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Abstract

Let I = I(D) be the edge ideal of a weighted oriented graph D whose underlying
graph is G. We determine the irredundant irreducible decomposition of I. Also, we
characterize the associated primes and the unmixed property of I. Furthermore,
we give a combinatorial characterization for the unmixed property of I, when G
is bipartite, G is a graph with whiskers or G is a cycle. Finally, we study the
Cohen–Macaulay property of I.

Mathematics Subject Classifications: 05C22, 05E40, 13F20, 13H10

1 Introduction

Let G = (V (G), E(G)) be a simple graph. A weighted oriented graph D whose underlying
graph is G, is a triplet (V (D), E(D), w) where V (D) = V (G), E(D) ⊆ V (D)×V (D) such
that {{x, y} | (x, y) ∈ E(D)} = E(G) and w is a function w : V (D)→ N. The vertex set
of D and the edge set of D are V (D) and E(D), respectively. Some times for short we
denote these sets by V and E respectively. The weight of x ∈ V is w(x). If e = (x, y) ∈ E,
then x is the tail of e and y is the head of e. If V (D) = {x1, . . . , xn}, then we consider
the polynomial ring R = K[x1, . . . , xn] in n variables over a field K. In this paper, we

introduce and study the edge ideal of D given by I(D) = (xix
w(xj)
j : (xi, xj) ∈ E(D)) in

R, (see Definition 16). These ideals generalize to the usual edge ideals of graphs, since if
w(x) = 1 for each x ∈ V (D), then I(D) = I(G).

Furthermore, the study of these ideals have an important relation with coding theory,
as we will now explain. If K is a finite field Fq, H1 ⊂ · · · ⊂ Hn is a nested sequence
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of multiplicative subgroups of F?q = Fq \ {0} and X is the set in the projective space
X = [(H1 ∪ {0}) × · · · × (Hn ∪ {0})], whose vanishing ideal is I(X ), then I(D) is the
initial ideal (with the lexicographic order) of I(X ), where (xi, xj) ∈ E(D) if and only if
i < j, w(x1) = 1 and w(x`) = |H`| + 1 for ` > 1. In this context, some basic parameters
of the Reed–Muller code of X can be estimated examining I(D), [2, 6, 11]. In particular,
if I(D) is Cohen–Macaulay, then I(X ) is Cohen–Macaulay.

In Section 2, we study the vertex covers of D. We introduce the notion of strong
vertex cover (Definition 7) and we prove that a minimal vertex cover is strong. In Section
3, we characterize the irredundant irreducible decomposition of I(D). We show that the
minimal monomial irreducible ideals of I(D) are associated with the strong vertex covers
of D. In Section 4, we give the following characterization of the unmixed property of
I(D).

I(D) is unmixed G is unmixed

D has the minimal-

strong property

All strong vertex

covers of D have

the same cardinality

All minimal vertex

covers of G have

the same cardinality

All strong vertex

covers are minimal

&

Also, if G is bipartite, G is a graph with whiskers or G is a cycle, we give an effective
(combinatorial) characterization of the unmixed property. In Section 5, we study the
Cohen–Macaulayness of I(D). In particular, we prove that if I(D) is Cohen–Macaulay,
then I(D) is unmixed and I(G) is Cohen–Macaulay. Furthermore we characterize the
Cohen–Macaulayness when G is a path or G is a complete graph. For these families
of graphs we prove that unmixedness and Cohen–Macaulayness of I(D) are equivalent.
This equivalence is known for some monomial ideals, for example the monomial ideal
associated to: König clutters without 3, 4-cycles [12]; special admissible clutters [7]; graphs
with girt greater than 7 [3, Corollary 36]; and graphs with whiskers [13, Theorem 2.1].
Finally, we give an example of D where Cohen–Macaulay property of I(D) depends on
the characteristic of the field K.

2 Weighted oriented graphs and their vertex covers

In this section we study the vertex covers of a weighted oriented graph D. Furthermore,
we define the strong vertex covers and we characterize when V (D) is a strong vertex cover
of D. In this paper we denote the set {x ∈ V (D) | w(x) 6= 1} by V +(D) or V +.

Definition 1. A vertex cover C of D is a subset of V , such that if (x, y) ∈ E, then x ∈ C
or y ∈ C. A vertex cover C of D is minimal if each proper subset of C is not a vertex
cover of D.
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Remark 2. C is a minimal vertex cover of D if and only if C is a minimal vertex cover
of G.

Definition 3. Let x be a vertex of a weighted oriented graph D. The sets N+
D (x) = {y :

(x, y) ∈ E(D)} and N−D (x) = {y : (y, x) ∈ E(D)} are called the out-neighbourhood and
the in-neighbourhood of x, respectively. Furthermore, the neighbourhood of x is the set
ND(x) = N+

D (x) ∪N−D (x) and degD(x) = |ND(x)|.

Definition 4. Let C be a vertex cover of a weighted oriented graph D. We define

• L1(C) := {x ∈ C | N+
D (x) ∩ Cc 6= ∅},

• L2(C) := {x ∈ C | x /∈ L1(C) and N−D (x) ∩ Cc 6= ∅},

• L3(C) := C \ (L1(C) ∪ L2(C)),

where Cc is the complement of C, i.e. Cc = V \ C.

Proposition 5. If C is a vertex cover of D, then

L3(C) = {x ∈ C | ND(x) ⊂ C}.

Proof. If x ∈ L3(C), then N+
D (x) ⊆ C, since x /∈ L1(C). Furthermore N−D (x) ⊆ C, since

x /∈ L2(C). Hence ND(x) ⊂ C, since x ∈ C \ND(x). Now, if x ∈ C and ND(x) ⊂ C, then
x /∈ L1(C) ∪ L2(C). Therefore x ∈ L3(C).

Proposition 6. Let C be a vertex cover of D. Hence, L3(C) = ∅ if and only if C is a
minimal vertex cover of D.

Proof. ⇒) If x ∈ C, then by Proposition 5 we have ND(x) 6⊂ C, since L3(C) = ∅. Thus,
there is y ∈ ND(x) \C implying C \ {x} is not a vertex cover. Therefore, C is a minimal
vertex cover.

⇐) If x ∈ L3(C), then by Proposition 5, ND(x) ⊆ C \ {x}, since x 6∈ ND(x). Hence,
C \ {x} is a vertex cover. A contradiction, since C is minimal. Therefore L3(C) = ∅.

Definition 7. A vertex cover C of D is strong if for each x ∈ L3(C) there is (y, x) ∈ E(D)
such that y ∈ L2(C) ∪ L3(C) with y ∈ V + (i.e. w(y) 6= 1).

Remark 8. Let C be a vertex cover of D. Hence, by Proposition 5 and since C =
L1(C) ∪ L2(C) ∪ L3(C), we have that C is strong if and only if for each x ∈ C such that
N(x) ⊂ C, there exist y ∈ N−(x) ∩ (C \ L1(C)) with y ∈ V +.

Corollary 9. If C is a minimal vertex cover of D, then C is strong.

Proof. By Proposition 6, we have L3(C) = ∅, since C is minimal. Hence, C is strong.

