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Abstract

A quandle of cyclic type of order n with f (greater than 1) fixed points is such
that, by definition, each of its permutations splits into f cycles of length 1 and one
cycle of length n− f . In this article we prove that there is only one such connected
quandle, up to isomorphism. This is a quandle of order 6 and 2 fixed points, known
in the literature as octahedron quandle.

Mathematics Subject Classifications: 20N02

1 Introduction

1.1 Quandles

The algebraic structure known as quandle appeared first in the literature in 1982, due
to Joyce [11] and Matveev [15], independently (see also [8] and [9]). It was designed to
constitute the algebraic counterpart to the Reidemeister moves [13]. As such it turned out
to be an important tool in telling knots apart [7], [2], [5]. Algebraists also find it interesting
in the domain of Hopf algebras [1]. It thus seem relevant to study the structure of
quandles. In the current article we take another step in this direction by investigating and
almost fully classifying a family of quandles. In [14] quandles are regarded as sequences
of permutations and based on the features of permutations conclusions are drawn. In
particular, in [14] quandles of the following sort are looked into. Given a positive integer
n we consider a quandle of order n, each of whose permutations split into a cycle of length
n− 1 and a fixed point; this fixed point complies with one of the quandles axioms - this
is all detailed below. These quandles were subsequently called “quandles of cyclic type”.

∗Supported by project FCT PTDC/MAT-PUR/31089/2017, “Higher Structures and Applications”.
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They were also studied in [12] and [17]. In this article, we work in the spirit of [14] i.e.,
quandles as sequences of permutations (see also [10] and [18], [19], [20]), and we look into
the classification of a generalization of “quandles of cyclic type” which we call “quandles
of cyclic type with several fixed points” (details are supplied below in the text). As a
matter of fact, our considerations stem from a certain quandle of order six with two fixed
points. We wondered about quandles whose permutations split into one long cycle and f
fixed points (f > 2). It turns out that for infinitely many values of the parameters order,
n, and number of fixed points, f , namely n > 2f , there is only one such quandle: our
quandle of order six and two fixed points - this is proved in this article. This quandle
was first referred to in [4] where it is described as the conjugacy class of the six cycles
of length four from an alphabet with four letters, and used as an example in calculations
of quandle homology. Then it appears in [1] (page 188) as the symmetries of a regular
octahedron under rotations about an axis containing opposite vertices, see Figure 1 (the
underlying set is the set of vertices).
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Figure 1: Geometric materialization of the “Octahedron Quandle”. Numbering of vertices
is consistent with Table 1, the “multiplication” table for this quandle. The axis depicted
and the sense of rotation refer to the action of the first quandle element.

In [14], Roseman and the second author pick it as an example of a non-Alexander
quandle, still proving to be a good quandle at telling knots apart via counting colorings.
It was dubbed “Octahedron quandle”.

1.2 Basic Definitions and Results

The algebraic structure known as quandle, introduced independently in [11] and [15], is
defined as follows.

Definition 1. Let Q be a set equipped with a binary operation denoted by ∗. The pair
(Q, ∗) is said to be a quandle if, for each a, b, c ∈ Q,
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1. a ∗ a = a (idempotency);

2. ∃!x ∈ Q : x ∗ b = a (right-invertibility);

3. (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) (self-distributivity).

We present a few examples of quandles.

Example 2. .

• Let G be a group and let ∗ be the binary operation on G given by a ∗ b = bab−1,
for every a, b ∈ G, where the juxtaposition on the right-hand side denotes group
multiplication. Then, the pair (G, ∗) is a quandle;

• For each n > 2, (Rn, ∗) denotes the quandle whose underlying set is Z/nZ and
whose operation is a ∗ b = 2b − a mod n. This is called the dihedral quandle (of
order n);

• For each n > 1, (Tn, ∗) denotes the quandle whose underlying set is {1, . . . , n} and
whose operation is i ∗ j = i, ∀i, j ∈ {1, . . . , n}. This is called the trivial quandle (of
order n);

• Q2
6 is the quandle whose multiplication table is displayed in Table 1.

∗ 1 2 3 4 5 6
1 1 5 1 6 4 2
2 6 2 5 2 1 3
3 3 6 3 5 2 4
4 5 4 6 4 3 1
5 2 3 4 1 5 5
6 4 1 2 3 6 6

Table 1: Q2
6 multiplication table.

An alternative description of the structure of a quandle is the one given in the following
theorem ([3], [9]).

Theorem 3. Let Q = {1, 2, . . . , n}. Suppose a permutation µi from Sn, the symmetric
group on Q, is assigned to each i ∈ Q. Then, the expression j ∗ i := µi(j),∀j ∈ Q, yields
a quandle structure if and only if µµi(j) = µiµjµ

−1
i and µi(i) = i, ∀i, j ∈ Q. This quandle

structure is uniquely determined by the set of n permutations, {µ1, . . . , µn}.

Proof. The proof can be found in [3].

In this article, we study the properties of each quandle by analyzing the structure
uniquely determined by its set of n permutations. We also only address finite quandles.
If such a quandle has order n, we take the underlying set to be {1, 2, . . . , n}, without loss
of generality.
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Definition 4. Given a quandle (Q, ∗), its permutations are the µi’s referred to in the
statement of Theorem 3, ∀i ∈ Q. Unless otherwise stated in the sequel, a µi always refers
to a permutation from the quandle under discussion. We also write (Q, µ) to denote the
same quandle from the point-of-view of permutations.

Definition 5. Let (Q, ∗) (respect., (Q, µ)) and (Q′, ∗′) (respect., (Q′, µ′)) be two quandles.
A bijection α : Q −→ Q′ is a quandle isomorphism between these two quandles if, by
definition, for any i, j ∈ Q, α(i ∗ j) = α(i) ∗′ α(j).

Proposition 6. Keeping the notation and terminology of Defintion 4, α is a quandle
isomorphism if and only if, for any i ∈ Q, µ′α(i) = αµiα

−1.

Proof. For any i, j ∈ Q,

α(j ∗ i) = α(j) ∗′ α(i)⇐⇒ α(µi(j)) = µ′α(i)(α(j))⇐⇒ αµi = µ′α(i) α⇐⇒ µ′α(i) = αµi α
−1

1.3 Definition of Quandle of Cyclic Type with Several Fixed Points

As stated in Theorem 3, a quandle of order n is uniquely determined by a set of n
permutations, where each one of these permutations can be decomposed into a set of
disjoint cycles. The lengths of these cycles define the pattern of each permutation.

Definition 7. The pattern of a permutation is the list of the lengths of the disjoint cycles
making up the permutation.

We can collect the information relative to the patterns of the n permutations defining
a quandle of order n in order to define its profile.

Definition 8. The profile of a quandle of order n is the list of the patterns of the n
permutations defining the quandle.

We now introduce the notion of connected quandle in order to state an important
proposition.

Definition 9. A finite quandle (Q, ∗) is said to be connected if,

∀ i, j ∈ Q, ∃ k1, k2, . . . , kn ∈ Q :

j = (· · · ((i ∗ k1) ∗ k2) ∗ · · · ∗ kn) = µkn ◦ · · · ◦ µk2 ◦ µk1(i).

Proposition 10. Connected finite quandles have constant profiles.

Proof. Let (Q, ∗) be a connected quandle. Then, given i, j ∈ Q, ∃ k1, k2, . . . , kn ∈ Q :

j = (· · · ((i∗k1)∗k2)∗· · ·∗kn) = µkn◦· · ·◦µk2◦µk1(i)⇒ µj = µkn · · ·µk2µk1µiµ−1k1 µ
−1
k2
· · ·µ−1kn ,

by Theorem 3, and since conjugate permutations have the same pattern, the result follows.
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Remark 11. Note that quandles with constant profile do not have to be connected. For
example, the trivial quandle of order n, (Tn, ∗), has constant profile and it is not connected.
The same for dihedral quandles of even order.

We now introduce the key notion of quandles of cyclic type with several fixed points.

Definition 12. Given n, f ∈ N, n − 2 > f > 1, a quandle of cyclic type of order n with
f fixed points is a quandle of order n with constant profile given by{

{1, . . . , 1︸ ︷︷ ︸
f

, n− f}, . . . , {1, . . . , 1︸ ︷︷ ︸
f

, n− f}

︸ ︷︷ ︸
n

}
.

When there is no need to refer to its order or to its number of fixed points we refer to
each of these quandles as quandle of cyclic type with several fixed points.

The previous definition means that each one of the n permutations defining a quandle
of cyclic type of order n with f fixed points splits into the following types and numbers
of disjoint cycles. One cycle of length n− f(> 1) and f cycles of length 1.

In passing, we note, by inspection of Table 1, that Q2
6 is a connected quandle. Hence,

by Proposition 10, it has a constant profile. But more than that, Q2
6 is, in fact, a quandle

of cyclic type of order 6 with 2 fixed points. In this article, we show that this is the only
connected quandle of cyclic type with several fixed points.

