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Abstract

We consider two varieties of labeled rooted trees, namely non-plane and plane
1-2 trees. In these tree varieties, we study the probability that a vertex chosen from
all vertices of all trees of a given size uniformly at random has a given rank. We
prove that this probability converges to a limit as the tree size goes to infinity.

Mathematics Subject Classifications: 05A05, 05A15

1 Introduction

Various parameters of many models of random rooted trees are fairly well understood
if they relate to a near-root part of the tree or to global tree structure. The first group
includes, for instance, the numbers of vertices at given distances from the root, the im-
mediate progeny sizes for vertices near the top, and so on. See [10] for a comprehensive
treatment of these results. The tree height and width are parameters of global nature. A
few important papers in that area are [16], [17], [18], [23], and [24].

Let T be a class of rooted labeled trees. If v is a vertex of a tree T ∈ T , then let
the rank of v be the number of edges in the shortest path from v to a leaf of T that is
a descendant of v. So leaves are of rank 0, neighbors of leaves are of rank 1, and so on.
The rank of a vertex is fundamentally different from other well-studied statistics such as
the height or the depth of a vertex, because it is more “local” in that it only depends on
a smaller neighborhood of each vertex than those classic statistics. The rank of a vertex
has been the subject of a significant number of research papers in the last decade, such
as [3], [4], [6], [8], [9], [12], [14], [20], and [21].
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For a fixed n, consider all vertices of all trees in T that have n vertices, and choose
one vertex uniformly at random. Let an,k be the probability that the chosen vertex is of
rank k. It is then natural to ask whether the limiting probability

ak = lim
n→∞

an,k

exists.
For one tree variety, decreasing binary trees, it has been shown [3], [8] that these

limits ak exist, and the values of ak were explicitly computed in [4] for k 6 6. Recursive
trees are discussed in [14]. However, the methods that were successful for these trees are
often unsuccessful for other tree varieties if k > 1. This is because many of the relevant
differential equations cannot be solved, or even, explicitly stated, caused by the fact that
many of the relevant functions lack an elementary antiderivative. We will explain this
phenomenon in Section 2.

This raises the intriguing question whether we can prove that ak exists for some of
these tree varieties, even though we cannot explicitly compute its value. In this paper
we will answer that question in the affirmative for the two labeled tree varieties that we
consider. For non-plane 1-2 trees, this result is given in Theorem 15. These trees are
related to many important objects in combinatorics, such as the ab-index and cd-index
of partially ordered sets, min-max trees, set partitions, and alternating permutations.
Richard Stanley devotes Section 1.6 of his book [26] to these questions.

For plane 1-2 trees, the proof is very similar, and the only step that is different is
carried out in Propositions 20 and 21. The main result for such trees is given in Theorem
17. Note that for k = 0 and k = 1, we are able to compute the exact values of ak. These
are given in Theorems 4 and 6 for non-plane 1-2 trees and in formulae (20) and (21) for
plane 1-2 trees.

Results concerning these two kinds of trees are interesting for two reasons. One is
that while their definitions are only somewhat different from decreasing binary trees [3,
4, 8], which are in bijection with permutations, the methods needed for their study are
fundamentally different from the methods needed to deal with those trees. The two
varieties of 1-2 trees that we study in this paper prove to be significantly more difficult
from this perspective, even though some of the same results seem to hold. The other reason
to study these trees is that they are equinumerous to a large collection of combinatorial
objects, so any statistic evaluated for these trees is likely to have a meaning for those
objects as well. See sequences A000111 and A080635 in [25] for lists of these objects.

2 Non-plane 1-2 trees

Our first example is the class of labeled non-plane 1-2 trees. These are rooted trees in
which every non-leaf vertex has at most two children, the vertices are bijectively labeled
with the elements of [n] = {1, 2, . . . , n} so that the label of each vertex is less than that
of its parent, and the set of children of any given vertex is unordered. See Figure 1 for
the five such trees on vertex set [4]. In this section, when we write tree, we will always
mean a labeled decreasing non-plane 1-2 tree on vertex set [n].
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Figure 1: The five decreasing non-plane 1-2 trees on vertex set [4].

It is well-known [10] that the number of labeled non-plane 1-2 trees on vertex set [n]
is the nth Euler number En, and that the identity

E(z) =
∑
n>0

En
zn

n!
= sec z + tan z (1)

holds, where we set E0 = 1.
The first values of En are as follows:

n 0 1 2 3 4 5 6 7 8 9 10
En 1 1 1 2 5 16 61 272 1385 7936 50521

It follows from (1) that E(z) has two singularities of smallest modulus, at z = π/2
and at z = −π/2. Therefore, the exponential order of growth of the Euler numbers is
2/π. In order to find the growth rate of the Euler numbers more precisely, note that at
both of these singularities, we can find the residue of E(z) by the following well-known
formula (see for instance Theorem 83.2 in [7]).

