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Abstract

We show that for n > 3, n 6= 5, in any partition of P(n), the set of all subsets
of [n] = {1, 2, . . . , n}, into 2n−2 − 1 parts, some part must contain a triangle —
three different subsets A,B,C ⊆ [n] such that A ∩ B,A ∩ C,B ∩ C have distinct
representatives. This is sharp, since by placing two complementary pairs of sets
into each partition class, we have a partition into 2n−2 triangle-free parts. We also
address a more general Ramsey-type problem: for a given graph G, find (estimate)
f(n,G), the smallest number of colors needed for a coloring of P(n), such that no
color class contains a Berge-G subhypergraph. We give an upper bound for f(n,G)
for any connected graph G which is asymptotically sharp when G is a cycle, path,
or star. Additional bounds are given when G is a 4-cycle and when G is a claw.

Mathematics Subject Classifications: 05B99, 05C65, 05D10

1 Introduction, results

Hypergraph Ramsey problems usually address the existence of large monochromatic
structures in colorings of the edges of Kr

n, the complete r-uniform hypergraph. It is
rare that monochromatic structures are sought in colorings of hypergraphs containing
all subsets of [n], P(n). An exception is the Finite Unions Theorem of Folkman, Rado,
and Sanders (see [6], Section 3.4). More recent research in this direction is by Axenovich
and Gyárfás [1], where Ramsey numbers of Berge-G hypergraphs were studied for several
graphs G in colorings of P(n). Ramsey numbers of Berge-G hypergraphs in the uniform
case have been investigated also in [5, 9].
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A hypergraph H = (V, F ) is called Berge-G if G = (V,E) is a graph and there exists
a bijection g : E(G) 7→ E(H) such that for e ∈ E(G) we have e ⊆ g(e). Note that for a
given graph G there are many Berge-G-hypergraphs. Berge-G hypergraphs were defined
by Gerbner and Palmer [4] to extend the notion of paths and cycles in hypergraphs
introduced by Berge in [3]. In particular, a Berge-C3 hypergraph consists of three subsets
A,B,C ⊆ [n] such that A ∩ B,A ∩ C,B ∩ C have distinct representatives. When there
is no confusion, we will often refer to a Berge-G hypergraph simply as ‘a G.’ The graphs
Ck, Pk, Sk denote cycle, path, and star with k edges, respectively. It is customary to use
the names triangle and claw for the graphs C3 and S3, respectively.

A hypergraph H with vertex set [n] and whose edges are sets from P(n) is called
G-free, if it does not contain any subhypergraph isomorphic to a Berge-G hypergraph.
The intersection graph of a hypergraph H is a graph G whose vertices represent edges of
H and where there is an edge in G if and only if the corresponding edges of H have non-
empty intersection. Note that if the intersection graph of H has no subgraph isomorphic
to the intersection graph of G (that is, the line graph of G), then H is G-free. The
reverse statement is not true: the intersection graph of the hypergraph H with edges
{1, 2}, {1, 2, 3}, {1, 2, 4} is a triangle but H is triangle-free.

To define the Ramsey-type problem we address here, let f(n,G) be the smallest
number of colors in a coloring of P(n) such that all color classes are G-free. In other
words, in every coloring of P(n) with f(n,G)−1 colors, there is a Berge-G subhypergraph
in some color class. We use the terms coloring, partitioning of P(n) in the same sense.
Since the presence of empty sets and singleton sets do not influence whether a coloring
is G-free, we usually construct colorings of P∗(n), what we define to be P(n) with the
empty set and the singletons removed. However, the following natural partition of the
whole power set of [n] is useful. For every A ⊆ [n− 1], the part defined by A is

{X1(A) = A,X2(A) = [n] \X1(A), X3(A) = A ∪ {n}, X4(A) = [n] \X3(A)}.

Since A and [n− 1] \A define the same part, we have 2n−2 parts (each of size four). This
partition was used in [1] to show that f(n,C3) 6 2n−2. Observing that

X1(A) ∩X2(A) = X3(A) ∩X4(A) = X1(A) ∩X4(A) = ∅,

these parts are C3-free, C4-free and S3-free. Thus we have a natural upper bound for
three small graphs:

Proposition 1. f(n,G) 6 2n−2 for G ∈ {C3, C4, S3}.

