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Abstract

In 1971, Rota introduced the concept of derived matroids to investigate “de-
pendencies among dependencies” in matroids. In this paper, we study the derived
matroid δM of an F-representation of a matroid M . The matroid δM has a natu-
rally associated F-representation, so we can define a sequence δM , δ2M , . . . . The
main result classifies such derived sequences of matroids into three types: finite,
cyclic, and divergent. For the first two types, we obtain complete characterizations
and thereby resolve some of the questions that Longyear posed in 1980 for binary
matroids. For the last type, the divergence is estimated by the coranks of the ma-
troids in the derived sequence.

Mathematics Subject Classifications: 05B35

1 Introduction

In algebraic topology, homology groups examine the independent holes of topological
spaces. It is natural to ask about the dependence relations among these holes. For a 1-
dimensional simplicial complex (a graph), this amounts to determining the dependencies
among all of the cycles in the graph.

As Judith Q. Longyear wrote in [5], at the Bowdoin College Summer 1971 NSF Con-
ference on Combinatorics, Gian-Carlo Rota posed the following question: “The minimal
dependent sets of vectors in a space V may be regarded as vectors in the derived space
δV over the same field by using the vectors of V as a basis for δV . Can this same sort of
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process be applied to the dependent sets of a matroid M to investigate the ‘dependencies
among dependencies’? If so, what properties does δM , the derived matroid, possess?”

Longyear [5] answered the first question when M is a binary matroid. She defined its
derived matroid δM to have as its ground set, the set C(M) of circuits of M where a set
X of such circuits is independent in δM exactly when, for each nonempty subset Y of
X, the symmetric difference of the circuits in Y is nonempty. Longyear noted that her
derived matroid is a binary matroid and she asked the following four questions about this
matroid where we have differentiated the parts of these questions that contain more than
one part.

• Question 1. (a) What effect does δ have on the flats of a matroid? (b) On the dual?

• Question 2. How many different (nonisomorphic) binary matroids M are there for
which δM has rank r?

• Question 3. (a) When does δM = M? (b) When is there a matroid N for which
δN = M? (c) If δk+1M = δ(δkM), when can δkM = δjM?

• Question 4. If M is U1,3, then δM is U2,3, δ
2M is U1,1 and δ3M is U0,0. Characterize

those M for which δkM can eventually be U0,0.

In this paper, we answer Questions 3(a), 3(c), and 4 by proving the following results.

Theorem 1. Let M be a binary matroid. If δkM ∼= M for some k > 1, then M ∼= U0,0.

Theorem 2. Let M be a binary matroid such that δkM ∼= U0,0 for some k > 0. Then
δ3M ∼= U0,0, and either M ∼= U0,0, or M is nonempty and each if its components is
isomorphic to U1,1, a circuit, or the cycle matroid of a theta graph.

Also, we extend Longyear’s work by defining the derived sequence M, δM, δ2M, . . . of
matroids beginning with any F-represented matroid M where F is an arbitrary field. We
show that, when M has no coloops, δM is connected if and only if M is connected. Our
main theorems show that derived sequences are either finite, cyclic, or divergent, and they
answer Questions 3(a), 3(c), and 4 for arbitrary F-represented matroids. In particular, we
prove that U2,4 is the unique nonempty connected matroid M for which δM ∼= M . These
results appear in Section 4 of the paper. In Sections 2 and 3, we define derived sequences
of represented matroids and prove a number of basic properties of derived matroids.

2 The derived sequence of a represented matroid

Our matroid terminology and notation will follow Oxley [6]. For a field F, let M be an
F-representable matroid with ground set E = {e1, e2, . . . , em}, and let ϕ : E → Fn be a
representation of M . The matrix A whose columns are the vectors ϕ(e1), ϕ(e2), . . . , ϕ(em)
is the matrix corresponding to ϕ. Moreover, M is M [A], the vector matroid of the matrix
A. The matrix A is also referred to as an F-representation of M .
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The pair (M,ϕ), or equivalently the pair (M,A), denotes an F-represented matroid.
For such a pair, associated with each circuit C of M , there is a vector cC = (c1, c2, . . . , cm)
in Fm such that

∑m
i=1 ciϕ(ei) = 0 where ci 6= 0 if and only if i ∈ C. Moreover, as

one easily checks, cC is unique to within a non-zero constant scalar multiple. It follows
that, associated with the F-represented matroid (M,ϕ), there is an F-represented matroid
(δM, δϕ) with ground set C(M), the set of circuits of M , such that (δϕ)(C) = cC for all
C in C(M). We call the F-represented matroid (δM, δϕ) the derived matroid of (M,ϕ);
the vector cC is the circuit vector of C. We shall frequently write δM for (δM, δϕ).