Proposition 1. Let H(z) = f(z)/g(z) be a function so that f(z) and g(z) are analytic
functions at z0, and f(z0) 6= 0, while g(z) = 0 and g′(z) 6= 0. Then

ResH(z)|z0 =
f(z0)

g′(z0)
.

We can apply Proposition 1 to E(z) if we note that E(z) = 1+sin z
cos z

. Then Proposition
1 implies that ResE(z)|π/2 = −2, and ResE(z)|−π/2 = 0.

Now observe that

R

z − a
=

R

−a
· 1

1− z
a

(2)

=
R

−a
∑
n>0

zn

an
. (3)
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Applying this observation to E(z) with a = π/2 and R = −2, we get that the dominant
term of E(z) is of the form 4

π

∑
n>0 z

n(2/π)n, so

En
n!
∼ 4

π
·
(

2

π

)n
. (4)

Here fn ∼ gn means that limn→∞ fn/gn = 1. Formula (4) can be deduced in many
ways; the reader may consult pages 268–269 of [10] for one of these.

Now we proceed to determine a0 and a1. For these small values of k, we can explicitly
determine ak, but we will also see why the same approach fails for larger values of k.

2.1 Leaves

Let A0,n denote the total number of leaves in all non-plane 1-2 trees on vertex set [n].
Then A0,0 = 0, A0,1 = A0,2 = 1, while A0,3 = 3, A0,4 = 9, A0,5 = 35, and A0,6 = 155.

Theorem 2. Let A0(z) =
∑

n>0A0,n
zn

n!
. Then

A0(z) =
z − 1 + cos z

1− sin z
. (5)

Proof. Let (v, T ) be an ordered pair in which T is a non-plane 1-2 tree on vertex set [n]
and v is a leaf of T . Then A0(z) is the exponential generating function counting such
pairs. Let us first assume that n > 1, and let us remove the root of T . On the one
hand, this leaves a structure that is counted by A′0(z). On the other hand, this leaves an
ordered pair consisting of a non-plane 1-2 tree with a leaf marked, and a non-plane 1-2
tree. By the Product formula of exponential generating functions (see [2, Theorem 8.21]),
such ordered pairs are counted by the generating function A0(z)E(z). Finally, if n = 1,
then no such ordered pair is formed, while A′0(z) has constant term 1. This leads to the
linear differential equation

A′0(z) = E(z)A0(z) + 1, (6)

with the initial condition A0(0) = 0. Solving this equation we get formula (5) for A0(z).

In order to determine the growth rate of the numbers A0,n, we will need the following
lemma, which is an enhanced version of Proposition 1. It can easily be proved using basic
facts in complex analysis (see Theorem 1 in [7]).

Lemma 3. Let H(z) = f(z)
g(z)

be a function so that f and g are analytic functions at z0, and

f(z0) 6= 0, while g(z0) = g′(z0) = 0, and g′′(z) 6= 0. Then the Laurent series decomposition
of H(z) is of the following form.

H(z) =
2f(z0)

g′′(z0)
· 1

(z − z0)2
+

h−1

z − z0

+ h0 + · · · ,

where h−1 and h0 are constants.
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Theorem 4. The equality

a0 = lim
n→∞

A0,n

nEn
= 1− 2

π
≈ 0.3633802278

holds. In other words, for large n, the average number of leaves in a random non-plane
1-2 tree on vertex set [n] is about n · (1− 2

π
).

Proof. We know from (5) that A0(z) has a unique singularity of smallest modulus, at
z = π/2, hence the exponential growth rate of its coefficients is 2/π. Also note that at
that point, the denominator of A0(z) has a double root. Therefore, Lemma 3 applies and
we get that the coefficient of the (z − π/2)−2 term in the Laurent series of A0(z) is

2 · π/2− 1 + cos(π/2)

sin(π/2)
= π − 2.

Now observe that for any constant D,

D

(z − a)2
=

D

a2
· 1

(1− z
a
)2

=
D

a2
·
∑
n>0

(n+ 1)
zn

an
.

Applying this to the dominant term of A0(z) with D = π − 2 and a = π/2, we get that

A0,n

n!
∼ (n+ 1)(π − 2) ·

(
2

π

)n+2

. (7)

The proof of our claim is now immediate by comparing formulas (7) and (4).