How sharp is this upper bound for the three small graphs involved? The easiest lower
bound comes for the claw.

Proposition 2. 2n−2 − n/2 6 f(n, S3). In general, 2n−1

k−1 −O
(
nk−2) 6 f(n, Sk).

Proof. Consider a partition Q of P(n) into Sk-free parts. Let H = (V,E) be the subhy-
pergraph of P(n) determined by the edges of size at least k. Then Q partitions H into
Sk-free parts Hi = (V,Ei), for i = 1, . . . , t. Since k edges of size at least k cannot have
common intersection by the Sk-free property, each hypergraph Hi has maximum degree
at most k − 1. Therefore
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n2n−1−
(
n+ 2

(
n

2

)
+ · · ·+ (k − 1)

(
n

k − 1

))
=
∑
v∈V

dH(v) =
t∑

i=1

∑
v∈V

dHi
(v) 6 (k− 1)nt,

implying t > 2n−1

k−1 −
1

k−1

(
1 +

(
n−1
1

)
+ · · ·+

(
n−1
k−2

))
= 2n−1

k−1 − O
(
nk−2). For k = 3, this

calculation gives 2n−2 − n/2 6 f(n, S3).

The discrepancy of −n/2 between Proposition 1 and 2 for f(n, S3) is the consequence
of the fact that three edges of P∗(n) intersecting in a vertex v do not define a claw in the
special case when the three edges are {v, x, y}, {v, x}, {v, y}. Utilizing this with several
different designs, we have small examples in Section 5 showing that the upper bound
for f(n, S3) in Proposition 1 can sometimes be lowered (in particular, we show that
f(6, S3) 6 15 and f(9, S3) 6 126). It is unclear whether one can use this phenomenon to
decrease the upper bound for infinitely many n.

For the case of the triangle, the upper bound of Proposition 1 is tight. For odd n > 7
this was shown with a simple proof in [1]. Somewhat surprisingly, this remains true for
the even n case as well (but not for n = 5).

Theorem 3. For n > 2, n 6= 5, f(n,C3) = 2n−2. Additionally, f(5, C3) = 7.

In case of G = C4 we improve the upper bound of Proposition 1 by a constant factor
and slightly improve the lower bound 2n−1

3
(1− o(1)) from [1].

Theorem 4. For even n, we have f(n,C4) = 2n−1

3

(
1 + Θ

(
1√
n

))
. Additionally, for all

n > 27, we have 2n−1

3
6 f(n,C4) 6 2n−1

3

(
1 +O

(
1√
n

))
.

While our lower bound for f(n,C4) for even n is asymptotically larger than our lower
bound for odd n, we have no reason to believe that the lower bound for odd n cannot be
improved. We suspect that a better bound for odd n would follow from a similar proof
as that with even n, just with more work involved.

For the upper bound on f(n,C4) we combine designs to include almost all sets in
P(n). In fact, we do this to provide an upper bound for f(n,G) for any connected graph
G. The construction is based on asymptotically optimal packings, D(n,m, r), which is a
large subset S ⊆

(
[n]
m

)
with the property that every r-element subset of [n] is contained in

at most one member of S. The existence of such packings was proved in a breakthrough
paper of Rödl [8]. For our purposes only a special case is needed, D(n,m,m− 1), where
constructions were known earlier, for example in [7].

Theorem 5. Let G be a connected graph with k edges, where k > 2 is fixed. Then

f(n,G) 6 2n

2(k−1)

(
1 +O

(
1√
n

))
.

