)
n as In,k. In other words,

In,k = {e ∈ Zn : 0 6 ei 6 (i− 1)k}.

As usual, we call the s-inversion sequences the k-inversion sequences. Following [12], the
1/k-Eulerian polynomial En,k(x) is defined by

En,k(x) =
∑

e∈I n,k

xasc (e),

The exponential generating function of En,k(x) is given as follows:∑
n>0

En,k(x)
zn

n!
= k
√
A(x, kz).

Using (1), Savage and Viswanathan [12, Section 1.5] found that∑
e∈In,k

xasc (e) =
∑
π∈Sn

xexc (π)kn−cyc (π). (1)

By using the fundamental transformation of Foata and Schützenberger [6], the pairs
of statistics (exc , cyc ) and (asc , lrmin) are equidistributed over Sn. Thus∑

e∈In,k

xasc (e) =
∑
π∈Sn

xasc (π)kn−lrmin(π). (2)

It is well known that any permutation π ∈ Sn can be encoded by its inversion sequence
θ(π) = (e1, e2, . . . , en) ∈ In,1, where ei = |{j | j < i and πj > πi}|. Moreover, the map
θ : Sn 7→ In,1 is a bijection.

Proposition 1. For any n > 1, we have∑
e∈In,k

xasc (e) =
∑
e∈In,1

xn−1−asc (e)kn−max(e),

where max (e) = |{i | ei = i− 1}|.

Proof. For any π ∈ Sn, let e = (e1, e2, . . . , en) = θ(π). Then i ∈ Asc (π) if and only if
ei > ei+1, and i ∈ Lrm (π) if and only if either i = 1 or ei = i − 1. Moreover, when
ei > ei+1, we have

(i+ 1)ei − iei+1 > (i+ 1)ei − iei = ei > 0;
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when ei < ei+1, we have ei + 1 6 ei+1 and

(i+ 1)ei − iei+1 6 (i+ 1)ei − i(ei + 1) = ei − i < 0.

This tells us that ei > ei+1 if and only if i /∈ Asc (e). Hence,∑
π∈Sn

xasc (π)kn−lrmin(π) =
∑
e∈In,1

xn−1−asc (e)kn−max (e),

and it follows from (2)) that∑
e∈In,k

xasc (e) =
∑
e∈In,1

xn−1−asc (e)kn−max(e).

Recently, Savage [10] gave a survey for the study of lecture hall partitions. In partic-
ular, she posed the following question.

Question 2 ([10, p. 466]). Is there a bijective proof of (1)?

A bijective proof of (1) may arouse interests in the study of the connections between
s-lecture hall polytope and other structures. In this paper, we give a bijective proof of (1).
It suffices to present a bijective proof of (2). The method is to present a series of three
bijections: the first bijection maps k-inversion sequences to 2 × n arrays with particular
restrictions. The second bijection maps these 2 × n arrays to k-colored permutations

B =

(
c
π

)
in which π ∈ Sn and c is a map from [n] to [k] satisfying 1 6 c(π(i)) 6 k if

i /∈ Lrm (π), otherwise c(π(i)) = 1. The final bijection maps k-colored permutations to
themselves, but in a way that will create the correct correspondence between ascents in
the original k-inversion sequence and ascents in the final k-colored permutation.

2 A bijective proof of (2)

Given an inversion sequence e = (e1, e2, . . . , en) ∈ In,k. Let

ci =

{
1 if ei = 0
d ei
i−1e if ei > 1

and bi = ei − (ci − 1)(i− 1) + 1

for any i = 1, 2, . . . , n. Denote by A(e) the following array(
c1 c2 . . . cn
b1 b2 . . . bn

)
.

Lemma 3. For any e = (e1, e2, . . . , en) ∈ In,k, we have A(e) ∈ An,k, where An,k is the
set of 2× n arrays

A =

(
c1 c2 . . . cn
b1 b2 . . . bn

)
such that c1 = b1 = 1 and for any 2 6 i 6 n,

ci ∈ {1, 2, . . . , k} and bi ∈
{
{1, 2, . . . , i} if ci = 1;
{2, 3, . . . , i} if ci > 2.
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Proof. Let e = (e1, e2, . . . , en) ∈ In,k. For each i = 1, 2, . . . , n, we have 0 6 ei 6 k(i− 1).
If ei = 0, then ci = 1; if ei > 1, then 0 < ei

i−1 6 k for any i > 2, and so ci = d ei
i−1e ∈

{1, 2, . . . , k}.
When ci = 1, we have bi = ei + 1. If ei = 0, then bi = 1. If ei > 0, then 0 < ei

i−1 6 1
since ci = d ei

i−1e = 1, and so 0 < ei 6 i− 1. This implies that 1 < bi 6 i. Thus, if ci = 1,
then bi ∈ [i].