Remark 10. The vertex set V = V (D) of D is a vertex cover. Also, if z ∈ V , then
ND(z) ⊆ V \ z. Hence, by Proposition 5, L3(V ) = V . Consequently, L1(V ) = L2(V ) = ∅.
By Proposition 6, V is not a minimal vertex cover of D. Furthermore, by Remark 8, V is
a strong vertex cover if and only if N−D (x) ∩ V + 6= ∅ for each x ∈ V .
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Definition 11. IfG is a cycle withE(D) = {(x1, x2), . . . , (xn−1, xn), (xn, x1)} and V (D) =
{x1, . . . , xn}, then D is called oriented cycle.

Definition 12. If G is a connected graph with exactly one cycle C, then D is called
oriented unicycle when D satisfies the following conditions:

1) C is an oriented cycle in D. Furthermore, there is an oriented path from C to y in D,
for each y ∈ V (D) \ V (C).

2) w(x) 6= 1 if degD(x) > 1.

Lemma 13. If V (D) is a strong vertex cover of D and D1 is a maximal oriented subgraph
of D such that D1 is an oriented unicycle of D, then V (D′) is a strong vertex cover of
D′ = D \ V (D1).

Proof. We take x ∈ V (D′). Thus, by Remark 10, there is y ∈ N−D (x)∩V +(D). If y ∈ D1,
then we take D2, where V (D2) = V (D1) ∪ {x} and E(D2) = E(D1) ∪ {(y, x)}. Hence, if
C is the oriented cycle of D1, then C is the unique cycle of D2, since degD2

(x) = 1. If
y ∈ C, then (y, x) is an oriented path from C to x in D2. Now, if y /∈ C, then there is an
oriented path L from C to y in D1. Consequently, L ∪ {(y, x)} is an oriented path from
C to x. Furthermore, degD2

(x) = 1 and w(y) 6= 1, then D2 is an oriented unicycle. A
contradiction, since D1 is maximal. This implies y ∈ V (D′).
Hence, y ∈ N−D′(x) ∩ V +(D′). Therefore, by Remark 10, V (D′) is a strong vertex cover
of D′.

Lemma 14. If V (D) is a strong vertex cover of D, then D has an oriented unicycle.

Proof. Let y1 be a vertex of D. Since V = V (D) is a strong vertex cover, there is y2 ∈ V
such that y2 ∈ N−(y1) ∩ V +. Similarly, there is y3 ∈ N−(y2) ∩ V +. Consequently,
(y3, y2, y1) is an oriented path. Continuing this process, we can assume there exists an
oriented path (yk, yk−1, . . . , y2, y1) with y2, y3, . . . , yk ∈ V + and there is 1 6 j 6 k−2 such
that (yj, yk) ∈ E(D), since V is finite. Hence, C = (yk, yk−1, . . . , yj, yk) is an oriented
cycle and L = (yj, . . . , y1) is an oriented path from C to y1. Furthermore, if j = 1, then
w(y1) 6= 1. Therefore, C ∪ L is an oriented unicycle of D.

Proposition 15. Let D be a weighted oriented graph. Hence, V (D) is a strong ver-
tex cover of D if and only if there are D1, . . . , Ds oriented unicycles of D such that
V (D1), . . . , V (Ds) is a partition of V (D).

Proof. ⇒) By Lemma 14, D has an oriented unicycle. We take a maximal oriented
unicycle D1 of D. Hence, by Lemma 13, V (D′) is a strong vertex cover of D′ = D\V (D1).
So, by Lemma 14, there is a maximal oriented unicycle D2 of D′. Continuing this process
we obtain oriented unicycles D1, . . . , Ds such that V (D1), . . . , V (Ds) is a partition of
V (D).

⇐) We take x ∈ V = V (D). By hypothesis there is Dj such that x ∈ V (Dj). We
assume C is the oriented cycle of Dj. If x ∈ V (C), then there is y ∈ V (C) such that
(y, x) ∈ E(Dj) and w(y) 6= 1, since degDj

(y) > 2 and Dj is an oriented unicycle. Now,
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we assume x /∈ V (C), then there is an oriented path L = (z1, . . . , zr) from z1 ∈ V (C)
to zr = x. Thus, (zr−1, x) ∈ E(D). Furthermore, w(zr−1) 6= 1, since degDj

(zr−1) > 2.
Therefore, by Remark 10, V is a strong vertex cover.

3 Edge ideals and their primary decomposition

As is usual if I is a monomial ideal of a polynomial ring R, we denote by G(I) the minimal
monomial set of generators of I. Furthermore, there exists a unique decomposition,
I = q1 ∩ · · · ∩ qr, where q1, . . . , qr are irreducible monomial ideals such that I 6=

⋂
i 6=j qi

for each j = 1, . . . , r. This is called the irredundant irreducible decomposition of I.
Furthermore, qi is an irreducible monomial ideal if and only if qi = (xa1i1 , . . . , x

as
is

) for some
variables xij . Irreducible ideals are primary, then a irreducible decomposition is a primary
decomposition. For more details of primary decomposition of monomial ideals see [14,
Chapter 6]. In this section, we define the edge ideal I(D) of a weighted oriented graph
D and we characterize its irredundant irreducible decomposition. In particular, we prove
that this decomposition is an irreducible primary decomposition, i.e, the radicals of the
elements of the irredundant irreducible decomposition of I(D) are different.

Definition 16. Let D be a weighted oriented graph with V (D) = {x1, . . . , xn}. The edge
ideal of D, denote by I(D), is the ideal of R = K[x1, . . . , xn] generated by

{xix
w(xj)
j | (xi, xj) ∈ E(D)}.

Definition 17. A source of D is a vertex x, such that ND(x) = N+
D (x). A sink of D is a

vertex y such that ND(y) = N−D (y).

Remark 18. Let D be a weighted oriented graph. We take D′ = (V,E,w′) a weighted
oriented graph such that w′(x) = w(x) if x is not a source and w′(x) = 1 if x is a source.
Hence, I(D) = I(D′). For this reason in this paper, we will always assume that if x is a
source, then w(x) = 1.

Definition 19. Let C be a vertex cover of D. The irreducible ideal associated to C is the
ideal

IC :=
(
L1(C) ∪ {xw(xj)j | xj ∈ L2(C) ∪ L3(C)}

)
.

Lemma 20. I(D) ⊆ IC, for each vertex cover C of D.

Proof. We take I = I(D) and m ∈ G(I), then m = xyw(y), where (x, y) ∈ E(D). Since
C is a vertex cover, x ∈ C or y ∈ C. If y ∈ C, then y ∈ IC or yw(y) ∈ IC . Thus,
m = xyw(y) ∈ IC . Now, we assume y /∈ C, then x ∈ C. Hence, y ∈ N+

D (x) ∩ Cc, so
x ∈ L1(C). Consequently, x ∈ IC implying m = xyw(y) ∈ IC . Therefore I ⊆ IC .

Lemma 21. Let D be a weighted oriented graph such that I(D) ⊆ (xa1i1 , . . . , x
as
is

). Then
{xi1 , . . . , xis} is a vertex cover of D.

Proof. We take J = (xa1i1 , . . . , x
as
is

). If (a, b) ∈ E(D), then abw(b) ∈ I(D) ⊆ J . Thus,

x
aj
ij
|abw(b) for some 1 6 j 6 s. Hence, xij ∈ {a, b} and {a, b} ∩ {xi1 , . . . , xis} 6= ∅.

Therefore {xi1 , . . . , xis} is a vertex cover of D.
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Definition 22. Let I be a monomial ideal. An irreducible monomial ideal q containing
I is called a minimal irreducible monomial ideal of I if for any irreducible monomial ideal
p such that I ⊆ p ⊆ q one has that p = q.

