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Abstract

We show by construction that every rhombic lattice Γ in R2 has a fundamental
domain whose symmetry group contains the point group of Γ as a subgroup of index
2. This solves the last open case of a question raised in a preprint by the authors on
fundamental domains for planar lattices whose symmetry groups properly contain
the point groups of the lattices.

Mathematics Subject Classifications: 52C05, 52C20, 05B45

1 Introduction

A lattice Γ in Rd is the Z-span of d linearly independent vectors in Rd. The lattice Γ
forms a group that is isomorphic to the free abelian group of rank d. The point group
P (Γ) of Γ is the set of Euclidean isometries in Rd fixing both Γ and the origin. That
is, P (Γ) is a subgroup of the orthogonal group O(d) consisting of those transformations
that fix Γ. A fundamental domain for Γ is a complete set of representatives of the orbits

of Rd under the action of the group Γ. For example, F = [− 1
2 ,

1
2
)2 is a fundamental

domain for the lattice Γ = Z2 ⊆ R2. We are interested in the geometric properties of
fundamental domains, in particular, their symmetries. For a given X ⊆Rd, the symmetry
group Sym(X) of X is the group of Euclidean isometries in Rd that leave X invariant. In
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our example, Sym(F ) consists of the identity and the reflection in the line y = x. Now, F

differs from the square region Q = [− 1
2 ,

1
2
]2 only by a set of Lebesgue measure zero, and

Q is more symmetric compared to F with Sym(Q) = P (Γ). Note that throughout this
paper, Lebesgue measure is used.

In order to discuss symmetries or geometric properties of fundamental domains, it is
convenient to allow repetitions of representatives on sets of measure zero. In particular,
we restrict ourselves to consider compact fundamental domains. Thus, in this paper, a
fundamental domain for a lattice Γ is a compact set F such that (i) the Minkowski sum
F+Γ = {p+v ∣ p ∈ F,v ∈ Γ} equalsRd and (ii) for any nonzero v ∈ Γ, int(F )∩int(F+v) = ∅.

The following fact generalizes the earlier example: For any lattice Γ, the Voronoi
region V of the origin is a fundamental domain for Γ such that Sym(V ) equals P (Γ) [3].
Recall that the Voronoi region of a point v of a lattice Γ in Rd is the collection of points
in Rd closest to v than to any other point in Γ. The following question then naturally
arises: Is there a fundamental domain F for Γ that has a symmetry group larger than
P (Γ), in the sense that Sym(F ) properly contains P (Γ)?

About the year 2000 Veit Elser constructed a fundamental domain for Z2 exhibiting
eightfold dihedral symmetry rather than the expected fourfold dihedral symmetry and a
fundamental domain for the hexagonal lattice inR2 possessing twelvefold dihedral symme-
try [6, 5]. Interestingly, this latter fundamental domain appears in different contexts in [1]
and [2], where it serves as a window and an atomic surface, respectively, for mathematical
quasicrystals.

The procedures in [5] were refined and generalized in [3] to obtain fundamental domains
for rectangular lattices having the symmetries of a square. It was also shown that for
oblique lattices, one can use a rectangular fundamental domain with one edge length equal
to that of a basis vector, and a suitably chosen height. In fact, for a certain subclass of
oblique lattices, this rectangular fundamental domain may be a square. Thus, if a bound
for [Sym(F ) ∶ P (Γ)] for planar lattices exists, it must be at least 4.

Summarizing, for each planar lattice Γ mentioned so far, there is a fundamental domain
F for Γ for which [Sym(F ) ∶ P (Γ)] = 2 (Theorem 1.1 in [3]). Hence, the only missing case
for planar lattices is that of rhombic lattices and this paper is dedicated to fill this gap.

A rhombic lattice is a planar lattice for which there exists a basis consisting of two
vectors of equal length such that the angle between the vectors is not π

2 (square lattice), or
π
3 or 2π

3 (hexagonal lattice). For any rhombic lattice Γ, P (Γ) is isomorphic to the dihedral
group D2 of order 4. In this paper, we construct for each rhombic lattice a fundamental
domain F with fourfold dihedral symmetry. Some of these fundamental domains are
illustrated in Figures 4 and 10. Our procedure differs substantially from the methods
used in [3], as these methods do not seem to be applicable to rhombic lattices. Whereas
the constructions in [3] involve removing subregions and adding different ones at each
step, the construction we employ here simply adds regions at each step.