When ci > 2, we have ci−1 < ei
i−1 6 ci. This implies that (ci−1)(i−1) < ei 6 ci(i−1).

Hence, 1 < bi 6 i, and so A(e) ∈ An,k.

Define a map ϕn : In,k 7→ An,k by letting ϕn(e) = A(e) for any e ∈ In,k. For any
A ∈ An,k, we say that an index i is an ascent of A if either (i) ci < ci+1 or (ii) ci = ci+1

and bi < bi+1. Let Asc (A) be the set of ascents of A and let asc (A) = |Asc (A)|.

Example 4. Take n = 17 and k = 2. Let

e = (0, 1, 3, 0, 5, 10, 3, 7, 16, 15, 0, 3, 13, 1, 2, 20, 12) ∈ I17,2.

We have

A = A(e) =

(
1 1 2 1 2 2 1 1 2 2 1 1 2 1 1 2 1
1 2 2 1 2 6 4 8 9 7 1 4 2 2 3 6 13

)
∈ A17,2.

It is clear that Asc (A) = {1, 2, 4, 5, 7, 8, 11, 12, 14, 15} and asc (A) = 10.

The following lemma is fundamental.

Lemma 5. The map ϕn is a bijection from In,k to An,k. For any e ∈ In,k, we have

Asc (e) = Asc (ϕn(e)).

Therefore, ∑
e∈In,k

xasc (e) =
∑

A∈An,k

xasc (A).

Proof. For any

A =

(
c1 c2 . . . cn
b1 b2 . . . bn

)
∈ An,k,

let θn(A) = (e′1, e
′
2, . . . , e

′
n), where e′i = bi + (ci − 1)(i− 1)− 1. It is clear that the map θn

is the inverse of ϕn.
For any e = (e1, e2, . . . , en) ∈ In,k, if i ∈ Asc (e), then ei

k(i−1)+1
< ei+1

ki+1
. For any i ∈ [n],

let

ci =

{
1 if ei = 0
d ei
i−1e if ei > 1

and bi = ei − (ci − 1)(i− 1) + 1.

Since ei = bi + (ci − 1)(i− 1)− 1, we get

ei(ki+ 1)− ei+1(k(i− 1) + 1)

= (ki+ 1)((ci − ci+1)(i− 1) + bi − bi+1) + k(bi+1 − 1)− (ci+1 − 1).

the electronic journal of combinatorics 26(3) (2019), #P3.35 5



When ci < ci+1, we have ci+1 > 2, bi+1 > 2 and bi 6 i. So,

ei = (ci − 1)(i− 1) + bi − 1 6 ci(i− 1)

and
ei+1 = (ci+1 − 1)i+ bi+1 − 1 > (ci+1 − 1)i+ 1.

Hence,

ei+1(k(i− 1) + 1)− ei(ki+ 1)

> ((ci+1 − 1)i+ 1)(k(i− 1) + 1)− ci(i− 1)(ki+ 1)

= ki(i− 1)(ci+1 − ci − 1) + (k − 1)(i− 1) + (ci+1 − ci)i+ ci

> 0.

When ci > ci+1, we have ci > 2, ci+1 < k, bi > 2. Moreover, we have bi+1 6 i, since
bi+1 = i+ 1 if and only if ci+1 = k. So,

ei = (ci − 1)(i− 1) + bi − 1 > (ci − 1)(i− 1) + 1

and
ei+1 = (ci+1 − 1)i+ bi+1 − 1 6 ci+1i− 1.

Hence,

ei+1(k(i− 1) + 1)− ei(ki+ 1)

6 (ci+1i− 1)(k(i− 1) + 1)− ((ci − 1)(i− 1) + 1)(ki+ 1)

= (ki+ 1)(i− 1)(ci+1 − ci + 1) + (ci+1 + k − 2ki− 2)

< 0.

When ci = ci+1 and bi < bi+1, we have

ei = (ci − 1)(i− 1) + bi − 1

= (ci+1 − 1)(i− 1) + bi − 1

6 (ci+1 − 1)(i− 1) + bi+1 − 2

= ei+1 − ci+1.

Hence,

ei+1(k(i− 1) + 1)− ei(ki+ 1)

> ei+1(k(i− 1) + 1)− (ei+1 − ci+1)(ki+ 1)

= (ki+ 1)ci+1 − kei+1

> (ki+ 1)ci+1 − kici+1 = ci+1 > 0.
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When ci = ci+1 and bi > bi+1, we have

ei = (ci − 1)(i− 1) + bi − 1

= (ci+1 − 1)(i− 1) + bi − 1

> (ci+1 − 1)(i− 1) + bi+1 − 1

= ei+1 − ci+1 + 1.