In the sequel, we use the following notation.

Definition 13. Let Q be a quandle of cyclic type with several fixed points of order n.
As per Theorem 2.1.1, its n permutations are denoted µi, i ∈ {1, . . . , n}. In particular,
µi(i) = i, ∀i ∈ {1, . . . , n}. The set of fixed points of µi is denoted Fi, i ∈ {1, . . . , n}. The
set of points in the non-singular cycle of µi is denoted Ci, i ∈ {1, . . . , n}. We note that
Ci ∩ Fi = ∅ and Ci ∪ Fi = {1, . . . , n}, ∀i ∈ {1, . . . , n}.

1.4 Statement of the Results in this Article

Theorem 14. Let n and f be positive integers such that n > f + 1 > 2, and assume Q
is a quandle of cyclic type of order n with f fixed points. Then, the following hold.

1. Assume n > 2f .

(a) Then, Q is connected.

(b) Moreover, there is only one such quandle, up to isomorphism. It occurs for
n = 6 and f = 2. This quandle is Q2

6 (see Table 1, above).

2. Assume n 6 2f .

(a) Then, Q is not connected.
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(b) If n = 2f , there is only one such quandle, up to isomorphism. Its permutations
are

µ1 = µ2 = · · · = µf =

(
f + 1 f + 2 · · · 2f

)
µf+1 = µf+2 = · · · = µ2f =

(
1 2 · · · f

)
.

Theorem 15. Let n and f be positive integers such that n > f + 1 > 2 and n 6 2f
(corresponding to the non-connected case in Theorem 14). If (n − f) | f , there is a
quandle of cyclic type of order n with f fixed points whose permutations are given as
follows. For each i such that 1 6 i 6 n

n−f ,

µ(i−1)(n−f)+1 = µ(i−1)(n−f)+2 = · · · = µi(n−f) =

=

(
i(n− f) + 1 i(n− f) + 2 · · · (i+ 1)(n− f)

)
,

with indices read mod n
n−f .

Theorem 16. Suppose f is an integer strictly greater than 2 and n a positive integer
such that f + 2 6 n 6 2f . Consider a quandle of cyclic type of order n and f fixed points
over the set Q = {1, 2, . . . , n} with sequence of permutations µi with i ∈ {1, 2, . . . , n}.
Assume further there is a g0 ∈ Q such that µi(g0) = g0, for any i ∈ Q. Then, the set
Q′ = Q \ {g0} along with the sequence of permutations µ′i = µi|Q′ for each i ∈ Q′ defines
a quandle of cyclic type of order n− 1 with f − 1 fixed points. We call this the extraction
of the common fixed point g0.

Theorem 17. Let n be an integer greater than 2. Let Q be the underlying set of a
quandle whose permutations are denoted µi, for each i ∈ Q. Let g0 /∈ Q and consider the
set Q′ = Q ∪ {g0}. Suppose there is a permutation, µ, of the elements of Q, such that
µµi = µiµ, for each i ∈ Q. Then, Q′ along with the permutations

µ′i = (g0)µi for each i ∈ Q and µ′g0 = (g0)µ

is a quandle with a common fixed point, g0. We call this the adjoining of a common fixed
point g0.

Corollary 18. Let (Q, µ) be a quandle of cyclic type of order n and f fixed points with
(n − f) | f as in Theorem 15. Then any two permutations are either equal or move
points from disjoint sets. So adjoining a common fixed point g0 is accomplished by taking
µ′g0 = (g0)µi0 by picking any i0 ∈ Q and for any j ∈ Q, µ′j = (g0)µj.

Furthermore, this procedure can be iterated indefinitely, giving rise to an infinite se-
quence of quandles Qk of cyclic type of order n + k and f + k fixed points such that
f + k + 2 6 n+ k 6 2(f + k).
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1.5 Organization

The Sections below are devoted to the proofs of these facts. In Section 2 we prove that
quandles of cyclic type of order n with f fixed points in the range n > 2f are connected
(assertion 1.(a) in Theorem 14) and that for n = 2f there is only one such quandle, up to
isomorphism and that this quandle is not connected (assertion 2.(b) and assertion 2.(a)
(for n = 2f) in Theorem 14). In Subsection 2.3 we prove that quandles of cyclic type of
order n and f fixed points in the range f +2 6 n 6 2f are not connected; this is the 2.(a)
part (for n < 2f) in Theorem 14. In Section 3 we prove that, up to isomorphism, there is
only one quandle of cyclic type of order n with f fixed points in the range n > 2f . This
quandle occurs for n = 6 and f = 2 and is known as the octahedron quandle (assertion
1.(b) in Theorem 14). This completes the proof of Theorem 14. In Section 4 we prove
Theorems 15, 16, and 17. Finally, in Section 5 we collect a few questions for further
research.

2 Quandles of Cyclic Type with Several Fixed Points - First
Properties and Examples

In this Section, we state and prove a theorem about the structure of quandles of cyclic
type with several fixed points. This theorem provides a number of conditions quandles of
cyclic type of order n with f fixed points such that n > 2f must verify. This theorem is
key to proceed to a classification of quandles of cyclic type.

2.1 Associate Indices

Quandles of cyclic type of order n > 2f have a very useful property, which is a consequence
of the following proposition.

Proposition 19. Let Q be a quandle of cyclic type of order n with f fixed points such that
n > 2f , and let Fk = {k, g1k, . . . , g

f−1
k } be the set of f fixed points of µk. Then µgik(g) = g,

∀g ∈ Fk, ∀i ∈ {1, . . . , f − 1}.

Proof. For each i ∈ {1, . . . , f − 1} and for each g ∈ Fk \ {gik}, we have

µgik(g) = µµk(gik)(g) = µkµgikµ
−1
k (g) = µk(µgik(g)),

that is, µk fixes µgik(g) and hence µgik(g) ∈ Fk \ {gik}, as µgik(g
i
k) = gik. Therefore, the

restriction of µgik to Fk \ {gik} is a bijection from this set to itself. Thus, we must have

µgik(g) = g, ∀g ∈ Fk \ {gik}. Otherwise, µgik would have a cycle of length 1 < l 6 f − 1 =

|Fk \ {gik}|, that would also verify l = n − f > 2f − f = f , which is a contradiction.
Hence, the result follows.

We introduce the notions of associate indices and associate permutations.

Definition 20. Let Q be a quandle of order n with permutations denoted by µk, k ∈
{1, . . . , n}.
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• If i and j are different indices such that µi(j) = j and µj(i) = i, we say that i and
j are associate indices;

• If i and j are associate indices then µi and µj are said associate permutations;

Corollary 21. With the terminology introduced in Definition 20, Proposition 19 states
that, for each quandle of cyclic type whose order n and number of fixed points f satisfies
n > 2f , associate permutations have the same sets of fixed points.

In the sequel, we assume the order n of any quandle of cyclic type to be greater than
or equal to 2f , unless otherwise stated. Therefore, Proposition 19 always applies.

We now prove the main result of this section, which is a consequence of the previous
results.

Corollary 22. Assume n is the order of a quandle of cyclic type with f fixed points. If
n > 2f , then n is a multiple of f i.e., n = cf for some integer c > 2.

Proof. We show that if there is an index s such that µs(k) = k, for some k, then s ∈ Fk.
For each g ∈ Fs \ {k},

µk(g) = µµs(k)(g) = µsµkµ
−1
s (g) = µs(µk(g)),

that is, µs fixes µk(g) and hence µk(g) ∈ Fs \{k}, as µk(k) = k. Therefore, the restriction
of µk to Fs\{k} is a bijection from this set to itself. Arguing as in the proof of Proposition
19, we must have µk(g) = g, ∀g ∈ Fs \{k}, which implies that Fs = Fk, and in particular,
s ∈ Fk. Thus, the sets of fixed points corresponding to two permutations are either equal
or disjoint. Therefore, the order n of a quandle of cyclic type with f fixed points, with
n > 2f , has to be a multiple of f .

The following proposition is now an immediate consequence of our previous consider-
ations.

Proposition 23. Given a quandle of cyclic type of order n with f fixed points and n >
2f > 2, “i is associate to j” generates an equivalence relation on the underlying set of the
quandle.

Proof. The equivalence relation is “i is associate to j or i = j”. Since i is a fixed point
of µi, then i ∈ Fi. Moreover, any two sets Fi and Fj are either equal or disjoint, thus the
result follows.

Example 24. R4, the dihedral quandle of order 4, whose multiplication table is displayed
in Table 2, is a quandle of cyclic type of order 4 with 2 fixed points.