It is worth pointing out that
∫
A0(z) = 1 − (1 − z)(tan z + sec z), which implies the

identity A0,n = (n + 1)En − En+1. See sequence A034428 in the Online Encyclopedia
of Integer Sequences [25], where a different interpretation is given (the number of per-
mutations of descent pattern up-up-down-up-down. . . ). Our result leads to the following
natural question.

Question 5. Is there a natural bijection from the set of all vertices of non-plane 1-2 trees
on vertex set [n + 1] in which the root has only one child to the union of the set of all
leaves of all non-plane 1-2 trees on vertex set [n] and the set of all non-plane 1-2 trees on
vertex set [n+ 1]?

2.2 Vertices of rank 1

Let A1,n be the total number of vertices in all non-plane 1-2 trees on vertex set [n] that
are of rank 1. Note that such vertices are neighbors of a leaf. If n > 1, then each leaf has
exactly one rank-1 vertex as a neighbor, while some rank-1 vertices have not only one,
but two leaves as neighbors.

The first few members of the sequence A1,n are A1,0 = 0, A1,1 = 0, A1,2 = 1, A1,3 = 2,
A1,4 = 8, A1,5 = 30, and A1,6 = 135.
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Theorem 6. The equality

a1 = lim
n→∞

A1,n

nEn
= 2− π2

24
− 4

π
≈ 0.3155269391

holds.

Proof. Let A1(z) =
∑

n>0A1,n
zn

n!
. Let (v, T ) be an ordered pair in which T is a non-plane

1-2 tree on vertex set [n] and v is a vertex of T that is of rank 1. If v is not the root
of T , then removing the root of T decomposes (v, T ) into two structures, one of which is
again a non-plane 1-2 tree with a vertex of rank 1 marked, and the other one of which is
simply a non-plane 1-2 tree. If n > 1, and v is the root of T , then removing v, we get
two structures, one of which is a leaf, and the other one is a non-plane 1-2 tree. These
two structures are distinguishable unless the original tree had three vertices, and its root
had two children. That tree contributed z3/6 to the generating function A1(z), but that
contribution was counted twice. This leads to the linear differential equation

A′1(z) = A1(z) · E(z) + zE(z)− z2

2!
, (8)

with the initial condition A1(0) = 0.
Solving this equation we get

A1(z) =
1

6
· 12z sin z + 12 cos z − 12− 3z2 cos z − z3

1− sin z
. (9)

The above formula for A1(z) shows that A1(z) has a unique singularity of smallest mod-
ulus, at z = π/2. Therefore, the exponential growth rate of the coefficients of A1(z) is
2/π. At z = π/2, the power series A1(z) has a pole of order two, since the denominator
has a double root at that point, while the numerator is non-zero there.

Therefore, we can apply Lemma 3 with f(z) = 12z sin z+ 12 cos z− 12− 3z2 cos z− z3

and g(z) = 6(1− sin z). Then f(π/2) = 6π − π3

8
− 12, while g′′(π/2) = 6. Hence Lemma

3 shows that the dominant term of A1(z) is of the form

2π − π3

24
− 4

(z − π
2
)2

=
2π − π3

24
− 4

(π/2)2
·
∑
n>0

(n+ 1)
zn

(π/2)n
.

This implies that

A1,n

n!
∼ n ·

2π − π3

24
− 4

(π
2
)n+2

.

Comparing this to (4), we obtain the statement of the theorem.

Remark 7. Note that it directly follows from the argument we used to prove (8) that if
R1(z) is the exponential generating function for the number of non-plane 1-2 trees on
vertex set [n] whose root is of rank 1, then

R′1(z) = zE(z)− z2

2
= z tan z + z sec z − z2

2
.
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Unfortunately, this closed form for R′1(z) does not lead to an expression for R1(z) in terms
of elementary functions, since the integral

∫
z tan z dz is known to be non-elementary [5,

p. 163].

2.3 Vertices of rank > 2

The methods that we used to enumerate vertices of rank 0 and rank 1 will fail for vertices
of higher rank, because we are not able to obtain, let alone, solve the linear differential
equations analogous to (8) in a closed form, since the relevant functions have no elementary
antiderivatives. Remark 7 shows how early these kinds of problems start occurring; we
are not even able to state the equation analogous to (8) in an explicit form.

Therefore, we apply a new method to prove that the limit ak = limn→∞ an,k exists.
We will then be able to approximate ak from above and below. Our first simple notion is
the following. Each vertex of a tree is the root of a unique subtree, which we will call the
subtree of the vertex. In other words, the subtree of a vertex v consists of all descendants
of v, including v itself. The subtrees of leaves consist of one vertex only.