Hence,

ei+1(k(i− 1) + 1)− ei(ki+ 1)

6 ei+1(k(i− 1) + 1)− (ei+1 − ci+1 + 1)(ki+ 1)

= (ki+ 1)(ci+1 − 1)− kei+1

= k(1− bi+1) + ci+1 − 1 6 0,

in which the last inequality is easily checked by using Lemma 3. Thus, we have i ∈ Asc (e)
if and only if i ∈ Asc (ϕn(e)).

A block k-colored permutation on the set [n] is a pair B =

(
c
π

)
such that π ∈ Sn

and c is a map from [n] to [k] which satisfies 1 6 c(π(i)) 6 k if i /∈ Lrm (π), otherwise
c(π(i)) = 1. Let Bn,k be the set of block k-colored permutations on the set [n]. We write

an element B =

(
c
π

)
in Bn,k as the following 2× n array

B =

(
c
π

)
=

(
c(π(1)) c(π(2)) . . . c(π(n))
π(1) π(2) . . . π(n)

)
.

For example, consider the permutation π = 324165 and let k = 3. Then the following
2× 6 array

B =

(
c
π

)
=

(
1 1 3 1 1 2
3 2 4 1 6 5

)
is a block 3-colored permutation on the set [6].

Given an array

A =

(
c1 c2 . . . cn
b1 b2 . . . bn

)
∈ An,k,

we construct a permutation in Sn by the following Algorithm B. Let

π(i) = π(i)(1)π(i)(2) · · · π(i)(i)

denote the permutation in Si obtained by the algorithm at time i.
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Algorithm B.

• Step 1. Let π(1)(1) = b1.

• Step 2. At time i > 2, suppose that π(i−1) is determined. For each j = 1, 2, . . . , i−1,
if π(i−1)(j) > bi, then let π(i)(j) = π(i)(j) + 1; otherwise, let π(i)(j) = π(i−1)(j).
Finally, set π(i)(i) = bi. Thus we get

π(i) = π(i)(1)π(i)(2) · · · π(i)(i− 1)π(i)(i) ∈ Si.

Iterating Step 2 until i = n, we obtain a permutation π(n) ∈ Sn. Let c be a map from [n]

to N such that c(π(i)) = ci and let BA =

(
c
π

)
. Then

BA =

(
c
π(n)

)
=

(
c1 c2 . . . cn

π(n)(1) π(n)(2) . . . π(n)(n)

)
.

Example 6. Let A be the 2× 17 array given in Example 4. By Algorithm B, we have

π(1) 1

π(2) 1 2

π(3) 1 3 2

π(4) 2 4 3 1

π(5) 3 5 4 1 2

π(6) 3 5 4 1 2 6

π(7) 3 6 5 1 2 7 4

π(8) 3 6 5 1 2 7 4 8

π(9) 3 6 5 1 2 7 4 8 9

π(10) 3 6 5 1 2 8 4 9 10 7

π(11) 4 7 6 2 3 9 5 10 11 8 1

π(12) 5 8 7 2 3 10 6 11 12 9 1 4

π(13) 6 9 8 3 4 11 7 12 13 10 1 5 2

π(14) 7 10 9 4 5 12 8 13 14 11 1 6 3 2

π(15) 8 11 10 5 6 13 9 14 15 12 1 7 4 2 3

π(16) 9 12 11 5 7 14 10 15 16 13 1 8 4 2 3 6

π(17) 9 12 11 5 7 15 10 16 17 14 1 8 4 2 3 6 13

,

and so

BA =

(
c
π

)
=

(
1 1 2 1 2 2 1 1 2 2 1 1 2 1 1 2 1
9 12 11 5 7 15 10 16 17 14 1 8 4 2 3 6 13

)
.

Lemma 7. For any A ∈ An,k, we have BA ∈ Bn,k.
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Proof. Fix an array A =

(
c1 c2 . . . cn
b1 b2 . . . bn

)
∈ An,k. For each i ∈ [n], let

A(i) =

(
c1 c2 . . . ci
b1 b2 . . . bi

)
.

Then A(i) ∈ Ai,k. We prove the lemma by induction. For each i, suppose that

BA(i) =

(
c(i)

π(i)

)
=

(
c1 c2 . . . ci

π(i)(1) π(i)(2) . . . π(i)(i)

)
.

Clearly, BA(1) =

(
1
1

)
∈ B1,k. Suppose that BA(i) ∈ Bi,k. Let us consider A(i+1). By

Algorithm B, we have

Lrm (π(i+1)) =

{
Lrm (π(i)) ∪ {i+ 1} if bi+1 = 1
Lrm (π(i)) if bi+1 > 2

Note that ci+1 = 1 if bi+1 = 1. By induction hypothesis, we obtain BA(i+1) ∈ Bi+1,k.