∗ 1 2 3 4
1 1 3 1 3
2 4 2 4 2
3 3 1 3 1
4 2 4 2 4

Table 2: R4 multiplication table.
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By Proposition 23, “i is associate to j” generates an equivalence relation on R4, which
is also a congruence relation on this set, as it respects the binary operation of the quandle.
In Table 3, we see the quotient of R4 by this congruence relation, which we denote by ∼.
This quotient is clearly isomorphic to T2. In particular, R4 is not simple since it admits
a non-trivial quotient.

∗ {1,3} {2,4}
{1,3} {1,3} {1,3}
{2,4} {2,4} {2,4}

Table 3: R4/ ∼ multiplication table.

2.2 Connected Quandles of Cyclic Type of Order n with f Fixed Points in
the Range n > 2f - First Properties and Example

From this point on, we are only working with connected quandles of cyclic type of order
n > 2f . The two following propositions tell us whether a quandle of cyclic type of order
n > 2f is connected or not.

Proposition 25. If Q is a quandle of cyclic type of order n with f fixed points such that
n = 2f , Q is not connected.

Proof. Suppose Q is a quandle of cyclic type of order n with f fixed points such that
n = 2f and let i, j ∈ Q be two non-associate indices. Then Fi ∪ Fj = Q. Moreover, since
n − f = 2f − f = f , for any a ∈ Q, if Fi (respect., Fj) is the set of fixed points of µa,
then Ca = Fj (respect., Ca = Fi). Then, for each a ∈ Q, µa(Fi) = Fi and µa(Fj) = Fj.
Therefore, we conclude that Q is not connected.

Proposition 26. Every quandle of cyclic type of order n with f fixed points such that
n > 2f is connected.

Proof. Suppose Q is a quandle of cyclic type of order n with f fixed points such that
n = cf , with c > 3 by Corollary 22. Let i, j ∈ Q, with i 6= j. If i and j are associate
indices, then for any k /∈ Fi, i, j ∈ Ck. Hence, there exists an integer a ∈ {1, . . . , n−f−1}
such that µak(i) = j. Now, assume i and j are not associate indices. Since there are at least
three distinct sets of associate indices, there is at least one set Fk0 such that both i and j do
not belong to Fk0 . Therefore i, j ∈ Ck0 and so there exists an integer a ∈ {1, . . . , n−f−1}
such that µak0(i) = j. We conclude that Q is connected.

Remark 27. In the sequel, we assume the order n of any quandle to be greater than 2f ,
unless otherwise stated. In this condition, all our quandles of cyclic type are connected.

We now use some of the equalities µµi(j) = µiµjµ
−1
i the permutations defining these

quandles have to verify to derive a number of conditions these quandles have to satisfy in
order to be cyclic.
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Theorem 28. Consider a quandle of cyclic type of order n with f fixed points such
that n > 2f . Modulo isomorphism, its sequence of permutations satisfies the following
conditions.

1. µn = (1 2 3 · · · n− f)(n− f + 1) · · · (n− 1)(n);

2. if h and h′ are associate indices then µh = µ
lh,h′

h′ , where GCD(n − f, lh,h′) = 1,
1 6 lh,h′ < n− f ;

3. µk = µknµn−fµ
−k
n , for all 1 6 k 6 n− f ;

4. µn−fµaµ
−1
n−f = µ

µn−f (a)
n µn−fµ

−µn−f (a)
n , ∀a ∈ Fn;

5. µ−1n−fµaµn−f = µ
µ−1
n−f (a)
n µn−fµ

−µ−1
n−f (a)

n , ∀a ∈ Fn;

6. ∀m ∈ {1, . . . , n − f} \ {µ−1n−f (n − f + 1), . . . , µ−1n−f (n)}, there exists an integer 1 6

km < n− f such that µ
−µn−f (m)
n µn−fµ

m
n = στ km, where σ is a permutation of Fn−f

and τ is the cycle of length n− f in µn−f .

Proof. .
1. We can assume that µn is given by (1 2 3 · · · n−f)(n−f+1) · · · (n−1)(n) without

loss of generality. If necessary, we may relabel the indices. This expression for µn will
be assumed in the sequel - except for Subsection 2.3.

2. Suppose h and h′ are associate indices and let Fh = {h, h′, g1h, . . . , g
f−2
h }. Therefore,

we have that
µh = (h1 . . . hn−f )(h)(h′)(g1h) · · · (g

f−2
h )

and
µh′ = (h′1 . . . h

′
n−f )(h)(h′)(g1h) · · · (g

f−2
h ),

and hence
µh′ = µµh(h′) = µhµh′µ

−1
h ⇔ µh′µh = µhµh′ ⇔

⇔ (h1 . . . hn−f )(h
′
1 . . . h

′
n−f ) = (h′1 . . . h

′
n−f )(h1 . . . hn−f ),

that is, the two cycles (h1 . . . hn−f ) and (h′1 . . . h
′
n−f ) commute in

S{h1,...,hn−f} = S{h′1,...,h′n−f}.

Thus, µh = µ
lh,h′

h′ (see [16], for instance), where lh,h′ satisfies GCD(n − f, lh,h′) = 1,
1 6 lh,h′ < n− f (otherwise µh would not have a cycle of length n− f).

3. First, we note that µ1 = µµn(n−f) = µnµn−fµ
−1
n . If µk = µknµn−fµ

−k
n then

µk+1 = µµn(k) = µnµkµ
−1
n = µnµ

k
nµn−fµ

−k
n µ−1n = µk+1

n µn−fµ
−(k+1)
n ,
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(where we read the free indices modulo n− f), whence we proved 3. by induction.

4. Let a ∈ Fn and assume µn−f (a) /∈ Fn. Let i /∈ Fn. On one hand, we have, by
assertions 2. and 3.,

µµi(a) = µiµaµ
−1
i = µinµn−fµ

−i
n µaµ

i
nµ
−1
n−fµ

−i
n = µinµn−fµaµ

−1
n−fµ

−i
n . (1)

On the other hand, again by assertion 3.,

µi(a) = µinµn−fµ
−i
n (a) = µinµn−f (a) = µinµ

µn−f (a)
n (n− f) = µ

i+µn−f (a)
n (n− f),

which implies that

µµi(a) = µ
µ
i+µn−f (a)
n (n−f)

= µinµ
µn−f (a)
n µn−fµ

−µn−f (a)
n µ−in (2)

Combining 1 and 2, we get

µn−fµaµ
−1
n−f = µ

µn−f (a)
n µn−fµ

−µn−f (a)
n .

We now prove the following lemma, which completes the proof of assertion 4..

Lemma 29. Given a ∈ Fn, µn−f (a) /∈ Fn.

Proof. Suppose µn−f (a) ∈ Fn. Then, for 1 6 k 6 n− f ,

µk(a) = µknµn−fµ
−k
n (a) = µknµn−f (a) = µn−f (a).

This would force the pairs of associate permutations from µ1 to µn−f to be equal to each
other. In fact, by assertion 2., if two associate permutations have the same image at
a point belonging to their non-singular cycles, these permutations have to be the same.
Suppose, now, that for a certain index b ∈ Fn, µn−f (b) /∈ Fn. Then, for 1 6 k 6 n− f ,

µk(b) = µknµn−fµ
−k
n (b) = µknµn−f (b) = µn−f (b) + k,

which would force the pairs of permutations whose indices are associate from µ1 to µn−f
to be all different from each other, which is a contradiction. Therefore, µn−f (Fn) = Fn.
But µn−f does not fix any element from Fn since Fn ∩ Fn−f = ∅. Then, this implies that
µn−f has a cycle of length at most f , which is again a contradiction, since n − f > f .
Hence, µn−f (a) /∈ Fn.

5. Let a ∈ Fn and let i /∈ Fn be the index such that µn−f (i) = a. Note that otherwise
i would take up the role of a in Lemma 29 and a would not belong to Fn. Then,

µa = µµn−f (i) = µn−fµiµ
−1
n−f = µn−fµ

i
nµn−fµ

−i
n µ

−1
n−f .

Since i = µ−1n−f (a), we conclude that µ−1n−fµaµn−f = µ
µ−1
n−f (a)
n µn−fµ

−µ−1
n−f (a)

n .
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6. Let m be any index belonging to the set {1, . . . , n−f} such that the index µn−f (m)
belongs to the set {1, . . . , n− f} \ {µn−f (n), . . . , µn−f (n− f + 1)}. Then, by assertion 3.,

µµn−f (m) = µn−fµmµ
−1
n−f = µn−fµ

m
n µn−fµ

−m
n µ−1n−f .

Since we also have µµn−f (m) = µ
µn−f (m)
n µn−fµ

−µn−f (m)
n , then

µn−fµ
m
n µn−fµ

−m
n µ−1n−f = µ

µn−f (m)
n µn−fµ

−µn−f (m)
n ,

which is equivalent to having

(µ
−µn−f (m)
n µn−fµ

m
n )µn−f = µn−f (µ

−µn−f (m)
n µn−fµ

m
n ),

that is, µ
−µn−f (m)
n µn−fµ

m
n and µn−f commute in Sn. The number of elements in the

centralizer of µn−f in Sn, |CSn(µn−f )|, is given by

|CSn(µn−f )| =
|Sn|
|µSnn−f |

, see [16], for instance,

where |µSnn−f | denotes the number of elements of Sn with the same pattern as µn−f . In
fact, we have

|µSnn−f | =
n(n− 1) . . . (f + 1)

n− f
=

n!

