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Abstract

The orthogonal rank of a graph G = (V,E) is the smallest dimension ξ such that
there exist non-zero column vectors xv ∈ Cξ for v ∈ V satisfying the orthogonality
condition x†vxw = 0 for all vw ∈ E. We prove that many spectral lower bounds for
the chromatic number, χ, are also lower bounds for ξ. This result complements a
previous result by the authors, in which they showed that spectral lower bounds for
χ are also lower bounds for the quantum chromatic number χq. It is known that
the quantum chromatic number and the orthogonal rank are incomparable.

We conclude by proving an inertial lower bound for the projective rank ξf , and
conjecture that a stronger inertial lower bound for ξ is also a lower bound for ξf .

Mathematics Subject Classifications: 97K30, 97H60

1 Introduction

For any graph G, let V denote the set of vertices where |V | = n, E denote the set of
edges where |E| = m, A denote the adjacency matrix, χ(G) denote the chromatic number,
ω(G) denote the clique number, α(G) denote the independence number, and G denote the
complement of G. Let µ1 > µ2 > · · · > µn denote the eigenvalues of A. Then, the inertia
of G is the ordered triple (n+, n0, n−), where n+, n0 and n− are the numbers of positive,
zero and negative eigenvalues of A, including multiplicities. Note that rank(A) = n+ +n−

and null(A) = n0. A graph is called non-singular if n0 = 0.
Let D be the diagonal matrix of vertex degrees, and let L = D − A denote the

Laplacian of G and Q = D +A denote the signless Laplacian of G. The eigenvalues of L
are θ1 > · · · > θn = 0 and the eigenvalues of Q are δ1 > · · · > δn.

Let χv(G) and χsv(G) denote the vector and strict vector chromatic numbers as defined
by Karger et al [14]. They proved that χsv(G) = ϑ(G), where ϑ is the Lovász theta
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function [16]. Let ϑ+ denote Szegedy’s [22] variant of ϑ. Let χf (G) and χc(G) denote the

fractional and circular chromatic numbers and let χq(G) and χ
(r)
q (G) denote the quantum

and rank-r quantum chromatic numbers, as defined by Cameron et al [2].

Definition 1 (Orthogonal rank ξ(G)). The orthogonal rank of G is the smallest positive
integer ξ(G) such that there exists an orthogonal representation, that is a collection of
non-zero column vectors xv ∈ Cξ(G) for v ∈ V satisfying the orthogonality condition

x†vxw = 0 (1)

for all vw ∈ E.
The normalized orthogonal rank of G is the smallest positive integer ξ′(G) such that

there exists an orthogonal representation, with the added restriction that the entries of
each vector must all have the same modulus.

Let ξf (G) denote the projective rank which was defined by Mančinska and Roberson
[17], who showed that ω(G) 6 ξf (G) 6 ξ(G). We use the definition of the r-fold orthogo-
nal rank ξ[r](G) due to Hogben et al. in [11, Section 2.1.] and their results in [11, Section
2.2.] to provide an equivalent and simpler definition of the projective rank.

Definition 2 (r-fold orthogonal rank ξ[r](G) and projective rank ξf(G)). A d/r-repre-
sentation of G = (V,E) is a collection of rank-r orthogonal projectors Pv for v ∈ V such
that PvPw = 0d for all vw ∈ E.

The r-fold orthogonal rank ξ[r](G) is defined as follows:

ξ[r](G) = min
{
d : G has a d/r-representation

}
.

The projective rank, ξf (G), is defined as follows:

ξf (G) = lim
r→∞

ξ[r](G)

r
, and this limit exists.

The projective rank is also called the fractional orthogonal rank.

Clearly, the vectors xv ∈ Cξ(G) of an orthogonal representation correspond to the rank-
1 orthogonal projectors Pv = xvx

†
v ∈ Cξ(G)×ξ(G) of a ξ(G)/1-representation. It is also clear

that ξ[1](G) = ξ(G).
For c ∈ N, we use the abbreviation [c] = {0, . . . , c− 1}.