Lemma 23. Let J be a minimal irreducible monomial ideal of I(D) where G(J) =
{xa1i1 , . . . , x

as
is
}. If aj 6= 1 for some 1 6 j 6 s, then:

1) There is (x, xij) ∈ E(D) where x /∈ G(J).

2) aj = w(xij).

Proof. We denote M = G(I). Since M is minimal, we have xi1 , . . . , xis are different.
1) By contradiction suppose there is aj 6= 1 such that if (x, xij) ∈ E(D), then x ∈M . We

take the ideal J ′ = (M \ {xajij }), then J ′ ( J . If (a, b) ∈ E(D), then abw(b) ∈ I(D) ⊆ J .

Consequently, xakik |ab
w(b) for some 1 6 k 6 s. If k 6= j, then abw(b) ∈ J ′. Now, if k = j,

then by hypothesis, aj 6= 1. Hence, x
aj
ij
|bw(b) implying xij = b. Thus (a, xij) ∈ E(D).

So, by hypothesis a ∈ M \ {xajij }, since a 6= xij . This implies, abw(b) ∈ J ′. Therefore,
I(D) ⊆ J ′ ( J . A contradiction, since J is minimal.

2) By 1), there is (x, xij) ∈ E(D) with x /∈ M = {xa1i1 , . . . , x
as
is
}. Thus, xx

w(xij )

ij
∈ I(D) ⊆

J , so xakik |xx
w(xij )

ij
for some 1 6 k 6 s. Hence, xakik |x

w(xij )

ij
, since x /∈ M . This implies,

k = j and aj 6 w(xij). If aj < w(xij), then we take J1 = (M ′) where M ′ = {M \{xajij }}∪

{x
w(xij )

ij
}. So, J1 ( J . Furthermore, if (a, b) ∈ E(D), then m = abw(b) ∈ I(D) ⊆ J .

Thus, xa`i` |ab
w(b) for some 1 6 ` 6 s. If ` 6= j, then xa`i` ∈ M

′ implying abw(b) ∈ J ′. Now,

if ` = j then x
aj
ij
|bw(b), since aj > 1. Consequently, b = xij so x

w(xij )

ij
|m, since bw(b)|m.

Then, m ∈ J ′. Hence I(D) ⊆ J ′ ( J , a contradiction since J is minimal. Therefore,
aj = w(xij).

Theorem 24. The following conditions are equivalent:

1) J is a minimal irreducible monomial ideal of I(D).

2) There is a strong vertex cover C of D such that J = IC.

Proof. 2) ⇒ 1) By definition J = IC is a monomial irreducible ideal. By Lemma 20,
I(D) ⊆ J . Now, suppose I(D) ⊆ J ′ ⊆ J , where J ′ is a monomial irreducible ideal. We
can assume G(J ′) = {xb1j1 , . . . , x

bs
js
}.

If x ∈ L1(C), then there is (x, y) ∈ E(D) with y /∈ C. Hence, xyw(y) ∈ I(D) and yr /∈ J
for each r ∈ N. Consequently yr /∈ J ′ for each r, implying y /∈ {xj1 , . . . , xjs}. Furthermore
xbiji |xy

w(y) for some 1 6 i 6 s, since xyw(y) ∈ I(D) ⊆ J ′. This implies, x = xbiji ∈ J
′.

Now, if x ∈ L2(C), then there is (y, x) ∈ E(D) with y /∈ C. Thus y /∈ J , so y /∈
{xb1j1 , . . . , x

bs
js
}. Also, xw(x)y ∈ I(D) ⊆ J ′, then xbiji |x

w(x)y for some 1 6 i 6 s. Conse-

quently, xbiji |x
w(x) implies xw(x) ∈ J ′.

Finally if x ∈ L3(C), then there is (y, x) ∈ E(D) where y ∈ L2(C)∪L3(C) and w(y) 6= 1,
since C is a strong vertex cover. So, xw(x)y ∈ I(D) ⊆ J ′ implies xbiji |x

w(x)y for some i.
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Furthermore y /∈ J = IC , since y ∈ L2(C) ∪ L3(C) and w(y) 6= 1. This implies y /∈ J ′ so,
xbiji |x

w(x) then xw(x) ∈ J ′.
Hence, J = IC ⊆ J ′. Therefore, J is a minimal monomial irreducible ideal of I(D).

1) ⇒ 2) Since J is irreducible monomial ideal, we can suppose G(J) = {xa1i1 , . . . , x
as
is
}.

By Lemma 23, we have aj = 1 or aj = w(xij) for each 1 6 j 6 s. Also, by Lemma 21,

C = {xi1 , . . . , xis} is a vertex cover of D. We can assume G(IC) = {xb1i1 , . . . , x
bs
is
}, then

bj ∈ {1, w(xij)} for each 1 6 j 6 s.

Now, suppose bk = 1 and w(xik) 6= 1 for some 1 6 k 6 s. Consequently xik ∈ L1(C).
Thus, there is (xik , y) ∈ E(D) where y /∈ C. So, xiky

w(y) ∈ I(D) ⊆ J and xarir |xiky
w(y) for

some 1 6 r 6 s. Furthermore y /∈ C, then r = k and ak = ar = 1. Therefore, ak = 1.

Hence, G(IC) ∩ V (D) ⊆ G(J) ∩ V (D). This implies, IC ⊆ J , since aj, bj ∈ {1, w(xij)}
for each 1 6 j 6 s. Therefore J = IC , since J is minimal. In particular ai = bi for each
1 6 i 6 s.

Now, assume C is not strong, then there is x ∈ L3(C) such that if (y, x) ∈ E(D), then
w(y) = 1 or y ∈ L1(C). We can suppose x = xi1 , and we take J ′ the monomial ideal

with G(J ′) = {xa2i2 , . . . , x
as
is
}. We take (z1, z2) ∈ E(D). If x

aj
ij
|z1zw(z2)2 for some 2 6 j 6 s,

then z1z
w(z2)
2 ∈ J ′. Now, assume x

aj
ij

- z1zw(z2)2 for each 2 6 j 6 s. Consequently

z2 /∈ {xi2 , . . . , xis}, since aj ∈ {1, w(xij)}. Also z1z
w(z2)
2 ∈ I(D) ⊆ J , then xa1i1 |z1z

w(z2)
2 .

But xi1 ∈ L3(C), so z1, z2 ∈ ND[xi1 ] ⊆ C = {xi1 , . . . , xis}. Furthermore z1 6= z2, since
(z1, z2) ∈ E(D). But z2 6∈ {xi2 , . . . , xis}, then z2 = xi1 , z1 ∈ C and (z1, xi1) ∈ E(D).
Then, w(z1) = 1 or z1 ∈ L1(C). In both cases z1 ∈ G(IC). This implies z1 ∈ G(J ′), since

z1 6= z2. So, z1z
w(z2)
2 ∈ J ′. Hence, I(D) ⊆ J ′. This is a contradiction, since J is minimal

and J ′ ( J . Therefore C is strong.

Theorem 25. If Cs is the set of strong vertex covers of D, then the irredundant irreducible
decomposition of I(D) is given by I(D) =

⋂
C∈Cs IC.