We prove our main result (Theorem 1) as follows: First, we prove that it is enough
to consider rhombic lattices whose diagonals have ratio at most 3 (Lemma 2). We then
show that in order to construct F it suffices to select a suitable subregion of a rectangle
that satisfies certain conditions (see Rh1-Rh3 below). It turns out from Lemma 4 that
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it is enough to consider rectangles with edge ratio at most 3. We then establish in
Lemma 7 that after taking care of a particular subregion of the rectangle, the remaining
portion of the rectangle may be dealt with by considering a smaller rectangle and finding
a corresponding subregion satisfying analogues of conditions Rh1-Rh3, thereby creating
an iterative process. Finally, we argue that the limit obtained by this iteration gives rise
to a fundamental domain for Γ satisfying the desired properties.

2 Main result

Theorem 1. Let Γ be a rhombic lattice. Then there exists a fundamental domain F for
Γ such that [Sym(F ) ∶ P (Γ)] = 2, in particular, Sym(F ) ≅D4.

Proof. Let Γ be a rhombic lattice. Because the properties we will be dealing with
are invariant under similarities, we assume without loss of generality that Γ has basis
{(2m0 ) , (mn)}, where 0 < m < n. Here, a basis for Γ consisting of vectors of equal length is
{(m−n) , (mn)}. Let α be the reflection in the y-axis and β be the half-turn about the origin
(or central symmetry in R2). Then, P (Γ) = ⟨α,β⟩ ≅D2.

Suppose first that n ≤ 3m. Let Q be the triangular region with vertices (00), X = (m0 ),
and W = ( 0

m). The union S of the images of Q under P (Γ) forms a region with symmetry
group D4. Translates of S by distinct vectors in Γ are either disjoint or intersect on sets
of measure zero. See Figure 1.

Figure 1: First step in constructing a highly symmetric fundamental domain for a rhombic
lattice.

Now, consider the rectangular region R with vertices W , X, Y , and Z, where Y Z lies
on the line through (0n) and V = ( m

n−m). We claim that there is a subset of R such that
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if E is the union of the images of this subset under P (Γ), then the closure F = cl(S ∪ E)
is a fundamental domain for Γ. If in addition the subset of R is preserved by the mirror
reflection σ in the perpendicular bisector of WX, then F has symmetry group ⟨α,σ⟩ ≅D4.

Since n ≤ 3m, the ratio WX
XY = 2m

(n−m) is at least 1. Partition R into the two sets: A,

the square XY V U , and B = cl(R∖A), the rectangle WUV Z (see Figure 1). Note that if
n = 3m, then V = Z and B is empty.

Consider the images of A and B under P (Γ) and their translates by Γ. Equivalently,
the union of these images and translates give Sym(Γ)(A ∪ B). The only element of
Sym(Γ)A that overlaps with A is α(A) + (2m0 ). In fact, the two are equal. Similarly,
B = β(B) + (mn), and B is disjoint with its other copies in Sym(Γ)B. Thus, it suffices to
find closed sets K ⊆ A and L ⊆ B such that K ⊍ (α(K) + (2m0 )) = A, L ⊍ (β(L) + (mn)) = B,
and K ⊍ L is invariant under σ, where ⊍ denotes a union of sets whose intersection has
measure zero. We take the aforementioned E to be the union of the images of K⊍L under
P (Γ).

The required conditions above can also be expressed in terms of symmetries of A and
B. Denote by Tv the translation by the vector v. Let τ = T

(
m
0 )
αT −1
(
m
0 )

and ρ = T 1
2
(
m
n)
βT −1

1
2
(
m
n )

.

That is, τ is the mirror reflection in XV and ρ is the half-turn about the center of B which
is 1

2 (mn). Using the fact that for any vector v and orthogonal linear transformation ψ,
ψTv = Tψ(v)ψ holds, we find that indeed, τ = T

(
2m
0 )
α and ρ = T

(
m
n)
β. Thus, our main

problem reduces to finding K ⊆ A and L ⊆ B satisfying the following properties.

Rh1. K ⊍ τ(K) = A

Rh2. L ⊍ ρ(L) = B

Rh3. σ(K ⊍L) = K ⊍L

In the degenerate case n = 3m, since B = ∅, the problem reduces to finding K ⊆ A that
satisfies Rh1 and that is invariant under σ.

We now argue that the case where the ratio n
m of the diagonals is greater than 3 may

be dealt with similarly.

Lemma 2. It suffices to consider the case when n ≤ 3m.

Proof of Lemma 2. If n > 3m, let t be the largest integer such that n−2mt >m. For each
i from 1 to t, construct the square [m(i − 1),mi] × [m(i − 1),mi]. Obtain the union C of
the images of these squares under P (Γ). We note that Sym(C) ≅ D4. By the choice of
t, C does not intersect with any of its translates by non-horizontal vectors in Γ. See for
example the squares in Figure 2(a), where t = 3 and C is the union of the red squares.
Note that the encircled dots represent lattice points. The points not encircled mark the
furthest corners of the Γ-translates of C.

