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Abstract

In 1971, Tomescu conjectured [Le nombre des graphes connexes k-chromatiques
minimaux aux sommets étiquetés, C. R. Acad. Sci. Paris 273 (1971), 1124–1126]
that every connected graph G on n vertices with χ(G) = k > 4 has at most k!(k −
1)n−k k-colourings, where equality holds if and only if the graph is formed from
Kk by repeatedly adding leaves. In this note we prove (a strengthening of) the
conjecture of Tomescu when k = 5.

Mathematics Subject Classifications: 05C15, 05C31

1 Introduction

Let x be a positive integer. By an x-colouring we mean a function f : V (G)→ {1, . . . , x}
such that f(u) 6= f(v) whenever uv ∈ E(G). Note that permuting the colours used in a
colouring gives a different colouring. The chromatic polynomial PG(x) is the polynomial
of degree n = |V (G)| whose value PG(x) is equal to the number of x-colourings of G for
every positive integer x.

Very basic questions about chromatic polynomials remain unresolved and poorly un-
derstood. We refer to part I [7] for history and motivation related to using the chromatic
polynomial. In this paper we continue the work on maximizing the number of colourings
among all connected graphs of given order, with the goal to prove a conjecture of Tomescu
[10] dating back to 1971. The conjecture is motivated by the following easy fact. For every
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k > 1 and every integer x > k, every connected n-vertex graph containing a clique of
order k has at most

x · (x− 2)(x− 3) · · · (x− k + 1) · (x− 1)n−k+1 =
x!

(x− k)!
(x− 1)n−k (1)

x-colourings. This bound is attained for every x if G can be obtained from the k-clique
Kk by growing an arbitrary tree from each vertex of the clique. In 1971, Tomescu [10]
conjectured that (1) is an upper bound for the number of k-colourings of any connected
k-chromatic graph, whether it contains a k-clique or not, as long as k > 4:

Conjecture 1 (Tomescu, 1971). Let G be a connected k-chromatic graph with k > 4.
Then G has at most

k!(k − 1)|G|−k (2)

k-colourings. Moreover, the extremal graphs are precisely the graphs obtained from Kk

by adding trees rooted at each vertex of the clique.

The requirement that k 6= 3 is necessary. Odd cycles of length at least 5 (and graphs
formed from them by adding trees rooted at their vertices) have more colourings than
specified by (1). See [11] for more details. In the case of bipartite graphs (k = 2), any
connected bipartite graph attains the bound, so the bound holds but the extreme cases
are plentiful.

Tomescu proved [12] that all 4-chromatic planar graphs satisfy his conjecture. For
the same class of graphs, he proved a stronger conclusion for the number or x-colourings
(for every x > 4), where the bound of the conjecture is replaced by (1). Apart from
this achievement, only sporadic results are known [2, 3]. We refer to [5, Chapter 15] for
additional overview of the results in this area.

Throughout the paper we will use the related indeterminate y = x− 1 and the shifted
chromatic polynomial :

QG(y) = PG(y + 1).

This way it is easier to handle the factor (x− 1)n−k+1 = yn−k+1 whose exponent depends
on the number of vertices.

In [7] we proved an extended version of Tomescu conjecture for k = 4.

Theorem 2 ([7]). Let G be a connected 4-chromatic graph and y > 3 be an integer. Then

QG(y) 6 (y + 1)yn−3(y − 1)(y − 2). (3)

Moreover, equality holds for some integer y > 3 if and only if G can be obtained from K4

by adding a tree on each vertex of K4 (in which case equality holds for every y ∈ R).

In this note we settle the case when k = 5, again in its extended version for colourings
with any number of colours.

Theorem 3. Let G be a connected 5-chromatic graph and y > 4 be an integer. Then

QG(y) 6 (y + 1)yn−4(y − 1)(y − 2)(y − 3). (4)

Moreover, equality holds for some integer y > 4 if and only if G can be obtained from K5

by adding a tree on each vertex of K5 (in which case equality holds for every y ∈ R).
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2 Preliminaries

We will use standard graph theory terminology and notation as used by Diestel [4] or
Bondy and Murty [1]. In particular, we use n = |G| = |V (G)| to denote the order of
G. The minimum vertex degree of G is denoted by δ(G). By N(v) we denote the set
of neighbours of a vertex v, and we use χ(G) for the chromatic number. We say G is
k-chromatic if χ(G) = k. The graph is vertex-critical (edge-critical) if the removal of any
vertex (vertex or edge) decreases the chromatic number. If k needs to be specified, we
use the terms vertex/edge k-critical. We will frequently use the fact that identifying non-
adjacent vertices of a graph G results in a graph G′ with χ(G′) > χ(G). For a vertex-set
U ⊆ V (G), G[U ] is the subgraph of G induced by U .