(n− f)f !
,

and since |Sn| = n!, we conclude that |CSn(µn−f )| = (n − f)f !. However, we know
exactly what these (n − f)f ! permutations are. Let τ be the cycle of length n − f of
µn−f . Indeed, τ k commutes with µn−f , ∀k ∈ {1, . . . , n− f}. Moreover, any permutation
of the f fixed points of µn−f commutes with µn−f . The former type of permutation
τ k only moves elements within Cn−f whereas the latter type of permutation only moves
elements within Fn−f . Composing permutations from these two commuting types of
permutations, we get a total of (n − f)f ! permutations commuting with µn−f , which is
precisely the number of permutations we found before. Therefore, we may conclude that
∀m ∈ {1, . . . , n−f}\{µ−1n−f (n−f+1), . . . , µ−1n−f (n)}, there exists an integer 1 6 km < n−f
such that µ

−µn−f (m)
n µn−fµ

m
n = στ km , where σ is a permutation of Fn−f and τ is the cycle

of length n− f in µn−f .

Corollary 30. Assertions 1., 2., and 3. in Theorem 28 are still valid if n = 2f .

Proof. Omitted.

This allows us to classify quandles of cyclic type of order 2f with f fixed points

Corollary 31. For any integer f > 1, there is only one quandle of cyclic type of order
2f with f fixed points, up to isomorphism. Moreover, such quandle is not connected.
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Proof. Let f be as in the statement. We first note that, should it exist, the indicated
quandle is not connected via Proposition 25. We will next prove (1.) that there is such a
quandle; and then (2.) that any such quandle is isomorphic to the one in 1.

1. Consider the sequence of permutations

µi = (1)(2) · · · (f)(f + 1 f + 2 f + 3 · · · 2f) for i = 1, 2, . . . , f ;

µj = (f + 1)(f + 2) · · · (2f)(1 2 3 · · · f) for j = f + 1, f + 2, . . . , 2f.

Note that µi’s and µj’s commute among themselves and with one another, since they
are either equal or move points from disjoint sets. Then, for any i, i′ ∈ {1, 2, . . . , f}
and j, j′ ∈ {f + 1, f + 2, . . . , 2f}, we have

µi(i
′) = i′ =⇒ µi′ = µiµi′µ

−1
i = µi

µi(j) = j + 1 (with 2f + 1 = f + 1) =⇒ µj+1 = µiµjµ
−1
i = µj

µj(j
′) = j′ =⇒ µj′ = µjµj′µ

−1
j = µj

µj(i) = i+ 1 (with f + 1 = f) =⇒ µi+1 = µjµiµ
−1
j = µi.

Therefore, the indicated sequence of permutations defines a quandle. Moreover, this
is a quandle of cyclic type of order 2f with f fixed points.

2. Now consider a quandle of cyclic type of order 2f and f fixed points, along with its
permutations, µ′i for i = 1, 2, . . . , 2f . According to 1. in Theorem 28 and Corollary
30

µ′2f = (f + 1)(f + 2) · · · (2f)(1 2 3 · · · f),

whose set of fixed points is

F2f = {f + 1, f + 2, . . . , 2f} = F2f−1 = · · · = Ff+1.

There are two distinct sets of fixed points (see proof of Proposition 25), so the other
one is

F1 = {1, 2, . . . , f} = F2 = · · · = Ff .

Then
µ′1 = (1)(2) · · · (f)(g1 g2 g3 · · · gf ),

where (g1 g2 g3 · · · gf ) is a cyclic permutation of {f + 1, f + 2, . . . , 2f}. For
any i ∈ {1, 2, . . . , f}, we have

µ′2f (i) = i+ 1 (with f + 1 = 1) =⇒ µ′i+1 = µ′2fµ
′
iµ
′
2f
−1

= µ′i.

Therefore,

µ′i = µ′1 = (1)(2) · · · (f)(g1 g2 g3 · · · gf ) for any i ∈ {1, 2, . . . , f}.
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Also, for any i ∈ {1, 2, . . . , f}, we have

µ′1(f + i) = f + i+ 1 (with 2f + 1 = f + 1) =⇒ µ′f+i+1 = µ′1µ
′
f+iµ

′
1
−1

= µ′f+i.

Therefore,

µ′f+i = µ′2f = (f+1)(f+2) · · · (2f)(1 2 3 · · · f) for any i ∈ {1, 2, . . . , f}.

Finally, consider the permutation, α, of {1, 2, . . . , f, f + 1, . . . , 2f} given by

α = (1)(2) · · · (f)(g1 f + 1)(g2 f + 2) · · · (gf 2f),

where, in case gi = f + i, (gi f + i) is to be read (gi), a fixed point. Then, for any
i ∈ {1, 2, . . . , f, f + 1, . . . , 2f},

µ′α(i) = αµiα
−1.

Thus, α is a quandle isomorphism between the quandle here and the quandle in 1.

The proof of Corollary 31 establishes Assertion 2.(b) in Theorem 14.

2.3 Quandles of Cyclic Type of Order n with f Fixed Points in the Range
f + 2 6 n 6 2f are not Connected

Theorem 32. Cyclic quandles of order n with f fixed points such that f + 2 6 n 6 2f
are not connected.

Proof. By Proposition 25, we know this is true for n = 2f . Now, let Q be a cyclic quandle
of order n with f fixed points such that f + 2 6 n 6 2f − 1. We assume, without loss
of generality, that µn = (1 2 . . . n− f)(n− f + 1)(n− f + 2) . . . (n), see Assertion 1. in
Theorem 28. Given j, k ∈ Fn = {n− f + 1, n− f + 2, . . . , n},

µk(j) = µµn(k)(j) = µnµkµ
−1
n (j) = µn(µk(j)),

that is, µn fixes µk(j). Therefore, we have that µk(j) ∈ Fn for any j, k ∈ Fn. Thus, Fn is a
subquandle of Q. Now, if this subquandle has constant profile, then the common pattern
is that of µn

∣∣
Fn

= (n−f+1)(n−f+2) . . . (n), hence Fn as a quandle is the trivial quandle
on f elements. In particular, it is not connected. If Fn as a quandle has not constant
profile, then, by Proposition 10, it is not connected. In either case, this subquandle is not
connected and hence there is a finite family of minimal disjoint sets F i

n, i ∈ {1, 2, . . . , d},
such that

⋃
i F

i
n = Fn and µg(F

i
n) = F i

n, ∀i, ∀g ∈ Fn, which correspond to the (minimal)
connected components of Fn, as a quandle. We also note that Cn ∩ Fn = ∅, Cn ∪ Fn = Q
and µg(Cn) = Cn, ∀g ∈ Fn. Now, since |Cn| = n− f < f = |F1|, µ1 must fix some point
a0 ∈ Fn, i.e., a0 ∈ Fn ∩ F1.

Lemma 33. Let a ∈ Fn. Assume there exist i0 ∈ {1, 2, . . . , n− f} such that:
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1. a ∈ Fi0. Then a ∈ Fi for each i ∈ {1, 2, . . . , n− f}.

2. a /∈ Fi0. Then a /∈ Fi for each i ∈ {1, 2, . . . , n− f}.

Proof. 1. Pick i ∈ {1, 2, . . . , n− f} Then i = µn−f+i−i0n (i0). Then

µi(a) = µ
µ
n−f+i−i0
n (i0)

(a) = µn−f+i−i0n µi0µ
−(n−f+i−i0)
n (a) = µn−f+i−i0n µi0(a) =

= µn−f+i−i0n (a) = a.

2. Assume to the contrary and suppose there is i1 ∈ {1, 2, . . . , n−f} such that µi1(a) =
a. Then, by 1., µi(a) = a, for any i ∈ {1, 2, . . . , n − f} which conflicts with
µi0(a) 6= a.

Thus, the a0 ∈ F1 ∩Fn above, satisfies, thanks to Lemma 33, a0 ∈ Fn ∩F1 ∩F2 ∩ · · · ∩
Fn−f .

Set

A = {µs(a0) | s ∈ {1, 2, . . . , n} } = {µj(a0) | j ∈ {n− f + 1, n− f + 2, . . . , n} } ⊂ F 1
n ,

since a0 ∈ Fn ∩ F1 ∩ F2 ∩ · · · ∩ Fn−f . In particular, 1 6 |A| 6 f .
For each i ∈ {1, 2, . . . , n− f}, here is the behaviour of A under µi. Let j ∈ {n− f +

1, n− f + 2, . . . , n}

µi(µj(a0)) = µi(µjµ
−1
i (µi((a0)))) = µi(µjµ

−1
i ((a0))) = µµi(j)(a0) ∈ A.

