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Abstract

For a family A ⊆ {0, . . . , k}n, define the δ-shadow of A to be the set obtained
from A by removing from any of its vectors one coordinate that equals zero. Given
the size of A, how should we choose A to minimise its δ-shadow? Our aim in this
paper is to show that, for any r, the family of all sequences with at most r zeros
has minimal δ-shadow. We actually give the exact best A for every size.

Mathematics Subject Classifications: 05D05

1 Introduction

The classical Kruskal-Katona theorem is concerned with the lower shadow of set systems.
For A ⊆ {0, 1}n, define the lower shadow of A to be the set of sequences obtained from any
of its vectors by flipping one of its 1-entries to 0. The rank of a sequence x ∈ {0, . . . , n}k
is defined to be |x| =

∑k
i=1 xi. Note that the lower shadow operator decreases the rank

of a sequence by 1. For given r, it is natural to ask how to choose a family A ⊆ {0, 1}n
of given size containing only vectors with rank r which minimises the lower shadow. This
question was answered by Kruskal [4] and Katona [3].

Define the colexicographic order on {x ∈ {0, 1}n : |x| = r} by x 6colex y if max (X∆Y )
lies in Y . Here X = {i : xi = 1} and Y = {i : yi = 1}. The Kruskal-Katona theorem
states that for a set A ⊆ {0, 1}n containing only sequences of rank r, the lower shadow is
minimised when A is chosen to be an initial segment of the colexicographic order.

Instead of changing the coordinates, it is also natural to define an operator which acts
by deleting coordinates. For A ⊆ {0, . . . , k}n define the coordinate deletion shadow ∆A to
be the set of those sequences obtained from any of its vectors by deleting one coordinate.
For example ∆ ({000, 001, 002, 121}) = {00, 01, 02, 12, 11, 21}.
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Again it is natural to ask that which sets minimise the coordinate deletion shadow.
Define the simplicial order 6sim on {0, 1}n by

x 6sim y if |x| < |y| or |x| = |y| and min(X∆Y ) ∈ X.

It was proved by Danh and Daykin that for subsets of {0, 1}n, ∆A is minimised by an
initial segment of the simplicial order [2]. They also conjectured a certain order as best
in {0, 1, . . . }n, but Leck [5] showed that this turned out to be false and in fact there is no
order in general whose all initial segments have minimal coordinate deletion shadow.

Bollobás and Leader [1] pointed out that for k > 2 the sets At = {0, . . . , t− 1}n ⊆
{0, . . . , k}n are extremal for ∆. Indeed, suppose that B ⊆ {0, . . . , k}n is extremal with
|B| = tn. Define B[n]\{i} to be the projection of B onto the hyperplane excluding the
ith direction. Suppose that |∆B| < tn−1. Since B[n]\{i} ⊆ ∆B for all i, it follows that∣∣B[n]\{i}

∣∣ < tn−1 for all i. Thus the Loomis-Whitney inequality [6] implies that |B|n−1 6(∏n
i=1B[n]\{i}

)
< tn(n−1), which contradicts |B| = tn. Hence |∆B| > tn−1 and since

∆At = tn−1, it follows that each At is extremal.
In addition, Bollobás and Leader made the following conjecture that certain other

type of sets are also extremal.

Conjecture 1 (Bollobás, Leader [1]). For each t 6 k and r 6 n, let Br,t ⊆ {0, . . . , k}n
be the subset containing all sequences with at most r zeros, and with all coordinates in
{0, . . . , t}. Then the sets Br,t have extremal ∆-shadow in {0, . . . , k}n.

Even the case t = k in the conjecture in unknown.
There is, however, a notion that comes ’between’ the lower shadow and the coordinate

deletion shadow. The usual lower shadow operator decreases the rank by 1 and preserves
the dimension n, while the coordinate deletion shadow decreases the dimension by 1 but
there is no control on how it changes the rank. So it is natural to consider the following
operator which preserves the rank, but reduces the dimension by one.

Define the δ-shadow of A ⊆ {0, . . . , k}n to be the set of sequences in {0, . . . , k}n−1 ob-
tained by removing one coordinate that equals 0 from any of the vectors in A. Denote this
set by δA. Thus for example δ ({00011, 00101}) = {0011, 0101} and δ ({112, 113, 123}) =
∅. For convenience, we say that A has minimal δ-shadow if |δB| > |δA| holds for all
B ⊆ {0, . . . , k}n with |B| = |A|.