Let (δ0M, δ0ϕ) = (M,ϕ). Inductively, for any positive integer k, the kth derived ma-
troid (δkM, δkϕ) of M is the derived matroid of (δk−1M, δk−1ϕ). The derived sequence of
(M,ϕ) is the sequence (δ0M, δ0ϕ), (δ1M, δ1ϕ), (δ2M, δ2ϕ), . . . . Since over GF (2), taking
linear combinations of vectors coincides with taking symmetric differences of their sup-
ports, this definition is easily seen to extend Longyear’s definition of derived matroids of
binary matroids. For such matroids, Recski [7] denotes δM by θ(M) and refers to the
operation M → θ(M) as the theta-operation on M .

For a field F, let (M,ϕ) be an F-represented matroid and A be the matrix corre-
sponding to ϕ. Elementary row operations on A clearly do not alter the circuit vectors
of (M,ϕ). This means that, when r(M) > 0, for any ordered basis (e1, e2, . . . , er) of M ,
we can assume, after potentially permuting columns, that A is a standard representative
matrix [Ir|D] for M , where Ir is the r× r identity matrix and its columns are labelled, in
order, e1, e2, . . . , er.

For a basis B in a matroid M and an element e of E(M) − B, the unique circuit
C(e, B) contained in B ∪ e is called the fundamental circuit of e with respect to B.

Lemma 3. For a field F, let (M,ϕ) be an F-represented matroid. Then δM is a simple
matroid of rank r∗(M). In particular, if B is a basis of M , then {C(e, B) : e ∈ E(M)−B}
is a basis of δM .

Proof. It is clear that δM is simple since no circuit vector is the zero vector while no two
distinct circuits have circuit vectors that are scalar multiples of each other. If r(M) = 0,
then M ∼= U0,m, so δM ∼= Um,m and the result holds. Now suppose r(M) > 0. As noted
above, we can transform the matrix A corresponding to the representation ϕ into the
form [Ir|D]. Let the columns of this matrix be labelled, in order, by e1, e2, . . . , em where
{e1, e2, . . . , er} is a basis B of M . For each i in {1, 2, . . . ,m − r}, consider C(er+i, B).
Clearly the m − r circuit vectors of C(er+1, B), C(er+2, B), . . . , C(em, B) are linearly in-
dependent. As all of the circuit vectors of M are in the solution space of the equation
[Ir|D]X = 0, we deduce that δM has {C(ei, B) : r + 1 6 i 6 m} as a basis. Thus
r(δM) = m− r = |E(M)| − r(M) = r∗(M).

For a basis B of an F-represented matroid (M,ϕ), we shall call {C(e, B) : e ∈
E(M) − B} the circuit basis of δM associated with B. Because the fundamental cir-
cuits do not depend on the representation ϕ, this circuit basis also does not depend on
the representation.
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

124 135 236 456 1346 1256 2345

ϕ(1) 1 1 0 0 1 1 0
ϕ(2) 1 0 1 0 −1 0 1
ϕ(3) 0 1 −1 0 0 −1 −1
ϕ(4) −1 0 0 1 0 −1 −1
ϕ(5) 0 −1 0 −1 −1 0 1
ϕ(6) 0 0 −1 −1 1 1 0


Figure 1: A matrix representation of δM(K4).

Corollary 4. For a field F, let (M,ϕ) be an F-represented matroid. Then

|C(M)| = r∗(M) + r∗(δM).

The following matrix A represents M(K4) over both GF (2) and GF (3) where, of
course, −1 = 1 in the former:


1 2 3 4 5 6

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 −1

.
We will write A2 and A3 for the interpretations of A over GF (2) and GF (3), respectively.
Hence we can view M [A2] and M [A3] as GF (2)- and GF (3)-represented matroids.