Definition 3 (Vectorial chromatic number χvect(G)). Paulsen and Todorov [20] defined
the vectorial chromatic number, χvect(G), as follows. Let G = (V,E) be a graph and
c ∈ N. A vectorial c-coloring of G is a set of vectors (xv,i : v ∈ V, i ∈ [c]) in a Hilbert
space such that the following conditions are satisfied:

〈xv,i, xw,j〉 > 0 , v, w ∈ V, i, j ∈ [c] (2)
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∑
i∈[c]

xv,i =
∑
i∈[c]

xw,i ,
∥∥∥∑
i∈[c]

xv,i

∥∥∥ = 1 , v, w ∈ V (3)

〈xv,i, xv,j〉 = 0 , v ∈ V, i 6= j ∈ [c] (4)

〈xv,i, xw,i〉 = 0 , vw ∈ E, i ∈ [c]. (5)

The least integer c for which there exists a vectorial c-coloring will be denoted χvect(G)
and called the vectorial chromatic number of G.

Note that χvect differs from χv. Cubitt et al [4] (Corollary 16) proved the following
(unexpected) equality between a chromatic number and a theta function:

χvect(G) = dϑ+(G)e,

and provided an example of a graph with χvect < χq. Roberson [21] (Lemma 6.14.1)
proved that ϑ+(G) 6 ξf (G) 6 ξ(G), so χvect(G) = dϑ+(G)e 6 ξ(G).

2 Hierarchy of graph parameters

There are numerous graph parameters that lie between the clique number and the chro-
matic number. The following chains of inequalities summarise the relationships between
many of them, and combine results in Cameron et al [2], Mančinska and Roberson ([18]
and [17]), Paulsen et al [19] and Elphick and Wocjan [6]. The chains are broken into two
parts so the rightmost ends of (6) and leftmost ends of (7) coincide.

dϑ+(G)e = χvect(G)

ω(G) χv(G) χsv(G) = ϑ(G) ϑ+(G) ξf (G)

(6)

χvect(G) ξ(G)

ξf (G) χq(G) χ
(1)
q (G) ξ′(G) dχc(G)e = χ(G)

χf (G) χc(G)

(7)

As illustrated above, Mančinska and Roberson ([18] and [17]) demonstrated that ξ
and χq are incomparable, as are χf and χq; and also χf and ξ. They also proved that
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ξf is a lower bound for ξ, χq and χf . Cubitt et al [4] demonstrated that χvect and ξf are
incomparable. We can also demonstrate that χvect and χf are incomparable as follows. It
is straightforward that for C5, χvect > χf . However if we consider the disjunctive product
C5 ∗ K3, then from [4] we have χvect(C5 ∗ K3) 6 7 but χf (C5 ∗ K3) = 7.5, because χf
is multiplicative for the disjunctive product. Note that ξ, ξ′, χvect, χq, χ

(1)
q are integers,

χf is rational but it is unknown if ξf is necessarily always rational. These hierarchies of
parameters resolve a question raised by Wocjan and Elphick (see Section 2.4 of [23]) of
whether χv 6 ξ′.

3 Spectral lower bounds for the orthogonal and projective ranks

Wocjan and Elphick [24] proved that many spectral lower bounds for χ(G) are also lower
bounds for χq(G). In this paper we prove that many spectral lower bounds for χ(G) are
also lower bounds for ξ(G). In Theorem 4 we prove an inertial lower bound for ξ(G) by
strengthening a proof in [6]. In Theorem 5 we prove several eigenvalue lower bounds for
ξ(G) by proving lower bounds for χvect(G). We conjecture that all of these bounds are
also lower bounds for ξf (G), and make limited progress in this direction in Theorem 6.
(See Remark 8.)

Theorem 4 (Inertial lower bound for orthogonal rank). Let ξ(G) be the orthogonal rank
of a graph G with inertia (n+, n0, n−). Then

1 + max

(
n+

n−
,
n−

n+

)
6 ξ(G).