How can we find sets A with minimal δ-shadow? If |A| 6 kn then the question is
trivial, as one can take any subset of {1, . . . , k}n of given size. In general, it is natural to
choose A to contain sequences with as few zeros as possible. Furthermore, it is natural to
guess that for each 0 6 i 6 n, the sets containing all sequences with at most i zeros have
minimal δ-shadow.

Our main result in this paper is to find an order on {0, . . . , k}n whose initial segments
have minimal δ-shadow. In particular, it follows that the sets containing all sequences
with at most i zeros have minimal δ-shadow.

In order to state the main result, we need a few definitions. For a sequence x ∈
{0, . . . , k}n, let R (x) = {i : xi = 0} and let w (x) = |R (x)|. Let

Lr (n) = {x ∈ {0, . . . , k}n : w (x) = r} .
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Note that δ maps sequences in Lr (n) to sequences in Lr−1 (n− 1).
For x ∈ {0, . . . , k}n, define its reduced sequence to be the sequence obtained by re-

moving all coordinates from x that equal 0. Denote the reduced sequence of x by re(x).
Note that for any sequence s and for any t ∈ δs we have re(s) = re(t), as removing a
coordinate which equals 0 does not change the reduced sequence. Hence each Lr (n) splits
into disjoint components based on the reduced sequences.

We will start by proving that inside a component one should choose sequences x for
which the setsR (x) form an initial segment of colex. This is a straightforward consequence
of the work of Danh and Daykin in [2].

Since we know that {0, . . . , k}n splits into components based on the reduced sequences,
and we know that the initial segments of the colexicographic order minimise the δ-shadow
inside each component, we are left with the question on how to split the sequences into
different components in order to minimise the shadow.

We go on to prove that in order to minimise the shadow of a subset in {0, . . . , k}n, one
should first prefer sequences in components in Lr (n) rather than in Ls (n) for all r < s,
and inside Lr (n) one should choose all sequences from one component before taking any
sequences from another component. As a consequence we obtain an order whose initial
segments minimises the δ-shadow.

For r ∈ {0, 1, . . . , k} define Rr (x) = {i : xi = r} and wr (x) = |Rr (x)|. Note that
R = R0 and w = w0. For all r we define an order 6c on {1, . . . , k}r as follows. For distinct
x, y ∈ {1, . . . , k}r let i be minimal such that Ri (x) 6= Ri (y). We say that x 6c y if and
only if max (Ri (x) ∆Ri (y)) ∈ Ri (y).

Define an order 6 on {0, . . . , k}n as follows. For distinct x, y ∈ {0, . . . , k}n we set
x 6 y if

1. w0 (x) < w0 (y)

2. w0 (x) = w0 (y), re (x) 6= re (y) and re (x) 6c re (y)

3. w0 (x) = w0 (y), re (x) = re (y) and R0 (x) 6colex R0 (y)

Now we are ready to state our main theorem.

Theorem 2. Let A ⊆ {0, . . . , k}n and let B be an initial segment of 6 with |B| = |A|.
Then |δA| > |δB|.

In particular, it follows that the sets of the form L6r (n) =
⋃r

i=0 Li (n) are extremal.
Note that for fixed r, every component of Lr (n) behaves in the same way. Hence for any
fixed r, one could replace the 6c-order by any other order on {1, . . . , k}r in the definition
of the 6-order.

The plan of the paper is as follows. In Section 2 we prove that inside a component
the sets of sequences whose associated sets R (x) form an initial segment of colex have
minimal δ-shadow. In Section 3 we prove Theorem 2. In Section 4 we generalise the δ-
shadow to allow deleting one coordinate in some set {0, . . . , r} instead of just deleting one
coordinate which equals 0. In this case we show that sets {x :

∑r
i=0wi (x) 6 s}, which
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are analogous to the sets L6s (n), are extremal for all 0 6 s 6 n. In this general case we
do not know what happens for sets of other sizes.

We use the standard notation [n] = {1, . . . , n} and [n](r) = {A ⊆ [n] : |A| = r}. We
write Lr instead of Lr (n) if the dependence on n is clear. When k = 1, we may also write
{0, 1}nr instead of Lr (n). This notation will be used to highlight that we are working with
{0, 1}-sequences.