Now M(K4) has exactly seven circuits. These label the columns of the matrix in
Figure 1, where, for example, 124 is an abbreviation for {1, 2, 4}. Row i of this matrix
is labelled by the column vector ϕ(i) corresponding to column i in A. The columns
of this matrix are the circuit vectors of the corresponding circuits. Thus δM [A2] and
δM [A3] are represented by this matrix interpreted over GF (2) and GF (3), respectively.
By Lemma 3, δM [A2] and δM [A3] both have rank three. Clearly each is simple having
seven elements. Thus δM [A2] ∼= F7, the Fano matroid. Since δM [A3] is ternary, we
deduce that δM [A3] 6∼= δM [A2]. It is not difficult to check that δM [A3] ∼= F−

7 , the
non-Fano matroid.

In contrast to the above, where we considered representations of a binary matroid over
two different fields, if we fix the field F, then the derived matroid of a binary matroid
does not depend on the representation.

Lemma 5. Let M be a binary matroid and let ϕ and ψ be F-representations of M for
some field F. Then (δM, δϕ) = (δM, δψ).

Proof. By a theorem of Brylawski and Lucas [1] (see [6, Proposition 6.6.5]), as M is
binary, all F-representations of M are projectively equivalent. Thus if A1 and A2 are the
matrices corresponding to δϕ and δψ, then there are non-singular matrices X and Y ,
where Y is diagonal, such that A2 = XA1Y . It follows, by using determinants to compare
the sets of bases, that M [A2] = M [A1]; that is, (δM, δϕ) = (δM, δψ).
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The derived matroid of the smallest non-binary matroid, U2,4, depends neither on the
representation nor the field. More generally, we have the following result.

Lemma 6. For a field F and n > 3, let ϕ be an F-representation of Un−2,n. Then
δUn−2,n

∼= U2,n. In particular, δU2,4
∼= U2,4.

Proof. Clearly δUn−2,n has n elements. By Lemma 3, this matroid is simple of rank two
and so it is isomorphic to U2,n.

The derived matroids of rank-one matroids are the cycle matroids of complete graphs.

Lemma 7. For a field F and n > 1, let ϕ be an F-representation of U1,n. Then δU1,n
∼=

M(Kn).

Proof. As U1,n is binary, by Lemma 5, we may assume that F = GF (2). Then δU1,n is
represented over that field by the n ×

(
n
2

)
matrix whose columns are all distinct vectors

of length n having exactly two non-zero entries. This matrix also represents M(Kn).

For a fixed field F, we know that δM does not depend on the F-representation of M
when M is binary. We now show that this does not hold in general.

Theorem 8. Let F be a field. Then, for all F-represented matroids (M,ϕ) the derived
matroid δM does not depend on the F-representation ϕ if and only if F is GF (2) or
GF (3).

Proof. If F = GF (2), then, as noted above, δM does not depend on the GF (2)-representa-
tion of M . Now let F = GF (3). Then, by a theorem of Brylawski and Lucas [1] (see
[6, Corollary 14.6.1]), all GF (3)-representations of a ternary matroid M are projectively
equivalent. Hence δM does not depend on the representation. For the converse, we use
two examples.

We view the field GF (4) as GF (2)(ω) where ω2 + ω + 1 = 0. Kahn [3] noted that
U2,4 ⊕2 U2,4 is represented over GF (4) by the matrix Ax for each x in {ω, ω + 1} where

Ax =


1 2 3 4 5 6

0 1 1 0 1 1
1 1 ω 0 0 0
0 0 0 1 1 x

.
Then the matrix representing δM [Ax] has the following submatrix:



1246 1345 2356

1 ω 0
1 0 (ω + 1)(x+ 1)
0 1 ω(x+ 1)
x 1 0
0 1 x
1 0 1

.
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These three columns are linearly dependent when x = ω+ 1 but are linearly independent
when x = ω. Thus δM may depend on the F-representation of M when F = GF (4).

For a field F with at least four elements, the matroid U3,6 is represented by the matrix

A =


1 2 3 4 5 6

1 0 0 1 1 1
0 1 0 1 x1 x2
0 0 1 1 x3 x4


where x1, x2, x3, and x4 are elements of F− {0, 1} such that

{x1, x4} ∩ {x2, x3} 6= ∅, x1x4 6= x2x3, and (x1 − 1)(x4 − 1) 6= (x2 − 1)(x3 − 1).