Furthermore, for j, j′ ∈ {n − f + 1, n − f + 2, . . . , n} such that µj(a0) 6= µj′(a0), then
µi(µj(a0)) 6= µi(µj′(a0)), for any i ∈ {1, 2, . . . , n− f}. Then, for any i ∈ {1, 2, . . . , n− f},
µi restricted to A is a bijection.

1. If A = {a0}, then µs(a0) = a0, for any s ∈ {1, 2, . . . , n}, so A is a connected
component of Q. Since Q has more than one element then Q is not connected.

2. Assume |A| > 1.

(a) Assume further that, for each i ∈ {1, 2, . . . , n − f}, µi moves at least one
element from A, say µj0(a0), for some j0 ∈ {n− f + 1, n− f + 2, . . . , n} - recall
Lemma 33. Then,

µi(µj0(a0)) ∈ A \ {µj0(a0)}.
Since µi has a cycle of length n−f , Ci, then Ci ⊂ A, for any i ∈ {1, 2, . . . , n−f}.
In particular, in this case, if b /∈ A, then µi(b) = b, for any i ∈ {1, 2, . . . , n−f}.
Since A ⊂ F 1

n , then F 1
n is a connected component of Q. Since Cn ∩F 1

n = ∅ and
Cn ⊂ Q, then Q is not connected.

(b) Assume now that for each i ∈ {1, 2, . . . , n − f}, µi fixes any element of A -
again, recall Lemma 33. That is, for each j ∈ {n− f + 1, n− f + 2, . . . , n},

µi(µj(a0)) = µj(a0).
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i. If A = F 1
n , then we are done, arguing that F 1

n is a connected component
inside Q which has fewer elements than Q.

ii. If A ( F 1
n , then since F 1

n is a minimal component of Fn, there exist j0, j1 ∈
{n− f + 1, n− f + 2, . . . n} such that

µj1(µj0(a0)) ∈ F 1
n \ A.

Let B1 = {µj1(µj0(a0)) ∈ F 1
n \A | j0, j1 ∈ {n−f+1, n−f+2, . . . n}}. Note

that if for some i ∈ {1, 2, . . . , n− f}, and for some j0, j1 ∈ {n− f + 1, n−
f + 2, . . . n} such that µj1(µj0(a0)) ∈ F 1

n \A, we had µi(µj1(µj0(a0))) ∈ A,
then µj1(µj0(a0)) ∈ A, since µi restricted to A is a bijection. Therefore, µi
restricted to B1 is a bijection.
Set

A1 := A ∪B1.

Go back to 2. (“Assume |A| > 1. . . ”) with A1 taking up the role of A.
Iterate the procedure. Since Q is a finite quandle, this procedure has to
finish after a finite number of steps, say k, with A(= Ak) = F 1

n .

The proof is complete.

3 Classification of Quandles of Cyclic Type of order n with f
Fixed Points in the Range n > 2f

In this Section, we classify quandles of cyclic type of order n with f fixed points such
that n > 2f . Specifically, we prove that there is only one such quandle such that n > 2f ,
up to isomorphism. In this range, this quandle occurs only for n = 6 and f = 2. This
quandle is Q2

6, up to isomorphism. The proof of this fact establishes Assertion 1.(b) in
Theorem 14. This is the main goal of the current Section.

In Subsection 3.1, we prove a number of propositions and lemmas that we use in
subsequent subsections. In Subsection 3.2, we show that there are no quandles of cyclic
type of order n with f fixed points such that n = 3f for f > 2 and we prove that the
only quandle of cyclic type of order 6 with 2 fixed points, up to isomorphism, is Q2

6. In
Subsection 3.3, we show that there are no quandles of cyclic type of order n with f fixed
points such that n = cf for c > 3. Finally, in Subsection 3.4, we collect the results from
the preceding subsections to prove Assertion 1.(b) in Theorem 14. We also show that Q2

6

is not simple.
In this Section, the results apply only to quandles of cyclic type of order n with f

fixed points such that n > 2f .

3.1 Auxiliary Results

In this Subsection, we state and prove a number of results about the structure of quandles
of cyclic type of order n with f fixed points such that n > 2f . These results are used in
the following Subsections.
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Proposition 34. The associate indices to n− f are i
(
n−f
f

)
, i ∈ {1, . . . , f − 1}.

Proof. We first prove that, if a, b ∈ Fn−f , then b−a ∈ Fn−f mod n−f . Since a, b ∈ Fn−f ,
µa fixes b (Proposition 19) and hence, reading b− a mod n− f and using Assertion 3. in
Theorem 28,

b = µa(b) = µanµn−fµ
−a
n (b) = µanµn−f (b− a) = µn−f (b− a) + a⇔ b− a = µn−f (b− a),

that is, µn−f fixes b−a, implying that b−a ∈ Fn−f (where b−a is read modulo n−f). Now,

let the indices in Fn−f = {g1n−f , . . . , g
f
n−f} be labelled in such a way that gin−f < gi+1

n−f ,

∀i ∈ {1, . . . , f − 1}. In particular, we have gfn−f = n − f . Suppose these indices are
not equally spaced modulo n − f . Therefore, there is an index 1 6 j0 6 f such that
gj0n−f − g

j0−1
n−f > gin−f − gi−1n−f , ∀i ∈ {1, . . . , f}, and there is another index 1 6 k0 6 f such

that gk0n−f − g
k0−1
n−f 6 gin−f − gi−1n−f , ∀i ∈ {1, . . . , f}, where we take g0n−f := 0. Moreover,

gj0n−f − g
j0−1
n−f > gk0n−f − g

k0−1
n−f . Now, by the result we have just proved, gk0n−f − g

k0−1
n−f belongs

to Fn−f , as well as gj0n−f−(gk0n−f−g
k0−1
n−f ). However, we have gj0−1n−f < gj0n−f−(gk0n−f−g

k0−1
n−f ) <

gj0n−f , which is a contradiction, since gj0−1n−f and gj0n−f are consecutive indices in Fn−f . Hence,
the indices in Fn−f are equally spaced modulo n − f , and the associate indices to n − f
are i

(
n−f
f

)
, i ∈ {1, . . . , f − 1}.

Corollary 35. For each index i ∈ {1, . . . , n − f}, Fi =
{
i + j

(
n−f
f

)
: 1 6 j 6 f

}
=

i+ Fn−f , where each index i+ j
(
n−f
f

)
is read modulo n− f .

Proof. Given i ∈ {1, . . . , n− f} and j ∈ {1, . . . , f}, we prove i+ j
(
n−f
f

)
is a fixed point

of µi. In fact,

µi

(
i+ j

(
n−f
f

))
= µinµn−fµ

−i
n

(
i+ j

(
n−f
f

))
= µinµn−f

(
j
(
n−f
f

))
= µin

(
j
(
n−f
f

))
=

= i+ j
(
n−f
f

)
.

Clearly, for 1 6 j < j′ 6 f , we have i + j
(
n−f
f

)
6= i + j′

(
n−f
f

)
mod n − f . Hence, we

conclude that Fi =
{
i + j

(
n−f
f

)
: 1 6 j 6 f

}
, where each i + j

(
n−f
f

)
is read modulo

n− f .

Corollary 35 along with Proposition 19 and Corollary 22 tell us exactly what are the
associate indices in a quandle of cyclic type with f fixed points of order n > 2f .

Lemma 36. Given distinct indices a, b ∈ Fn, µn−f (b)−µn−f (a) ∈ Fn−f , where this index
is read modulo n− f .
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Proof. Let a, b ∈ Fn. By assertion 2. in Theorem 28, we have µb = µ
lb,a
a . Hence, using

assertion 4. in Theorem 28,

µ
µn−f (a)
n µ

lb,a
n−fµ

−µn−f (a)
n =

(
µ
µn−f (a)
n µn−fµ

−µn−f (a)
n

)lb,a
=
(
µn−fµaµ

−1
n−f

)lb,a
=

= µn−fµ
lb,a
a µ−1n−f = µn−fµbµ

−1
n−f = µ

µn−f (b)
n µn−fµ

−µn−f (b)
n ,

which implies, by assertion 3. in Theorem 28, that

µ
lb,a
n−f = µ

µn−f (b)−µn−f (a)
n µn−fµ

−(µn−f (b)−µn−f (a))
n = µµn−f (b)−µn−f (a),

where the index µn−f (b) − µn−f (a) is read modulo n − f . Since 1 6 lb,a < n − f , then

µ
lb,a
n−f and µn−f have the same set of fixed points. Thus, the equalities above imply that,

modulo n− f , µn−f (b)− µn−f (a) ∈ Fn−f .

Corollary 37. µn−f (Fn) = Fk, for some k /∈ Fn ∪ Fn−f .