For a fixed positive integer r, let Vn,r be the probability that a randomly selected
vertex in a random non-plane 1-2 tree of size n is the root of a subtree of size exactly r.
For instance, if n = 3, then Vn,1 = 1/2, Vn,2 = 1/6, and Vn,3 = 1/3. Indeed, there are two
non-plane 1-2 tree of size three, (a path and a wedge) with a total of six vertices. Three
of those vertices are leaves, hence V3,1 = 3

6
= 1

2
, on of them (the middle vertex of the

path) has one proper descendant, so V3,2 = 1
6
, while the remaining two vertices are the

two roots, yielding V3,3 = 2
6

= 1
3
.

Vertices of a given subtree size are much easier to enumerate than vertices of a given
rank, because the number of ways in which a vertex can have a subtree of size r is a fixed
number, namely the Euler number Er, once the set of labels in that subtree is selected.

Proposition 8. For all positive integers r, the limit

vr = lim
n→∞

Vn,r

exists.

Proof. Let Vr(z) =
∑

n>0 Vn,rz
n/n!. Then by the Product formula, we have

V ′r (z) = Vr(z)E(z) + f ′r(z),

where fr(z) is the generating function for the number of trees in which the root has a
“subtree” of size r. That is, fr(z) = Erz

r/r!, so f ′r(z) = Erz
r−1/(r − 1)!, and the last

displayed equation becomes

V ′r (z) = Vr(z)E(z) + Er
zr−1

(r − 1)!
. (10)

This is a first order linear differential equation with initial condition Vr(0) = 0. Its solution
is

Vr(z) =
Er

(r − 1)!

Lr(z)

1− sin z
,
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where Lr(z) is the function that satisfies L′r(z) = zr(1 − sin z) and has a constant term
so that Vr(0) = 0 holds.

The integral in the numerator can be explicitly computed using the well-known formula∫
zr sin z dz = cos z

r/2∑
i=0

(−1)i+1zr−2i r!

(r − 2i)!

+ sin z

(r−1)/2∑
i=0

(−1)izr−2i−1 r!

(r − 2i− 1)!
.

This means that Vr(z) has a unique singularity of smallest modulus (a double pole) at
z0 = π/2. The rest of the argument uses Lemma 3 at z0 = π/2 to determine vr, in the
same way as we did in the proofs of Theorems 4 and 6.

Remark 9. Note that we are able to explicitly solve the linear differential equation (10)
because its correction term, that is, the summand that does not contain V ′r (z) or Vr(z),
is a polynomial. The same argument used here would work for any polynomial instead of
f ′r(z) = Erz

r−1/(r − 1)!.

Proposition 8 shows that the limit vr exists for every fixed positive integer r. As the
vr are all positive real numbers, and

∑
r vr 6 1, the sum

∑∞
r=1 vr is convergent. However,

what is the value of that sum? The exact formulas we obtain for each vr from Proposition
8 are too complicated to be useful for the computation of that sum. Note that it is
not true in every tree variety that the analogously defined sum is equal to 1. A simple
counterexample is the family of rooted trees in which every non-leaf vertex has exactly
one child. In that case, there is only one tree of each size, but vr = 0 for all r, since
Vn,r = 1

n
for r 6 n. Therefore,

∑∞
r=1 vr = 0 for that tree variety.

However, for our non-plane 1-2 trees, the sum turns out to be 1, although not in a
trivial way. This is the content of the following theorem that has been conjectured by the
present authors, and has recently been proved by Svante Janson [15].

Theorem 10. The equality
∞∑
r=1

vr = 1

holds.

In order to prove Theorem 10, we first need the following fact.

Proposition 11. For all n, the expected number of leaves in a random non-plane 1-2 tree
on vertex set [n] is at least n/4.

Note that in Theorem 4, we proved that much more is true for large n. However, the
statement of Proposition 11 is true for every n. With a little bit of additional work, it is
possible to prove that in fact, the expected number of leaves is at least n/3 for every n,
but the weaker claim of Proposition 11 suffices for our purposes.
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Proof. (of Proposition 11.) Every such tree contains exactly one more leaves than vertices
with two children. Therefore, it suffices to show that the expected number of vertices with
one child is not more than n/2. We prove this by induction on n. Let Mn be the expected
number of vertices with one child in a random tree on vertex set [n]. Then M1 = 0,
M2 = 1, and M3 = 1, so the statement holds if n 6 3. Now let us assume that n > 3.
Let pn be the probability of the event Pn that the root of a non-plane 1-2 tree on [n] has
exactly one child. Furthermore, let Mm,A denote the expected number of vertices with
one child in a random non-plane 1-2 tree of size m given that event A occurs. Now let
A be the event that the root of such a random tree has one child, and let Ā denote the
event that that root has 0 or 2 children. Then by Bayes’ theorem for expectations,

Mn = Mn,Apn +Mn,Ā(1− pn).