We know that δM [A] has fifteen elements and rank three and is spanned by the funda-
mental circuits of the elements 4, 5, and 6 with respect to the basis {1, 2, 3} of M [A]. If
we consider the matrix δA whose columns are labelled by the circuits of δM [A] and whose
rows are labelled by the columns of A, we see that the submatrix of this matrix whose
columns are labelled by these fundamental circuits, {1, 2, 3, 4}, {1, 2, 3, 5}, and {1, 2, 3, 6},
and whose rows are labelled by 4, 5, and 6 is I3. It follows that δM [A] is represented by
the submatrix of δA obtained by removing its first three rows. This submatrix has the
following submatrix: 

1246 1356 2345

−x4 0 −1
0 −x2 1
1 x1 0

.
As the determinant of this matrix is x1x4 − x2, it follows that δM [A] does depend on
the representation provided the field is large enough to allow us to choose two different
4-tuples (x1, x2, x3, x4) such that x1x4−x2 = 0 for one of these 4-tuples but x1x4−x2 6= 0
for the other. As the reader can easily check, this is possible provided F has at least five
elements. Thus, for all such fields, δM may depend on the F-representation of M .

The last result is not surprising since it is well known that all F-representations of an
F-representable matroid are projectively equivalent if and only if F is GF (2) or GF (3).

Next we observe that adding an element in series to an existing element of M does
not alter δM .

Lemma 9. For a field F, let (M,ϕ) be an F-represented matroid. If {e, f} is a cocircuit
of M , then δ(M/e) = δ(M) where the representation of M/e is that induced by ϕ.

Proof. As M has {e, f} as a cocircuit, it has a basis B that contains e but not f . We can
transform the matrix A corresponding to ϕ into a matrix of the form [Ir|D] where the
columns of the identity matrix are labelled by the elements of B, and the first columns of
Ir and D are labelled by e and f , respectively. Then M/e is represented by the matrix that
is obtained from [Ir|D] by deleting the first row and the first column. As e∪ (E(M)−B)
contains a unique cocircuit of M and {e, f} is a cocircuit contained in this set, the only
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non-zero entries in the first row of [Ir|D] are in the columns labelled by e and f . Hence
a circuit of M contains e if and only if it contains f . Thus, in the representation of δM
in which the columns are the circuit vectors and the rows are labelled by the elements of
M , the row labelled by f is a non-zero scalar multiple of the first row, the row labelled
by e. Thus deleting the row labelled by f gives a representation for the same matroid.
As (c1, c2, . . . , cn) is a circuit vector of M if and only if (c2, c3, . . . , cn) is a circuit vector
of M/e, we deduce that δ(M/e) = δM .

The next lemma specifies what effect the presence of a loop or a coloop has on δM .

Lemma 10. Let (M,ϕ) be an F-represented matroid.

(i) If e is a coloop of M , then δM = δ(M\e).

(ii) If e is a loop of M , then δM = U1,1 ⊕ δ(M\e).

Proof. The first part is immediate from the fact that a coloop is in no circuits. Now
suppose e is a loop of M . The only circuit vector with a non-zero entry in the coordinate
corresponding to e is the circuit vector of the circuit {e}. Hence {e} is a coloop of δM .

Recall that, for a matroid M , its cosimplification co(M) is the matroid that is obtained
from M by deleting all coloops and then contracting all but one element from each series
class. The following result is an immediate consequence of the last two lemmas.

Corollary 11. For a field F, let (M,ϕ) be an F-represented matroid. Then δM =
δ(co(M)).

By combining the last corollary with Lemma 6, we obtain the following result.

Corollary 12. For a field F, let (M,ϕ) be a connected F-represented matroid for which
r∗(M) = 2. Then co(M) ∼= Un−2,n for some n > 3 and δM ∼= U2,n.

We observe that the connected matroids M for which co(M) ∼= U1,3 coincide with the
cycle matroids of theta graphs.

3 Connected matroids

In this section, we prove some results that will be used in the proofs of the main theorems.

Lemma 13. Let e be an element of a connected matroid M . Then M has at least r∗(M)
circuits containing e.

Proof. The result is true if M is a circuit or a coloop and so holds if |E(M)| ∈ {1, 2}.
Assume the result is true for |E(M)| < k and let |E(M)| = k > 3. Suppose f ∈ E(M)−e.
Assume M/f is connected. Then, by the induction assumption, as r∗(M/f) = r∗(M), we
see that M/f , and hence M , has at least r∗(M) circuits containing e. We may now assume
that M/f is disconnected. Then M\f is connected and so has at least r∗(M\f) circuits
containing e. As the connected matroid M certainly has a circuit containing {e, f}, we
deduce that M has at least r∗(M\f) + 1, that is, r∗(M), circuits containing e. The result
follows by induction.
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Lemma 14. Let M be a nonempty connected matroid. Then

|C(M)| >
(
r∗(M) + 1

2

)
and r∗(δM) >

(
r∗(M)

2

)
.