Proof. By [8, Theorem 1.3.1], there is a unique irredundant irreducible decomposition
I(D) =

⋂m
i=1 Ii. Now, if there is an irreducible ideal I ′j such that I(D) ⊆ I ′j ⊆ Ij for some

j ∈ {1, . . . ,m}, then I(D) = (
⋂
i 6=j Ii) ∩ I ′j is an irreducible decomposition. Furthermore

this decomposition is irredundant, since
⋂m
i=1 Ii is irredundant. Thus, I ′j = Ij, since the

irredundant irreducible decomposition is unique. Hence, I1, . . . , Im are minimal irreducible
ideals of I(D). Then, by Theorem 24, {I1, . . . , Im} ⊆ {IC | C ∈ Cs}.
Now, if there is C ∈ Cs such that IC /∈ {I1, . . . , Im}, then there is xαi

ji
∈ Ii \ IC for

each i ∈ {1, . . . ,m}. Consequently, m̄ = lcm(xα1
j1
, . . . , xαm

jm
) ∈

⋂m
i=1 Ii = I(D) ⊆ IC .

Furthermore, if C = {xi1 , . . . , xik}, then IC = (xβ1i1 , . . . , x
βk
ik

) where βj ∈ {1, w(xij)}.
Hence, there is j ∈ {1, . . . , k} such that x

βj
ij
|m̄. So, there is 1 6 u 6 m such that x

βj
ij
|

xαu
ju

. A contradiction, since xαu
ju

/∈ IC . Therefore
⋂m
i=1 Ii =

⋂
C∈Cs IC is the irredundant

irreducible decomposition of I(D).

Remark 26. If C1, . . . , Cs are the strong vertex covers of D, then by Theorem 25, IC1∩· · ·∩
ICs is the irredundant irreducible decomposition of I(D). Furthermore, if Pi = rad(ICi

),
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then Pi = (Ci). So, Pi 6= Pj for 1 6 i < j 6 s. Thus, IC1 ∩ · · · ∩ ICs is an irredundant
primary decomposition of I(D). In particular we have Ass(I(D)) = {P1, . . . , Ps}.

Example 27. Let D be the following oriented weighted graph

x3 x4

x5

x1

x2

5 2

2

3

4

whose edge ideal is I(D) = (x31x2, x
4
2x3, x

5
3x4, x3x

2
5, x

2
4x5). From Theorem 25, the irre-

ducible decomposition of I(D) is:

I(D) = (x31, x3, x
2
4)∩ (x31, x3, x5)∩ (x2, x3, x

2
4)∩ (x2, x

5
3, x5)∩ (x2, x4, x

2
5)∩ (x31, x

4
2, x

5
3, x5)∩

(x31, x
4
2, x4, x

2
5) ∩ (x2, x

5
3, x

2
4, x

2
5) ∩ (x31, x

4
2, x

5
3, x

2
4, x

2
5).

Example 28. Let D be the following oriented weighted graph
x1 x2 x3 x4

2 5 7

Hence, I(D) = (x1x
2
2, x2x

5
3, x3x

7
4). By Theorem 25, the irreducible decomposition of I(D)

is:

I(D) = (x1, x3) ∩ (x22, x3) ∩ (x2, x
7
4) ∩ (x1, x

5
3, x

7
4) ∩ (x22, x

5
3, x

7
4).

In Example 27 and Example 28, I(D) has embedded primes. Furthermore the monomial
ideal (V (D)) is an associated prime of I(D) in Example 27. Proposition 15 and Remark
26 give a combinatorial criterion for to decide when (V (D)) ∈ Ass(I(D)).

4 Unmixed weighted oriented graphs

In this section we characterize the unmixed property of I(D) and we prove that this
property is closed under c-minors. In particular if G is a bipartite graph or G is a graph
with whiskers or G is a cycle, we give an effective (combinatorial) characterization of this
property.

Definition 29. Let I be an ideal of R. We say I is unmixed if each one of its associated
primes has the same height. In other case I is called mixed.

Remark 30. [7, 12] I(G) is unmixed if and only if each minimal vertex cover of G has the
same cardinality.

Theorem 31. The following conditions are equivalent:

1) I(D) is unmixed.
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2) Each strong vertex cover of D has the same cardinality.

3) I(G) is unmixed and L3(C) = ∅ for each strong vertex cover C of D.

Proof. Let C1, . . . , C` be the strong vertex covers of D. By Remark 26, the associated
primes of I(D) are P1, . . . , P`, where Pi = rad(ICi

) = (Ci) for 1 6 i 6 `.

1)⇒ 2) Since I(D) is unmixed, |Ci| = ht(Pi) = ht(Pj) = |Cj| for 1 6 i < j 6 `.

2) ⇒ 3) By hypothesis, |Ci| = |Cj| for each 1 6 i 6 j 6 `, then Ci is a minimal vertex
cover of D. Thus, by Corollary 9, C1, . . . , C` are the minimal vertex covers of G. Hence,
by Remark 30, I(G) is unmixed. Now, if C ∈ {C1, . . . , C`}, then, by Proposition 6,
L3(Ci) = ∅, since C is minimal.

3) ⇒ 1) By Proposition 6, Ci is a minimal vertex cover, since L3(Ci) = ∅ for each
1 6 i 6 `. So, by Corollary 9, C1, . . . , C` are the minimal vertex covers of G. By Remark
30, ht(Pi) = |Ci| = |Cj| = ht(Pj) for 1 6 i < j 6 `, since I(G) is unmixed. Therefore
I(D) is unmixed.

Definition 32. A weighted oriented graph D has the minimal-strong property if each
strong vertex cover is a minimal vertex cover.

Remark 33. Using Proposition 6, we have that D has the minimal-strong property if and
only if L3(C) = ∅ for each strong vertex cover C of D.

Definition 34. D′ is a c-minor of D if there is a stable set S of D, such that D′ =
D \ND[S].

Lemma 35. If D has the minimal-strong property, then D′ = D\ND[x] has the minimal-
strong property, for each x ∈ V (D).

Proof. We take a vertex cover C ′ of D′ = D \ ND[x] where x ∈ V (D). Thus, C =
C ′ ∪ ND(x) is a vertex cover of D. If y′ ∈ L3(C

′), then by Proposition 5, ND′(y′) ⊆ C ′.
Furthermore, y′ 6∈ ND[x], so ND(y′) ⊆ C ′ ∪ ND(x) = C. This implies, y′ ∈ L3(C).
Hence, L3(C

′) ⊆ L3(C). Now, we take y ∈ L3(C), then ND(y) ⊆ C. Also, x 6∈ C =
C ′ ∪ ND(x), then x 6∈ ND(y). Thus y /∈ ND(x), implying y ∈ C ′, since y ∈ C. Then,
ND′(y) ∪ (ND(y) ∩ ND(x)) = ND(y) ⊆ C = C ′ ∪ ND(x). So, ND′(y) ⊆ C ′ implies
y ∈ L3(C

′). Therefore L3(C) = L3(C
′).

Now, we will prove that if C ′ is strong, then C is strong. We assume C ′ is strong. We take
y ∈ L3(C) = L3(C

′), then there is z ∈ C ′\L1(C
′) with w(z) 6= 1, such that (z, y) ∈ E(D′).