Theorem 5 (Eigenvalue lower bounds for vectorial chromatic number). Let ξ(G) be the
orthogonal rank and χvect(G) be the vectorial chromatic number of a graph G. Then

1 + max

(
µ1

|µn|
,

2m

2m− nδn
,

µ1

µ1 − δ1 + ϑ1

)
6 χvect(G) 6 ξ(G). (8)

These bounds, reading from left to right, have been proved to be lower bounds for
χ(G) by Hoffman [12], Lima et al [15] and Kolotilina [13].

Theorem 6 (Inertial lower bound for projective rank). Let ξf (G) be the projective rank
of a graph G with inertia (n+, n0, n−). Then,

1 + max

(
n+

n− + n0
,

n−

n+ + n0

)
6 ξf (G) .

In particular, when the graph G is non-singular the lower bounds in Theorems 4 and
6 coincide.

Remark 7. All results also apply to weighted adjacency matrices W ◦ A, where W is
an arbitrary Hermitian matrix and ◦ denotes the Hadamard product (also called Schur
product).
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Remark 8. Bilu [1] (for the Hoffman bound) and the authors (for the other bounds) have
subsequently strengthened Theorem 5 by proving that these three bounds are also lower
bounds for the vector chromatic number χv(G) [25] provided that the weighted adjacency
matrices are restricted to have only nonnegative entries. As a result the bounds in Theo-
rem 5 are lower bounds for ξf (G) with such weighted adjacency matrices. Theorem 5 in
the present paper relies on techniques that are very different from those in [25].

4 Proof of the inertial lower bound on the orthogonal rank ξ(G)

Let f1, . . . , fn ∈ Cn denote the eigenvectors of unit length corresponding to the eigenvalues
µ1 > · · · > µn. Then, A = B − C, where

B =
n+∑
i=1

µifif
†
i and C =

n∑
i=n−n−+1

(−µi)fif †i . (9)

Note thatB and C are positive semidefinite and that rank(B) = n+ and rank(C) = n−.
Let

P+ =
n+∑
i=1

fif
†
i , P− =

n∑
i=n−n−+1

fif
†
i

denote the orthogonal projectors onto the subspaces spanned by the eigenvectors corre-
sponding to the positive and negative eigenvalues respectively. Note that B = P+AP+

and C = −P−AP−.

Lemma 9. Let X and Y ∈ Cn×n be two positive semidefinite matrices satisfying X � Y ,
that is, their difference X − Y is positive semidefinite. Then,

rank(X) > rank(Y ) . (10)

Proof. Assume to the contrary that rank(X) < rank(Y ). Then, there exists a non-trival
vector v in the range of Y that is orthogonal to the range of X. Consquently,

v†(X − Y )v = −v†Y v < 0

contradicting that X − Y is positive semidefinite.

Remark 10. Let xv = (x1v, . . . , x
ξ
v)
T ∈ Cξ for v ∈ V be an orthogonal representation. Note

that we may assume that the first entries of these vectors are all equal to 1, that is,

x1v = 1

for all v ∈ V for the following reason. If we apply any unitary transformation U ∈ Cξ×ξ to
xv we obtain an equivalent orthogonal representation yv = Uxv. Clearly, there must exist
a unitary matrix U such that the resulting orthogonal representation yv = (y1v , . . . , y

ξ
v)
T

satisfies the condition y1v 6= 0 for all v ∈ V due to a simple parameter counting argument.
We can now rescale each vector to additionally achieve y1v = 1.

the electronic journal of combinatorics 26(3) (2019), #P3.45 5



We now have all the tools to prove Theorem 4.

Proof. Let xv = (x1v, . . . , x
ξ
v)
T for v ∈ V be an orthogonal representation satisfying the

additional condition x1v = 1 as in the remark above. We define ξ diagonal matrices

Di = diag(xiv : v ∈ V ) ∈ Cn×n

for i = 1, . . . , ξ. Due to this construction, we have

ξ∑
i=1

D†iADi = (svw) , with svw = avw · x†vxw for v, w ∈ V .