Furthermore, C does not overlap with its horizontal Γ-translates because the squares of
the form [m(i−1+2k),m(i+2k)]×[m(i−1),mi], where k ∈ Z, are precisely the horizontal
Γ-translates of [m(i−1),mi]× [m(i−1),mi], while those of the form [m(i+2k),m(i+1+
2k)]×[m(i−1),mi] are the horizontal Γ-translates of [m(−i),m(−i+1)]×[m(i−1),mi] =
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C (
0
0

) (
2m
0

)

(mn )

n− 2mt

(a)

A
B

Q
D E

G

W

X

Y

Z

V

U

C (
0
0

) (
2m
0

)

(mn )

(b)

Figure 2: The case when the ratio of the diagonals is greater than 3. Here, the smaller
encircled dots represent lattice points while larger dots represent the furthest corners of
copies of C.

α([m(i−1),mi]×[m(i−1),mi]). Thus, C does not overlap with its translates by nontrivial
vectors in Γ. Moreover, the portion of the plane left uncovered by C + Γ is a union of
horizontal strips of width n − 2mt.

Consider the points marked by dots on the boundary of one such horizontal strip,
say the white strip in Figure 2(a). Each point on the lower boundary is both an upper-
right corner and an upper-left corner of two horizontally-separated copies of C, while
each vertex on the upper boundary is both a lower-right and lower-left corner of two
horizontally-separated copies of C. The upper layer of points is the translation of the
lower layer by ( m

n−2mt), and so the points on these two layers are spaced in the same way
that the points of a rhombic lattice with basis (2m0 ) and ( m

n−2mt) are spaced. Note that by
the choice of t, m < n − 2mt ≤ 3m.

In Figure 2(b), D = (mtmt) is the upper-right corner of C, E = (m(t+2)
mt

) is the upper-left

corner of C + (t + 1) (2m0 ), and G = (m(t+1)
n−mt

) is the lower-left corner of C + (mn) + t (2m0 ). This

time, let Q be the triangular region with vertices D = (mtmt), W = ( mt
m(t+1)), and X = (m(t+1)

mt
).

Since m < n − 2mt, Q lies entirely in the strip. Let S be the union of the images of Q
under P (Γ). Extending the argument used for C, S does not overlap with its horizontal
translates. Furthermore, because m < n− 2mt, S does not overlap with its non-horizontal
translates. Let R be the rectangle WXY Z with Y Z on the line through ( mt

n−mt) and

V = ( m(t+1)
n−m(t+1) ). Again, we can partition R into A, the square XY V U , and B = cl(R∖A),

the (possibly empty) rectangle WUV Z.
Consider the images of A and B under P (Γ) and the translates of these by Γ. Similar
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to the case when n ≤ 3m, A = α(A) + (t + 1) (2m0 ) and B = β(B) + (mn) + t (2m0 ). Thus, if
there exist K ⊆ A and L ⊆ B satisfying conditions Rh1, Rh2, and Rh3, and E is formed
accordingly, then the set F = cl(C ∪ S ∪ E) is a fundamental domain for Γ with symmetry
group D4.

This confirms that it suffices to consider the case when the ratio n
m of the diagonals of

the rhombic lattice is at most 3. In fact, we use the same Q, K, and L (up to similarity) for
two rhombic lattices if the difference between their diagonal ratios is an even integer. ∎

We now construct the sets K and L, where we assume 1 < n
m ≤ 3. Let a and b, with

a ≥ b, be the edge lengths of R so that 2m
(n−m) = a

b . For convenience, we reorient R such

that U is at the origin, A = [0, b]× [0, b], and B = [b−a,0]× [0, b] if a ≠ b. Recall that B is
empty when a = b, which happens when n = 3m. Recall also that σ is the reflection in the
perpendicular bisector of WX, τ is the reflection in the line through XV , and ρ is the
half-turn about the center of B. In the present orientation of R the axis of σ is vertical
and the axis of τ has slope −1.

Lemma 3. There exist K and L satisfying Rh1, Rh2, and Rh3 whenever the ratio a
b is

an integer.

Proof of Lemma 3. In each of the rectangles in Figure 3, the rightmost square is A. For
a
b = 1, B is empty and it suffices to find K ⊆ A =R such that K ⊍ τ(K) = A and σ(K) = K.
One way to do this is to draw the two diagonals of A to divide it into four congruent
triangles, and choose K to be the union of any two non-adjacent triangles, say the triangles
marked red in Figure 3(a).

τ σ

U

(a)

τ σ

ρ

U

(b)

τσ

ρ

U

(c)

τσ

ρ

U

(d)

Figure 3: Choices for K and L when (a) a
b = 1, (b) a

b = 2, (c) a
b = 3, (d) a

b = 4.