If z ∈ L1(C), then there exist z′ /∈ C such that (z, z′) ∈ E(D). Also, z′ 6= x, since z ∈ C ′.
Since z′ /∈ C = C ′ ∪ ND(x), then z′ ∈ V (D′) and z ∈ L1(C

′). A contradiction, implies
z ∈ C \ L1(C). Therefore, C is strong.
Hence, if C ′ is a strong, then C is strong and L3(C) = ∅, since D has the minimal-strong
property. Thus, L3(C

′) = L3(C) = ∅. Therefore D′ has the minimal-strong property.

We say that D is unmixed if and only if I(D) is unmixed.

Proposition 36. If D is unmixed and x ∈ V (D), then D′ = D \ND[x] is unmixed.
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Proof. By Theorem 31, I(G) is unmixed and D has the minimal-strong property. Hence,
by [14], I(G′) is unmixed, where G′ = G \ ND[x]. Also, by Lemma 35, D′ has the
minimal-strong property. Therefore, by Theorem 31, D′ is unmixed.

Theorem 37. If D is unmixed, then a c-minor of D is unmixed.

Proof. If D′ is a c-minor of D, then there is a stable S = {a1, . . . , as} such that D′ =
D \ND[S]. Since S is stable,

D′ = (· · · ((D \ND[a1]) \ND[a2]) \ · · · ) \ND[as].

Hence, by induction and Proposition 36, D′ is unmixed.

Proposition 38. If V (D) is a strong vertex cover of D, then I(D) is mixed.

Proof. By Remark 10, V (D) is not minimal. Therefore, by Theorem 31, I(D) is mixed.

Corollary 39. If V (D) = V +, then I(D) is mixed.

Proof. We take x ∈ V = V (D). By Remark 18, there is y ∈ V such that (y, x) ∈ E(D),
since V = V +. Also, w(y) 6= 1 and y ∈ V = L3(V ). So, V is a strong vertex cover. Hence,
by Proposition 38, I(D) is mixed.

In the following three results we assume that D1, . . . , Dr are the connected components
of D, where, Gi is the underlying graph of Di. Furthermore, we have that, if C is a vertex
cover of D, then C ∩ V (Di) is a vertex cover of Di.

Lemma 40. Let C be a vertex cover of D, then L1(C) =
⋃r
i=1 L1(Ci) and L3(C) =⋃r

i=1 L3(Ci), where Ci = C ∩ V (Di).

Proof. We take x ∈ C, then x ∈ Cj for some 1 6 j 6 r. Thus, ND(x) = NDj
(x). In

particular N+
D (x) = N+

Dj
(x), so C ∩N+

D (x) = Cj ∩N+
Dj

(x). Hence, L1(C) =
⋃r
i=1 L1(Ci).

On the other hand,

x ∈ L3(C)⇔ ND(x) ⊆ C ⇔ NDj
(x) ⊆ Cj ⇔ x ∈ L3(Cj).

Therefore, L3(C) =
⋃r
i=1 L3(Ci).

Lemma 41. Let C be a vertex cover of D, then C is strong if and only if Ci = C ∩V (Di)
is a strong vertex cover of Di for each i ∈ {1, . . . , r}.

Proof. ⇒) We take x ∈ L3(Cj). By Lemma 40, x ∈ L3(C) and there is z ∈ N−D (x) ∩ V +

with z ∈ C \ L1(C), since C is strong. So, z ∈ V (Dj) and z ∈ N−Dj
(x), since x ∈ Dj.

Consequently, by Lemma 40, z ∈ Cj \ L1(Cj). Therefore Cj is strong.

⇐) We take x ∈ L3(C), then x ∈ Ci for some 1 6 i 6 r. Then, by Lemma 40, x ∈ L3(Ci).
Thus, there is a ∈ N−Di

(x) such that w(a) 6= 1 and a ∈ Ci \ L1(Ci), since Ci is strong.
Hence, by Lemma 40, a ∈ C \ L1(C). Therefore C is strong.

Corollary 42. I(D) is unmixed if and only if I(Di) is unmixed for each 1 6 i 6 r.
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Proof. ⇒) By Theorem 37, since Di is a c-minor of D.

⇐) By Theorem 31, Gi is unmixed thus G is unmixed. Now, if C is a strong vertex cover,
then by Lemma 41, Ci = C ∩ V (Di) is a strong vertex cover. Consequently, L3(Ci) = ∅,
since I(Di) is unmixed. Hence, by Lemma 40, L3(C) =

⋃r
i=1 L3(Ci) = ∅. Therefore, by

Theorem 31, I(D) is unmixed.

Definition 43. Let H be a simple graph whose vertex set is V (H) = {x1, . . . , xk} and
edge set E(H). The graph with whiskers of H is the graph G whose vertex set is V (G) =
V (H) ∪ {y1, . . . , yk} and whose edge set is E(G) = E(H) ∪ {{x1, y1}, . . . , {xk, yk}}.

Definition 44. Let D and H be weighted oriented graphs. D is a weighted oriented graph
with whiskers of H if H ⊆ D and the underlying graph of D is the graph with whiskers
of the underlying graph of H.

Theorem 45. Let D be a weighted oriented graph with whiskers of H, where V (H) =
{x1, . . . , xk} and V (D) = V (H) ∪ {y1, . . . , yk}, then the following conditions are equiva-
lents:

1) I(D) is unmixed.

2) If (xi, yi) ∈ E(D) for some 1 6 i 6 k, then w(xi) = 1.

Proof. 2) ⇒ 1) We take a strong vertex cover C of D. Suppose xj, yj ∈ C, then yj ∈
L3(C), since ND(yj) = {xj} ⊆ C. Consequently, (xj, yj) ∈ E(G) and w(xj) 6= 1, since C
is strong. This is a contradiction by condition 2). This implies, |C ∩{xi, yi}| = 1 for each
1 6 i 6 k. So, |C| = k. Therefore, by Theorem 31, I(D) is unmixed.

1)⇒ 2) By contradiction suppose (xi, yi) ∈ E(D) and w(xi) 6= 1 for some i. By Remark
18, there is xj ∈ V (D) such that (xj, xi) ∈ E(D), since w(xi) 6= 1. We take the vertex
cover C = {V (D) \ xj} ∪ {yj, yi}, then by Proposition 5, L3(C) = {yi}. Furthermore
ND(xi) \ C = {xj} and (xj, xi) ∈ E(H), then xi ∈ L2(C). Hence C is strong, since
L3(C) = {yi}, (xi, yi) ∈ E(G) and xi ∈ L2(C) ∩ V +. On the other hand, V (H) is a
minimal vertex cover of D. By Corollary 9, V (H) is strong. A contradiction by Theorem
31, since I(D) is unmixed and |C| 6= |V (H)|.

Theorem 46. Let D be a bipartite weighted oriented graph, then I(D) is unmixed if and
only if D satisfies the following conditions:

1) G has a perfect matching {{x11, x21}, . . . , {x1s, x2s}} where {x11, . . . , x1s} and {x21, . . . , x2s}
are stable sets. Furthermore if {x1j , x2i }, {x1i , x2k} ∈ E(G) then {x1j , x2k} ∈ E(G).

2) If w(xkj ) 6= 1 and N+
D (xkj ) = {xk′i1 , . . . , x

k′
ir} where {k, k′} = {1, 2}, then ND(xki`) ⊆

N+
D (xkj ) and N−D (xki`) ∩ V

+ = ∅ for each 1 6 ` 6 r.