Define a map αn : An,k 7→ Bn,k by letting αn(A) = BA for any A ∈ An,k. For any
B ∈ Bn,k, we say that an index i is an ascent of B if either (i) c(π(i)) < c(π(i + 1)) or
(ii) c(π(i)) = c(π(i+ 1)) and π(i) < π(i+ 1). Let Asc (B) be the set of ascents of B and
asc (B) = |Asc (B)|. For example, for the array B = BA that is given in Example 6, we
have Asc (B) = {1, 2, 4, 5, 7, 8, 11, 12, 14, 15} and asc (B) = 10.

Lemma 8. The map αn : An,k 7→ Bn,k is a bijection. For any A ∈ An,k, we have
Asc (A) = Asc (αn(A)). Therefore,∑

A∈An,k

xasc (A) =
∑

B∈Bn,k

xasc (B).

Proof. Given an array

B =

(
c
π

)
=

(
c(π(1)) c(π(2)) . . . c(π(n))
π(1) π(2) . . . π(n)

)
∈ Bn,k,

we first construct a sequence b1, b2, . . . , bn by the following Algorithm B∗. Let

π(n−i+1) = π(n−i+1)(1)π(n−i+1)(2) · · · π(n−i+1)(n− i+ 1)

denote the permutation in Sn−i+1 obtained by the algorithm at time i.
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Algorithm B∗.

• Step 1. Let π̃(n)(j) = π(j) for any j = 1, 2, . . . , n.

• Step 2. At time i > 1, suppose that

π̃(n−i+1) = π̃(n−i+1)(1)π̃(n−i+1)(2) · · · π̃(n−i+1)(n− i+ 1)

is determined. Set bn−i+1 = π̃(n−i+1)(n − i + 1). For each j = 1, 2, . . . , n − i, if
π̃(n−i+1)(j) > bn−i+1, then let π̃(n−i)(j) = π̃(n−i+1)(j) − 1; otherwise, let π̃(n−i)(j) =
π̃(n−i+1)(j). We have

π̃(n−i) = π̃(n−i)(1)π̃(n−i)(2) · · · π̃(n−i)(n− i) ∈ Sn−i.

Iterating Step 2 until i = n, we obtain a sequence b1, b2, . . . , bn. Let c(π(i)) = ci for each

i. We obtain a 2 × n array A =

(
c1 c2 . . . cn
b1 b2 . . . bn

)
. It is clear that bi = 1 if and only if

i ∈ Lrm (π). Hence, A ∈ An,k. For example, let us consider the array

B =

(
c
π

)
=

(
1 1 3 1 1 2
3 2 4 1 6 5

)
∈ B6,3.

By Algorithm B∗, we have

π̃(6) 3 2 4 1 6 5 b6 = 5

π̃(5) 3 2 4 1 5 b5 = 5

π̃(4) 3 2 4 1 b4 = 1

π̃(3) 2 1 3 b3 = 3

π̃(2) 2 1 b2 = 1

π̃(1) 1 b1 = 1

,

and so

A =

(
1 1 3 1 1 2
1 1 3 1 5 5

)
∈ A6,3.

Define a map θn : Bn,k 7→ An,k by letting θn(B) = A for any B ∈ Bn,k. We claim that

θn(αn(A)) = A

for any A ∈ An,k. We prove this claim by induction on n. Clearly,

θ1

(
α1

((
1
1

)))
=

(
1
1

)
.

Fix an array A =

(
c1 c2 . . . cn cn+1

b1 b2 . . . bn bn+1

)
∈ An+1,k. Suppose that

B = αn+1(A) =

(
c
π

)
=

(
c(π(1)) c(π(2)) . . . c(π(n)) c(π(n+ 1))
π(1) π(2) . . . π(n) π(n+ 1)

)
the electronic journal of combinatorics 26(3) (2019), #P3.35 10



and

A′ = θn+1(B) =

(
c1 c2 . . . cn cn+1

b′1 b′2 . . . b′n b′n+1

)
.

For the array A, suppose that

π(n) = π(n)(1)π(n)(2) · · · π(n)(n)

is the permutation obtained by Algorithm B at time n, and for the array B suppose
that

π̃(n) = π̃(n)(1)π̃(n)(2) . . . , π̃(n)(n)

is the permutation obtained by Algorithm B∗ at time 2. Note that π(n + 1) = bn+1 at
the time n + 1 of Algorithm B and b′n+1 = π(n + 1) at the time 1 of Algorithm B∗.
So, we have bn+1 = b′n+1 and π̃(n) = π(n). Furthermore, let

A(n) =

(
c1 c2 . . . cn
b1 b2 . . . bn

)
∈ An,k

and (
c(n)

π(n)

)
=

(
c1 c2 . . . cn

π(n)(1) π(n)(2) . . . π(n)(n)

)
.