We see that this sum is the zero matrix because all its entries svw are zero either due to
the orthogonality condition of the orthogonal representation x†vxw = 0 for vw ∈ E or due
to avw = 0 for vw 6∈ E. Observe that D1 = I due to the above remark. We obtain

ξ∑
i=2

D†iADi = −A. (11)

Equation (11) can be rewritten as

ξ∑
i=2

D†i (B − C)Di = C −B.

Multiplying both sides by P− from left and right yields:

P−

(
ξ∑
i=2

D†i (B − C)Di

)
P− = C.

Using that

P−

(
ξ∑
i=2

D†iCDi

)
P−

is positive semidefinite, it follows that

P−

(
ξ∑
i=2

D†iBDi

)
P− � C.

Then using that the rank of a sum is less than or equal to the sum of the ranks of the
summands, that the rank of a product is less than or equal to the minimum of the ranks
of the factors, and Lemma 9, we have that (ξ − 1)n+ > n−. Similarly, (ξ − 1)n− > n+

is obtained by multiplying (11) by −1 and repeating the arguments (but multiplying by
P+ instead of P− from the left and right).
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5 Proof of eigenvalue lower bounds on the orthogonal rank ξ(G)

We now present a generalization of [24, Theorem 1].

Theorem 11. Assume that there exists a vectorial c-coloring of G. Then, there exists a
collection of orthogonal projectors (Pv,i ∈ Cd×d, v ∈ V, i ∈ [c]) and a unit (column) vector
y ∈ Cd such that the block-diagonal orthogonal projectors

Pi =
∑
v∈V

eve
†
v ⊗ Pv,i ∈ Cn×n ⊗ Cd×d

satisfy the following three conditions: ∑
i∈[c]

Pi = In ⊗ Id, (12)(
In ⊗ yy†

)∑
i∈[c]

Pi(A⊗ Id)Pi
(
In ⊗ yy†

)
= 0n ⊗ 0d, (13)(

In ⊗ yy†
)∑
i∈[c]

Pi(E ⊗ Id)Pi
(
In ⊗ yy†

)
= E ⊗ yy†, (14)

where E ∈ Cd×d is an arbitrary diagonal matrix.

Proof. We now prove condition (12). Let (xv,i : v ∈ V, i ∈ [c]) be a vectorial c-coloring
of G. Conditions (3) and (4) in Definition 3 imply that there exist orthogonal projectors
Pv,i ∈ Cd×d and a unit (column) vector y ∈ Cd such that the Pv,i form a resolution of the
identity Id ∑

i∈[c]

Pv,i = Id (15)

for all v ∈ V and
xv,i = Pv,iy

for all v ∈ V and i ∈ [c]. The unit vector y is simply equal to the sum
∑

i∈[c] xv,i. For

i ∈ [c], Pv,i is equal to the orthogonal projector onto the subspace spanned by xv,i. Note
that if their sum

∑
i∈[c] Pv,i is not equal to the identity Id, then we can add the projector

onto the missing orthogonal complement to, say, Pv,0.
We now prove condition (13). Let ev denote the standard basis (column) vectors of

Cn corresponding to the vertices v ∈ V so that A =
∑

v,w∈V avweve
†
w. For v ∈ V, i ∈ [c],

the block-diagonal projectors Pi ∈ Cn×n ⊗Cd×d form a resolution of the identity In ⊗ Id,
which follows by applying condition (15) to each block of these projectors. For v, w ∈ V ,
we use v ∼ w to denote that these vertices are connected. When used in a summation
symbol, it means that the sum is taken over all pairs of connected vertices. To abbreviate,
we define the projector Υ = yy†.(

In ⊗Υ
)∑
i∈[c]

Pi

(
A⊗ Id

)
Pi

(
In ⊗Υ

)
(16)
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=
(
In ⊗Υ

)∑
i∈[c]

(∑
v∈V

eve
†
v ⊗ Pv,i

)(
A⊗ Id

)(∑
w∈V

ewe
†
w ⊗ Pw,i

)(
In ⊗Υ

)
(17)

=
(
In ⊗Υ

)∑
i∈[c]

( ∑
v,w∈V

av,w · eve†w ⊗ Pv,iPw,i

)(
In ⊗Υ

)
(18)

=
(
In ⊗Υ

)∑
i∈[c]