2 Deletion on {0, 1}-sequences

In this section we always work with subsets of {0, 1}n or {0, 1}nr . Danh and Daykin proved
the following result for the coordinate deletion shadow ∆ on {0, 1}n.

Theorem 3. (Danh, Daykin [2]). Let A ⊆ {0, 1}n and let B be an initial segment of the
simplicial order with |B| = |A|. Then |∆A| > |∆B|. �

There is a natural correspondence between the sequences {0, 1}n and the power-set
P ({1, . . . , n}). For our purposes it will be convenient to choose this correspondence by
mapping a sequence (xi) to the set R0 (x) = {i : xi = 0}.

In this way we can identify a set A ⊆ {0, 1}nr with the set system A ⊆ [n](r) containing
the images of the elements of A under this bijection. This enables us to translate the
questions on δ to the questions related to the properties of the set systems A ⊆ [n](r)

instead. We start by proving that the subsets A of {0, 1}nr with minimal shadow are the
ones whose associated set A is an initial segment of colex.

Lemma 4. Let A ⊆ {0, 1}nr , and let B ⊆ {0, 1}nr be chosen such that |A| = |B| and B is
an initial segment of colex. Then |δA| > |δB|.

Proof. Define C1 = A ∪ L>r (n) and C2 = B ∪ L>r (n), where L>r (n) =
⋃n

i=r+1 {0, 1}
n
i .

Now C2 is isomorphic to an initial segment of the simplicial order, and the isomorphism
is the map which reverses the sequences. Since this map preserves the size of ∆-shadow,
Theorem 3 implies that ∆C2 is minimal and hence

|∆C2| 6 |∆C1| . (1)

Note that ∆C1 = L>r(n − 1) ∪ δA and ∆C2 = L>r(n − 1) ∪ δB. Indeed, L>r(n − 1)
is certainly a subset of both of these sets, and the only contribution to the elements not
in L>r(n − 1) comes from removing 0 from a sequence which contains exactly n − r 1’s.
Hence

|∆C1| = |L>r (n− 1)|+ |δA| (2)

and
|∆C2| = |L>r (n− 1)|+ |δB| . (3)

Combining (1), (2) and (3) gives |δA| > |δB|, which completes the proof.
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Lemma 4 implies that inside {0, 1}nr the colexicographic order minimises the size of
the δ-shadow. Before moving on to general k from k = 1, we find a way to relate the size
of δA to the associated family A. For convenience, from now on we say that A ⊆ {0, 1}nr
is an initial segment of colex if the associated set system A is an initial segment of colex.
For A ⊆ P ({1, . . . , n}) define A1 = {B ∈ A : 1 ∈ B}.

Lemma 5. Let A ⊆ {0, 1}nr be an initial segment of colex, and let A be the set system
associated to A. Then |δA| = |A1|.

Proof. The proof is by induction on |A|; note that the case |A| = 1 is clear. Let B be an
initial segment with |B| = |A| + 1, say B = A ∪ {x} with x = x1 . . . xn. First we prove
that x2 . . . xn is the only element which could be in δB \ δA.

Indeed, suppose t ∈ δB \ δA and that it is obtained by removing the kth coordinate of
x. Hence t = x1 . . . xk−1xk+1 . . . xn and xk = 0. Let i = min {j : xj = 1} and set y = 0t =
0x1 . . . xk−1xk+1 . . . xn. If i 6 k, then yj = xj for all j 6 i−1 but yk = xk−1 = 0 6= 1 = xk,
so y <colex x. But then t ∈ δy ⊆ δA which contradicts t ∈ δB \ δA.

Hence we must have i > k. But in this case x1 = . . . xk = 0 and therefore t =
0 . . . 0xk+1 . . . xn = x2 . . . xn. Hence δB \ δA is either empty or contains only x2 . . . xn.

Note that 0x2 . . . xn is the least element with respect to colex which has x2 . . . xn
contained in its δ-shadow. Hence x2 . . . xn ∈ δB \ δA if and only if x = 0x2 . . . xn. Thus

|δB| =

{
|δA|+ 1

|δA|
if x1 = 0

if x1 = 1
.

Also B = A ∪R0(x), and the set R0(x) contains 1 if and only if x1 = 0. Thus

|B1| =

{
|A1|+ 1

|A1|
if x1 = 0

if x1 = 1

and hence |δB| = |B1| by induction.