Proof. ⇐) By 1) and [4, Theorem 2.5.7], I(G) is unmixed. Now, we take a strong vertex
cover C of D. Suppose L3(C) 6= ∅, thus there exist xki ∈ L3(C). Then, xk

′
i ∈ ND(xki ) ⊆

C. Since C is strong, there is xk
′
j ∈ V + such that (xk

′
j , x

k
i ) ∈ E(D), xk

′
j ∈ C \ L1(C)

and {k, k′} = {1, 2}. Thus, N+
D (xk

′
j ) ⊆ C, since xk

′
j /∈ L1(C). Furthermore, by 2),
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ND(xk
′
i ) ⊆ N+

D (xk
′
j ) ⊆ C. So, xk

′
i ∈ L3(C) implies there is (z, xk

′
i ) ∈ E(D) with z ∈ V +.

A contradiction, since by 2) N−D (xk
′
i )∩V + = ∅. Hence, L3(C) = ∅. Therefore, by Theorem

31, I(D) is unmixed.

⇒) By Theorem 31, I(G) is unmixed. Hence, by [4, Theorem 2.5.7], G satisfies 1).

Now, assume w(xkj ) 6= 1. We take C = N+
D (xkj ) ∪ {xki | ND(xki ) 6⊆ N+

D (xkj )} and k′ such

that {k, k′} = {1, 2}. Thus, C ∩ {xk′1 , . . . , xk
′
s } = N+

D (xkj ).

If {xki , xk
′

i′ } ∈ E(G) with xki /∈ C, then ND(xki ) ⊆ N+
D (xkj ). Furthermore, xk

′

i′ ∈ ND(xki )

and N+
D (xkj ) ⊆ C. Hence, xk

′

i′ ∈ C. This implies, C is a vertex cover of D.
Now, if xki1 ∈ L3(C), then ND(xki1) ⊆ C. Consequently ND(xki1) ⊆ N+

D (xkj ), since

ND(xki1) ⊆ {x
k′
1 , . . . , x

k′
s }. This implies, xki1 /∈ C. A contradiction, then L3(C) ⊆ N+

D (xkj ).
By Remark 18, N−D (xkj ) 6= ∅, since w(xkj ) 6= 1. Then, ND(xkj ) 6⊆ N+

D (xkj ). Thus,
xkj ∈ C \ L1(C), since N+

D (xkj ) ⊆ C. Hence C is strong, since xkj ∈ V +.

On the other hand {xk′1 , . . . , xk
′
s } is a minimal vertex cover, then by Theorem 31, |C| = s,

since D is unmixed. Also, N+
D (xkj ) = {xk′i1 , . . . , x

k′
ir}, then

{xki | i 6∈ {i1, . . . , ir}} ⊆ C,

since C ∩ {xk′i1 , . . . , x
k′
is} = N+

D (xkj ) and {xki , xk
′
i } ∈ E(D) for 1 6 i 6 s. So, xkim /∈ C for

each 1 6 m 6 r, since |C| = s. This implies ND(xkim) ⊆ N+
D (xkj ).

Now, suppose z ∈ N−D (xki`) ∩ V
+ with 1 6 ` 6 r. So z = xk

′
i`′

for some 1 6 `′ 6 r, since

ND(xki`) ⊆ N+
D (xkj ). We take

C ′ = N+
D (xkj ) ∪ {xki | i /∈ {i1, . . . , ir}} ∪N+

D (xk
′

i`′
),

then xk
′
i`′
∈ N+

D (xkj ) ⊆ C ′. Hence, C ′ is a vertex cover, since {xk1, . . . , xks} is a vertex cover

and ND(xki ) ⊆ N+
D (xkj ) for each i ∈ {i1, . . . , ir}. Furthermore, by Remark 18, N−D (xkj ) 6= ∅

implying ND(xkj ) 6⊆ N+
D (xkj ). Thus, j 6∈ {i1, . . . , ik} then xkj ∈ C ′.

Now, if {xkq , xk
′
q } ∩ L3(C

′) 6= ∅, then {xkq , xk
′
q } ⊆ C ′. So xk

′
q ∈ N+

D (xkj ) implies q ∈
{i1, . . . , ir}. Consequently, xkq ∈ N+

D (xk
′
i`′

), since xkq ∈ C ′. This implies, (xkj , x
k′
q ), (xk

′
i`′
, xkq)

∈ E(D). Furthermore, N+
D (xk

′
i`′

) ∪ N+
D (xkj ) ⊆ C ′, then xk

′
i`′
, xkj ∈ C ′ \ L1(C

′). Thus, C ′ is

strong, since xkj , x
k′
i`′
∈ V +.

Hence, by Theorem 31, |C ′| = s. But |N+
D (xkj ) ∪ {xki | i 6∈ {i1, . . . , ir}}| = s and xki` ∈

N+
D (xk

′
i`′

). A contradiction, so N−D (xki`) ∩ V
+ = ∅. Therefore D satisfies 2).

Lemma 47. If the vertices of V + are sinks, then D has the minimal-strong property.

Proof. We take a strong vertex cover C of D. Hence, if y ∈ L3(C), then there is (z, y) ∈
E(D) with z ∈ V +. Consequently, by hypothesis, z is a sink. A contradiction, since
(z, y) ∈ E(D). Therefore, L3(C) = ∅ and C is a minimal vertex cover.

Lemma 48. Let D be a weighted oriented graph, where G ' Cn with n > 6. Hence, D
has the minimal-strong property if and only if the vertices of V + are sinks.
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Proof. ⇐) By Lemma 47.

⇒) By contradiction, suppose there is (z, y) ∈ E(D), with z ∈ V +. We can assume
G = (x1, x2, . . . , xn, x1) ' Cn, with x2 = y and x3 = z. We take a vertex cover C in the
following form: C = {x1, x3, . . . , xn−1} ∪ {x2} if n is even or C = {x1, x3, . . . , xn−2} ∪
{x2, xn−1} if n is odd. If x ∈ C and ND(x) ⊆ C, then x = x2. Hence, L3(C) = {x2}.
Furthermore, (x3, x2) ∈ E(D). Since x3 ∈ V +, by Remark 18, x3 is not a source. So,
(x4, x3) ∈ E(D) and x3 ∈ L2(C). This implies C is a strong vertex cover. But L3(C) 6= ∅.
A contradiction, since D has the minimal-strong property.

x1 x2

x5 x3

x4

1 1

w(x5) 6= 1

1

w(x3) 6= 1

D1

x1 x2

x5 x3

x4

w(x1) 6= 1 w(x2) 6= 1

1

1

1

D2

x1 x2

x5 x3

x4

1 1

w(x5) 6= 1

w(x4) 6= 1

w(x3) 6= 1

D3

x1 x2

x5 x3

x4

1 w(x2) 6= 1

w(x5) 6= 1

1

w(x3) 6= 1

D4

Theorem 49. If G ' Cn, then I(D) is unmixed if and only if one of the following
conditions hold:

1) n = 3 and there is x ∈ V (D) such that w(x) = 1.

2) n ∈ {4, 7} and the vertices of V + are sinks.

3) n = 5, there is (x, y) ∈ E(D) with w(x) = w(y) = 1 and D 6∈ {D1, D2, D3}.

4) D ' D4.