The upper bound of Theorem 5 gives the upper bound in Theorem 4. In fact, it also
matches the corresponding asymptotic lower bound 2n−1

|E(G)|−1(1− o(1)) in [1] when G is a
cycle or path, and the asymptotic lower bound of Proposition 2, implying

Corollary 6. 2n

2(k−1)(1− o(1)) 6 f(n,Ck), f(n, Pk), f(n, Sk) 6 2n

2(k−1)(1 + o(1)).
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2 Proof of Theorem 3

Let L be the set of all subsets of [n] of size at least bn/2c + 1 (these are the ‘large’
subsets). For even n let M be the set of all subsets of [n] of size n/2 (these are the
‘medium’ subsets). Note that 2|L|+ |M| = 2n.

It was shown in [1] that f(n,C3) = 2n−2 for any odd n > 3, n 6= 5. The argument
there was based on the fact that three large sets always form a triangle. This remains
true for even n as well (property 4 in the following lemma).

Lemma 7. For every even n > 6, we have the following:

1. For any distinct M1,M2,M3,M4,M5 ∈M, some three form a triangle.

2. For any distinct M1,M2,M3 ∈M, L ∈ L, some three form a triangle.

3. Any distinct M ∈M, L1, L2 ∈ L form a triangle.

4. Any distinct L1, L2, L3 ∈ L form a triangle.

Proof of Theorem 3 from Lemma 7. For odd n 6= 5 the theorem was proved in [1]. The
case n = 5 is addressed at the end of this section. By Proposition 1, we have to prove
that f(n,C3) > 2n−2 for even n. The case n = 4 is easy and left to the reader. Let n > 6,
and let Q be a partition of P(n) into the minimum number of triangle-free parts. Let
there be a parts of Q with exactly two sets of L, let there be b parts of Q with exactly
one set of L, and let there be c parts of Q with no sets of L. Lemma 7 implies that
these account for all the parts, so that a + b + c = f(n,C3). Lemma 7 also implies that
|M| 6 2b+ 4c, and since |L| = 2a+ b, we have

f(n,C3) = a+ b+ c >
1

4
(2|L|+ |M|) =

1

4
(2n) = 2n−2.

Proof of Lemma 7. Since a set of L always contains as a subset a set of M, it is clear
that statement 3 implies statement 4. Thus we only need to prove statements 1, 2, and 3.

Let’s first note some basic intersection properties of sets fromM∪L. Let L1, L2 ∈ L
and M1,M2,M3 ∈ M be arbitrary. It is clear that |L1 ∩ L2| > 2, |L1 ∩M1| > 1, and
either |M1 ∩M2| > 1 or |M2 ∩M3| > 1.

In any of the three cases of the lemma, we first want to find three pairwise intersecting
sets. In the first case, WLOG M1 intersects with M2, M3, and M4, and again WLOG M2

intersects with M3. In the second case, L intersects M1, M2, and M3, and WLOG M1

intersects M2. In the third case, every pair of sets intersect.
Let A,B,C ∈ M ∪ L be three distinct pairwise intersecting sets, in any case, and

suppose they do not form a triangle. By Hall’s theorem as applied to distinct represen-
tatives, there are only a few cases where they may not form a triangle. WLOG, either
|(A ∩ B) ∪ (A ∩ C)| 6 1 or |(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C)| 6 2. In the first case, it
cannot be that |A∩B ∩C| = 0, since the sets are pairwise intersecting, so we must have
|A∩B ∩C| = 1 and |A∩B \C| = |A∩C \B| = 0. In the second case, it likewise cannot
be that |A ∩B ∩C| = 0. The case where |A ∩B ∩C| = 1 falls into the previous case, so
this case reduces to |A ∩B ∩ C| = 2 and |A ∩B \ C| = |B ∩ C \ A| = |C ∩ A \B| = 0.

Define δA = |A| − n/2, and likewise for B and C. Furthermore let δ = δA + δB + δC .
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Case 1: |A ∩B ∩ C| = 2 and |A ∩B \ C| = |B ∩ C \A| = |C ∩A \B| = 0. Here we
count

n > |A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C| > 3

2
n+δ−2−2−2+2

implying
n+ 2δ 6 8.

Case 1a: Suppose n = 8. Then δ = 0 and so A,B,C ∈ M and WLOG the
configuration is isomorphic to A = 1234, B = 1256, and C = 1278. A fourth set
D ∈ M∪ L must meet two of A,B,C in a vertex not in {1, 2}, forming a triangle with
them.