(∑
v∼w

eve
†
w ⊗ Pv,iPw,i

)(
In ⊗Υ

)
(19)

=
∑
i∈[c]

(∑
v∼w

eve
†
w ⊗ΥPv,iPw,iΥ

)
(20)

=
∑
i∈[c]

(∑
v∼w

x†v,ixw,i · eve†w ⊗Υ

)
(21)

= 0n ⊗ 0d, (22)

where we used

ΥPv,iPw,iΥ = y(y†Pv,i)(Pw,iy)y† = y(x†v,ixw,i)y
† = x†v,ixw,i ·Υ (23)

and (5), which states that x†v,ixw,i = 0 for all i ∈ [c] and all v ∼ w.
Finally, condition (14) is proved similarly.

We need the following general lemma [24, Lemma 1], which allows us to replace pinch-
ing in Theorem 11 by twirling.

Lemma 12. Let (Pi ∈ Cm×m, i ∈ [c]) be any collection of orthogonal projectors that form
a resolution of the identity Im, where the dimension m and number of projectors c are
arbitrary. Then, there exists a unitary matrix U ∈ Cm×m such that

1

c

∑
`∈[c]

U `X(U †)` =
∑
i∈[c]

PiXPi

for any matrix X ∈ Cm×m. The left hand side of this equation defines a so-called twirling
of the matrix X, whereas the right hand side defines a pinching.

By combining Theorem 11 and Lemma 12, we obtain the following lemma. It allows
us to prove the lower bounds in Theorem 5.

Lemma 13. Assume that there exists a vectorial c-coloring of G. Then, there exists a
unitary matrix U ∈ Cn×n ⊗ Cd×d and a unit (column) vector y ∈ Cd such that(

In ⊗ yy†
)∑
`∈[c]

U `(A⊗ Id)(U †)`
(
In ⊗ yy†

)
= 0n ⊗ 0d (24)(

In ⊗ yy†
)∑
`∈[c]

U `(E ⊗ Id)(U †)`
(
In ⊗ yy†

)
= cE ⊗ yy† (25)

for any diagonal matrix E ∈ Cn×n.
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We note that we did not make use of condition (2).

5.1 Proof of the Lima bound in Theorem 5

Proof. The proof is almost identical to the proof for the chromatic number. We use the
identity D −Q = −A. To abbreviate, we set P = In ⊗Υ = In ⊗ yy†. We have:

A⊗ yy† = P (A⊗ Id)P

=
c−1∑
`=1

PU `(−A⊗ Id)(U †)`P

=
c−1∑
`=1

PU ` ((D −Q)⊗ Id) (U †)`P

= (c− 1)(D ⊗ yy†)−
c−1∑
`=1

PU `(Q⊗ Id)(U †)`P

Define the column vector v = 1√
n
(1, 1, . . . , 1)† ⊗ y. Multiply the left and right most sides

of the above matrix equation by v† from the left and by v from the right to obtain

2m

n
= v†(A⊗ yy†)v = (c− 1)

2m

n
−

c−1∑
`=1

v†PU `(Q⊗ Id)(U †)`Pv 6 (c− 1)
2m

n
− (c− 1)δn .

This uses that v†(A ⊗ yy†)v = v†(D ⊗ yy†)v = 2m/n, which is equal to the sum of all
entries of respectively A and D divided by n due to the special form of the vector v, and
that v†PU `(Q⊗ Id)(U †)`Pv = v†U `(Q⊗ Id)(U †)`v > λmin(Q) = δn.

5.2 Proof of the Hoffman and Kolotilina bounds in Theorem 5

Proof. Let E ∈ Cn×n be an arbitrary diagonal matrix. Using (24) and (25), we obtain

c−1∑
`=1

PU `(E ⊗ Id − A⊗ Id)(U †)`P = (c− 1)E ⊗ yy† + A⊗ yy† .