If t is a positive integer, we let [t] = {1, 2, . . . , t}.

Lemma 4. Let G be a graph, let v ∈ V (G) have degree d and let G′ = G − v. Suppose
that for every ` > 1 and every graph H on |G′| − ` vertices that is formed from G′ by
repeatedly identifying pairs of nonadjacent vertices satisfies

QH(y) 6 y−`B(y).

For r ∈ [d − 1], let Nr = Nr(v) be the number of partitions of N(v) into r non-empty
independent sets. Then

QG(y) 6 (y − r)QG′(y) +Nry
−d+rB(y).

Proof. For each i ∈ [d], let Qi be the number of (y+1)-colourings of G′ which take exactly
i colours on N(v). Each such colouring can be extended to a colouring of G in y − i + 1
ways. Thus,

QG(y) =
d∑

i=1

(y − i+ 1)Qi

6
d∑

i=1

(y − r)Qi +
d∑

i=1

(r − i+ 1)Qi (5)

6 (y − r)QG′(y) +
r−1∑
j=0

(j + 1)Qr−j,

since
∑d

i=1 Qi = QG′(y). (Note that if y < r, then Qi = 0 for every i > r and so equality
holds in (5).)

Let Ωr be the set of partitions P of N(v) into exactly r non-empty independent sets,
and let Ω =

⋃d
r=1 Ωr. For each P ∈ Ωr, let GP be the graph on n − d − 1 + r vertices

formed from G′ by identifying the vertices in each part of P to a single vertex, and let
G∗P be the graph formed from GP by adding edges between every pair of non-adjacent
identified vertices. Given a partition R of N(v) into non-empty independent sets, we
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write P > R if P refines R. For brevity we write QP(y) and Q∗P(y) for QGP (y) and
QG∗P

(y), respectively. Now

r−1∑
j=0

(j + 1)Qr−j 6
∑
P∈Ωr

∑
P>R∈Ω

Q∗R(y) =
∑
P∈Ωr

QP(y) 6 Nry
−d+rB(y), (6)

where the first inequality holds since any partitionR ∈ Ωr−j can be refined into a partition
into r parts in at least j + 1 ways, and hence the term Q∗R(y) appears at least j + 1
times in the sum

∑
P∈Ωr

∑
P>R∈Ω Q

∗
R(y). The last inequality in (6) is obtained from the

assumptions of the lemma since GP is obtained from G′ by repeatedly identifying d − r
pairs of vertices. The desired inequality of the lemma now follows from (5) and (6).

3 Proof of Theorem 3

We define a partial ordering Ek on polynomials in y by P2 Ek P1 when every coefficient
of W (z) = (P1 − P2)(z + k) is non-negative. Note that this implies that P1(y) > P2(y)
for every y > k. We write E for E4, as in the majority of cases we will take k = 4.

Lemma 5. Let G be an edge 5-critical graph. If there exists S ⊆ V (G) such that |S| > 5
and χ(G− S) > 4, then

QG(y) 6 (y + 1)yn−4(y − 1)(y − 2)(y − 3).

Proof. We may assume that G − S is connected; indeed, if G − S is not connected then
we can add to S the vertices of each component but one (chosen to be 4-chromatic). We
may also assume that |S| = 5, noting that we can reduce the size of S (if necessary) by
repeatedly removing vertices with a neighbour outside S.

For each vertex v ∈ S, let d′(v) = 4 − |N(v) ∩ S| and note that v has at least d′(v)
neighbours in V (G) \ S. Let S ′ be the subset of S consisting of vertices v with d′(v) > 2
(i.e., those vertices with |N(v) ∩ S| 6 2).

Let us now consider an arbitrary subset T ⊆ S ′ such that N(v) \ S is an independent
set in G for every v ∈ T . Our goal is to provide an upper bound, ϕ′T = ϕ′T (y), on the
number of colourings of G − S in which N(v) \ S is monochromatic for each v ∈ T ,
and is not monochromatic for each v ∈ S ′ \ T . Theorem 2 implies that the number of
colourings ϕT of G − S in which N(v) \ S is monochromatic for every v ∈ T is at most
(y + 1)yn−∆′(T )−7(y − 1)(y − 2), where ∆′(T ) = max{d′(v) | v ∈ T} (with the convention
that ∆′(T ) = 1 if T = ∅), since every such colouring can be derived from a colouring of a
graph formed from G− S by identifying an independent set of ∆′(T ) vertices (note that
identifying an independent set preserves connectivity and does not decrease the chromatic
number).