So, by our induction hypothesis,

Mn 6

(
n− 1

2
+ 1

)
· pn +

n− 1

2
· (1− pn) =

n− 1

2
+ pn 6

n

2
.

The last inequality follows, since pn = En−1/En, the ratio of two consecutive Euler num-
bers, and the Euler numbers are known to be log-convex [19]. So the sequence of the
numbers pn is decreasing. As p3 = 1/2, it follows that pn 6 1/2 if n > 3.

Let Zn be a random variable defined on the set of all vertices of all non-plane 1-2 trees
on vertex set [n], so that Zn(v) is the size of the subtree rooted at v.

Lemma 12. Let v be a vertex of a nonplane 1-2 tree chosen uniformly at random. Then
for all n, the inequality E(

√
Zn) 6 100 holds.

Proof. We will use strong induction to prove the stronger inequality

E(
√
Zn) 6 100− 90√

n
. (11)

This inequality clearly holds for n = 1. Now let us assume that it holds for all positive
integers r < n and prove it for n.

Let T be a tree of size n, selected uniformly at random. Let v be a vertex of T , selected
in the same way.

Then by Proposition 11, there is an at least 1/4 chance of v being a leaf. There is an
1/n chance of v being the root. There is a less than 3/4 chance of v being a vertex other
than a leaf or the root, in which case the induction hypothesis applies to the subtree of
v, with some r < n playing the role of n. Therefore,

E(
√
Zn) 6

3

4
·
(

100− 90√
n

)
+

1

4
+

1

n
·
√
n

= 75.25− 66.5√
n
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6 100− 90√
n
,

where the last estimate holds as n > 1.

Now we are ready to prove Theorem 10.

Proof. (of Theorem 10) By Lemma 12 and by Markov’s inequality, we know that for all
positive constants C, and for all n, we have

Pr(
√
Zn > 100C) 6 1/C,

so
Pr(Zn > 10000C2) 6 1/C. (12)

Let us now assume that
∑∞

k=1 vk = α < 1. That means that for all N , the inequality∑N
k=1 vk < α holds. In other words, if n is large enough, then a random 1-2 tree on [n]

has on average at least (1−α)n/2 vertices whose subtree is of size more than N . That is,

Pr(Zn > N) >
1− α

2
. (13)

Now select C to be a positive integer so that 1/C < (1−α)/2, then select N = 10000C2.
Then inequality (12) forces

Pr(Zn > N) 6 1/C < (1− α)/2

for all n, while inequality (13) forces Pr(Zn > N) > (1 − α)/2 for n sufficiently large,
which is clearly a contradiction.

The following is an obvious corollary of Theorem 10 that we will need later.

Corollary 13. Let Un,r = 1 −
∑r

i=1 Vn,i be the probability that a random vertex of a
random non-plane 1-2 tree has a subtree of size larger than r. Then clearly,

ur := lim
n→∞

Un,r = 1−
r∑
i=1

vi.

Furthermore,

lim
r→∞

ur = 1− lim
r→∞

r∑
i=1

vi = 0. (14)

We now return to our main goal, that is, to proving that the limit ak = limn→∞ an,k
exists. For the rest of this section, we fix the rank k of vertices we are studying, and, to
alleviate notation, we do not add the index k to all parameters related to these vertices.

Our main idea is the following. The set Rk of all vertices of all trees of size n contains
the set ∪ri=1Wn,i, where Wn,i is the set of all vertices of all trees of size n that are of
rank k and have a subtree of size i. On the other hand, Rk is contained in the set
(∪ri=1Wn,i) ∪ (∪i>rVn,i), where Vn,i is the set of all vertices in all trees of size n whose
subtree is of size i (but are of any rank).

Let Wn,i be the probability that a random vertex of a random tree of size n is of rank
k and is the root of a subtree of size i.

the electronic journal of combinatorics 26(3) (2019), #P3.41 10



Definition 14. Let
wi = lim

n→∞
Wn,i.

The limits wi exist, because the exponential generating functions of the numbers Wn,i

satisfy a linear differential equation like (10), and, as explained in Remark 9, we can
explicitly solve those differential equations, since their “correction term” is a polynomial.
Indeed, there are only a finite number of ways that a subtree of a vertex can be of rank
k and have a subtree of size i, once the set of labels going into that subtree is selected.

As the wi are positive real numbers, and for all r, the inequality
∑r

i=1wi 6 1 holds,
the sum

w =
∞∑
i=1

wi

exists.
Now we are ready to state and prove our main theorem.