Algorithm B tells us that αn(A(n)) =

(
c(n)

π(n)

)
=

(
c(n)

π̃(n)

)
. Algorithm B∗ tells us that

θn

((
c(n)

π̃(n)

))
=

(
c1 c2 . . . cn
b′1 b′2 . . . b′n

)
.

By the induction hypothesis, we have θn(αn(A(n))) = A(n). Hence,

θn+1(αn+1(A)) = A,

which implies that αn : An,k 7→ Bn,k is a bijection. For any A ∈ An,k, by using Algorithm
B, we immediately get Asc (A) = Asc (αn(A)).

Let B =

(
c
π

)
∈ Bn,k. Note that 1 ∈ Lrm (π). Suppose that Lrm (π) = {k1, k2, . . . , kr}

with 1 = k1 < k2 < . . . < kr and let kr+1 = n + 1. For each i = 1, 2, . . . , r, let τi be the
subsequence π(ki)π(ki + 1) . . . π(ki+1 − 1) of π. We call the sequence

τ1, τ2, . . . , τr

the left-to-right minimum decomposition of π and the subsequence τi the i-th block of π.
For convenience, let li = ki+1−ki, which is called the length of τi, and let τi,j = π(ki+j−1)
for i = 1, 2, . . . , r and j = 1, 2, . . . li. Thus, we have τi = (τi,1, τi,2, . . . , τi,li). We now define

a total order in the set

{(
c(τi,j)
τi,j

)
| j = 1, 2, . . . , li

}
: for any j1, j2 with j1 6= j2, we say
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j1 ≺ j2 if the indices j1 and j2 satisfy either (i) c(τi,j1) < c(τi,j2) or (ii) c(τi,j1) = c(τi,j2) and

τi,j1 < τi,j2 . Let φi be an increasing bijection from the set

{(
c(τi,j)
τi,j

)
| j = 1, 2, . . . , li

}
to

the set {τi,j | j = 1, 2, . . . , li}, i.e.,

φi

((
c(τi,j1)
τi,j1

))
< φi

((
c(τi,j2)
τi,j2

))

if

(
c(τi,j1)
τi,j1

)
≺
(
c(τi,j2)
τi,j2

)
for any j1 6= j2. For any j = 1, 2, . . . , li, let

τ̃i,j = φi

((
c(τi,j)
τi,j

))
.

Then we get a sequence τ̃i as follows:

τ̃i = (τ̃i,1, τ̃i,2, . . . , τ̃i,li).

Since τi,1 is a left-to-right minimum of π, we have c(τi,1) = 1, and so

τ̃i,1 = φi

((
c(τi,1)
τi,1

))
= τi,1.

Moreover, τ̃i,j < τ̃i,j+1 if and only if the index j satisfies either (I) c(τi,j) < c(τi,j+1) or
(II) c(τi,j) = c(τi,j+1) and τi,j < τi,j. Finally, let

τ = τ̃1,1 · · · τ̃1,l1 τ̃2,1 · · · τ̃2,l2 · · · τ̃r,1 · · · τ̃r,lr ∈ Sn

and

B̃ =

(
c′

τ

)
=

(
c(τ̃1,1) . . . c(τ̃1,l1) c(τ̃2,1) . . . c(τ̃2,l2) . . . c(τ̃r,1) . . . c(τ̃r,lr)
τ̃1,1 . . . τ̃1,l1 τ̃2,1 . . . τ̃2,l2 . . . τ̃r,1 . . . τ̃r,lr

)
.

We immediately get the following lemma.

Lemma 2.1. For any B =

(
c
π

)
∈ Bn,k, let B̃ =

(
c′

τ

)
. Then B̃ ∈ Bn,k, Lrm (π) = Lrm (τ),

Asc (B) = Asc (τ) and c′(i) = c(i) for any i = 1, 2, . . . , n.

Example 9. Consider

B =

(
c
π

)
=

(
1 1 2 1 2 2 1 1 2 2 1 1 2 1 1 2 1
9 12 11 5 7 15 10 16 17 14 1 8 4 2 3 6 13

)
.

The left-to-right minimum decomposition of π is

τ1 = 9, 12, 11; τ2 = 5, 7, 15, 10, 16, 17, 14; τ3 = 1, 8, 4, 2, 3, 6, 13.
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For the block τ1, we have

(
1
9

)
≺
(

1
12

)
≺
(

2
11

)
and list the increasing bijection φ1 in

the following table:
j 1 2 3(

c(τ1,j)
τ1,j

) (
1
9

) (
1
12

) (
2
11

)
φ1(

(
c(τ1,j)
τ1,j

)
) 9 11 12

.