Case 1b: Suppose n = 6. If δ = 0, then WLOG A = 123, B = 124, and C = 125.
The only pairs of vertices a fourth set D ∈M∪L may contain without forming a triangle
are those pairs containing 6 and the pair 12. Thus 126 is the only set inM∪L that does
not form a triangle with A, B, or C. Since none of the four possible hypotheses of the
lemma include only four sets of M, we are done in this case.

If δ = 1, then WLOG we are under the hypothesis of the second statement of the
lemma and A = 123, B = 124, and C = 1256. Since the fourth set D ∈ M contains
some pair of vertices other than 12 and 56, we have a triangle.

Case 2: |A ∩B ∩ C| = 1 and |A ∩B \ C| = |A ∩ C \B| = 0. Here we count

n > |A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C| > 3

2
n+δ−|B∩C|−1,

therefore
1

2
n+ δ − 1 6 |B ∩ C| 6 n− |A| (since B and C are distinct),

implying
2δA + δB + δC 6 1.

Thus δA = 0, and at most one of δB and δC is 1, meaning that WLOG A,B ∈M, so we
are not in the third case of the lemma. This means that the third case of the lemma was
proved in case 1, so we are free to use it to finish the proof here. Let D ∈ M be a set
distinct from A, B, and C.

If D ⊆ B ∪C, then B, C, and D are three sets of size at least (n− 2)/2 + 1 contained
within a set of size n/2 + 1 6 n − 2. We may apply the third case of the lemma (with
n− 2 for n) to see that B,C,D form a triangle.

Otherwise, let x ∈ A ∩ B ∩ C, let y ∈ D ∩ A \ {x}, and let z ∈ D ∩ (B ∪ C) \ {x}.
Note that x, y, z necessarily exist and are distinct, so either A,D,B or A,D,C form a
triangle.

To finish the proof of Theorem 3, see that the case n = 5 is exceptional as shown by
the following C3-free partition of P∗(5). (Here and later in Section 5 we represent sets of
small numbers without commas and brackets.)

X1 = {[5], [4]}, Y1 = {24, 124, 234, 245}, Y2 = {13, 123, 134, 135}, Z1 = {12, 35, 1235, 345},
Z2 = {23, 45, 2345, 145}, Z3 = {34, 15, 1345, 125}, Z4 = {14, 25, 1245, 235}. (1)

In fact, (1) is the only partition of P∗(5) into at most seven C3-free parts (up to
permutations), implying f(5, C3) = 7. (Note that property 4 of Lemma 7 is not true for
n = 5, as witnessed by the ‘crowns’ Y1 and Y2 in (1).)
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3 Proof of Theorem 4

The upper bound of Theorem 4 follows from Theorem 5 (with k = 4), so we prove the
lower bound. As in Section 2, we need a lemma concerning sets of M∪L. We also give
the corresponding lemma for odd n, which we prove from Lemma 8.

Lemma 8. For every even n > 26, we have the following:

1. For any distinct M1,M2,M3,M4,M5 ∈M, some four form a C4.

2. For any distinct M1,M2,M3,M4 ∈M, L1 ∈ L, some four form a C4.

3. Any distinct M1,M2 ∈M, L1, L2 ∈ L form a C4.

4. Any distinct M1 ∈M, L1, L2, L3 ∈ L form a C4.

5. Any distinct L1, L2, L3, L4 ∈ L form a C4.

Lemma 9. For every odd n > 27, any distinct L1, L2, L3, L4 ∈ L form a C4.

Proof of Theorem 4 from Lemmas 8 and 9. Let n > 26 be even, and let Q be a partition
of P(n) into the minimum number of C4-free parts. Say Q has a parts with three sets in
L, b parts with two sets in L, c with one, and d with no sets in L. Lemma 8 implies that
these account for all the parts of Q, so a+b+c+d = f(n,C4). Moreover, Lemma 8 implies
the relations |L| = 3a + 2b + c and |M| 6 b + 3c + 4d. Since |M| =

(
n

n/2

)
= Θ(2n/

√
n),

this gives us (by b+ 3c+ 4d 6 3b
2

+ 3c+ 9d
2

) that

f(n,C4) = a+b+c+d >
1

6

(
2|L|+ 4

3
|M|

)
=

1

6

(
2n +

1

3
|M|

)
=

2n−1

3

(
1 + Θ

(
1√
n

))
.