3 The main theorem

Let H be the bipartite graph with vertex set {0, . . . , k}n ∪{0, . . . , k}n−1 and whose edges
are precisely those pairs s, t with s ∈ {0, . . . , k}n and t ∈ δs. Then for A ⊆ {0, . . . , k}n, δA
is just the neighbourhood of A in the graph H. Note that both classes can be partitioned
as {0, . . . , k}n =

⋃n
i=0 Li (n) and {0, . . . , k}n−1 =

⋃n−1
i=0 Li (n− 1), and by definition of δ

it is clear that there are edges only between Li (n) and Li−1 (n− 1), with the convention
L−1 = ∅.

Let C be a connected component in H. Suppose C is non-trivial, i.e. {0, . . . , k}n∩C ⊆
Li(n) for some i > 0. Recall that for all x and for any y ∈ δx, x and y have the same
reduced sequences. But since C is a connected component, this means that every x ∈ C
has the same reduced sequence. Conversely it is easy to check that for i > 0 all sequences
x ∈ Li(n) ∪ Li−1(n − 1) with the same reduced sequence are in the same connected
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component. Thus we can deduce that the connected components in H are given as
follows.

Lemma 6. For s ∈
⋃r

i=0 {1, . . . , k}
i define Cs = {x ∈ {0, . . . , k}n : re(x) = s} and Ds ={

x ∈ {0, . . . , k}n−1 : re(x) = s
}

. Then Cs ∪Ds are the connected components of H. �

Broadly speaking, we only need to understand how to minimise δ inside a connected
component, and to determine how to distribute the sequences into different connected
components in order to minimise δ. It turns out that inside a connected component one
should choose sequences x whose sets R0 (x) form an initial segment of colex.

Lemma 7. Let C ⊆ Li(n) ∪ Li−1(n − 1) be a connected component corresponding to a
reduced word x = x1 . . . xn−i. Let B ⊆ Li ∩ C and let A ⊆ Li ∩ C be a set of sequences
chosen such that |A| = |B| and {R0 (x) : x ∈ A} is an initial segment of colex. Then
|δB| > |δA|.

Proof. Note that the behaviour of a connected component depends only on n − i and,
in particular, not on the sequence x1 . . . xn−i, as the reduced sequence and the order
of coordinates in the reduced sequence are preserved under taking the δ-shadow. In
particular, all such connected components have the same size and they all behave in the
same way under taking the δ-shadow. Hence it suffices to consider only the component
with x1 = · · · = xn−i = 1. But this component is just {0, 1}ni and hence the result follows
from Lemma 4.

Hence it remains to understand how to fill different connected components. Our
aim is to show that it is optimal to first choose all sequences in a component before
taking sequences from another component, and also to prefer a component in Li(n) over
a component in Li+1(n).

From now on we call the sets Cs connected components, i.e. by a connected component
we refer to the intersection of a connected component with {0, . . . , k}n.

For s, t ∈
⋃r

i=0 {1, . . . , k}
i define the s, t-compression operator as follows. For A ⊆

{0, . . . , k}n its compression B = Cs,t (A) is given by setting

1. B ∩ Cs to be an initial segment of colex of length min (|A ∩ (Cs ∪ Ct)| , |Cs|)

2. B ∩ Ct to be an initial segment of colex of length max (0, |A ∩ (Cs ∪ Ct)| − |Cs|)

3. B \ (Cs ∪ Ct) = A \ (Cs ∪ Ct)

It is clear that |Cs.t (A)| = |A| for all s and t. As usual, we say that A ⊆ {0, . . . , k}n is
s, t-compressed if Cs,t (A) = A.

In order to prove Theorem 2, we need the following two Lemmas.

Lemma 8. Let A ⊆ {0, . . . , k}n be a set and let s, t ∈ {1, . . . , k}n−i for some i. Then
|δA| > |δCs,t (A)|.

Lemma 9. Let A ⊆ {0, . . . , k}n be a set and let s ∈ {1, . . . , k}n−i, t ∈ {1, . . . , k}n−i−1 for
some i. Then |δA| > |δCs,t (A)|.
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In order to prove these Lemmas, we relate them to the appropriate questions on the
subsets of [n](i). We now state these results, but the proof is presented after the proofs of
Lemma 8 and Lemma 9.