Table 1. The increasing bijection φ1.

Hence,
τ̃1 = (9, 11, 12).

For the block τ2, we have

(
1
5

)
≺
(

1
10

)
≺
(

1
16

)
≺
(

2
7

)
≺
(

2
14

)
≺
(

2
15

)
≺
(

2
17

)
and

list the increasing bijection φ2 in the following table:

j 1 4 5 2 7 3 6(
c(τ2,j)
τ2,j

) (
1
5

) (
1
10

) (
1
16

) (
2
7

) (
2
14

) (
2
15

) (
2
17

)
φ2

((
c(τ2,j)
τ2,j

))
5 7 10 14 15 16 17

.

Table 2. The increasing bijection φ2.

Hence,
τ̃2 = (5, 14, 16, 7, 10, 17, 15).

For the block τ3, we have

(
1
1

)
≺
(

1
2

)
≺
(

1
3

)
≺
(

1
8

)
≺
(

1
13

)
≺
(

2
4

)
≺
(

2
6

)
and list

the increasing bijection φ3 in the following table:

j 1 4 5 2 7 3 6(
c(τ3,j)
τ3,j

) (
1
1

) (
1
2

) (
1
3

) (
1
8

) (
1
13

) (
2
4

) (
2
6

)
φ3

((
c(τ1,j)
τ3,j

))
1 2 3 4 6 8 13

.

Table 3. The increasing bijection φ3.

Hence,
τ̃3 = (1, 4, 8, 2, 3, 13, 6).

So τ = 9, 11, 12, 5, 14, 16, 7, 10, 17, 15, 1, 4, 8, 2, 3, 13, 6 and

B̃ =

(
c
τ

)
=

(
1 2 1 1 2 1 2 1 2 2 1 2 1 1 1 1 2
9 11 12 5 14 16 7 10 17 15 1 4 8 2 3 13 6

)
.
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Define a map βn : Bn,k 7→ Bn,k by letting βn(B) = B̃ for any B ∈ Bn,k.

Lemma 10. The map βn is a bijection from Bn,k to itself.

Proof. We establish the inverse ψn of βn as follows. For any

B =

(
c
τ

)
=

(
c(τ(1)) c(τ(2)) . . . c(τ(n))
τ(1) τ(2) . . . τ(n)

)
∈ Bn,k,

let τ1, τ2, . . . , τr be the left-to-right minimum decomposition of τ . Suppose that

τi = (τi,1, τi,2, . . . , τi,li).

where li is the length of the subsequence τi. Recall that φi is the increasing bijection

from from the set

{(
c(τi,j)
τi,j

)
| j = 1, 2, . . . , li

}
to the set {τi,j | j = 1, 2, . . . , li}. Let(

c(π̃i,j)
π̃i,j

)
= φ−1i (τi,j) for each j = 1, 2, . . . , li and

ψn(B) =

(
c′

π

)
=

(
c(π̃1,1) . . . c(π̃1,l1) c(π̃2,1) . . . c(π̃2,l2) . . . c(π̃r,1) . . . c(τ̃r,lr)
π̃1,1 . . . π̃1,l1 π̃2,1 . . . π̃2,l2 . . . π̃r,1 . . . π̃r,lr

)
.

For example, let us consider the array

B =

(
c
τ

)
=

(
1 2 1 1 2 1 2 1 2 2 1 2 1 1 1 1 2
9 11 12 5 14 16 7 10 17 15 1 4 8 2 3 13 6

)
∈ B17,2

The left-to-right minimum decomposition of τ is

τ1 = 9, 11, 12; τ2 = 5, 14, 16, 7, 10, 17, 15; τ3 = 1, 4, 8, 2, 3, 13, 6.

For the block τ1, the increasing bijection φ1 is listed in Table 1. Hence, we have

τ1,j 9 11 12(
c(π̃1,j)
π̃1,j

)
= φ−11 (τ1,j)

(
1
9

) (
1
12

) (
2
11

)
.

For the block τ2, the increasing bijection φ2 is listed in Table 2. Hence, we have

τ2,j 5 14 16 7 10 17 15(
c(π̃2,j)
π̃2,j

)
= φ−12 (τ2,j)

(
1
5

) (
2
7

) (
2
15

) (
1
10

) (
1
16

) (
2
17

) (
2
14

)
.

For the block τ3, the increasing bijection φ3 is listed in Table 3. Hence, we have

τ3,j 1 4 8 2 3 13 6(
c(π̃3,j)
π̃3,j

)
= φ−13 (τ3,j)

(
1
1

) (
1
8

) (
2
4

) (
1
2

) (
1
3

) (
2
6

) (
1
13

)
.