Further, for any such T ⊆ S ′ we can compute a polynomial upper bound ψT = ψT (y)
on the number of extensions of a colouring of G − S to S, given that N(v) \ S is not
monochromatic for any v ∈ S ′ \ T . We do this by assigning to each vertex of S a set of
0, 1 or 2 forbidden colours (as appropriate), computing an upper bound on the number
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of extensions by deletion-contraction (where an isolated vertex with r forbidden colours
is given the upper bound y − r + 1, and contracted edges produce a vertex whose set of
forbidden colours is the union of the sets of forbidden colours of the endvertices), and
selecting those of the resulting polynomials (in y) which are maximal under E. Even
though E is not a total ordering, in this case it turns out that each of these maximal
polynomials is unique. Let us observe that there are only finitely many values for ψT to
be considered since the bounds depend only on G[S] and the lists of forbidden colours at
each vertex of S.

For each T ⊆ S ′, let ϕ′T be the number of colourings of G − S in which N(v) \ S
is monochromatic for every v ∈ T , but is not monochromatic for any v ∈ S ′ \ T . We
set ϕ′T = 0 if T contains a vertex for which N(v) \ S is not independent. Then we

have QG(y) 6
∑
T⊆S′

ψT ϕ
′
T . Observe that ϕT =

∑
T⊆T1⊆S′

ϕ′T1
. For each T ⊆ S ′, let ψ′T =∑

T0⊆T

(−1)|T\T0| ψT0 . By the inclusion-exclusion formula, we have ψT =
∑
T0⊆T

ψ′T0
for each

T ⊆ S ′. Then ∑
T⊆S′

ψT ϕ
′
T =

∑
T0⊆T1⊆S′

ψ′T0
ϕ′T1

=
∑
T⊆S′

ψ′T ϕT .

In general the polynomials ψ′T may be positive or negative. Fortunately, each ψ′T is either
positive for every integer y > 4, or negative for every integer y > 4. Our computer
program has verified this using the relation Ek (for appropriate values of k) along with
individual checks for small values of y. Let Ω+(resp. Ω−) be the family of sets T ⊆ S ′

such that ψ′T is positive (resp. negative) for every integer y > 4. Then

QG(y) 6
∑
T∈Ω+

ψ′T (y + 1)yn−∆′(T )−7(y − 1)(y − 2)

= (y + 1)yn−11(y − 1)(y − 2)
∑
T∈Ω+

ψ′T y
4−∆′(T ).

Observe that S ′, Ω+ and Ω− depend only on G[S]. Further, ψ′T and ∆′(T ) depend only
on G[S] and T for each T ⊆ S ′. For each of the 34 (unlabelled) graphs on 5 vertices,
we have computed the polynomial R(y) =

∑
T⊆S′ ψ

′
T y

4−∆′(T ). The results are given in
Table 1.1 In each case, the resulting polynomial satisfies R(y) E y7(y − 3) (see Table 2),
and this proves the lemma.

Lemma 6. Let G be an edge 5-critical graph. If G has no clique or independent set of
size at least 4, then QG(y) E (y + 1)yn−4(y − 1)(y − 2)(y − 3).

Proof. Since G is 5-critical, removing any vertex leaves a 4-chromatic graph of order at
most 12, since each colour class has size at most 3. Hence G has order at most 13.
The edge 5-critical graphs on at most 12 vertices have already been listed by Royle [9];

1The computer code used can be obtained from the authors.
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for each one,2 we have computed its chromatic polynomial Q and verified that Q E
(y + 1)yn−4(y − 1)(y − 2)(y − 3).

It remains only to check graphs on exactly 13 vertices. Using Brendan McKay’s
program nauty_geng, one can list all of the Ramsey(4, 4) graphs on 13 vertices. In
fact these were already listed by McKay [8]. We have tested each such graph for edge
5-criticality. Only 525 such graphs are edge 5-critical. Again, for each such graph we
have computed its chromatic polynomial Q. As it turns out in all cases, we have Q E
(y + 1)yn−4(y − 1)(y − 2)(y − 3).