Define B ⊆ [n](r) to be a segment if there exist initial segments I and J of colex such
that A = I \ J .

Lemma 10. The following claims are true.

Claim 1. Let A ⊆ [n](i) be a segment and I ⊆ [n](i) be an initial segment of colex
with |A| = |I|. Then |A1| 6 |I1|

Claim 2. Let I ⊆ [n](i) and J ⊆ [n](i+1) be initial segments of colex with |I| = |J |.
Then |I1| 6 |J1|

Claim 3. Let A ⊆ [n](r) be a segment and let I = [n](r) \ J , where J is an initial
segment of colex chosen such that |I| = |A|. Then |A1| > |I1|.

Claim 4. Let I∗ and J∗ be initial segments of colex chosen such that I = [n](i) \ I∗
and J = [n](i+1) \ J∗ satisfies |I| = |J |. Then |I1| 6 |J1|.

Proof of Lemma 8. Let A ⊆ {0, . . . , k}n and B = Cs,t (A). Note that B depends only
on |A ∩ Cs| and |A ∩ Ct|. Lemma 7 implies that an initial segment of colex minimises
the δ-shadow inside a connected component, so we may assume that Q = A ∩ Cs and
R = A ∩ Ct are initial segments of colex.

Let S = B ∩ Cs and T = B ∩ Ct. Let Q, R, S and T be the associated families
in [n](i). Since B \ (Cs ∪ Ct) = A \ (Cs ∪ Ct), it follows that |δA| > |δB| is equiv-
alent to |δQ| + |δR| > |δS| + |δT |. By applying Lemma 5, this can be rewritten as
|Q1|+ |R1| > |S1|+ |T1|.

Case 1: |Q|+ |R| 6 |Cs|.

By definition of B, it follows that T = ∅ and |S| = |Q| + |R|. Let I = S \ Q. Since
S and Q are initial segments of colex, it follows that I is a segment of length |R|. Thus
|I1| 6 |R1| by Claim 1 and hence

|S1|+ |T1| = |Q1|+ |I1| 6 |Q1|+ |R1| ,

as required.

Case 2: |Q|+ |R| > |Cs|.

In this case S = Cs and hence |T | < |R|. Thus we can write I = R \ T , which is a

segment as R and T are initial segments of colex. Also set J = S \Q = [n](i) \Q, which
is a segment as well. Since |S|+ |T | = |R|+ |Q| it follows that |I| = |J |. Thus Claim 3
implies that |J1| 6 |I1|.
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Combining this together with the definitions of I and J implies that

|Q1|+ |R1| = |Q1|+ |I1|+ |T1| 6 |Q1|+ |J1|+ |T1| = |S1|+ |T1| ,

which completes the proof.

Proof of Lemma 9. Let A ⊆ {0, . . . , k}n and B = Cs,t (A). By Lemma 7 we may assume
that both A ∩ Cs and A ∩ Ct are initial segments of colex. As in the proof of Lemma 8,
set Q = A∩Cs , R = A∩Ct, S = B∩Cs and T = B∩Ct. Let Q and S be the associated
set systems in [n](i), and R and T be the associated set systems in [n](i+1). By Lemma 5
it suffices to prove that |Q1|+ |R1| > |S1|+ |T1|.

Case 1: |Q|+ |R| 6 |Cs|.

By definition of B, it follows that S is an initial segment of colex of length |Q|+ |R|
in [n](i), and T = ∅. Let I be an initial segment of colex of length |R| in [n](i), and set
J = S \ Q. Then |J | = |R| = |I| and J is a segment, as S and Q are initial segments
of colex. Thus Claim 1 implies that |J1| 6 |I1|. On the other hand, Claim 2 implies that
|R1| > |I1|. Combining these two gives |R1| > |J1|. Hence

|S1|+ |T1| = |S1| = |J1|+ |Q1| 6 |R1|+ |Q1| ,

as required.

Case 2: |Q|+ |R| > |Cs|.

By definition of B it follows that S = [n](i). Note that since |S| > |Q|, it follows

that |R| > |T |. Hence I = R \ T ⊆ [n](i+1) is a segment and it satisfies R = I ∪ T .