For odd n > 27, again take such a minimal C4-free partition of P(n). Each part has
at most three sets in L, so f(n,C4) > 1

3
|L| = 2n−1

3
.

In order to prove Lemma 8, we need the following definition:

Definition 10. Assume n > 4 is even. We say that four distinct sets A,B,C,D ∈M∪L
form a Ψ-configuration if there exists some x such that A ∩ B,A ∩ C,A ∩D ⊆ {x}. In
such a configuration we call A a stem.

Let us elaborate on the structure of a Ψ-configuration A,B,C,D. Suppose A is a
stem and A ∩ (B ∪ C ∪D) ⊆ {x}. Since A,B,C,D are distinct sets in M∪L, we have
the inequalities |A| > n

2
and |B ∪ C ∪D| > n

2
+ 1. But also,

n+ 1 > |A∪ (B∪C ∪D)|+ |A∩ (B∪C ∪D)| = |A|+ |B∪C ∪D| > n

2
+ (

n

2
+ 1) = n+ 1.

So in fact, |A| = n
2

and |B ∪C ∪D| = n
2

+ 1. That is to say, A ∈M, and B,C,D are n
2
-

or (n
2

+ 1)-subsets of the (n
2

+ 1)-set ([n] \A) ∪ {x}. Based on this, it is easy to see that
a stem of a Ψ-configuration is unique.
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Also note that in this Ψ-configuration we have

|B ∩ C| = |B|+ |C| − |B ∪ C| > n

2
+
n

2
− (

n

2
+ 1) =

n

2
− 1,

and similarly |B ∩ D|, |C ∩ D| > n
2
− 1. Thus, the non-stem sets of a Ψ-configuration

pairwise intersect in at least n
2
− 1 elements. Finally, observe that a Ψ-configuration does

not form a C4.

Proof of Lemma 8. Suppose n > 26 is even. We first prove the following claim:
Claim: Any four distinct A,B,C,D ∈M∪L form either a C4 or a Ψ-configuration.

Proof of Claim. Suppose that A,B,C,D do not form a Ψ-configuration. We wish to
show that A,B,C,D form a C4.

First assume that two of the sets, say A and C, are complementary. Since the comple-
ment of any set is unique and our sets are inM∪L, the intersections A∩B and A∩D are
nonempty. Moreover, because A ∩ C = ∅ and A,B,C,D do not form a Ψ-configuration,
A∩B and A∩D cannot be the same singleton set. Thus, there exist distinct representa-
tives x1 ∈ A ∩B, x2 ∈ A ∩D. Similarly, there exist distinct representatives x3 ∈ B ∩ C,
x4 ∈ C ∩D. Clearly x1 and x2 are distinct from x3 and x4, since the first two are con-
tained in A while the second two are contained in C = [n] \ A. Thus A,B,C,D form a
C4.

Now assume that A,B,C,D are pairwise intersecting. Assume that the ordering of
A,B,C,D minimizes the value of |(A∩C)∪ (B∩D)|. We will show that if A,B,C,D do
not form a C4 in that cyclic order, then there is another cyclic order of A,B,C,D that
forms a C4. To do this, we use Hall’s theorem on distinct representatives as we did in
Lemma 7. WLOG, the following are the only cases in which A,B,C,D may fail to form
a C4 in that cyclic order:

Case 1: |(A ∩ B) ∪ (B ∩ C) ∪ (C ∩ D)| 6 3. (Note that this case covers when
|(A∩B)∪ (B∩C)∪ (C ∩D)| 6 2 and when |(A∩B)∪ (B∩C)∪ (C ∩D)∪ (D∩A)| 6 3.)
The intersections in this union must each be a subset of a 3-set {x1, x2, x3}. By minimality
of |(A∩C)∪ (B ∩D)|, A∩C and B ∩D are subsets of a 3-set {y1, y2, y3}. It follows that
the sets X \ {x1, x2, x3, y1, y2, y3} for X ∈ {A,B,C} are pairwise disjoint. Counting the
number of elements in [n] outside of {x1, x2, x3, y1, y2, y3}, we get the inequality

3
(n

2
− 6
)
6 n− 6,

from which it follows that n 6 24. Since we assumed that n > 26, this is impossible.
Case 2: |(A ∩ B) ∪ (C ∩D)| 6 1. Since our sets are pairwise intersecting, A ∩ B =

C ∩ D = {x} for some x. Then x ∈ A ∩ C and x ∈ B ∩ D. Since we assumed that
|(A ∩ C) ∪ (B ∩D)| is minimal, it follows that (A ∩ C) ∪ (B ∩D) = {x}. But then

(A ∪D) ∩ (B ∪ C) = (A ∩B) ∪ (C ∩D) ∪ (A ∩ C) ∪ (B ∩D) = {x},

from which we get that

n + 1 > |(A ∪D) ∪ (B ∪ C)|+ |{x}| = |A ∪D|+ |B ∪ C| >
(n

2
+ 1
)

+
(n

2
+ 1
)

= n + 2,

a contradiction.
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Case 3: |(A∩B)∪(A∩D)| 6 1. Similar to case 3, A∩B = A∩D = {x1} for some x1.
Since A,B,C,D do not form a Ψ-configuration, there must be some x2 ∈ A∩C different
from x1. Now, C ∩D cannot be {x1} because otherwise A ∩ B = C ∩D = {x1}, which
we showed is an impossible circumstance in Case 2. Moreover, C ∩D cannot contain x2
because otherwise x2 ∈ A ∩D = {x1}. Thus, there must be some x3 ∈ C ∩D different
from x1 and x2. Finally, note that

n > |A ∪B ∪D|
= |A|+ |B|+ |D| − |A ∩B| − |A ∩D| − |B ∩D|+ |A ∩B ∩D|

>
n

2
+
n

2
+
n

2
− 1− 1− |B ∩D|+ 1

=
3n

2
− 1− |B ∩D|,

from which we get that |B∩D| > n
2
−1 > 4. So there must be some x4 ∈ B∩D different

from each of x1, x2, x3. It follows that A,C,D,B form a C4 in that cyclic order.
This concludes the proof of the claim.

Now we prove the statements of Lemma 8. Observe that, similar to Lemma 7, state-
ment 2 follows from statement 1, and statements 4 and 5 follow from statement 3. So we
prove statements 1 and 3.

Statement 3 follows immediately from the observations about Ψ-configurations, specif-
ically that their stem must be an n

2
-set, and their non-stem sets must be subsets of an

(n
2

+ 1)-set, say X. There is only one set in L that could be part of such a configuration,
namely X itself. Thus, it is impossible for distinct M1,M2 ∈ M, L1, L2 ∈ L to form a
Ψ-configuration. By the claim, they must form a C4.

For statement 1, first consider the sets M1,M2,M3,M4. If they form a C4, then
we are done; otherwise, they must form a Ψ-configuration. Say that M1 is the stem.
Next consider the sets M1,M2,M3,M5. Again we are done if they form a C4; otherwise,
they must form another Ψ-configuration. M1 must again be the stem because M1 ∩M2,
M1 ∩ M3 have at most one element, and we have seen that the non-stem sets of Ψ-
configurations must pairwise intersect in at least n

2
− 1 elements. So finally consider the

sets M2,M3,M4,M5. They are all non-stem sets in our previous two configurations, so
|Mi ∩Mj| > n

2
− 1 for all distinct i, j ∈ {2, 3, 4, 5}. Thus M2,M3,M4,M5 form a C4.

Note that in case 1 of the proof of the claim, the required lower bound on n of 26 is
not tight because the xi’s and yi’s considered in the proof may not all be distinct. This
bound can definitely be reduced, but doing so requires extra casework.