Proof of Theorem 3. It is easy to see that we may assume that G is edge 5-critical. (The
reader may also check [7] for details.) The list of all 5-critical graphs with at most 8
vertices is available from [9]. Their chromatic polynomials satisfy the theorem. This was
checked by computer. Hereafter we may therefore assume that |G| > 9. By Lemma 6 we
may assume that G has either a clique or an independent set of size 4. If G has a clique
of size 4 then we apply Lemma 5 with S being the vertices outside the clique. So we may
assume that G has an independent set S of size 4. If G − S is not vertex 4-critical then
we can add a vertex to S so that G− S is still 4-chromatic, and apply Lemma 5. So we
may assume that G− S is vertex 4-critical.

Hence G− S is connected and 4-chromatic. By Theorem 2 we have

QG−S(y) 6 (y + 1)yn−7(y − 1)(y − 2). (7)

Label the vertices of S as v1, v2, v3, v4. Let Gi = G−{vi+1, . . . , v4} for i = 0, 1, 2, 3, 4. For
each i ∈ [4], we select a subset Ui ⊆ N(vi) of its neighbors with |Ui| = 4. Note that there
are 7 partitions of Ui into two non-empty sets.

For brevity we write Q0(y) = (y+ 1)yn−9(y−1)(y−2). Now, we will repeatedly apply
Lemma 4. We start with (7) which gives us the bound QG0(y) 6 y2Q0(y). Now, consider
G0 = G1 − v1. By using Lemma 4, we obtain an upper bound on QG1(y). Then we will
add another vertex and by the same lemma obtain an upper bound on QG2(y). By two
more repetitions, the resulting bound will apply to the graph G4 = G.

As outlined above, we first apply Lemma 4 with G = G1, v = v1, B(y) = y2Q0(y) and
r = 2 to obtain

QG1(y) 6 (y − 2)y2Q0(y) + 7Q0(y) = (y3 − 2y2 + 7)Q0(y).

We again apply Lemma 4, this time with G = G2, v = v2, B(y) = y3Q0(y) and r = 2 to
obtain

QG2(y) 6 (y − 2)(y3 − 2y2 + 7)Q0(y) + 7yQ0(y) = (y4 − 4y3 + 4y2 + 14y − 14)Q0(y).

We apply Lemma 4 again, this time with G = G3, v = v3, B(y) = y4Q0(y) and r = 1 to
obtain

QG3(y) 6 (y − 1)(y4 − 4y3 + 4y2 + 14y − 14)Q0(y) + yQ0(y)

= (y5 − 5y4 + 8y3 + 10y2 − 27y + 14)Q0(y).

2All together there are 151948 such graphs.
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Finally, we apply Lemma 4, this time with G = G4, v = v4, B(y) = y5Q0(y) and r = 1 to
obtain

QG4(y) 6 (y − 1)(y5 − 5y4 + 8y3 + 10y2 − 27y + 14)Q0(y) + y2Q0(y)

= (y6 − 6y5 + 13y4 + 2y3 − 36y2 + 41y − 14)Q0(y)

6 (y6 − 3y5)Q0(y),

as desired, where the last inequality holds since 0 6 y6−6y5+13y4+2y3−36y2+41y−14 6
y6 − 3y5 for every y > 4.

4 Conclusion

The proof of the main theorem of this note relies on the 4-chromatic case proved in [7].
The main auxiliary Lemmas 5 and 6 rely on extensive case analysis and use of computer.
The same method can be used for larger values of k. We see no difficulties of applying it
for k = 6 and possibly for a few additional values.

After submitting this paper, Fox, He, and Manners managed to prove the basic case
of Tomescu Conjecture [6] for arbitrary k when the number of colours is equal to k. Their
proof uses some of our results as a basis.
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A Data tables

G[S] R(y) =
∑

T⊆S′ ψ
′
Ty

4−∆′(T )

5K1 y8 − 5y7 + 10y6 − 10y5 + 10y4 − 11y3 + 10y2 − 5y + 1
K2 ∪ 3K1 y8 − 6y7 + 16y6 − 20y5 + 9y4 + 5y3 − 4y2 − y + 1
P3 ∪ 2K1 y8 − 7y7 + 24y6 − 43y5 + 38y4 − 10y3 − 3y2 + 1
K3 ∪ 2K1 y8 − 8y7 + 33y6 − 78y5 + 102y4 − 71y3 + 29y2 − 13y + 4
K1,3 ∪K1 y8 − 7y7 + 24y6 − 41y5 + 26y4 + 17y3 − 29y2 + 9y + 1
K1,4 y8 − 7y7 + 24y6 − 40y5 + 22y4 + 26y3 − 39y2 + 14y