Proof. Let a ∈ Fn and let µn−f (a) = k, where k /∈ Fn ∪ Fn−f by Lemma 29. For each
b ∈ Fn\{a}, we have that µn−f (b)−µn−f (a) ∈ Fn−f by Lemma 36. Therefore, by Corollary
35, µn−f (Fn) ⊂ Fk. Since |Fn| = |Fk| and µn−f is a bijection, µn−f (Fn) = Fk.

Corollary 38. Let µn−f (Fn) = Fk, k /∈ Fn ∪ Fn−f , see Corollary 37. Then µ
i
(
n−f
f

)(Fn) =

Fk, ∀i ∈ {1, . . . , f}.

Proof. Given a ∈ Fn and i ∈ {1, . . . , f}, we prove that µ
i
(
n−f
f

)(a) ∈ Fk. We have

µ
i
(
n−f
f

)(a) = µ
i
(
n−f
f

)
n µn−fµ

−i
(
n−f
f

)
n (a) = µ

i
(
n−f
f

)
n µn−f (a) =

= µn−f (a) + i
(
n−f
f

)
∈ Fµn−f (a) = Fk.

by Corollary 35. Hence, µ
i
(
n−f
f

)(Fn) ⊂ Fk. As |Fn| = |Fk| and µ
i
(
n−f
f

) is a bijection,

µ
i
(
n−f
f

)(Fn) = Fk and the result follows.

Corollary 39. µ
i
(
n−f
f

) 6= µ
j
(
n−f
f

), where 1 6 i 6= j 6 f .

Proof. Given a ∈ Fn, µ
i
(
n−f
f

)(a) = µn−f (a) + i
(
n−f
f

)
, ∀i ∈ {1, . . . , f}. Then, given

i, j ∈ {1, . . . , f}, with i 6= j, µ
i
(
n−f
f

) 6= µ
j
(
n−f
f

).
With the previous results, we are now able to prove a very important proposition. In

fact, this proposition is used in the following section to prove that there are no quandles
of cyclic type of order n with f fixed points such that n = 3f for f > 2.

Before presenting the proposition, we just recall some of the terminology we used in
assertion 2. in Theorem 28.
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Definition 40. Let h and h′ be associate indices. We let lh,h′ denote the positive integer

such that µh = µ
lh,h′

h′ , where GCD(n− f, lh,h′) = 1, 1 6 lh,h′ < n− f , in accordance with

assertion 2. in Theorem 28. Moreover, since the associate indices to n − f are i
(
n−f
f

)
,

i ∈ {1, . . . , f − 1}, we let l∗i,f := l i(n−f)
f

,n−f to simplify the notation.

Proposition 41. {l∗i,f : 1 6 i 6 f} =
{

1 + j
(
n−f
f

)
: 0 6 j < f

}
Proof. By Corollary 37, there exists an index k /∈ Fn ∪ Fn−f such that µn−f (Fn) = Fk.

Moreover, we write Fk = {g1k, . . . , g
f
k}, where the indices gik are labelled in such a way

that there exist positive integers li > 1, ∀i ∈ {1, . . . , f}, such that µlin−f (g
i−1
k ) = gik and

µmn−f (g
i−1
k ) /∈ Fk for 1 < m < li, where we take g0k := gfk . Basically, each li is the smallest

positive integer such that µlin−f (g
i−1
k ) ∈ Fk, and we have µlin−f (g

i−1
k ) = gik. We note that

the indices in Fk belong to the non-singular cycle of µn−f and we prove the following
lemma.

Lemma 42. The indices in Fk are equally spaced in the non-singular cycle of µn−f . In
particular, the li’s referred to above satisfy li = (n− f)/f , ∀i ∈ {1, . . . , f}.

Proof. Suppose this is not true. Then, there is an index j0 ∈ {1, . . . , f} such that lj0 < lj′0 ,
for a certain j′0 ∈ {1, . . . , f}. Assume, without loss of generality, that the indices in
Fn = {g1n, . . . , gfn} are labelled in such a way that µn−f (g

i
n) = gik, ∀i ∈ {1, . . . , f}. Taking

g0n := gfn,

µ
lj0
n−f (g

j0−1
k ) = gj0k ⇔ µ

lj0
n−f (µn−f (g

j0−1
n )) = gj0k ⇔ µ

lj0+1

n−f (gj0−1n ) = gj0k . (3)

By Corollary 38, µn−f and its associate permutations are bijections from Fn to Fk,

where |Fk| = f . These f permutations are of the form µ
i
(
n−f
f

) = µ
l∗i,f
n−f , with i ∈

{1, . . . , f} and l∗f,f = 1, and they are all different from each other by Corollary 39. Hence,
any two of them have different images at gj0−1n , otherwise at least two of these permutations
would be equal to each other, conflicting with Corollary 39. (in particular, {l∗i,f : 1 6
i 6 f} has exactly f elements). Then, there has to be an integer j1 ∈ {1, . . . , f} such

that µ
j1

(
n−f
f

)(gj0−1n ) = µ
l∗j1,f
n−f (gj0−1n ) = gj0k . Hence, comparing with (3), l∗j1,f = lj0 + 1 and

µ
j1

(
n−f
f

) = µ
lj0+1

n−f , and thus

µ
j1

(
n−f
f

)(gj′0−1n ) = µ
lj0+1

n−f (gj
′
0−1
n ) = µ

lj0
n−f (µn−f (g

j′0−1
n )) = µ

lj0
n−f (g

j′0−1
k ).

However, µ
lj0
n−f (g

j′0−1
k ) /∈ Fk, as 1 < lj0 < lj′0 . This is a contradiction, since µ

j0

(
n−f
f

)(Fn) =

Fk. Thus, the indices in Fk are equally spaced in the cycle of length n− f of µn−f .
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We now resume the proof of Proposition 41. Given gjk ∈ Fk, there is an index gjn ∈ Fn
such that µn−f (g

j
n) = gjk. Then, ∀i ∈ {1, . . . , f},

Fk 3 µ
i
(
n−f
f

)(gjn) = µ
l∗i,f
n−f (g

j
n) = µ

l∗i,f−1
n−f (µn−f (g

j
n)) = µ

l∗i,f−1
n−f (gjk),

that is, ∀i ∈ {1, . . . , f}, we have µ
l∗i,f−1
n−f (Fk) ∈ Fk. Since the f indices in Fk are equally

spaced in the cycle of length n− f of µn−f , f
(
l∗i,f − 1

)
has to be a multiple of n− f , that

is, f
(
l∗i,f − 1

)
= ki(n− f), for some natural number 0 6 ki < f , ∀i ∈ {1, . . . , f}. This is

equivalent to saying that

f(l∗i,f − 1) = ki(n− f)⇔ l∗i,f − 1 = ki

(
n−f
f

)
⇔ l∗i,f = 1 + ki

(
n−f
f

)
,

for some natural number 0 6 ki < f , ∀i ∈ {1, . . . , f}. Hence, the set {l∗i,f : 1 6 i 6 f}
is contained in

{
1 + j

(
n−f
f

)
: 0 6 j < f

}
. Since these two sets must have the same

cardinality, the result follows.

Remark 43. We remark that the integers in {l∗i,f : 1 6 i 6 f} still have to verify the
conditions presented in assertion 2. in Theorem 28, that is, GCD(n − f, l∗i,f ) = 1, 1 6
l∗i,f < n − f , ∀i ∈ {1, . . . , f}. In fact, there are certain pairs of integers (n, f) for which

these conditions are not satisfied if l∗i,f has the form 1 + i(n−f)
f

with 0 6 i < f , where
l∗0,f := l∗f,f . Thus the corresponding quandles of cyclic type of order n with f fixed points
cannot exist. For example, there cannot be quandles of cyclic type of order 28 with 7 fixed
points, but there can be quandles of cyclic type of order 6 with 2 fixed points. Therefore,
from now on, we are only working with pairs of integers (n, f) for which these conditions
are satisfied.

3.2 Quandles of Cyclic Type of Order n with f Fixed Points such that n = 3f

In this Subsection, we show there are no quandles of cyclic type of order n with f fixed
points such that n = 3f for f > 2. We also prove that the only quandle of cyclic type of
order 6 with 2 fixed points, up to isomorphism, is Q2

6.
First, we prove a result which is a direct consequence of Proposition 41.

Corollary 44. Given a quandle of cyclic type Q of order n with f fixed points such that
n = 3f , µ−1n−f = µ2i, for a certain integer i ∈ {1, . . . , f}.

Proof. By Proposition 41, {l∗i,f : 1 6 i 6 f} =
{

1 + j
(
n−f
f

)
: 0 6 j < f

}
. Taking j =

f−1, we conclude there exists an integer i′ ∈ {1, . . . , f} such that l∗i′,f = 1+(f−1)
(
n−f
f

)
.