Now we prove Lemma 9 from Lemma 8.

Proof of Lemma 9. Let n > 27 be odd, and let L1, L2, L3, L4 ∈ L, meaning that |Li| >
n+1
2

. We break into two cases.
Suppose there exists j ∈ [n] such that j is in at most two of the Li. Without loss of

generality, j 6∈ L3, L4. This means that L3 and L4 are sets of size at least n+1
2

= n−1
2

+ 1
contained in a set of size n− 1 (namely, [n] \ {j}). Let M1 ⊆ L1 \ {j} and M2 ⊆ L2 \ {j}
be distinct sets of size n−1

2
, which are necessarily contained in the same set of size n− 1

as before (namely, [n] \ {j}). We may then consider L3 and L4 to be in L and M1 and
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M2 to be in M in the sense that Lemma 8(3) applies in [n] \ {j}: since these sets are
distinct, they form a C4.

Otherwise, suppose every j ∈ [n] is in at least three of the Li. This implies
∑
|Li| >

3n. No three of the Li can have size exactly n+1
2

, since this would imply that the fourth
set has size at least 3n − 3n+1

2
= 3n

2
− 3

2
> n, an impossibility. Thus at most two of

the Li have size n+1
2

, meaning that (as in the preceding paragraph) upon the removal of
any vertex there are at most two sets of size n−1

2
. In a similar fashion as the previous

paragraph, Lemma 8(3) implies that these sets form a C4.

4 Proof of Theorem 5

Here we construct a partition of P(n) where almost all of the sets are in parts of size
2(k − 1). In fact, these parts of size 2(k − 1) consist of k − 1 sets of size less than n/2,
and k − 1 sets of size at least n/2, in such a way that all of the larger sets are disjoint
from the smaller sets. The sets not in parts of size 2(k − 1) can be placed arbitrarily in
parts of size at most k − 1. This partition is G-free since the intersection graph of any
partition class has connected components with at most k − 1 vertices. We assume that
n > 2(k − 1).

Define Am,r := {A ∈
(
[n]
m

)
:
∑

a∈A a ≡ r (mod n)}. Since
∑n−1

r=0 |Am,r| =
(
n
m

)
, there

exists some rm such that |Am,rm| > 1
n

(
n
m

)
. Fix these rm for k − 1 6 m < n/2. We

construct a part in our partition from each A ∈ Am,rm for k − 1 6 m < n/2.
Let A ∈ Am,rm and enumerate A = {a0, . . . , am−1} and B = [n]\A = {b0, . . . , bn−m−1}.

For integers i with 0 6 i 6 b m
k−1c − 1, construct the part consisting of the sets

A \ {a(k−1)i}, A \ {a(k−1)i+1}, . . . , A \ {a(k−1)i+(k−2)},

B \ {b(k−1)i}, B \ {b(k−1)i+1}, . . . , B \ {b(k−1)i+(k−2)}.

The sets of the form A \ {aj} (in the first line) are all different. Indeed, suppose A \
{aj} = A′ \ {a′j′}, so necessarily |A| = |A′|. Also,

∑
ai∈A\{aj} ai ≡

∑
a′i∈A′\{a′j′}

a′i (mod n).

This implies −aj +
∑

ai∈A ai ≡ −a
′
j′ +

∑
a′i∈A′

a′i (mod n). By construction, this is equiv-

alent to r|A| − aj ≡ r|A′| − a′j′ (mod n), and thus aj ≡ a′j′ (mod n). This means that
aj = a′j′ , which together with A \ {aj} = A′ \ {a′j′} implies that A = A′. Thus the two
sets were the same. Analogous reasoning concludes that the sets appearing in the second
line are also all different. Finally, for any m, sets in the first line have size less than n

2
−1,

while in the second line the sets have size at least n
2
− 1. Therefore the constructed sets

are all different in any part.
For each A ∈ Am,rm , there are

⌊
m
k−1

⌋
possible values of i in the construction, that

is,
⌊

m
k−1

⌋
different parts that A generates. Since

(
n
bn/2c

)
= Θ(2n/

√
n), this construction

creates at least
dn
2
e−1∑

m=k−1

⌊
m

k − 1

⌋
1

n

(
n

m

)
>

2n

2(k − 1)

(
1− c√

n

)
parts of size 2(k − 1), for some constant c > 0 not depending on n or k.