Thus,

ψ17(B) =

(
1 1 2 1 2 2 1 1 2 2 1 1 2 1 1 2 1
9 12 11 5 7 15 10 16 17 14 1 8 4 2 3 6 13

)
.

the electronic journal of combinatorics 26(3) (2019), #P3.35 14



The proof of (2): By Lemma 5 and Lemma 8, we have∑
e∈In,k

xasc (e) =
∑

A∈An,k

xasc (A) =
∑

B∈Bn,k

xasc (B).

By Lemma 2.1 and Lemma 10, we obtain∑
B∈Bn,k

xasc (B) =
∑

c
π

∈Bn,k

xasc (π) =
∑
π∈Sn

xasc (π)kn−lrmin(π).

3 k-inversion sequences and k-Stirling permutations

A k-Stirling permutation of order n is a permutation of the multiset

{1, . . . , 1︸ ︷︷ ︸
k

, 2, . . . , 2︸ ︷︷ ︸
k

, . . . , n, . . . , n︸ ︷︷ ︸
k

}

such that for each i, 1 6 i 6 kn, all entries between the two occurrences of i are larger
than i. Let Q(k)

n be the set of k-Stirling permutations of order n and write an element σ
in Q(k)

n as σ = σ1σ2 · · ·σkn. For example, Q(2)
2 = {1122, 1221, 2211}. It is easy to obtain

that the cardinality |Q(k)
n | of Q(k)

n is
n∏
i=1

((i− 1)k + 1), and so |Q(k)
n | = |In,k|.

Let σ = σ1σ2 · · ·σkn ∈ Q(k)
n . For any integer a ∈ [n], we say that a is an ascent plateau

of σ if there is an index i ∈ {1, 2, . . . , (n− 1)k} such that

σi−1 < σi = σi+1 = . . . = σi+k−1 = a.

Let AP (σ) be the set of all ascent plateaus of σ and ap(σ) = |AP (σ)|.
In [8], Ma and Yeh provided a constructive proof that the number of ascent plateaus of

2-Stirling permutations of order n is equidistributed with a weighted variant of the number
of excedances in permutations of length n, where the weight is 2n−cyc (π). Very recently,
Duh et al. [5, Lemma 8] established a bijection between 2-colored permutations and
Stirling permutations. Expanding [5, Lemma 8] and combining Lemma 5 and Lemma 8,
in this section, we will present a bijective proof that the ascent plateau number over k-
Stirling permutations of order n is equidistributed with the ascent number over k-inversion
sequences of length n.

Given a σ = σ1σ2 · · ·σkn ∈ Q(k)
n , a left-to-right minimum in σ is an index i ∈ [kn− 1]

such that σ(i) < σ(j) for any j < i or i = 1. Denote by Lrm (σ) the set of left to right
minimums of σ and Lrm ∗(σ) = {σi | i ∈ Lrm (σ)}. A block of σ is a substring which
begins with a left-to-right minimum, and contains exactly this one left-to-right minimum;
moreover, the substring is maximal, i.e., not contained in any larger such substring. It is
easily derived by induction that any k-Stirling permutation has a unique decomposition
as a sequence of blocks.
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Example 11. Consider the 3-stirling permutation σ = 334666443225552777111 ∈ Q(3)
7 .

We have Lrm(σ) = {1, 10, 19}, Lrm∗(σ) = {3, 2, 1}, AP (σ) = {6, 5, 7}. The block
decomposition of σ is [334666443][225552777][111].

Lemma 12. There is a bijection Φ = Φ
(k)
n from Q(k)

n to Bn,k such that

Lrm ∗(σ) = Lrm ∗(π) and AP (σ) = Asc∗(π),

where the permutation π satisfies Φ(σ) =

(
c
π

)
, Lrm ∗(π) = {π(i) | i ∈ Lrm (π)} and

Asc∗(π) = {π(i+ 1) | i ∈ Asc (π)}.

Proof. We construct the bijection Φ = Φ
(k)
n from Q(k)

n to Bn,k as follows.

When n = 1, let Φ
(k)
1 (1 · · · 1︸ ︷︷ ︸

k

) = 1. Fix n > 2, and assume that Φ
(k)
n−1 is the bijection

between Q(k)
n−1 to Bn−1,k. Let σ′ ∈ Q(k)

n be obtained from some σ ∈ Q(k)
n−1 by inserting the

substring nn · · ·n︸ ︷︷ ︸
k

into σ. By the assumption, we have

Φ
(k)
n−1(σ) =

(
c
π

)
∈ Bn−1,k, Lrm∗(σ) = Lrm∗(π) and AP (σ) = Asc∗(π).