Proof. We prove the first inequality by induction on |E(M)|. The result clearly holds for
r∗(M) = 1 and so holds for |E(M)| ∈ {1, 2}. Assume it holds for |E(M)| < k and let
|E(M)| = k > 3. Take e in E(M). Suppose M\e is connected. Then, by the induction
assumption,

|C(M\e)| >
(
r∗(M\e) + 1

2

)
=

(
r∗(M)

2

)
.

By Lemma 13, M has at least r∗(M) circuits containing e. Thus

|C(M)| >
(
r∗(M)

2

)
+

(
r∗(M)

1

)
=

(
r∗(M) + 1

2

)
.

We may now assume that M\e is disconnected. Then M/e is connected, so

|C(M)| > |C(M/e)| >
(
r∗(M/e) + 1

2

)
=

(
r∗(M) + 1

2

)
.

The first inequality follows by induction. The second inequality is a straightforward
consequence of the first since, by Corollary 4, |C(M)| = r∗(δM) + r∗(M).

We omit the proof of the following straightforward consequence of the last lemma.

Corollary 15. Let M be a connected matroid. Then

|C(M)| > 3(r∗(M)− 1).

For a matroid M and a basis B of M , the graph GB(M) is the simple bipartite graph
having B and E(M)− B as its vertex classes where a vertex x of E(M)− B is adjacent
to a vertex y of B if and only if y ∈ C(x,B). Cunningham [2] and Krogdahl [4] proved
the following result (see also [6, Proposition 4.3.2]).

Lemma 16. The vertex sets of the components of the graph GB(M) coincide with the
components of the matroid M .

Lemma 17. Let (M,ϕ) be an F-represented matroid such that M has no coloops. If
M = M1 ⊕M2, then δM = δM1 ⊕ δM2.

Proof. For a basis B of M , we know that δM is spanned by the set {C(f,B) : f ∈ E−B}
of fundamental circuits of B. By Lemma 16, the components of GB(M) coincide with
the components of M . In particular, if Bi = E(Mi) ∩ B for each i, then {C(f,Bi) : f ∈
E(Mi) − Bi} spans δMi. Since M has no circuit that meets both E(M1) and E(M2), it
follows that no circuit of δM meets both E(δM1) and E(δM2). We deduce that δM =
δM1 ⊕ δM2.
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Theorem 18. Let (M,ϕ) be an F-represented matroid with no coloops. If δM = N1⊕N2,
then there are matroids M1 and M2 such that M = M1 ⊕M2 and Ni = δMi for each i.

Proof. Let E(M) = {e1, e2, . . . , em} where {e1, e2, . . . , er} is a basis B of M . Then δM is
spanned by {C(er+1, B), C(er+2, B), . . . , C(em, B)}. We may assume that N1 and N2 are
spanned by {C(ei, B) : r + 1 6 i 6 s} and {C(ei, B) : s + 1 6 i 6 m}, respectively. Let
E1 = ∪si=r+1C(ei, B) and E2 = ∪mi=s+1C(ei, B).

Suppose E1∩E2 6= ∅. Then we may assume that C(er+1, B)∩C(em, B) 6= ∅. Then M
has a circuit C containing {er+1, em}. Writing the circuit vector cC as a linear combination
of the circuit vectors cr+1, cr+2, . . . , cm where cj is the circuit vector of C(ej, B), we see
that the coefficients of cr+1 and cm must both be non-zero. We deduce that, in δM , there
is a circuit containing the elements C(er+1, B) and C(em, B). This is a contradiction as
these elements are in different components of δM . We conclude that E1 ∩ E2 = ∅.

Because M has no coloops, every element of M is in E1 or E2. Letting Mi = M |Ei,
we see that δMi = Ni.

Corollary 19. For a connected representable matroid M and all k > 0, the matroid δkM
is connected and

r∗(δkM) > 2k(r∗(M)− 3) + 3.

Proof. We argue by induction on k. The result is immediate if k = 0. Now assume the
result holds for k − 1, which is non-negative. By Corollaries 4 and 15,

r∗(δkM) + r∗(δk−1M) = |C(δk−1M)| > 3(r∗(δk−1M)− 1).