Using that λmax(X) > λmax(PXP ) and λmax(X)+λmax(Y ) > λmax(X+Y ) for arbitrary
Hermitian matrices X and Y , we obtain

λmax(E − A) = λmax(E ⊗ Id − A⊗ Id)

> λmax

(
E ⊗ yy† +

1

c− 1
A⊗ yy†

)
= λmax

(
E +

1

c− 1
A

)
.

[5, Corollary 5] shows that the above eigenvalue bound implies

λmax(E − A) > λmax(E + A)− c− 2

c− 1
λmax(A) ,
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or equivalently

c > 1 +
λmax(A)

λmax(A)− λmax(E + A) + λmax(E − A)
,

from which the Hoffman and Kolotilina bounds are obtained by setting E = 0 and E = D,
respectively.

5.3 Inertial and generalized Hoffman and Kolotilina bounds

We do not know whether the inertial bound in Theorem 4 or the generalized (multi-
eigenvalue) bounds in [5] are also lower bounds for the vectorial chromatic number. The
difficulty seems to be in determining what happens to the entire spectrum of the various
matrices when they are compressed by P = In ⊗ yy†. The Kolotilina and Lima bounds
only use the maximal and/or minimal eigenvalues.

6 Proof of the inertial lower bound on the projective rank ξ(G)

We conjecture that for all graphs G the projective rank ξf (G) is lower bounded by

1 + max

(
n+

n−
,
n−

n+

)
6 ξf (G) .

Unfortunately, we are not able to settle this question by either providing a counterexample
or proving this bound for all graphs. However, we are able to prove the weaker lower bound
in Theorem 6.

We derive two lemmas to better organize the proof of Theorem 6.

Lemma 14. Let P be an orthogonal projector and X a positive semidefinite matrix in
Cm×m. Then, we have

rank(PXP ) > rank(P )− null(X) .

Proof. There exist positive semidefinite matrices Y and ∆ such that Y has full rank, ∆
has rank null(X), and X + ∆ = Y . Using that rank(M + N) 6 rank(M) + rank(N) for
arbitrary matrices, we obtain

rank(PXP ) + rank(P∆P ) > rank(PY P ) .

Using that rank(MN) 6 rank(M) for arbitrary matrices M and N , we obtain

rank(PXP ) > rank(PY P )− rank(∆) .

We can write
PY P = (Y 1/2P )†(Y 1/2P ) .

Using that rank(M †M) = rank(M) for arbitrary matrices, we obtain

rank(PY P ) = rank(Y 1/2P ) = rank(P )

because Y 1/2 has full rank.

the electronic journal of combinatorics 26(3) (2019), #P3.45 10



Lemma 15. Let Pv be the projectors of a (d/r)-orthogonal representation. Define the
block diagonal projector

P =
∑
v∈V

eve
†
v ⊗ Pv .

Then, we have
P (A⊗ Id)P = 0n ⊗ 0d

and
rank(P ) = nr .

Proof. This follows directly from the orthogonality condition PvPw = 0d for all vw ∈ E.
The proof is very similar to the proof for the vectorial chromatic number in the previous
section. The projectors Pv have rank r for all v ∈ V so rank(P ) = nr.

We are now ready to prove Theorem 6.

Proof. Let A = B−C, defined as in Section 4, so rank(B) = n+ and rank(C) = n−. Note
that Lemma 15 implies

P (B ⊗ Id)P = P (C ⊗ Id)P .

so that

P (B ⊗ Id)P =
1

2
P ((B + C)⊗ Id)P . (26)

Clearly, the rank of the left hand side of (26) is bounded from above by n+d =
rank(B ⊗ Id).

We now bound the rank of the right hand side of (26) from below. Observe that
B+C = |A|, where |A| =

∑n
i=1 |µi|eie

†
i and µi and ei are the eigenvalues and eigenvectors

of A, respectively. Clearly, |A| is positive semidefinite, its rank is equal to rank(A) =
n++n− and its nullity is equal to null(A) = n0. Therefore, |A|⊗Id is positive semidefinite,
its rank is equal to (n++n−)d and its nullity is equal to n0d. We can now apply Lemma 14
to obtain

rank
(
P
(
|A| ⊗ Id

)
P
)
> rank(P )− n0d = nr − n0d .