If a
b = 2, B is also a square, and B equals σ(A). This together with Rh3 implies that

σ(K) must be L. Note that the chosen K for a
b = 1 cannot be used, because its image

under σ violates Rh2. Rather, one can take K to be one of the triangles into which the
axis of τ divides A, as illustrated in Figure 3(b).

We now consider the case when a
b ≥ 3. Because a

b is an integer, we can divide R into
a row of a

b congruent squares each of edge length b. If a
b is odd, color triangles in each

square as in the case when a
b = 1, such that no two red triangles share a common edge

(orientations of red triangles alternate). If a
b is even, group the squares into adjacent

pairs and color triangles in each pair as in the case when a
b = 2. This is illustrated in

Figures 3(c) and 3(d) for a
b = 3 and a

b = 4, respectively. In either case, if we let the red
portion in A be K and the union of the other red portions be L, then the sets K and L
satisfy conditions Rh1, Rh2, and Rh3. ∎
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Figure 4 shows the fundamental domains formed for the rhombic lattices with (mn) = (35)
and (23), which correspond to a

b = 3 and 4, respectively.

(a) (b)

Figure 4: Some fundamental domains where (a) a
b = 3 and (b) a

b = 4.

We shall use the same idea for more general rectangles R, that is, we subdivide R
into squares and take suitable subregions. If the rectangle has irrational edge ratio, the
number of squares is necessarily infinite [4]. The method we develop below works for any
real value of the ratio, terminating after a finite number of steps precisely when the edge
ratio is rational. First, we reduce the cases we have to consider.

Lemma 4. It suffices to construct K and L for rectangles R with edge ratio a
b not exceeding

3.

Proof of Lemma 4. Suppose R = A ⊍ B has edge ratio a
b ≥ 1, and K and L satisfy Rh1,

Rh2, and Rh3. To prove the lemma, we show that for R′ = A ⊍ B′ with edge ratio a
b + 2

and corresponding ρ′ and σ′, one can construct L′ ⊆ B′ from K and L such that K and L′
satisfy the corresponding analogues of Rh1, Rh2, and Rh3.

Note that τ(A) = A, ρ(B) = B, σ(A ⊍ B) = A ⊍ B. Refer to Figure 5. Consider the
rectangle R ⊍ ρ(A) = A ⊍ B ⊍ ρ(A). We have

ρ(A ⊍ B ⊍ ρ(A)) = A ⊍ B ⊍ ρ(A).

Let σ′ = ρσρ−1 = ρσρ, that is, σ′ is the reflection in the line formed by applying ρ to
the axis of σ. Then,

σ′(B ⊍ ρ(A)) = ρσρ(B ⊍ ρ(A)) = ρσ(B ⊍A) = ρ(B ⊍A) = B ⊍ ρ(A).

Set B′ = B ∪ ρ(A) ∪ σ′(A) and R′ = A ⊍ B′. Observe that the rectangle R′ has edges
with ratio a

b + 2. Let ρ′ = σ′ρ(σ′)−1 = σ′ρσ′, that is, ρ′ is the half-turn about the image of
the center of ρ under σ′. It is easy to verify that

ρ′(B′) = B′ and σ′(R′) =R′.

Set L′ = L ⊍ ρτ(K) ⊍ σ′(K) ⊆ B′. We claim that

σ′(K ⊍L′) = K ⊍L′ and L′ ⊍ ρ′(L′) = B′.
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τσσ′

ρρ′
AB

ρ(A)σ′(A)

a

b

B′

Figure 5: Constructing rectangle R′ from rectangle R with edge ratio increased by 2.

First, by Rh1 and Rh2, L⊍ ρτ(K) and ρ(L⊍K) partition B ⊍ ρ(A), which is invariant
under σ′. Because σ′ρ(L ⊍K) = ρσ(L ⊍K) = ρ(L ⊍K) by Rh3, we obtain that

σ′(L ⊍ ρτ(K)) = L ⊍ ρτ(K).

It then follows that σ′(K ⊍L′) = K ⊍L′.
Finally, we deduce that

L′ ⊍ ρ′(L′) = L ⊍ ρτ(K) ⊍ σ′(K) ⊍ σ′ρσ′(L ⊍ ρτ(K) ⊍ σ′(K))
= σ′(L ⊍ ρτ(K)) ⊍ σ′(K) ⊍ σ′ρ(L ⊍ ρτ(K) ⊍K)
= σ′(A ⊍ B ⊍ ρ(A)) = B′.