As n = 3f , we get

l∗i′,f = l i′(n−f)
f

,n−f = l2i′,2f = 1 + 2(f − 1) = 2f − 1 = (n− f)− 1 ≡ −1 mod n− f,

that is, there exists an integer i′ ∈ {1, . . . , f} such that µ−1n−f = µ−12f = µ2i′ .
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Corollary 44 tells us that, for any quandle of cyclic type Q of order n with f fixed points
such that n = 3f , µ−1n−f is a permutation of Q and it is of the form µ−1n−f = µ−12f = µ2i, for
a certain integer i ∈ {1, . . . , f}. We now prove a lemma, similar to Lemma 36, which also
has some very useful consequences.

Lemma 45. Given distinct indices a, b ∈ Fn, µ−1n−f (b)−µ
−1
n−f (a) ∈ Fn−f , where this index

is read modulo n− f .

Proof. Let a, b ∈ Fn. By assertion 2. in Theorem 28, we have µb = µ
lb,a
a . Hence, using

assertion 5. in Theorem 28,

µ
µ−1
n−f (a)
n µ

lb,a
n−fµ

−µ−1
n−f (a)

n =
(
µ
µ−1
n−f (a)
n µn−fµ

−µ−1
n−f (a)

n

)lb,a
=
(
µ−1n−fµaµn−f

)lb,a
=

= µ−1n−fµ
lb,a
a µn−f = µ−1n−fµbµn−f = µ

µ−1
n−f (b)
n µn−fµ

−µ−1
n−f (b)

n ,

which implies, by assertion 3. in Theorem 28, that

µ
lb,a
n−f = µ

µ−1
n−f (b)−µ

−1
n−f (a)

n µn−fµ
−(µ−1

n−f (b)−µ
−1
n−f (a))

n = µµ−1
n−f (b)−µ

−1
n−f (a)

,

where the index µ−1n−f (b) − µ
−1
n−f (a) is read modulo n − f . Since 1 6 lb,a < n − f , then

µ
lb,a
n−f and µn−f have the same set of fixed points. Thus, the equalities above imply that,

modulo n− f , µ−1n−f (b)− µ
−1
n−f (a) ∈ Fn−f .

Corollary 46. Given a, b ∈ Fn, µn−f (b)− µn−f (a) = µ−1n−f (b)− µ
−1
n−f (a), where these two

indices are read modulo n− f .

Proof. Any two permutations from µ1 to µn−f are distinct. Indeed, given an index a ∈ Fn
and for each index k ∈ {1, . . . , n− f}, we have, by assertion 3. in Theorem 28,

µk(a) = µknµn−fµ
−k
n (a) = µknµn−f (a) = µn−f (a) + k.

Since we also have, by Lemmas 36 and 45, that

µµn−f (b)−µn−f (a) = µ
la,b
n−f = µµ−1

n−f (b)−µ
−1
n−f (a)

,

where the indices µn−f (b)−µn−f (a) and µ−1n−f (b)−µ
−1
n−f (a) are read modulo n− f , we get

µn−f (b)− µn−f (a) = µ−1n−f (b)− µ
−1
n−f (a),

where these two indices are read modulo n− f .

We now have all the results we need to prove there are no quandles of cyclic type of
order n with f fixed points such that n = 3f for f > 2. This is the result we state in the
following proposition.
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Proposition 47. There are no quandles of cyclic type of order n with f fixed points such
that n = 3f for f > 2.

Proof. Suppose Q is a quandle of cyclic type of order n with f fixed points such that
n = 3f . First of all, we note that Q = F1 ∪ Fn−f ∪ Fn. We know µn−f (Fn−f ) = Fn−f and
we have µn−f (Fn) = F1 by Corollary 44. Since µn−f is a bijection, we have µn−f (F1) = Fn.
Now, let a ∈ Fn and suppose µn−f (a) = j and µ−1n−f (a) = k, where j, k ∈ F1. We note
that j 6= k, otherwise µn−f would have a cycle of length 2. This is not possible as the
length of this cycle is n− f = 3f − f = 2f > 4. For each i ∈ {1, . . . , n− f}, we have by
assertion 3. in Theorem 28, reading the indices modulo n− f ,

µi(a) = µinµn−fµ
−i
n (a) = µinµn−f (a) = µin(j) = j + i. (4)

and, again by assertion 3. in Theorem 28, reading the indices modulo n− f ,

µi(k + i) = µinµn−fµ
−i
n (k + i) = µinµn−f (k) = µin(a) = a, (5)

By Corollary 44, we know that there is an index i′ ∈ {1, . . . , f} such that µ2i′ = µ−1n−f .
Therefore, we have that µ2i′(a) = k and µ2i′(j) = a. Since µ2i′(a) = j + 2i′ by (4), we
conclude that k = j + 2i′. Hence, µ2i′(j) = µ2i′(k − 2i′) and we also conclude µ2i′(k −
2i′) = a. But µ2i′(k + 2i′) = a by (5), which means that we have either 2i′ = n − f or
2i′ = (n− f)/2. Since 2i′ cannot be equal to n− f , as this forces k to be equal to j, we
then have 2i′ = (n − f)/2. Now, suppose µn−f (j) = b ∈ Fn, with b 6= a. Noting that we
have µn−f (a)− µn−f (b) = µ−1n−f (a)− µ−1n−f (b) by Corollary 46, we get

µ−1n−f (b)− µn−f (b) = µ−1n−f (a)− µn−f (a) = k − j = n−f
2
.

Since µ−1n−f (b) = j, this forces µn−f (b) to be equal to k. Therefore, µn−f has a cycle τ of
length 4, where τ = (a j b k). Hence, for any quandle of cyclic type of order n with f
fixed points such that n = 3f , f = 2 and n = 6 and, thus, there are no quandles of cyclic
type of order n with f fixed points such that n = 3f for f > 2.

Corollary 48. There is only one quandle of cyclic type of order 6 with 2 fixed points, up
to isomorphism.

Proof. µ6 = (1 2 3 4)(5)(6), up to isomorphism, by assertion 1. in Theorem 28 and then
F5 = {5, 6} = F6. F2 = {2, 4} = F4 by Proposition 34, and so F1 = {1, 3} = F3. Now, by
Corollary 37, we can either have µ4 = (2)(4)(1 6 3 5) or µ4 = (2)(4)(1 5 3 6). However,
straightforward calculations show that the latter does not satisfy assertion 4. in Theorem
28, and hence µ4 = (2)(4)(1 6 3 5). By Theorem 28, we can write µ1, µ2, µ3 and µ5 as
functions of µ6 and µ4, thus µ4 determines one single quandle, which is precisely Q2

6. Its
multiplication table is displayed in Table 1.
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3.3 Quandles of Cyclic Type of Order n with f Fixed Points such that n > 3f

In this Subsection, we use the results from the previous Subsections to show that there
are no quandles of cyclic type of order n with f fixed points such that n = cf for c > 3.
This is the result we state in the following proposition, where in its proof the free indices
are read modulo n− f .

Proposition 49. There are no quandles of cyclic type of order n with f fixed points such
that n = cf , for c > 3.

Proof. Let µn−f (Fn) = Fk, in accordance with Corollary 37. We know the indices in
Fk belong to the cycle of length n − f of µn−f , they are all equally spaced in this cycle
by Lemma 42 and their inverse images are in Fn. Therefore, the indices in Fn are also
equally spaced in the cycle of length n − f of µn−f . Now, we have that for each m ∈
{1, . . . , n− f} \ {µ−1n−f (n− f + 1), . . . , µ−1n−f (n)}, there is an integer 1 6 km < n− f such

that µ
−µn−f (m)
n µn−fµ

m
n = στ km , by assertion 6. in Theorem 28. We now prove that each

m gives rise to a different km. In fact, given a ∈ Fn,

τ km(a) = στ km(a) = µkmn−f (a) = µ
−µn−f (m)
n µn−fµ

m
n (a) = µn−f (a)− µn−f (m),

which has a different value for each m ∈ {1, . . . , n− f} \ {µ−1n−f (n− f + 1), . . . , µ−1n−f (n)}).
Therefore, assertion 6. in Theorem 28 provides us with a total of n−2f different equalities
and, in particular, n− 2f different integers km. Now, given a, b ∈ Fn, we can combine the
two equalities

µn−f (a)− µn−f (m) = µkmn−f (a),

µn−f (b)− µn−f (m) = µkmn−f (b),

in order to get
Fn−f 3 µn−f (a)− µn−f (b) = µkmn−f (a)− µkmn−f (b).