Thus r∗(δkM) > 2r∗(δk−1M) − 3. Hence, by the induction assumption, as δk−1M is
connected, it is either a coloop or has no coloops. Using Theorem 18, we see that, in each
case, δkM is connected. Moreover, by the induction assumption again,

r∗(δkM) > 2(2k−1(r∗(M)− 3) + 3)− 3 = 2k(r∗(M)− 3) + 3.

Thus the result holds by induction.

4 The classification of derived sequences

In this section, we classify derived sequences into finite, cyclic, and divergent types, and
characterize each of them. By Theorem 18, we may focus on connected matroids.

Lemma 20. Let (M,ϕ) be a connected F-represented matroid. Then

(i) δM ∼= U0,0 if and only if M ∼= U1,1;

(ii) δM ∼= U1,1 if and only if M ∼= Un,n+1 for some n > 0; and

(iii) δM ∼= Un,n+1 for some n > 0 if and only if n = 2 and M ∼= M(G) where G is a
theta graph.

the electronic journal of combinatorics 26(3) (2019), #P3.46 9



Proof. Parts (i) and (ii) are straightforward to check. Now assume that δM ∼= Un,n+1

for some n > 0. Then, by Corollary 4, n + 1 = r∗(M) + r∗(δM) = r∗(M) + 1, so
r∗(M) = n. As δM is simple, n > 2. By Corollary 15, |C(M)| > 3(r∗(M) − 1), so
r∗(M) + 1 > 3(r∗(M) − 1). Hence r∗(M) 6 2. Thus r∗(M) = 2, so, by Corollary 12,
for some t > 3, we have that co(M) ∼= Ut−2,t and δM ∼= U2,t. We deduce that n = 2
and t = 3. Thus M ∼= M(G) where G is a theta graph. The converse is established in
Corollary 12.

Lemma 21. Let (M,ϕ) be a connected F-represented matroid. Then δM is not the cycle
matroid of a theta graph.

Proof. Suppose δM is the cycle matroid of a theta graph. Then r∗(δM) = 2. Thus,
by Corollary 4, |C(M)| = r∗(M) + 2. But, by Corollary 15, |C(M)| > 3(r∗(M) − 1).
Hence r∗(M) 6 2. By Lemma 20, r∗(M) 6∈ {0, 1}. Thus r∗(M) = 2, so, by Corollary 12,
δM ∼= U2,n for some n > 3, a contradiction.

Lemma 22. Let M be a 6-element rank-3 simple matroid. Then |C(M)| > 7 with equality
if and only if M ∼= M(K4).

Proof. If M is not 3-connected, then it is either the 2-sum of U2,3 and U2,5 or the parallel
connection of U2,3 and U2,4. One easily checks that, in these cases, |C(M)| = 10 and
|C(M)| = 8, respectively. If M is 3-connected, then M is isomorphic to M(K4), W3, Q6,
P6, or U3,6 (see, for example, [6, Corollary 12.2.19]) where each of the last four matroids is
obtained from its predecessor by relaxing a circuit-hyperplane. Since each such relaxation
eliminates one circuit but adds r∗ new circuits, we deduce that |C(M)| > |C(M(K4)| with
equality if and only if M ∼= M(K4). As M(K4) has exactly seven circuits, the lemma
follows

The next theorem answers Longyear’s Questions 3(a) and 3(c) for represented matroids
over arbitrary fields. In particular, Theorem 1 is an immediate consequence of this result.

Theorem 23. Let (M,ϕ) be a nonempty F-represented matroid. If δkM ∼= M for some
k > 1, then M is a direct sum of matroids each of which is isomorphic to U2,4.

Proof. It suffices to show that if δkM ∼= M for some k > 1 and M is connected, then
M ∼= U2,4. Thus we assume that M is connected. We have r∗(M) = r∗(δkM), so, by
Corollary 19,

r∗(M) = r∗(δkM) > 2k(r∗(M)− 3) + 3.