Thus, for R′ = A⊍B′, τ , ρ′, and σ′, and K ⊆ A and L′ ⊆ B′ as above, the corresponding
analogues of conditions Rh1, Rh2, and Rh3 are satisfied. This shows how one can obtain
from a given construction for a given rectangle a corresponding construction for a rectangle
with edge ratio increased by 2. Hence, it does indeed suffice to consider those with edge
ratio at most 3. ∎

Remark 5. In Lemma 4, the edge ratio a
b may be an integer. The construction for the

integer edge ratio case discussed in Lemma 3 is precisely what is obtained when the
procedure in the proof of Lemma 4 is applied inductively starting with the constructions
for a

b = 2 and a
b = 3.

The reasoning in the proof of Lemma 4 applies as well to subsets of A, B, K, and L
that satisfy analogous conditions. We note them in the following remark as they will be
useful later.

Remark 6.

(a) Suppose A∗ ⊆ A and B∗ ⊆ B such that τ(A∗) = A∗, ρ(B∗) = B∗, σ(A∗ ⊍B∗) = A∗ ⊍B∗.
Then, A∗⊍B∗⊍ρ(A∗)⊍σ′(A∗) is invariant under σ′ and B∗⊍ρ(A∗)⊍σ′(A∗) is invariant
under ρ′.

(b) Suppose K∗ ⊆ A∗ and L∗ ⊆ B∗ satisfy analogues of Rh1, Rh2, and Rh3, that is,
K∗⊍τ(K∗) = A∗, L∗⊍ρ(L∗) = B∗, σ(K∗⊍L∗) = K∗⊍L∗. Then, K∗⊍L∗⊍ρτ(K∗)⊍σ′(K∗)
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is invariant under σ′, and the region L∗ ⊍ ρτ(K∗) ⊍ σ′(K∗) and its image under ρ′

partition B∗ ⊍ ρ(A∗) ⊍ σ′(A∗).

We have seen how one can directly construct K and L when a
b is an integer. For non-

integer values of a
b , we will construct K and L in a finite or countable number of steps.

In particular, we will show that there are closed regions A∗i , B∗i , K∗i , L∗i for i ∈N with the
following properties.

D1. For every i,

a. τ(A∗i ) = A∗i , ρ(B∗i ) = B∗i , σ(A∗i ⊍ B∗i ) = A∗i ⊍ B∗i .

b. K∗i ⊆ A∗i and L∗i ⊆ B∗i , and they satisfy analogues of Rh1, Rh2, and Rh3.

D2. A = cl(⊍
i

A∗i ) and B = cl(⊍
i

B∗i ).

If so, let K ∶= cl(⊍
i

K∗i ) ⊆ A, and L ∶= cl(⊍
i

L∗i ) ⊆ B. Then if in addition, the unions

K ∪ τ(K) and L∪ ρ(L) are disjoint up to sets of measure zero, then K and L satisfy Rh1,
Rh2, and Rh3.

Set a1 = a, b1 = b. Suppose 1 < a1
b1
< 2, that is, A is larger than B. Let v1 = b1−(a1−b1) =

2b1 − a1 and q1 = ⌊ b1
v1
⌋. Recall that A = [0, b] × [0, b], and B = [b − a,0] × [0, b]. Consider

all the squares of the form [v1i1, v1(i1 + 1)]× [b1 − v1(j1 + 1), b1 − v1j1], where i1 and j1 are
nonnegative integers such that i1 + j1 ≤ q1 − 1. See for example Figure 6(a), where q1 = 3.
The squares all have edge length v1, and they form a triangular array of squares propped
against the left and upper edges of A. We say that the array is anchored at the upper-left
vertex of A, and is of order q1, with edge length v1. If in addition, q1 > 1, construct a
second array of squares anchored at the lower-right vertex of A of order q1 − 1 with edge
length v1. This is the largest order of a second array that can be constructed such that
the two arrays do not overlap. The union A∗1 of the two arrays is invariant under τ . Next,
form two arrays within B, both of order q1 − 1 and edge length v1, one anchored at the
upper-right vertex, and another at the lower-left vertex of B. Let B∗1 be the union of these
two arrays. Then ρ(B∗1) = B∗1 and σ(A∗1 ⊍ B∗1) = A∗1 ⊍ B∗1 , so that A∗1 and B∗1 satisfy D1a.

Suppose 2 < a1
b1
< 3. This time, B is larger than A and we set v1 = (a1−b1)−b1 = a1−2b1

and q1 = ⌊ b1
v1
⌋. See Figure 6(b). Within A, construct two arrays of edge length v1, one

with order q1 anchored at the lower-right vertex of A, and the other with order q1 − 1 (if
positive) anchored at the upper-left vertex of A. We denote the union of these arrays by
A∗1. Then form two arrays within B, both of order q1 and edge length v1, one anchored
at the upper-right vertex of B, and another at the lower-left vertex of B. Let B∗1 be the
union of these two arrays. Again, D1a is satisfied.