Theorem 15. For all nonnegative integers k, the limit

ak := lim
n→∞

an,k

exists. Furthermore,
ak = w.

Proof. First notice that for all n and r, the inequality

r∑
i=1

Wn,i 6 an,k

holds, since the left-hand side is the probability of a random vertex having a more re-
strictive property (rank k, subtree size at most r) than the property represented on the
right-hand side (rank k). Therefore,

r∑
i=1

wr 6 lim inf
n→∞

an,k, (15)

and so
w 6 lim inf

n→∞
an,k. (16)

Now notice that for all n and r, the inequality

an,k 6
r∑
i=1

Wn,i +
∑
i>r

Vn,i =

(
r∑
i=1

Wn,i

)
+ Un,r

holds. Indeed, the right-hand side is the probability of a random vertex being of rank k
and having a subtree of size at most r, or simply having a subtree of size more than r
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(and any rank). A particular way of this occurring is when the random vertex is of rank
k, which is the event whose probability is represented on the left-hand side.

This implies that for all r, we have

lim sup
n→∞

an,k 6
r∑
i=1

wi +

(
1−

r∑
i=1

vi

)
. (17)

As r goes to infinity, the first sum on the right-hand side goes to w, while the second sum
goes to 0, as we saw in Corollary 13. This proves that

lim sup
n→∞

an,k 6 w. (18)

Comparing inequalities (16) and (18), we see that

lim sup
n→∞

an,k 6 w 6 lim inf
n→∞

an,k,

completing the proof of the theorem.

For numerical approximations, one can use the following corollary, which is an imme-
diate consequence of Theorem 15 that we have just proved, and inequalities (15) and (17)
that we have used in the proof of that theorem.

Corollary 16. For all r, the chain of inequalities

r∑
i=1

wi 6 ak 6
r∑
i=1

wi +

(
1−

r∑
i=1

vi

)
holds.

3 Plane 1-2 trees

The next tree class we study is the class of decreasing plane 1-2 trees on vertex set [n].
These are similar to the trees of the previous section, except that now the order of the
children of each vertex matters. See Figure 2 for an illustration. We denote the number
of such trees on [n] by bn.

Our goal in this section is to show the following analogue of Theorem 15. Let us choose
a vertex of the set of all vertices of all plane labeled trees on vertex set [n] uniformly at
random. Let an,k be the probability that the chosen vertex is of rank k, and let us keep all
definitions of the previous section, just take them for plane 1-2 trees instead of non-plane
ones.

Theorem 17. For all nonnegative integers k, the limit

ak := lim
n→∞

an,k

exists. Furthermore,
ak = w.
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1

3

1 2

3

2 1

Figure 2: The three decreasing plane 1-2 trees on vertex set [3].

Proof. Most steps are similar to what we saw in Section 2, but there will be one step that
requires a separate argument. In this section, if we simply say “tree”, we always mean a
decreasing plane 1-2 tree.

The first few values of the sequence bn, starting with b1, are 1, 1, 3, 9, and 39. These
trees were studied in [1]. Set b0 = 1, and consider the exponential generating function

B(z) =
∞∑
n=0

bn
zn

n!
.

Removing the root of such a tree results in a structure counted by B′(z). On the other
hand, if the tree had more than one vertex, then it results in a pair of such trees, except
in the case when the root had only one child. This leads to the separable differential
equation

B′(z) = 1−B(z) +B2(z).

Solving this equation yields

B(z) =
1

2
+

√
3

2
tan

(√
3

2
z +

π

6

)
.

The power series form of B(z) leads to the asymptotic formula

bn
n!
∼ 33/2

2π

(
33/2

2π

)n
. (19)

Just as it was the case for non-plane trees, we can determine the values of a0 and a1

for plane 1-2 trees as well.

3.1 Leaves

We can find the ratio of leaves among all vertices in a way that is analogous to that for
non-plane 1-2 trees.
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Theorem 18. The exponential generating function of the numbers of leaves in decreasing
plane 1-2 trees is

B0(z) =
∞∑
n=0

b0,n
zn

n!
=

6z +
√

3 sin
(√

3z
)

+ 3 cos
(√

3z
)
− 3

−3
√

3 sin
(√

3z
)

+ 3 cos
(√

3z
)

+ 6
,

which satisfies the differential equation

B′0(z) = 2B0(z)(B(z)− 1) +B0(z) + 1.

Proof. Just like in our proofs for analogous results in Section 2, we count ordered pairs
(v, T ), where v is a leaf of the tree T . Let us remove the root of T . Then there are two
cases, namely, either the removed root was v, or it was not.