Hence 0 > (2k − 1)(r∗(M)− 3), so r∗(M) 6 3. By Lemma 20, r∗(M) 6∈ {0, 1}.
Suppose r∗(M) = 3. Then r∗(δkM) = 3. As r∗(δiM) > 2r∗(δi−1M) − 3 for all i in

[k], it follows by induction that r∗(δiM) = 3 for all such i. Since r(δkM) = r∗(δk−1M),
we deduce that r(M) = 3. Hence M is a 6-element rank-3 matroid having exactly six
circuits. As δkM is simple, so is M and we have a contradiction to Lemma 22. Thus
r∗(M) 6= 3, so r∗(M) = 2.
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Now r(δM) = r∗(M) = 2. Since δM is simple, it follows that δM ∼= U2,n for some
n > 3. If n = 3, then δM , δ2M , and δ3M are U2,3, U1,1, and U0,0, so, for all i > 1, no
δiM is isomorphic to M . If n > 5, then r∗(δM) > 3 > r∗(M), so k > 2. Then

r∗(δkM) > 2k−1(r∗(δM)− 3) + 3 > 3 > r∗(M),

a contradiction. We conclude that n = 4, that is, δM ∼= U2,4. By Lemma 6, δkM ∼= U2,4

for all k > 1, so r(δkM) = r∗(δk−1M) = 2. Hence r(M) = 2, so M is a simple 4-element
matroid of rank two, that is, M ∼= U2,4.

Theorem 24. Let M be a connected represented matroid that is not isomorphic to U0,0,
U1,1, a circuit, the cycle matroid of a theta graph, or a matroid whose cosimplification is
U2,4. Then, for all k > 1,

r∗(δk+1M) > r∗(δkM).

Moreover, r∗(δkM) > 2k−1 + 3 unless M ∼= U1,4. In the exceptional case, r∗(M) = 3 =
r∗(δM) and r∗(δ2M) = 4, so r∗(δkM) > 2k−2 + 3 for all k > 2.

Proof. We may assume that r∗(M) > 2 otherwise M is U0,0, U1,1, or a circuit. By
Corollary 19,

r∗(δk+1M) > 2r∗(δkM)− 3. (1)

Then, for k > 1,

r∗(δkM) > 2k−1(r∗(δM)− 3) + 3 > 2k−1(2r∗(M)− 6) + 3.

Thus r∗(δkM) > 2k−1 + 3 > 4 provided r∗(δM) > 4 or r∗(M) > 4. In each of these cases,
the lemma holds since, by (1), r∗(δk+1M) > r∗(δkM) + r∗(δkM)− 4 > r∗(δkM).

We may now assume that r∗(δM) < 4 and r∗(M) < 4. Suppose r∗(M) = 3. Then
r(δM) = 3. As r∗(δM) 6 3, we see that |E(δM)| 6 6, that is, |C(M)| 6 6. Hence,
by Lemma 22, |E(M)| 6 5. Suppose |E(M)| = 4. Then M ∼= U1,4 and, by Lemma 7,
δM ∼= M(K4). Thus r∗(δM) = 3 and r∗(δ2M) = 4. Therefore the first inequality in the
lemma holds when k = 1. For k > 2, we have r∗(δkM) > 2k−2(r∗(δ2M) − 3) + 3 and,
using (1), we see that the lemma follows when M ∼= U1,4 since r∗(δ2M) = 4.

Now suppose that r∗(M) = 3 and |E(M)| = 5. Then M is isomorphic to U2,5 or the
matroid that is obtained from U2,4 by adding an element in parallel to an existing element.
In each of these cases, |C(M)| > 8, so r∗(δM) > 5, a contradiction.

We may now assume that r∗(M) = 2 and r∗(δM) 6 3. Then r(δM) = 2 and, by
Corollary 12, δM ∼= U2,4. Since M∗ is a rank-2 connected matroid with exactly four
rank-one flats, we deduce that co(M) ∼= U2,4, a contradiction.

We now answer Longyear’s Question 4 for arbitrary represented matroids and thereby
prove Theorem 2.

Theorem 25. Let M be a represented matroid such that δkM ∼= U0,0 for some k > 0.
Then δ3M ∼= U0,0 and each component of M is isomorphic to U1,1, a circuit, or the cycle
matroid of a theta graph.
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Proof. By Lemma 20, if each component of M is isomorphic to U1,1, a circuit, or the
cycle matroid of a theta graph, then δ3M ∼= U0,0. Now let N be a component of M .
By Lemma 6, if co(N) ∼= U2,4, then δkM has U2,4 as a component for all k > 1, so
δkM 6∼= U0,0. We may now assume that N is not isomorphic to U1,1, a circuit, the cycle
matroid of a theta graph, or a matroid whose cosimplification is U2,4 Then, for all k > 1,
by Theorem 24, r∗(δkM) > 3, so δkM 6∼= U0,0.
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