To construct K∗1 and L∗1, draw the diagonals of each square in each array, thereby
dividing each square into four congruent triangles (as done in the odd-integer-ratio case).
Consider the arrays in A1 and B1 anchored at a shared vertex of A and B. For each square
in these arrays, color the upper and lower triangles red. For the remaining two arrays,
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τ σ

ρ

v1

b2 a1 − b1

AB
(a)

τσ

ρ

v1

b1

b2

AB
(b)

Figure 6: First steps in constructing K and L for (a) 1 < a
b < 2 and (b) 2 < a

b < 3.

color the left and right triangles of each square red as in Figure 7. Let K∗1 and L∗1 be the
union of the red regions contained in A∗1 and B∗1 , respectively. By construction, K∗1 and
L∗1 satisfy D1b.

τ σ

ρ

(a)

τσ

ρ

(b)

Figure 7: Subregions K∗1 and L∗1 of A∗1 and B∗1 for (a) 1 < a
b < 2 and (b) 2 < a

b < 3.

Let b2 = b1 − v1q1. This is the uniform width of the “path” S1 left uncovered by A∗1
and B∗1 in R. Thus, if b1

v1
is an integer, then A = A∗1 and B = B∗1 , and so we are done if

we set K = K∗1 and L = L∗1. Otherwise, consider the central column of squares, that is,
the column fixed by σ. The squares in this column cover a vertical strip of R of width v1
except for a rectangle R̂ with dimensions b2 × v1, where b2 < v1. Partition R̂ into a square
Â of edge length b2 and a rectangle B̂ as in Figure 8. Let ρ̂ be the half-turn about the
center of B̂ and τ̂ be the reflection in the line containing the diagonal of Â that passes
through one corner of the central column of squares.

Lemma 7. It suffices to find K̂ ⊆ Â and L̂ ⊆ B̂ that satisfy the corresponding analogues
of Rh1, Rh2, and Rh3.

Proof of Lemma 7. Suppose 1 < a1
b1

< 2. Then, R̂ ⊆ A. Consider the sequences {Rj} and
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τ̂

σ

ρ̂
Â

B̂

v1

b2

Figure 8: The rectangle R̂ = Â ⊍ B̂.

{Fj} defined by R1 = R̂ = Â ⊍ B̂, F1 = K̂ ⊍ L̂, and for 1 ≤ j ≤ 4q1,

Rj+1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τ(Rj), j ≡ 1 (mod 4)
σ(Rj), j ≡ 0 (mod 2)
ρ(Rj), j ≡ 3 (mod 4)

and Fj+1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τ(cl(Rj ∖ Fj)), j ≡ 1 (mod 4)
σ(Fj), j ≡ 0 (mod 2)

ρ(cl(Rj ∖ Fj)), j ≡ 3 (mod 4).

The rectangles Rj generated are labeled in Figure 9 by their indices. Note that the
orientations of the last rectangles in the sequence are not necessarily the same as those
in the figure. The longer edges of R4q1−3 and R4q1−2 may be horizontal and vertical,
respectively. Regardless of the orientations,the following properties hold.

(a) For 0 ≤ k ≤ q1 − 1, R4k+1 and R4k+2 are non-overlapping τ -images of each other, and
F4k+1 ⊍ F4k+2 and its image under τ partition R4k+1 ⊍R4k+2.

(b) For 0 ≤ k ≤ q1 − 2, R4k+3 and R4k+4 are non-overlapping ρ-images of each other, and
F4k+3 ⊍ F4k+4 and its image under ρ partition R4k+3 ⊍R4k+4.

(c) The regions R4q1−1 and R4q1 overlap on a rectangle congruent to B̂. By the choice of

L̂, the portions of F4q1−1 and F4q1 inside this rectangle coincide completely.

(d) For 1 ≤ k ≤ 2q1, R2k and R2k+1 are σ-images of each other. The same holds true for
F2k and F2k+1.

(e) The union
4q1

⋃
j=1

Rj covers R ∖ (A∗1 ∪ B∗1) except for a square region H. The rectangle

R4q1+1 covers this. By the choice of K̂, the portion of F4q1+1 inside this square and the
image of this portion under τ partition the square.

Define A∗2 = ⋃
j≡1,2 (mod 4)

Rj ⊆ A, K∗2 = ⋃
j≡1,2 (mod 4)

Fj ⊆ A∗2, B∗2 = ⋃
j≡0,3 (mod 4)

Rj ⊆ B, and

L∗2 = ⋃
j≡0,3 (mod 4)

Fj ⊆ B∗2 . We see that these, with τ , ρ, and σ, satisfy analogues of Rh1,

Rh2, and Rh3. Moreover, A∗i , B∗i , K∗i , and L∗i for i = 1,2 satisfy conditions D1 and D2.
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R̂

4q1 − 1
H

Figure 9: Filling up the uncovered path S1 in R by applying a sequence of σ, τ , and ρ on
R̂. The two vertices of rectangle Ri marked by big dots are the corresponding images of
the two vertices marked in Ri−1.