Let I∗ ⊆ [n](i+1) be an initial segment of colex chosen such that K = [n](i+1) \ I∗ is

a segment of size |I|. Define J = [n](i) \ Q = S \ Q. Hence J is a segment of size
|S| − |Q| = |R1| − |T1| = |I|.

Claim 3 implies that |I1| > |K1| and Claim 4 implies that |K1| > |J1|. Thus combining
these results gives |I1| > |J1|. Using the definitions of I and J it follows that

|S1|+ |T1| = |J1|+ |Q1|+ |T1| 6 |I1|+ |Q1|+ |T1| = |R1|+ |Q1| ,

which completes the proof of Lemma 9.

Proof of Lemma 10. We start by proving Claim 1, and then we will prove that other
claims can be deduced from Claim 1.

Proof of Claim 1. Since A is a segment, there exist initial segments IA and JA of colex
with A = IA \ JA, and denote their associated sets of sequences by IA and JA. Let C
be obtained from JA by reversing all the sequences and by adding 2n 1’s at the start of
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each reversed sequence. Let D be obtained from I by adding 2n 1’s at the end of each
sequence in I, where I is the set of sequences associated to I. Set B = C ∪D.

Due to the additional 1’s at the start of the elements of C and at the end of the
elements of D, it follows that δC and δD are disjoint sets. Also note that reversing all the
sequences and adding 1’s to every sequence do not change the size of the shadow. Hence
|δB| = |δC|+ |δD| = |δI|+ |δJA|. On the other hand, since I and JA are initial segments
of colex, Lemma 5 implies that |δI| = |I1| and |δJA| = |(JA)1|. Thus

|δB| = |I1|+ |(JA)1| . (4)

Since IA is an initial segment of colex, Lemma 5 implies that |δIA| = |(IA)1|. But IA
is a disjoint union of JA and A so

|δIA| = |(IA)1| = |(JA)1|+ |A1| . (5)

Since IA is an initial segment of colex, the corresponding set of sequences IA has minimal
shadow inside a connected component. Since |B| = |IA|, it follows that

|δB| > |δIA| . (6)

Thus combining (4), (5) and (6) gives

|I1| > |A1| , (7)

as required.

Claim 1 ⇒ Claim 3. Let A and I be as in Claim 3. Define A = {Ac : A ∈ A} and define

I similarly. Note that
∣∣A∣∣ = |A| and A ⊆ [n](n−r). It is easy to check that if B ⊆ [n](r) is

an initial segment of colex, then so is
(

[n](r) \ B
)

. Thus I is an initial segment of colex.

Since A is a segment, there exist initial segments K and L such that A = K \L. This

can be rewritten as A =
(

[n](r) \ L
)
\
(

[n](r) \ K
)

and hence

A =
(

[n](r) \ L
)
\
(

[n](r) \ K
)

=
(

[n](r) \ L
)
\
(

[n](r) \ K
)
.

As
(

[n](r) \ L
)

and
(

[n](r) \ K
)

are initial segments of colex, it follows that A is a segment

as well. Hence A and I satisfy the conditions of Claim 1, and therefore∣∣(I)
1

∣∣ > ∣∣(A)
1

∣∣ . (8)

Note that for any set system B we have |B| = |B1|+
∣∣(B)

1

∣∣, as for every A ∈ B exactly
one of 1 ∈ A and 1 ∈ Ac is satisfied. Thus

|I| = |I1|+
∣∣(I)

1

∣∣ (9)
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and
|A| = |A1|+

∣∣(A)
1

∣∣ . (10)

Combining (8), (9) and (10) with |I| = |A| gives

|A1| > |I1| (11)

which completes the proof of Claim 3.

Claim 1 ⇒ Claim 2. Let I and J be as in Claim 2. For i + 1 6 j 6 n let Sj =

{A \ {j} : A ∈ J , maxA = j}. Thus Sj ⊆ [j − 1](i) ⊆ [n](i) for all i. Since J is an initial

segment of colex, it follows that Sj is an initial segment of colex in [j − 1](i) for all j. Sj
is an initial segment of colex also in [n](i) as initial segments of colex are not affected by
adding new larger elements to the ground set. Note that we can express J as a disjoint
union J =

⋃n
j=i+1 (Sj + {j}). Hence

|J1| =
n∑

j=i+1

∣∣(Sj + {j})1
∣∣ =

n∑
j=i+1

∣∣(Sj)1∣∣ . (12)

Since each Sj is an initial segment of colex in [n](i) and we have
∑n

j=i+1 |Sj| = |J | = |I|,
a repeated application of Claim 1 implies that |J1| > |I1|.