If v is not the root, and we got two trees, one with the marked vertex, then the Product
formula yields the generating function 2B0(z)(B(z)− 1), as the order of the components
matters.

If v is not the root, and the root has only one child, then removing the root, we get
only one tree, with a marked vertex, which contributes the generating function B0(z).

Finally, if v is the root, the only possible tree is the one-point graph. The removal of

that root leads to the empty graph, represented by 1 =
(
z1

1!

)′
in the differential equation.

By the generating function we can determine the first values of b0,n:

n 0 1 2 3 4 5 6 7 8 9 10
b0,n 0 1 1 5 17 93 513 3 477 25 569 212 733 1 929 393

A simple application of Lemma 3 yields that

b0,n

(n+ 1)n!
∼

4π
9
√

3
− 1

3(
2π

3
√

3

)n+2 ,

and, by recalling (19),

a0 = lim
n→∞

b0,n

nbn
=

2

3
−
√

3

2π
≈ 0.391. (20)

3.2 Neighbors of leaves

This case is similar to that of leaves, with some subtle differences. Let b1,n denote the num-
ber of all vertices of rank 1 in all trees on vertex set [n], and let B1(z) be the exponential
generating function of these numbers.

Theorem 19. The generating function B1(z) satisfies the differential equation

B′1(z) = 2B1(z)(B(z)− 1) +B1(z) + 2z(B(z)− 1) + z − z2 (B1(0) = 0).
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Therefore,

B1(z) =
6z3 +

√
3 (3z2 − 15z − 5) sin

(√
3z
)

+ 3 (3z2 + 5z − 5) cos
(√

3z
)

+ 15

9
(√

3 sin
(√

3z
)
− cos

(√
3z
)
− 2
) .

Proof. Let us count ordered pairs (v, T ), where v is a vertex of rank 1 in a tree T . Let
us remove the root of T . The case when v is not the root is the same as in Section 3.1,
contributing the term 2B1(z)(B(z)− 1) +B1(z). When v is the root, then removing it we
obtain a leaf and a tree. If this tree is not empty, we must distinguish whether it was on
the left or right hand side, so we must add a term 2z(B(z)− 1). If, in turn, the subtree

is empty, we must add the term representing the path of length one, that is
(
z2

2!

)′
= z.

Finally, we must realize that the terms 2B1(z)(B(z)− 1) and 2z(B(z)− 1) both contain
the two trees on three points where the root has two children. Therefore we must subtract

2
(
z3

3!

)′
= z2.

The first values of b1,n are as follows.

n 0 1 2 3 4 5 6 7 8 9 10
b1,n 0 0 1 3 15 75 435 2883 21 447 177 435 1 613 835

The asymptotic expression for the total number of rank one vertices can be found
easily:

b1,n

(n+ 1)n!
∼ 540

√
3π − 16

√
3π3 − 1215

2187
(

2π
3
√

3

)n+2 ,

and

lim
n→∞

b1,n

nbn
=

10

9
− 5

2
√

3π
− 8π2

243
≈ 0.3267. (21)

3.3 Vertices of higher rank

If we try to apply the method of Sections 3.1 and 3.2 for vertices of rank k, for k > 2,
we will fail, because yet again, the relevant generating functions will not have elementary
antiderivatives. However, the method that we used in Section 2.3 to prove that the limits
ak exist will work again, as we will show.

Let us define the limits vr as we did in Proposition 8 and wr exactly as we did in
Definition 14, except that now the trees are plane. If we try to follow the argument of
the non-plane case, we see that the first step towards proving the existence of vr and wr
is to show that we can explicitly solve the linear differential equation

f ′(z) = 2f(z)(B(z)− 1) + f(z) + P (z),

where P (z) is a polynomial function. Indeed, we get differential equations of the above
kind when we attempt to find the probabilities V (n, r) or W (n, r).
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Bringing the above differential equation to standard form, we get

f ′(z) + (1− 2B(z))f(z) = P (z). (22)

In order to solve (22), we multiply both sides by the integrating factor

Q(z) = exp

(∫
(1− 2B(z)) dz

)
=

1

2
+

cos
(√

3z
)

4
−
√

3 sin
(√

3z
)

4
.