Indeed, we know exactly what are the n−2f different integers km which satisfy this equal-

ity. Suppose that km ∈
{
i
(
n−f
f

)
: 1 6 i 6 f

}
= Fn−f . Therefore, µkmn−f (a), µkmn−f (b) ∈ Fn

by Lemma 42 and 0 < |µkmn−f (a)−µkmn−f (b)| < f , since Fn = {n−f+1, . . . , n}. However, we
can choose indices a, b ∈ Fn such that f 6 |µn−f (a)−µn−f (b)|, which is a contradiction. If

f is even, for example, pick a, b ∈ Fn such that µn−f (b) = µn−f (a) + f
2

(
n−f
f

)
. If f is odd,

pick a, b ∈ Fn such that µn−f (b) = µn−f (a)+ f±1
2

(
n−f
f

)
. Then, km ∈ {1, . . . , n−f}\Fn−f ,

and this set has exactly n− 2f elements. Now, given a quandle of cyclic type of order n
with f fixed points such that n = cf , where c > 3, we know 2 ∈ {1, . . . , n − f} \ Fn−f .
Hence, given a, b ∈ Fn,

µn−f (a)− µn−f (b) = µ2
n−f (a)− µ2

n−f (b).
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However, we also have, by assertion 3. in Theorem 28, that

µµn−f (b)−µn−f (a)(µn−f (b)) = µ
µn−f (b)−µn−f (a)
n µn−fµ

−(µn−f (b)−µn−f (a))
n (µn−f (b)) =

= µ
µn−f (b)−µn−f (a)
n µn−f (µn−f (a)) = µ2

n−f (a)− µn−f (a) + µn−f (b) = µ2
n−f (b) =

= µn−f (µn−f (b)),

implying that the two associate permutations µµn−f (b)−µn−f (a) and µn−f (see Proposition
34 and Corollary 35) have the same image at a point that is not a fixed point of these
permutations, as µn−f (b) /∈ Fn−f . Hence, these permutations must be equal to each other,
which is a contradiction, as these permutations are different from each other by Corollary
39. Therefore, there are no quandles of cyclic type of order n with f fixed points such
that n = cf , for c > 3, and the result follows.

3.4 Classifying Quandles of Cyclic Type of Order n with f Fixed Points such
that n > 2f

In this Subsection, we prove Assertion 1.(b) in Theorem 14 and make a few observations
regarding Q2

6.

Proof. (Assertion 1.(b) in Theorem 14) Immediate from Corollary 22, Propositions 47 and
49 and Corollary 48.

Example 50. Q2
6, whose multiplication table is displayed in Table 1, is the only quandle

of cyclic type of order n with f fixed points such that n > 2f , up to isomorphism. In
particular, Q2

6 is not a simple quandle (since it admits a non-trivial congruence). Indeed,
by Proposition 23, for n > 2f , “i is associate to j” generates an equivalence relation on
Q2

6, which is also a congruence relation on this set, as it respects the binary operation of
the quandle. In Table 4, we see the quotient of Q2

6 by this congruence relation, which we
denote by ∼. This quotient is clearly isomorphic to R3, since “the product” of any two
distinct elements equals the other element.

∗ {1,3} {2,4} {5,6}
{1,3} {1,3} {5,6} {2,4}
{2,4} {5,6} {2,4} {1,3}
{5,6} {2,4} {1,3} {5,6}

Table 4: Q2
6/ ∼ multiplication table.

4 Families of Quandles of Cyclic Type of Order n with f Fixed
Points in the Range f + 2 6 n 6 2f

Theorem 51. Let f be an integer strictly greater than 1 and n a positive integer such
that f + 2 6 n 6 2f . Assume further that (n− f) | f . For each i such that 1 6 i 6 n

n−f ,
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consider the permutations of {1, 2, . . . , n}, given by

µ(i−1)(n−f)+1 = µ(i−1)(n−f)+1 = · · · = µ(i−1)(n−f)+1 =

= (i(n− f) + 1 i(n− f) + 2 · · · (i+ 1)(n− f)).

This sequence of permutations defines a quandle of cyclic type of order n with f fixed
points over the set {1, 2, . . . , n}.

Proof. The proof of this Theorem is basically a rearrangement of the argument for the
proof of the first statement of Corollary 31, the existence of a quandle of cyclic type of
order 2f with f fixed points. We add it here for completeness.

Let

(i−1)(n−f)+1 6 j, j′ 6 i(n−f) and (i′−1)(n−f)+1 6 k 6 i′(n−f) (i 6= i′).

Then,

µj(k) = k + 1 =⇒ µk+1 = µjµkµ
−1
j = µk since µj and µk commute .

Also,

µj(j
′) = j′ =⇒ µj′ = µjµj′µ

−1
j = µj′ since µj and µj′ are equal .

This completes the proof.

4.1 Extracting - Adjoining a Common Fixed Point

Definition 52. Let Q be a quandle of cyclic type with several fixed points. If g0 ∈ Q is
such that it is a fixed point for any of the permutations of Q, g0 is called a common fixed
point of Q.

Example 53. In Table 5 we provide the multiplication table of a quandle of cyclic type
of order 5 and 3 fixed points. The order and number of fixed points of this quandle satisfy
f + 2 6 n 6 2f . Moreover, its permutations are

µ1 = (1)(2)(3)(4 5) = µ2 = µ3 µ5 = (1)(4)(5)(2 3) = µ4.

Thus, 1 is a common fixed point for this quandle.

∗ 1 2 3 4 5
1 1 1 1 1 1
2 2 2 2 3 3
3 3 3 3 2 2
4 5 5 5 4 4
5 4 4 4 5 5

Table 5: Quandle of cyclic type of order 5 and 3 fixed points with a common fixed point:
1. See [6], page 176.
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The next two Theorems show us when we can extract a common fixed point (Theorem
16) and when we can adjoin a common fixed point (Theorem 17). We repeat their state-
ments here for completeness. Once Theorem 17 is proved, combining it with Theorem
51 and iterating the procedure, provides an infinite sequence of quandles of cyclic type
with several fixed points within the range f + 2 6 n 6 2f where n is the order and f the
number of fixed points. This is the content of Corollary 18.

Theorem 54. Suppose f is an integer strictly greater than 2 and n a positive integer such
that f + 2 6 n 6 2f . Consider a quandle of cyclic type of order n and f fixed points over
the set Q = {1, 2, . . . , n} with sequence of permutations µi with i ∈ {1, 2, . . . , n}. Assume
further g0 ∈ Q is a common fixed point of Q. Then, the set Q′ = Q \ {g0} along with the
sequence of permutations µ′i = µi|Q′ for each i ∈ Q′ defines a quandle of cyclic type of
order n− 1 with f − 1 fixed points. We call this the extraction of the common fixed point
g0.

Proof. We keep the notation and terminology from the statement. Since µi(g0) = g0, for
each i ∈ Q, then

µg0 = µiµg0µ
−1
i ⇐⇒ µiµg0 = µg0µi,

which amounts to saying that

µg0 = µkii ( for some i ∈ Q, for some ki ∈ Z) OR Cg0 ∩ Ci = ∅.

Assume
µg0 = (g1 g2 . . . gn−f ).

Then,
gi+1 = µg0(gi) =⇒ µgi+1

= µg0µgiµ
−1
g0

= µgi .

So the associate permutations to the permutations corresponding to the elements moved
by µg0 , are all equal to one another.

Consider now the set Q′ = Q\{g0} along with the sequence of permutations µ′i = µi|Q′
for each i ∈ Q′. For each i, j ∈ Q′, we have

µµi(j) = µiµjµ
−1
i ⇐⇒ µ′µ′i(j) = µ′iµ

′
jµ
′
i
−1
,

which completes the proof.

Theorem 55. Let n be an integer greater than 2. Let Q be the underlying set of a
quandle whose permutations are denoted µi, for each i ∈ Q. Let g0 /∈ Q and consider the
set Q′ = Q ∪ {g0}. Suppose there is a permutation, µ, of the elements of Q, such that
µµi = µiµ, for each i ∈ Q. Then, Q′ along with the permutations

µ′i = (g0)µi for each i ∈ Q and µ′g0 = (g0)µ

is a quandle with a common fixed point, g0.

Proof. For each i, i′ ∈ Q, µµi(i′) = µiµi′µ
−1
i ⇐⇒ µ′µ′i(i′)

= µ′iµ
′
i′µ
′
i
−1 and µµi = µiµ ⇐⇒

µ′µ′i = µ′iµ
′. This completes the proof.
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5 Further Research

In this article we looked into the classification of quandles of cyclic type of order n with f
fixed points. We realize that these quandles split into three sorts according to the ranges
their (n, f)’s lie in. If n > 2f , then these quandles are connected. As a matter of fact,
there is only one such quandle which occurs for n = 6 and f = 2; it is the octahedron
quandle. For each integer f > 2, there is exactly one such quandle of order n = 2f and
it is not connected. Finally, in the range 2 < f + 1 < n < 2f , such quandles are not
connected and there seem to be plenty of them.

With the techniques developed in this article, we plan on looking into the classification
of other families of quandles like those with constant profile with f fixed points and two
non-singular cycles, to begin with. We also plan on taking a fresh look at quandles of
cyclic type i.e., when f = 1.
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