Proof. ⇒) By Theorem 31, I(G) is unmixed. Then, by [4, Exercise 2.4.22], n ∈ {3, 4, 5, 7}.
If n = 3, then by Remark 39, D satisfies 1). If n = 7, then by Lemma 48, D satisfies
2). Now suppose n = 4 and D does not satisfies 2), then we can assume x1 ∈ V +

and (x1, x2) ∈ E(D). Consequently, by Remark 18, (x4, x1) ∈ E(G), since w(x1) 6= 1.
So, C = {x1, x2, x3} is a vertex cover with L3(C) = {x2}. Also, (x1, x2) ∈ E(D) and
x1 ∈ L2(C)∩V +. Thus, C is strong. A contradiction, since C is not minimal. This implies
D satisfies 2).

Now, assume n = 5. First, we will prove D1, D2 and D3 are mixed. We take C1 =
{x1, x2, x3, x5}, then C1 is a vertex cover of D1 with L3(C1) = {x1, x2}. Also (x5, x1),
(x3, x2) ∈ E(D1) and x5, x3 ∈ L2(C1)∩V +. Then, C1 is strong. Consequently, D1 is mixed,
since L3(C1) 6= ∅. Now, C2 = {x1, x2, x4, x5} is a vertex cover ofD2 where L3(C2) = {x1, x5}
and (x2, x1), (x1, x5) ∈ E(D2) with x2, x1 ∈ V +. Hence, C2 is strong, since x2, x1 /∈ L1(C2).
So, D2 is mixed, since L3(C2) 6= ∅. On the other hand, C3 = {x2, x3, x4, x5} is a vertex
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cover of D3 where L3(C3) = {x3, x4} and (x4, x3), (x5, x4) ∈ E(D) with x4, x5 ∈ V +. Thus,
C3 is strong, since x4, x5 /∈ L1(C3). Hence, D3 is mixed, since L3(C3) 6= ∅. Therefore,
D 6∈ {D1, D2, D3} since D is unmixed.
Now, suppose D does not satisfies 3), i.e. there are not two adjacent vertices with weight
1. Consequently, there are two adjacent vertices in V +, since n = 5. Without loss of
generality, we can assume (x2, x3) ∈ E(D) with x2, x3 ∈ V +. By Remark 18, (x1, x2) ∈
E(D), since x2 ∈ V +. Now, we take two cases:
Case 1. Suppose there are not 3 vertices z1, z2, z3 in V + such that (z1, z2, z3) is a path in G.
Then w(x4) = w(x1) = 1. Furthermore, w(x5) 6= 1, since there are not adjacent vertices
with weight 1. So, C4 = {x2, x3, x4, x5} is a vertex cover of D, where L3(C4) = {x3, x4}.
Also (x2, x3) ∈ E(G) and x2 ∈ L2(C4)∩V +. Assume, (x3, x4) ∈ E(D) or (x5, x4) ∈ E(D).
If (x5, x4) ∈ E(D), then by Remark 18, (x1, x5) ∈ E(D) and x5 ∈ L2(C4), since x5 ∈
V +. This implies, C4 is strong, since x3, x5 ∈ V + and x3 ∈ L3(C4) or x5 ∈ L2(C4). A
contradiction, since C4 is not minimal. Hence, (x4, x3), (x4, x5) ∈ E(D) and D ' D4.
Case 2. Assume there is a path (z1, z2, z3) in G such that z1, z2, z3 ∈ V +. Since there
are not adjacent vertices with weight 1, we can suppose there is z4 ∈ V + such that L =
(z1, z2, z3, z4) is a path. We take {z5} = V (D)\V (L) and we can assume (z2, z3) ∈ E(D).
So, by Remark 18, (z1, z2), (z5, z1) ∈ E(D), since z1, z2 ∈ V +. Thus, C5 = {z1, z2, z3, z4}
is a vertex cover with L3(C5) = {z2, z3}. Then, C5 is strong, since (z1, z2), (z2, z3) ∈ E(D)
with z1 ∈ L2(C5) ∩ V + and z2 ∈ L3(C5) ∩ V +. A contradiction, since C5 is not minimal.

⇐) If n ∈ {3, 4, 5, 7}, then by [4, Exercise 2.4.22] G is unmixed. By Theorem 31, we will
only prove that D has the minimal-strong property.

If D satisfies 2), then by Lemma 47, D has the minimal-strong property. If D satisfies 1)
and C is a strong vertex cover, then by Proposition 15, |C| 6 2. This implies C is minimal.

Now, assume n = 5. By contradiction, there is a strong vertex cover C ′ of D with |C ′| > 4.
If D ' D4, then x2, x5 /∈ L3(C ′), since (N−D (x2) ∪ N−D (x5)) ∩ V + = ∅. So, ND(x2) 6⊆ C ′
and ND(x5) 6⊆ C ′. Consequently, x1 /∈ C ′, since |C ′| > 4. Hence, C ′ = {x2, x3, x4, x5}. But
x4 ∈ L3(C ′) and N−D (x4) = ∅. A contradiction, since C ′ is strong.
Now suppose D satisfies 3). We take two cases:
Case 1. Suppose there is a path L = (x1, x2, x3) in G such that w(x1) = w(x2) = w(x3) =
1. Since w(x1) = w(x3) = 1, we have that x2 /∈ L3(C ′) and |C ′| = 4. If x2 /∈ C ′,
then C ′ = {x1, x3, x4, x5}. We can assume (x4, x5) ∈ E(D), then N−D (x4) ∩ V + = ∅.
But x4 ∈ L3(C ′), a contradiction, since C ′ is strong. Hence x2 ∈ C ′. We can suppose
x3 /∈ C ′, since x2 /∈ L3(C ′). This implies C ′ = {x1, x2, x4, x5} and L3(C ′) = {x1, x5}.
Thus, (x5, x1), (x4, x5) ∈ E(D) and x5, x4 ∈ V +, since C ′ is strong. By Remark 18,
(x3, x4) ∈ E(D), since x4 ∈ V +. A contradiction, since D 6' D2.
Case 2. There are not three consecutive vertices whose weights are 1. Since D satisfies
3), we can assume w(x1) = w(x2) = 1, w(x3) 6= 1 and w(x5) 6= 1. If w(x4) = 1, then
x3, x5 /∈ L3(C ′) since ND(x3, x5) ∩ V + = ∅. This implies ND(x3) 6⊆ C ′ and ND(x5) 6⊆ C ′.
Then, x4 /∈ C ′ and C ′ = {x1, x2, x3, x5}, since |C ′| > 4. Thus, (x5, x1), (x3, x2) ∈ E(D),
since L3(C ′) = {x1, x2}. By Remark 18, (x4, x5), (x4, x3) ∈ E(D), since x5, x3 ∈ V +.
A contradiction, since D 6' D1. Hence, w(x4) 6= 1 and by Remark 18, we can assume
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(x5, x4) ∈ E(D), since x4 ∈ V +. Similarly (x1, x5) ∈ E(D), since x5 ∈ V +. Consequently,
(x3, x4) ∈ E(D), since D 6' D3. Then (x2, x3) ∈ E(D), since x3 ∈ V +. This implies
x1, x2, x3, x5 /∈ L3(C ′), since N−D (xi) ∩ V + = ∅ for i ∈ {1, 2, 3, 5}. A contradiction, since
|C ′| > 4.

5 Cohen–Macaulay weighted oriented graphs

In this section we study the Cohen–Macaulayness of I(D). In particular, we give a
combinatorial characterization of this property when G is a path or G is a complete
graph. In this case we prove that Cohen–Macaulay property and unmixed property are
equivalent. On the other hand, we show the Cohen–Macaulay property of I(D) depends
of the characteristic of K.