2K2 ∪K1 y8 − 7y7 + 23y6 − 37y5 + 23y4 + 18y3 − 34y2 + 13y + 1
P4 ∪K1 y8 − 8y7 + 33y6 − 75y5 + 93y4 − 49y3 − y2 + 5y + 2

K3 + leaf ∪K1 y8 − 8y7 + 33y6 − 80y5 + 111y4 − 77y3 + 21y2 − 6y + 5
C4 ∪K1 y8 − 9y7 + 44y6 − 121y5 + 190y4 − 155y3 + 57y2 − 11y + 5
K1,4 + e y8 − 8y7 + 33y6 − 80y5 + 113y4 − 86y3 + 36y2 − 18y + 10
K4 ∪K1 y8 − 7y7 + 23y6 − 45y5 + 50y4 − 27y3 + 17y2 − 28y + 21
P3 ∪K2 y8 − 8y7 + 32y6 − 69y5 + 80y4 − 28y3 − 30y2 + 23y

fork y8 − 8y7 + 33y6 − 75y5 + 91y4 − 32y3 − 37y2 + 28y
K1,4 + e y8 − 8y7 + 33y6 − 81y5 + 118y4 − 87y3 + 16y2 + 8y
P5 y8 − 9y7 + 43y6 − 117y5 + 186y4 − 148y3 + 29y2 + 16y

bull y8 − 8y7 + 33y6 − 80y5 + 110y4 − 64y3 − 13y2 + 21y
C4 + leaf y8 − 9y7 + 44y6 − 124y5 + 207y4 − 179y3 + 50y2 + 11y

K3 + leaf ∪K1 y8 − 8y7 + 33y6 − 80y5 + 114y4 − 84y3 + 18y2 + 6y
K2,3 y8 − 9y7 + 45y6 − 129y5 + 219y4 − 199y3 + 73y2

K3 ∪ 2K1 y8 − 8y7 + 34y6 − 87y5 + 137y4 − 121y3 + 43y2

C5 y8 − 10y7 + 55y6 − 180y5 + 374y4 − 512y3 + 415y2

P5 y8 − 9y7 + 44y6 − 130y5 + 233y4 − 227y3 + 85y2

P4 ∪K1 y8 − 8y7 + 33y6 − 83y5 + 127y4 − 106y3 + 36y2

P3 ∪K2 y8 − 8y7 + 34y6 − 85y5 + 123y4 − 90y3 + 21y2

P3 ∪ 2K1 y8 − 7y7 + 24y6 − 52y5 + 66y4 − 36y3 − y2

2K2 ∪K1 y8 − 7y7 + 24y6 − 45y5 + 44y4 − 17y3

K5 − e y8 − 6y7 + 17y6 − 36y5 + 57y4 − 42y3

K5 y8 − 5y7 + 15y6 − 55y5 + 109y4 − 75y3

K3 ∪K2 y8 − 9y7 + 42y6 − 114y5 + 183y4 − 157y3 + 41y2 + 12y

C4 + leaf y8 − 9y7 + 43y6 − 123y5 + 213y4 − 198y3 + 60y2 + 12y

fork y8 − 8y7 + 33y6 − 81y5 + 117y4 − 81y3 + 3y2 + 15y
K1,3 ∪K1 y8 − 7y7 + 23y6 − 45y5 + 48y4 − 12y3 − 23y2 + 14y
C4 ∪K1 y8 − 9y7 + 43y6 − 125y5 + 222y4 − 217y3 + 85y2

Table 1: Polynomials R(y) for each of the 34 graphs on 5 vertices.
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G[S] W (z) = (z + 4)7(z + 1)−R(z + 4)

5K1 2z7 + 46z6 + 442z5 + 2270z4 + 6571z3 + 10170z2 + 6597z + 51
K2 ∪ 3K1 3z7 + 68z6 + 644z5 + 3271z4 + 9451z3 + 14952z2 + 10801z + 1539
P3 ∪ 2K1 4z7 + 88z6 + 811z5 + 4022z4 + 11402z3 + 17851z2 + 13048z + 2223
K3 ∪ 2K1 5z7 + 107z6 + 966z5 + 4738z4 + 13479z3 + 21751z2 + 17525z + 4640
K1,3 ∪K1 4z7 + 88z6 + 809z5 + 3994z4 + 11247z3 + 17425z2 + 12463z + 1899
K1,4 4z7 + 88z6 + 808z5 + 3978z4 + 11142z3 + 17071z2 + 11850z + 1464