Claim 2 ⇒ Claim 4. Let I, J , I∗ and J∗ be as in the statement of Claim 4. Since I∗
and J∗ are initial segments of colex, the observation pointed out in the proof of Claim 1
⇒ Claim 3 implies that I ⊆ [n](n−i) and J ⊆ [n](n−i−1) are initial segments of colex as
well. Thus Claim 2 implies that ∣∣(I)

1

∣∣ > ∣∣(J )
1

∣∣ . (13)

Combining this with
|I| = |I1|+

∣∣(I)
1

∣∣ (14)

and
|J | = |J1|+

∣∣(J )
1

∣∣ (15)

gives |J1| > |I1|, as required.

This completes the proof of Lemma 10.

We are now ready to deduce Theorem 2. For convenience, we recall the definition of
the order 6 and restate Theorem 2. For distinct x, y ∈ {0, . . . , k}n we set x 6 y if

1. w0 (x) < w0 (y)

2. w0 (x) = w0 (y), re (x) 6= re (y) and re (x) 6c re (y)

3. w0 (x) = w0 (y), re (x) = re (y) and R0 (x) 6colex R0 (y)
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Theorem 2. Let A ⊆ {0, . . . , k}n and let B be an initial segment of 6 with |B| = |A|.
Then |δA| > |δB|.

Proof of Theorem 2. Let A be a subset of {0, . . . , k}n of given size with minimal δA.
Define

v(A) =
n∑

j=0

j |A ∩ Lj (n)| .

If possible, choose l ∈ [n], s ∈ {1, . . . , k}n−l and t ∈ {1, . . . , k}n−l−1 for which
Cs,t (A) 6= A. Then by Lemma 9, B = Cs,t (A) satisfies |δA| > |δB| and by minimal-
ity of δA it follows that δB is also minimal. We also have v (A) > v (B), which follows
from the definition of Cs,t (A) and from the fact that Cs,t (A) 6= A.

Repeating this process we obtain a set A1 of size |A| with minimal δA1 for which
Cs,t (A1) = A1 for all i, s ∈ {1, . . . , k}n−l and t ∈ {1, . . . , k}n−l−1. This follows from
the fact that v (B) is always a non-negative integer which strictly decreases on each step.
Since Cs,t (A1) = A1 for all l ∈ [n], s ∈ {1, . . . , k}n−l and t ∈ {1, . . . , k}n−l−1, it is easy to
check that there exists i such that Lj (n) ⊆ A1 for all j < i and Lj (n) ∩ A1 = ∅ for all
j > i.

Let Cs1 , . . . , Cst be the connected components in Li (n) with sj 6c sk for j 6 k.
Define

w (B) =
t∑

j=1

j
∣∣Csj ∩B

∣∣ .
If possible, choose j < k for which Csj ,sk (A1) 6= A1, and set B = Csj ,sk (A1). Now
|δA1| > |δB| by Lemma 8 and hence δB is also minimal. Also w (A1) > w (B) follows
directly from the definition of the compression operator and from the definition of B.
Repeating this process we obtain a set A2 for which

1. δA2 is minimal

2. There exists i such that Lj (n) ⊆ A2 for all j < i and Lj (n) ∩ A2 = ∅ for all j > i

3. Csj ,sk (A2) = A2 for all j < k

Note that the process must terminate as w (B) is always a non-negative integer which
strictly decreases on each step. Since Csj ,sk (A2) = A2 for all j < k, it follows that there
exists p for which Csk ⊆ A2 for all k < p and Csk ∩ A2 = ∅ for all k > p.

Let D = A2∩Csp and let A3 be the set obtained from A2 by taking A3∩Csp to be the set
corresponding to an initial segment of colex of length |D|, and taking A3 \Csp = A2 \Csp .
Then Lemma 4 implies that |δA2| > |δA3|, so δA3 is minimal. On the other hand, by the
construction of A3 it is clear that A3 is an initial segment of 6. Hence an initial segment
of 6 minimises δ.
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4 An extremal result for the generalised shadow

So far we have considered the operator which allows us to delete a coordinate which equals
0. It is natural to ask what happens if we generalise this set-up and allow the deletion of
any coordinate that is in some chosen set.