Multiplying both sides of (22) by Q(z), we get the equation

(f(z)Q(z))′ = Q(z)P (z),

which we can explicitly solve as long as we can integrate Q(z)P (z). In the present case,
we can certainly do that, since P (z) is a polynomial function of z, hence it is a polynomial
function of

√
3z as well, so a substitution t =

√
3z will result in a function consisting of

the sums of summands in the form tm sin t and tn cos t. In the end, we obtain

f(z) =

∫
Q(z)P (z)

Q(z)
=
K(z)

Q(z)
, (23)

a meromorphic function. The asymptotic behavior of meromorphic functions is well un-
derstood. See Theorem IV.10 of [10] for the most important results. In our case, the
numerator K(z) of f(z) in (23) is an entire function, while the denominator has a zero at
z = 2

√
3π/9 that has multiplicity two. Therefore, the asymptotics of the coefficients of

f(z) can be computed using Lemma 3. So the existence of vr and wr can also be proved
in the same way as it was in Section 2 for non-plane 1-2 trees.

The next step is to prove the plane analogue of Theorem 10, that is, the equality∑∞
r=1 vr = 1 for plane 1-2 trees. There is one step in that proof that needs an argument

that is different from its non-plane analogue, which is Proposition 11. Therefore, we
announce and prove it separately as follows.

Proposition 20. For all n, the expected number of leaves in a random plane 1-2 tree on
vertex set [n] is at least n/4.

Proof. We prove that the expected number of leaves in plane 1-2 trees on vertex set [n] is
at least as large as the expected number of leaves in non-plane 1-2 trees on vertex set [n].
As the latter has been proved to be at least n/4 in Proposition 11, this will be sufficient.

Clearly, in both tree varieties, the number of vertices with two children is one less than
the number of leaves. Therefore, it suffices to prove that average the number of vertices
with one child is at most as large in plane 1-2 trees on [n] as it is on non-plane 1-2 trees on
[n]. We use a well-known inequality, known as the Chebyshev sum inequality or (a special
case of) the rearrangement inequality. See [11] or [13] for a proof.

Proposition 21. (Chebyshev sum inequality.) Let r1 6 r2 6 · · · 6 ru and t1 > t2 >
· · · > tu be nonnegative real numbers so that t1 > 0. Then the inequality

r1 + r2 + · · ·+ ru
u

>
r1t1 + r2t2 + · · ·+ rutu

t1 + t2 + · · ·+ tu

holds.
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Let us return to the proof of Proposition 20. Consider all En non-plane trees on vertex
set [n]. Let s1, s2, · · · , sEn denote the number of vertices with exactly one child in each
of these trees, and let us order the set of these En trees so that the sequence of the si is
non-decreasing, that is, s1 6 s2 6 · · · 6 sEn . Then the average number of vertices with
one child in all non-plane 1-2 trees on [n] is

Mn =

∑En

i=1 si
En

. (24)

On the other hand, if such a tree T has si vertices with one child, then it has (n−1−si)/2
vertices with two children, (and, though we will need this only later, T has (n+ 1− si)/2
leaves). Therefore, there are exactly 2(n−1−si)/2 plane 1-2 trees on vertex set [n] that are
identical to T as non-plane trees, and each of those trees has si vertices with one child.
This proves that the average number of vertices with exactly one child in all plane 1-2
trees on vertex set [n] is

mn =

∑En

i=1 si2
(n−1−si)/2∑En

i=1 2(n−1−si)/2
. (25)

Finally, note that the sequences s1 6 s2 6 · · · 6 sEn and 2(n−1−s1)/2 > 2(n−1−s2)/2 >
· · · > 2(n−1−sEn )/2 satisfy the requirements of Proposition 21, so Mn > mn holds. So the
expected number of vertices with one child in a random non-plane 1-2 tree is at least as
large as the expected number of vertices with one child in a random plane 1-2 tree of the
same size. Therefore, the expected number of leaves in a plane 1-2 tree is at least as large
as the expected number of leaves in a random non-plane 1-2 tree of the same size. The
proof of our claim is now immediate, since we saw in Proposition 11 that the expected
number of leaves in a random non-plane 1-2 tree on vertex set [n] is at least n/4.

All remaining steps of Theorem 15 can be carried out without any extra effort, showing
that the limits ak exist for all k, for the variety of plane 1-2 trees as well.

4 Approximations

Corollary 16 makes numerical approximations of ak possible. As the upper bound provided
by (17) was obtained by a rather crude estimate, it is reasonable to assume that the lower
bound in that corollary is a better estimate for w than the upper bound. It follows from
our methods that both the upper and the lower bounds will be of the form π−2F (π),
where F is a polynomial function with rational coefficients. For instance, selecting k = 2
and r = 12 leads to a lower bound of 0.188285 6 a2. On the other hand, less rigorous but
more extensive computations carried out by Jay Pantone [22] suggest the approximate
values a2 ≈ 0.20278137, a3 ≈ 0.0893474, and a4 ≈ 0.0243854.
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