2K2 ∪K1 4z7 + 89z6 + 829z5 + 4157z4 + 11934z3 + 18986z2 + 14243z + 2667
P4 ∪K1 5z7 + 107z6 + 963z5 + 4687z4 + 13121z3 + 20461z2 + 15155z + 2874

K3 + leaf ∪K1 5z7 + 107z6 + 968z5 + 4769z4 + 13661z3 + 22247z2 + 18126z + 4867
C4 ∪K1 6z7 + 124z6 + 1081z5 + 5110z4 + 13915z3 + 21067z2 + 14931z + 2391
K1,4 + e 5z7 + 107z6 + 968z5 + 4767z4 + 13638z3 + 22148z2 + 17938z + 4734
K4 ∪K1 4z7 + 89z6 + 837z5 + 4290z4 + 12827z3 + 22003z2 + 19364z + 6155
P3 ∪K2 5z7 + 108z6 + 981z5 + 4820z4 + 13628z3 + 21486z2 + 16153z + 3204

fork 5z7 + 107z6 + 963z5 + 4689z4 + 13136z3 + 20485z2 + 15116z + 2784
K1,4 + e 5z7 + 107z6 + 969z5 + 4782z4 + 13719z3 + 22340z2 + 18120z + 4768
P5 6z7 + 125z6 + 1101z5 + 5274z4 + 14612z3 + 22675z2 + 16840z + 3312

bull 5z7 + 107z6 + 968z5 + 4770z4 + 13664z3 + 22221z2 + 18003z + 4732
C4 + leaf 6z7 + 124z6 + 1084z5 + 5153z4 + 14147z3 + 21650z2 + 15605z + 2676

K3 + leaf ∪K1 5z7 + 107z6 + 968z5 + 4766z4 + 13620z3 + 22046z2 + 17706z + 4552
K2,3 6z7 + 123z6 + 1065z5 + 5001z4 + 13495z3 + 20075z2 + 13576z + 1584

K3 ∪ 2K1 5z7 + 106z6 + 951z5 + 4643z4 + 13129z3 + 20897z2 + 16216z + 3728
C5 7z7 + 141z6 + 1212z5 + 5706z4 + 15648z3 + 24353z2 + 18696z + 4112
P5 6z7 + 124z6 + 1090z5 + 5247z4 + 14739z3 + 23535z2 + 18664z + 4720

P4 ∪K1 5z7 + 107z6 + 971z5 + 4813z4 + 13914z3 + 22964z2 + 19136z + 5440
P3 ∪K2 5z7 + 106z6 + 949z5 + 4617z4 + 13002z3 + 20611z2 + 15928z + 3632
P3 ∪ 2K1 4z7 + 88z6 + 820z5 + 4174z4 + 12420z3 + 21233z2 + 18632z + 5904
2K2 ∪K1 4z7 + 88z6 + 813z5 + 4056z4 + 11633z3 + 18636z2 + 14384z + 3136
K5 − e 3z7 + 67z6 + 636z5 + 3303z4 + 10010z3 + 17304z2 + 15072z + 4480
K5 2z7 + 41z6 + 367z5 + 1871z4 + 5851z3 + 11044z2 + 11280z + 4544

K3 ∪K2 6z7 + 126z6 + 1122z5 + 5457z4 + 15469z3 + 24979z2 + 20252z + 5504

C4 + leaf 6z7 + 125z6 + 1107z5 + 5367z4 + 15190z3 + 24492z2 + 19764z + 5264

fork 5z7 + 107z6 + 969z5 + 4783z4 + 13729z3 + 22377z2 + 18185z + 4820
K1,3 ∪K1 4z7 + 89z6 + 837z5 + 4292z4 + 12844z3 + 22055z2 + 19434z + 6200
C4 ∪K1 6z7 + 125z6 + 1109z5 + 5398z4 + 15385z3 + 25111z2 + 20744z + 5872

Table 2: All coefficients of W (z) are non-negative, thus showing that R(y) E y7(y − 3)
for each graph in the table.

the electronic journal of combinatorics 26(3) (2019), #P3.40 10


	Introduction
	Preliminaries
	Proof of Theorem 3
	Conclusion
	Data tables