Remark 50. If G is the underlying graph of D, then rad(I(D)) = I(G).

Proposition 51. If I(D) is Cohen–Macaulay, then I(G) is Cohen–Macaulay and D has
the minimal-strong property.

Proof. By Remark 50, I(G) = rad(I(D)). Then, by [9, Theorem 2.6], I(G) is Cohen–
Macaulay. Furthermore, by [1, Theorem 2.1.2], I(D) is unmixed, since I(D) is Cohen–
Macaulay. Hence, by Theorem 31, D has the minimal-strong property.

Example 52. In Example 27 and Example 28, I(D) is mixed. Hence, I(D) is not Cohen–
Macaulay, but I(G) is Cohen–Macaulay.

Conjecture 53. I(D) is Cohen–Macaulay if and only if I(G) is Cohen–Macaulay and
D has the minimal-strong property. Equivalently, I(D) is Cohen–Macaulay if and only if
I(D) is unmixed and I(G) is Cohen–Macaulay.

Proposition 54. If G is a path, then, the following conditions are equivalent:

1) R/I(D) is Cohen–Macaulay.

2) I(D) is unmixed.

3) |V (G)| = 2 or |V (G)| = 4. In the second case, if (x2, x1) ∈ E(D) or (x3, x4) ∈ E(D),
then w(x2) = 1 or w(x3) = 1 respectively.

Proof. We assume G is the path (x1, . . . , xn).

1) ⇒ 2) By [1, Theorem 2.1.2].

2) ⇒ 3) By Theorem 46, G has a perfect matching, since D is bipartite. Consequently
n is even and {x1, x2}, {x3, x4}, . . . , {xn−1, xn} is the perfect matching of D. If n > 6,
then by Theorem 46, we have {x2, x5} ∈ E(G), since {x2, x3} and {x4, x5} ∈ E(G). A
contradiction, since {x2, x5} /∈ E(G). Hence, n ∈ {2, 4}. Furthermore if n = 4, then
G is a graph with whiskers. Hence, by Theorem 45, w(x2) = 1 or w(x3) = 1 when
(x2, x1) ∈ E(D) or (x3, x4) ∈ E(D), respectively.
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3) ⇒ 1) We take I = I(D). If n = 2, then ht(I) = ht(rad(I)) = ht(I(G)) = 1. Thus,
dim(R/I) = n−1 = 1. By Proposition 15, V (D) is not a strong vertex cover of D. So, by
Remark 26, (x1, x2) 6∈ Ass(I). Then, depth(R/I) > 1. Hence, R/I is Cohen–Macaulay.
Now, if n = 4, then ht(I) = ht(I(G)) = 2. Consequently, dim(R/I) = n− 2 = 2.We take
s = |E(D) ∩ {(x2, x1), (x3, x4)}|. If s = 0 or s = 2, then we can assume (x2, x3) ∈ E(D).
If s = 1, then we can suppose (x2, x1), (x4, x3) ∈ E(D). This implies,

1) I(D) = (x1x
w(x2)
2 , x2x

w(x3)
3 , x

w(x3)
3 x4), X = {x1 − xw(x2)2 , x4 − xw(x3)3 }.

2) I(D) = (x
w(x1)
1 x2, x2x3, x3x

w(x4)
4 ), X = {x2 − xw(x1)1 , x3 − xw(x4)4 }.

3) I(D) = (x
w(x1)
1 x2, x2x

w(x3)
3 , x

w(x3)
3 x4), X = {x2 − xw(x1)1 , x4 − xw(x3)3 }.

4) I(D) = (x
w(x1)
1 x2, x2x3, x

w(x3)
3 x4), X = {x2 − xw(x1)1 , x4 − xw(x3)3 }.

The first two cases when s = 0 and s = 2, respectively. The two last cases when s = 1.
Using Macaulay2 [5], we show that X is a regular sequence of R/I, in each case. Hence,
depth(R/I) > 2. Therefore, I is Cohen–Macaulay.

Theorem 55. If G is a complete graph, then the following conditions are equivalent:

1) I(D) is unmixed.

2) I(D) is Cohen–Macaulay.

3) There are not D1, . . . , Ds oriented unicycles of D such that V (D1), . . . , V (Ds) is a
partition of V (D)

Proof. We take I = I(D). Since I(G) = rad(I) and G is a complete graph, we have that
ht(I) = ht(I(G)) = n− 1, where n = |V (G)|.
1) ⇒ 3) Since I is unmixed and ht(I) = n− 1, we have that (x1, . . . , xn) /∈ Ass(I). Thus,
by Remark 26, V (D) is not a strong vertex cover of D. Therefore, by Proposition 15, D
satisfies 3).

3) ⇒ 2) By Proposition 15, V (D) is not a strong vertex cover of D. Consequently,
by Remark 26, (x1, . . . , xn) /∈ Ass(I). This implies, depth(R/I) > 1. Furthermore,
dim(R/I) = 1, since ht(I) = n− 1. Therefore I is Cohen–Macaulay.

2) ⇒ 1) By [1, Theorem 2.1.2].

Hence, if G is a complete graph or G is a path, then unmixed and Cohen–Macaulay are
equivalent properties in I(D). Furthermore, in these cases Cohen–Macaulay property not
depend of the field K. It is not true in general, see the following example.

Example 56. Let D be the following weighted oriented graph:
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x3

x2

x1

x9

x8

x7

x6

x5

x4

x11

x10

2

2

2

1

1

1

1

1

1

1

1

Hence,

I(D) = (x21x4, x
2
1x5, x

2
1x8, x

2
1x9, x

2
2x5, x

2
2x6, x

2
2x8, x

2
2x10, x

2
2x11, x

2
3x6, x

2
3x7, x

2
3x9,

x23x10, x4x7, x4x8, x4x11, x5x9, x5x10, x5x11, x6x8, x6x9, x6x11, x7x10, x7x11, x9x11).

By [10, Example 2.3], I(G) is Cohen–Macaulay when the characteristic of the field K is
zero but it is not Cohen–Macaulay in characteristic 2. Consequently, I(G) is unmixed and
I(D) is not Cohen–Macaulay when the characteristic of K is 2. Furthermore, by Lemma
47, I(D) has the minimal-strong property. Thus, by Theorem 31, I(D) is unmixed. Finall,
using Macaulay2 [5], we show that I(D) is Cohen–Macaulay when the characteristic of K
is zero.

Acknowledgements

The authors are grateful to the referees whose suggestions improved the presentation of
this paper.

References

[1] A. Bruns, J. Herzog, Cohen–Macaulay Rings. Cambridge University Press, Cam-
bridge, 1997.

[2] C. Carvalho, V. G. Lopez Neumann and H. H. López, Projective nested cartesian
codes, Bull. Braz. Math. Soc. (N.S.) 48 (2017), no. 2, 283–302.

[3] I. D. Castrillón, R. Cruz, and E. Reyes. On well-covered, vertex decomposable and
Cohen–Macaulay graphs. Electron. J. Combin., 23, (2016), Paper 39, p 17.

[4] I. Gitler, R. H. Villarreal, Graphs, Rings and Polyhedra, Aportaciones Mat. Textos,
35, Soc. Mat. Mexicana, México, 2011.
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