Define the δr-shadow of A ⊆ {0, . . . , k}n to be the subset of sequences in {0, . . . , k}n−1
obtained from any of its vectors by removing exactly one coordinate that is one of
{0, . . . , r}. Thus δ = δ0 and ∆ = δk. Define vr (x) =

∑r
i=0wi(x). That is, vr (x) is

the number of coordinates of x in the set {0, . . . , r}. Define

Ls (n) = {x ∈ {0, . . . , k}n : vr (x) = s}

and L6s (n) =
⋃s

i=0 Li (n). The aim of this section is to prove that the sets L6s (n) are
extremal for δr. This follows directly from the following Proposition.

Proposition 11. Let A ⊆ {0, . . . , k}n and let As = A ∩ Ls (n). Then

|δA| > 1

n (r + 1)

n∑
s=0

s |As| .

Proof. Let X = {0, . . . , k}n, Y = {0, . . . , k}n−1, let H be defined as in Section 3 and let H
be a bipartite multigraph on X ∪ Y with edges given as follows. For each x ∈ X ∩Ls (n)
there are exactly s coordinates xi1 , . . . , xis which are elements of {0, . . . , r}. Define yj to
be the sequence obtained by deleting the coordinate xij . Then we certainly have yj ∈ δx,
and some of the yj may be equal. Define the edges of H to be the edges xyj for all
1 6 j 6 s counting with multiplicities. For example, when r = 1 the sequence x = 00121
is connected by two edges to 0121, and by one edge to both 0012 and 0021.

It is easy to verify that for all y ∈ Y , y has degree n (r + 1) as this corresponds to
adding any element of {0, . . . , r} to any of the n possible places in the sequence y. Denote
the neighbourhood of x in H by NH (x). Note that for all x ∈ X we have NH (x) = δx,
and hence for any A ⊆ X we have δA = NH (A). By the definition of H we have d (x) = s
for all x ∈ Ls (n), and as observed earlier we have d (y) = n (r + 1) for all y ∈ Y . Since
the connected components of H are contained in the sets Ls (n) ∪ Ls−1 (n− 1), we have
NH (A) ∩ Ls−1 (n− 1) = NH (A ∩ Ls (n)) and therefore

|NHA| =
r∑

s=0

|NH (As)| . (16)

For a set B ⊆ Ls (n) we have

s |B| = e (B,NH (B)) 6 e (NH (B) , X) = |NH (B)|n (r + 1)

and hence
|NH (B)| > s

n (r + 1)
|B| . (17)
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Applying (17) to each term of the sum in (16) gives

|δA| = |NHA| >
1

n (r + 1)

r∑
s=0

s |As| , (18)

which completes the proof.

Now we are ready to conclude that the sets L6s (n) are extremal.

Corollary 12. If A ⊆ {0, . . . , k}n and |A| = |L6s (n)|, then |δA| > |δL6s (n)| with
equality if and only if A = L6s (n).

Proof. Let B = L6s (n). We first check that the equality holds for B in (18). Note
that Bi = Li (n) for all i 6 s and Bi = ∅ for all i > s. For i 6 s, |Bi| = |Li (n)| =(
n
i

)
(r + 1)i (k − r)n−i and |δBi| = |Li−1 (n− 1)| =

(
n−1
i−1

)
(r + 1)i−1 (k − r)n−i. Therefore

|δBi| = i
n(r+1)

|Bi| holds for all i 6 s, and in fact holds also for i > s as in this case both

sides are 0. Hence the equality holds in (17) for all i, and thus the equality holds in (18)
as well.

Given a set A of fixed size with |Ai| 6 |Li (n)| for all i, it is easy to see that
1

n(r+1)

∑r
t=0 t |At| is minimised if and only if A = L6n ∪ B for suitably chosen n and

for any B ⊆ Ln+1 of suitable size. Hence given A with |A| = |L6s (n)|, the quantity
1

n(r+1)

∑r
t=0 t |At| attains its minimum value uniquely when A = L6s (n).

Thus

|δA| > 1

n (r + 1)

r∑
t=0

t |At| >
1

n (r + 1)

s∑
t=0

t |Lt (n)| = |δL6s (n)| ,

and the second inequality holds if and only if A = L6s (n), which completes the proof.
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