The case when 2 < a1
b1

< 3 is treated analogously. In this case, R̂ ⊆ B. Define the

sequences {Rj} and {Fj} by R1 = R̂ = Â ⊍ B̂, F1 = K̂ ⊍ L̂, and for 1 ≤ j ≤ 4q1 + 2,

Rj+1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ(Rj), j ≡ 1 (mod 4)
σ(Rj), j ≡ 0 (mod 2)
τ(Rj), j ≡ 3 (mod 4)

and Fj+1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ(cl(Rj ∖ Fj)), j ≡ 1 (mod 4)
σ(Fj), j ≡ 0 (mod 2)

τ(cl(Rj ∖ Fj)), j ≡ 3 (mod 4).

This time, take A∗2 = ⋃
j≡0,3 (mod 4)

Rj ⊆ A, K∗2 = ⋃
j≡0,3 (mod 4)

Fj ⊆ A∗2, B∗2 = ⋃
j≡1,2 (mod 4)

Rj ⊆

B, and L∗2 = ⋃
j≡1,2 (mod 4)

Fj ⊆ B∗2 .

∎

Remark 8. As in Lemma 4, the properties enumerated in the proof of Lemma 7 are true
for suitably chosen subsets of Â and B̂. In particular, suppose Â∗ ⊆ Â and B̂∗ ⊆ B̂ such
that τ̂(Â∗) = Â∗, ρ̂(B̂∗) = B̂∗, σ(Â∗ ⊍ B̂∗) = Â∗ ⊍ B̂∗. Suppose K̂∗ ⊆ Â∗ and L̂∗ ⊆ B̂∗ satisfy
analogues of Rh1, Rh2, and Rh3. Obtain the sequences {R∗

j } and {F ∗

j } analogously, and

form Â∗2, B̂∗2 , K̂∗2 , L̂∗2 accordingly. Then, these also satisfy analogues of Rh1, Rh2, and
Rh3.
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We thus have the following procedure.

Step 1:

• Without loss of generality, assume that the rectangle R1 ∶=R has a non-integer edge
ratio between 1 and 3. Otherwise we can use Lemma 3 or Lemma 4.

• Fill R1 with A∗1, B∗1 , K∗1 , and L∗1 as described above, leaving the unfilled path S1,
with central rectangle R2.

Step 2:

• Without loss of generality, assume that the central rectangle R2 in Ŝ1 ∶= S1 has a
non-integer edge ratio between 1 and 3. Otherwise we can use Lemma 3 or Lemma 4.

• Fill R2 with Â∗2, B̂∗2 , K̂∗2 , and L̂∗2 as described above, leaving the unfilled path Ŝ2.

• Fill portions of S1 using the sequence defined in the proof of Lemma 7 to create A∗2,

B∗2 , K∗2 , and L∗2, leaving copies of Ŝ2. The big dots in Figure 9 are at the ends of

the aforementioned copies of Ŝ2, thus the union S2 of these copies is a connected
unfilled path.

Step n, n ≥ 3: This is treated analogously as Step 2.

• Without loss of generality, assume that the central rectangle Rn in Ŝn−1 has a non-
integer edge ratio between 1 and 3. Otherwise we can use Lemma 3 or Lemma 4.

• Fill Rn with Â∗n, B̂∗n, K̂∗n, and L̂∗n as described above, leaving the unfilled path Ŝn.

• Fill portions of Sn−1 using the corresponding sequences of those in the proof of
Lemma 7, filling out portions of, in order, Ŝn−1, Ŝn−2, . . ., Ŝ2, and Ŝ1 ∶= S1, to create
A∗n, B∗n, K∗n, and L∗n. Arguing as before, this leaves an empty path Sn which is
composed of copies of Ŝn.

If a
b is irrational, it is clear that the procedure has infinitely many steps. Note that

if a
b = a1

b1
is rational, then the ratios b1

v1
= b1
∣2b1−a1∣

and b2
v1

= b1
v1
− q1 are also rational. In

the next step, we construct arrays for a rectangle with edge ratio a2
b2

which differs from
v1
b2

by an integer. It follows that the edge ratio of a rectangle in each succeeding step
is rational. Furthermore, the divisor vn used at step n is smaller than the remainder bn
of the preceding step, so that the sequence of divisors terminates faster than that of the
Euclidean algorithm applied to a and b. Thus, there are only finitely many steps in this
case.