Combining the upper and lower bounds on the ranks, we obtain

n+d > nr − n0d ⇐⇒ d

r
> 1 +

n−

n+ + n0
.

The result
d

r
> 1 +

n+

n− + n0

is obtained by considering P (C ⊗ Id)P on the left hand side of (26).
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7 Implications for the projective rank

The following examples demonstrate that the inertial bound is exact for ξf for various
classes of graphs. We also use Theorem 6 to derive the value of ξf for some graphs.

• For odd cycles, C2k+1 (see [6] and [17]):

1 + max

(
n+

n−
,
n−

n+

)
= χf = ξf = 2 +

1

k
; but χvect = χq = ξ = χ = 3.

• For Kneser graphs, Kp,k (see [6], [9], [19], and [10]):

1 + max

(
n+

n−
,
n−

n+

)
= χv = χf = ξf =

p

k
;χvect =

⌈p
k

⌉
; but ξR = χ = p− 2k + 2,

ξR is the orthogonal rank over the reals.

• The orthogonality graph, Ω(n), has vertex set the set of ±1−vectors of length n,
with two vertices adjacent if they are orthogonal. With n a multiple of 4 (see [17,
Lemma 4.2 and Theorem 6.4]):

χsv = χvect = ξf = ξ = χq = n; but χf and χ are exponential in n for large n.

Ω(4) has spectrum (62, 08,−26) so when n = 4:

1 + max

(
n+

n−
,
n−

n+

)
= 1 +

n−

n+
= 4 = ξf = χq = χ

but for n > 4 this inertial bound is less than ξf .

• The Andrásfai graphs, And(k), are k-regular with (3k−1) vertices. It is known ([8]
and [7]) that

1 + max

(
n+

n−
,
n−

n+

)
= 1 +

n+

n−
= 1 +

2k − 1

k
= 3− 1

k
= χf

but
χ = χq = ξ = 3.

The Andrásfai graphs are non-singular, so using Theorem 6 and that ξf 6 χf it
follows that ξf = 3− 1/k.

• The Clebsch graph on 16 vertices has spectrum (51, 110,−35) and χf = 3.2 (see [7]).
Therefore

1 + max

(
n+

n−
,
n−

n+

)
= 1 +

n+

n−
= 3.2 = χf ; but χ = ξ = 4.

The Clebsch graph is non-singular, so using Theorem 6 and that ξf 6 χf , it follows
that ξf = 3.2.

The Clebsch graph is the folded 5-cube. The folded 7-cube on 64 vertices has
spectrum 71, 321, −135, −57, so ξf for the folded 7-cube is greater than or equal to
32/11.
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More generally, if the inertial bound is exact for the fractional chromatic number of a
non-singular graph, then it is also exact for the projective rank. Vertex transitive graphs
have ξf 6 χf = n/α, so if a non-singular vertex transitive graph has

α = min (n+, n−), then ξf = χf =
n

α
.

8 Conclusion

We have proved that many lower bounds for χ(G) are also lower bounds for ξ(G). We
have also proved that for non-singular graphs

1 + max

(
n+

n−
,
n−

n+

)
6 ξf (G).

Elphick and Wocjan [6] proved this lower bound for χf for non-singular graphs, using a
simpler proof technique.

Costello et al [3] proved that almost all (random) graphs with no isolated vertices
are non-singular. This provides limited support for our conjecture that the inertial lower
bound for ξ(G) is also a lower bound for ξf (G) and consequently for χf (G).

Acknowledgements

This research has been supported in part by NSF Award 1525943.

References

[1] Y. Bilu, Tales of Hoffman: three extensions of Hoffman’s bound on the chromatic
number, J. Combin. Theory Ser. B, 96, (2006), 608–613.

[2] P. J. Cameron, A. Montanaro, M. W. Newman, S. Severini and A. Winter, On the
quantum chromatic number of a graph, Electron. J. Combin., 14, (2007), #R81.

[3] K. P. Costello, T. Tao and V. Vu, Random symmetric matrices are almost surely
non-singular, Duke Math. J. 135, (2006), 395–413.
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