Since this construction yields at least 2n

2(k−1) (1− c/
√
n) parts of size 2(k−1), there are

at least 2n (1− c/
√
n) sets placed in parts this way. Thus at most 2n − 2n(1− c/

√
n) =
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2n (c/
√
n) sets have not been placed into a part. We place these remaining sets arbitrarily

into parts of size k − 1 (with one possible smaller part). Partitioning the rest this way
generates at most 2n

k−1 (c/
√
n) + 1 additional parts. Thus, in total the partition will have

at most 2n

2(k−1) (1− c/
√
n) + 2n

k−1 (c/
√
n) + 1 = 2n

2(k−1) (1 + Θ (1/
√
n)) parts.

5 Bounds on f(6, S3) and f(9, S3)

Proposition 11. f(6, S3) 6 15.

Proof. Let X = {123, 456, 12, 13, 23, 45, 46, 56} be one (3-regular but claw-free) partition
class. All other classes will be 2-regular (thus automatically claw-free). Let Y1, Y2, Y3, Y4
contain two pairs of complementary triples, not using the pair 123, 456. Then define

Z1 = {14, 23456, 12356}, Z2 = {25, 13456, 12346}, Z3 = {36, 12456, 12345}.

Let U1, U2, U3, U4, U5 be defined as the complementary sets of the 1-factors in a 1-
factorization of K6. Then W is defined by the edges of the 6-cycle 1, 5, 3, 4, 2, 6, 1 and R
contains [6] together with the one complementary pair of triples not used in X and in Yi.
Now we have 15 claw-free partition classes of P∗(6).

Proposition 12. f(9, S3) 6 126.

Proof. Take a partition Q of
(
[9]
3

)
into 28 classes, each containing three pairwise disjoint

triples - a very special case of Baranyai’s theorem [2]. However, we need another property
of Q: four of these classes X1, X2, X3, X4 must form a Steiner triple system. Then these
can be extended by the nine pairs covered by their triples implying that X1∪X2∪X3∪X4

covers each pair of [9] exactly once. The existence of these Xi-s certainly follows from a
much stronger result, stating that

(
[9]
3

)
can be partitioned into seven Steiner triple systems

(but probably there are easier ways to get them). Then the Xi-s provide four claw-free
3-regular partition classes. Partition classes Yi can be defined by putting together 12
pairs of the remaining 24 classes of Q, they form a double cover of [9]. Next we can
define 28 partition classes Zi by the complements of the 28 classes of Q, each of them
forms a double cover on [9].

Next we design 9 double covers of type (5, 5, 8) and 18 double covers of type (4, 7, 7).
To prepare, set Ai = {i+1, i+2, i+3, i+6}, Bi = {i+4, i+5, i+7, i+8} with arithmetic
mod 9. Then 9 double covers of [9] are defined as Ui = {Ai ∪ i, Bi ∪ i, Ai ∪Bi}. Set

Ci = [9] \ {i+ 1, i+ 2}, Di = [9] \ {i+ 3, i+ 6},

Ei = [9] \ {i+ 4, i+ 8}, Fi = [9] \ {i+ 5, i+ 7}.

Then 2 × 9 double covers of [9] are defined as Wi = {Ai, Ci, Di} and Ri = {Bi, Ei, Fi}.
Note that Ui,Wi, Ri take care of 18 complementary pairs of sizes 4 and 5. The remaining(
9
4

)
− 18 such pairs can be placed into 54 partition classes Ti forming double covers on

[9]. Finally, [9] alone forms a partition class (leaving some hope of improvement).
Altogether we have 4 + 12 + 28 + 9 + 18 + 54 + 1 = 126 claw-free partition classes of

P∗(9).
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