It is clear from the construction that condition D1 is satisfied. Note also that at each
step, the squares used to pack the rectangle R overlap with squares used in previous steps
only along sets of measure zero. Thus, ⊍

i

A∗i and ⊍
i

B∗i are disjoint unions. Furthermore,

because the width of the unfilled path approaches zero, indeed, condition D2 is satisfied.
In fact, if a

b is rational, then the width and area of this path becomes zero after a finite
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number of steps. This implies that the unions in condition D2 are finite unions, and it
follows that K ∪ τ(K) and L ∪ ρ(L) are disjoint unions up to sets of measure zero. It
remains to show that this last condition also holds if a

b is irrational.
Note that for each t ∈ N, the path that remains unfilled after step t consists of

cl(A ∖
t

⊍
i=1

A∗i ) and cl(B ∖
t

⊍
i=1

B∗i ). Moreover, we obtain that A∗t+1 ⊆ cl(A ∖
t

⊍
i=1

A∗i ) and

B∗t+1 ⊆ cl(B ∖
t

⊍
i=1

B∗i ). Thus, K = cl(⊍
i

K∗i ) =
t

⊍
i=1

K∗i ⊍ cl(
∞

⊍
i=t+1

K∗i ) and L = cl(⊍
i

L∗i ) =
t

⊍
i=1

L∗i ⊍ cl(
∞

⊍
i=t+1

L∗i ), where cl(
∞

⊍
i=t+1

K∗i ) ⊆ cl(A ∖
t

⊍
i=1

A∗i ) and cl(
∞

⊍
i=t+1

L∗i ) ⊆ cl(B ∖
t

⊍
i=1

B∗i ).

Because of condition D1b, it suffices to show that the measure of the unfilled path ap-
proaches zero to justify why K ∪ τ(K) and L ∪ ρ(L) are disjoint unions up to sets of
measure zero.

Consider first the ratio of the measure of A∗1 ∪ B∗1 to the measure of R.
Case 1: Suppose 1 < a1

b1
< 2. In this case, q1 < b1

2b1−a1
< q1 + 1, and so q1+1

2q1+1
< b1

a1
< q1

2q1−1
.

From the construction, the aforementioned ratio of measures is equal to

q1(2q1 − 1) ⋅ (2b1 − a1)
2

a1b1
= q1(2q1 − 1) (2b1 − a1

b1
)
2

⋅ b1
a1

> q1(2q1 − 1)
(q1 + 1)(2q1 + 1) > 1

6
.

Case 2: Suppose 2 < a1
b1

< 3. In this case, q1 < b1
a1−2b1

< q1 + 1, and so q1
2q1+1

< b1
a1

< q1+1
2q1+3

.
From the construction, the aforementioned ratio of measures is equal to

q1(2q1 + 1) ⋅ (a1 − 2b1)2
a1b1

= q1(2q1 + 1) (a1 − 2b1
b1

)
2

⋅ b1
a1

> ( q1
q1 + 1

)
2

> 1

4
.

We note that in the procedure outlined in the proof of Lemma 7, each of the last two
rectangles overlap with some previous rectangle except on a square region congruent to
Â. Thus, we also look for a lower bound for the ratio of the measure of A∗1 to that of A.
In either of the two cases above, this ratio is

q21 ⋅
∣2b1 − a1∣2

b21
> ( q1

q1 + 1
)
2

> 1

4
.

These computations show that at each step of the construction, the ratio of the measure
of the portion that will remain unfilled is at most 5

6 of the measure of the unfilled portion
in the previous step. Thus, the measure of the unfilled portion approaches zero as the
construction is carried out. It follows that K and L satisfy Rh1, Rh2, and Rh3.

Forming S as in Figure 1 and E = P (Γ)(K ⊍ L), we have that F = cl(S ∪ E) is a
compact fundamental domain for Γ with [S(F ) ∶ P (Γ)] = 2. This completes the proof of
Theorem 1.

In Figure 10, we show a portion of the tiling by the fundamental domain for the
rhombic lattice Γ with basis {(220 ) , (1125)} generated by the procedure described.
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Figure 10: Fundamental domain for the rhombic lattice Γ with m = 11, n = 25, constructed
using the procedure, together with some of its Γ-translates.
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Staff Development Program. D. Frettlöh is grateful to the Research Center for Mathe-
matical Modelling, Bielefeld University, and the University of the Philippines System for
financial support.

References

[1] M. Baake, R. Klitzing, M. Schlottmann. Fractally shaped acceptance domains of
quasiperiodic square-triangle tilings with dodecagonal symmetry. Physica A, 191:554-
558, 1992.

[2] E. Cockayne. Nonconnected atomic surfaces for quasicrystalline sphere packings.
Phys. Rev. B, 49:5896-5910, 1994.

the electronic journal of combinatorics 26(3) (2019), #P3.5 15
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