If nn · · ·n︸ ︷︷ ︸
k

is placed at the front of σ, that is, σ′ = nn · · ·n︸ ︷︷ ︸
k

σ then we let Φ
(k)
n (σ′) =(

1 c
n π

)
. Note that Lrm ∗(σ′) = {n} ∪ Lrm ∗(σ), AP (σ′) = AP (σ) and

Lrm ∗(nπ) = {n} ∪ Lrm ∗(π), Asc∗(nπ) = Asc∗(π).

In this case, we have Lrm∗(σ′) = Lrm∗(nπ) and AP (σ′) = Asc∗(nπ).
Otherwise, suppose σ′ is obtained from by inserting nn · · ·n︸ ︷︷ ︸

k

into the i-th block of σ.

Let m ∈ Lrm (σ) be the left-to-right minimum contained in the i-th block of σ. There are

three possible cases. We construct Φ
(k)
n (σ′) =

(
c′

π′

)
as follows:

1. If nn · · ·n︸ ︷︷ ︸
k

is inserted at the end of the i-th block, then let π′ be obtained by inserting

the integer n at the end of the i-th block of π and

c′(j) =

{
c(j) if j 6= n
k if j = n

.

Note that Lrm ∗(σ′) = Lrm ∗(σ), AP (σ′) = {n} ∪ AP (σ) and

Lrm ∗(π′) = Lrm (π), Asc∗(π′) = {n} ∪ Asc∗(π).

In this case, we have Lrm ∗(σ′) = Lrm ∗(π′) and AP (σ′) = Asc∗(π′).
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2. If nn · · ·n︸ ︷︷ ︸
k

is inserted immediately before the p-th σm for some p = 2, 3, . . . , k, then

let π′ be obtained by inserting the integer n at the end of the i-th block of π and

c′(j) =

{
c(j) if j 6= n
k + 1− p if j = n

.

Note that Lrm ∗(σ′) = Lrm ∗(σ), AP (σ′) = {n} ∪ AP (σ) and

Lrm ∗(π′) = Lrm (π), Asc∗(π′) = {n} ∪ Asc∗(π).

In this case, we have Lrm ∗(σ′) = Lrm ∗(π′) and AP (σ′) = Asc∗(π′).

3. If nn · · ·n︸ ︷︷ ︸
k

is inserted immediately before the p-th integer b, b 6= σm, for some

p = 1, 2, . . . , k, then let π′ be obtained by inserting n into the i-th block of π such
that n is immediately before b and

c′(j) =

{
c(j) if j 6= n
p if j = n

.

Note that Lrm ∗(σ′) = Lrm ∗(σ) and Lrm ∗(π′) = Lrm ∗(π). When b ∈ AP (σ), we
have AP (σ′) = (AP (σ) \ {b}) ∪ {n} and Asc∗(π′) = (Asc∗(π) \ b) ∪ {n}; When
b /∈ AP (σ), we have AP (σ′) = AP (σ) ∪ {n} and Asc∗(π′) = Asc∗(π) ∪ {n}. In this
case, we have Lrm ∗(σ′) = Lrm ∗(π′) and AP (σ′) = Asc∗(π′).

The above argument shows that Φ
(k)
n ∈ Bn,k, and that Φ

(k)
n is injective from Q(k)

n to Bn,k.
Lemmas 5 and 8 tells us that |In,k| = |Bn,k|, and so the cardinality of Q(k)

n is the same

as that of Bn,k. Thus, Φ
(k)
n must be a bijection between Q(k)

n and Bn,k. By induction, we

see that Φ
(k)
n is the desired bijection between k-Stirling permutations and block k-colored

permutations.

Example 13. Consider σ = 226662555133444311 ∈ Q(3)
6 . The correspondence between

σ and Φ
(3)
6 (σ) =

(
1 3 1 1 3 2
2 5 6 1 4 3

)
is built up as follows:

111 ⇔
(

1
1

)
222111 ⇔

(
1 1
2 1

)
222133311 ⇔

(
1 1 2
2 1 3

)
222133444311 ⇔

(
1 1 3 2
2 1 4 3

)
222555133444311 ⇔

(
1 3 1 3 2
2 5 1 4 3

)
226662555133444311 ⇔

(
1 3 1 1 3 2
2 5 6 1 4 3

)
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Theorem 14. Ψn = ϕ−1n ◦ α−1n ◦ β−1n ◦ Φ
(k)
n is a bijection from Q(k)

n to In,k such that
ap(σ) = asc (Ψn(σ)).

Proof. Combining Lemmas 5, 8, 2.1, 10 and 12, we have Ψn is a bijection from Q(k)
n to

In,k such that ap(σ) = asc (Ψn(σ)).

Corollary 15. For any n > 1 and k > 1, we have
∑

σ∈Q(k)
n

xap(σ) =
∑

e∈In,k

xasc (e).
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