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Abstract

In the mid-1990s, Stanley and Stembridge conjectured that the chromatic sym-
metric functions of claw-free co-comparability (also called incomparability) graphs
were e-positive. The quest for the proof of this conjecture has led to an examination
of other, related graph classes. In 2013 Guay-Paquet proved that if unit interval
graphs are e-positive, that implies claw-free incomparability graphs are as well. In-
spired by this approach, we consider a related case and prove that unit interval
graphs whose complement is also a unit interval graph are e-positive. We introduce
the concept of strongly e-positive to denote a graph whose induced subgraphs are
all e-positive, and conjecture that a graph is strongly e-positive if and only if it is
(claw, net)-free.

Mathematics Subject Classifications: 05E05, 05C15

1 Introduction

A 1995 paper of Stanley [19] introduced the chromatic symmetric functions and proved
a host of properties about them. A key element of this foundational paper was a con-
jecture due to Stanley and Stembridge (originally stated in other terms in [21]) that the
chromatic symmetric functions of claw-free co-comparability (also called incomparability)
graphs had the property known as e-positivity (defined in Section 2). As of this writing,
this conjecture remains unproved, and work on it and on related results has fueled research
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in the area for over 20 years. A fundamental contribution to this endeavour was Guay-
Paquet’s result that if Stanley and Stembridge’s conjecture holds for unit interval graphs,
then it holds for claw-free co-comparability graphs [8]. This result has put a spotlight on
unit interval graphs. In related work, Shareshian and Wachs [17] generalized the conjec-
ture of Stanley and Stembridge, introducing an extra t parameter, and also conjectured a
relation between the chromatic symmetric function and the natural representation of the
symmetric group on the cohomology of an algebraic variety. In this setting, Harada and
Precup [9] proved a special case of the Shareshian and Wachs generalization. Cho and
Huh [1] and Harada and Precup [9] have proved e-positivity for several subclasses of unit
interval graphs. The time is ripe for further investigations of subclasses and superclasses
of unit interval graphs.

Graphs and their complements are natural pairs to study. Recall that the complement
of a graph G = (V,E) is the graph with vertices V and edges between any two vertices
u, v ∈ V precisely when there is no edge between u and v in G. We use notations G or
co-G to refer to the complement of G. The (claw, co-claw)-free graphs hold particular
interest. Two of the authors investigated them in [10], concluding they were not all e-
positive. Here we revisit this result, showing that the particular graph called the net is
the only exception. This result follows by careful consideration of the graph structure,
and subsequent decomposition into constituent graphs. From this analysis, along with a
number of powerful graph theory results, we derive a series of results, culminating in a
theorem that states that if a graph G and its complement are both unit interval graphs,
then G is e-positive. We present two proofs of this, one following along the lines we set
out here, and one due to Timothy Y. Chow, using classical results to show that graphs
that satisfy these conditions are e-positive.

The graph class universe we are working in is captured by Figure 1. The class of
claw-free co-comparability graphs targeted by Stanley and Stembridge wholly contains
the subclass of unit interval graphs. If we look at the larger picture we see that the
superclass of claw-free, AT-free graphs (see definition of AT-free in Section 2) consists
of co-triangle-free graphs (known to be e-positive [18], restated in Theorem 4) and claw-
free co-comparability graphs. Thus proving the Stanley and Stembridge conjecture would
prove all claw-free, AT-free graphs were e-positive.

Even farther beyond this is the class of (claw, net)-free graphs. The net (see Figure
2) is significant as this is the example originally given by Stanley [19] of a claw-free,
non-e-positive, graph to show claw-free alone is not a property sufficient to guarantee
e-positivity. We focus particularly on (claw, net)-free graphs (note that for n = 4 there
is one non-e-positive graph (namely, the claw, K1,3), for n = 5 there are 4 non-e-positive
connected graphs (namely K1,4, dart, cricket = K1,4 + e, co-{K3 ∪ 2K1}), for n = 6,
there are 44 non-e-positive connected graphs, and for n = 7 there are 374 non-e-positive
connected graphs). To our knowledge, this paper is the first exploration of the (claw, net)-
free e-positivity question. We conjecture these graphs are e-positive. We have verified
our conjecture for graphs up to 9 vertices. We also introduce the term strongly e-positive
to denote graphs whose induced subgraphs are also e-positive, and we conjecture a graph
is strongly e-positive if and only if it is (claw, net)-free.
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(claw, net)-free

claw-free AT-free

claw-free
co-comp.

co-triangle-free

unit interval

Figure 1: Classes of (claw, net)-free graphs. If the graphs are connected, then a claw-free
AT-free graph is either a co-triangle-free graph or a claw-free co-comparability graph (or
both).

The paper is structured as follows. Section 2 covers background and notation from
both graph theory and symmetric function theory. It also summarizes much of what is
already known about which graphs are e-positive. Section 3 proves our result on the
e-positivity of unit interval graphs whose complement is also a unit interval graph. Along
the way we consider the e-positivity question for (claw, co-claw)-free graphs. Section
4 contains our conjectures about strongly e-positive graphs and about (claw, net)-free
graphs.

• • • •

•

•

(a) The net

•

• •

•

•c3

c1 c2

s1 s2

(b) The bull

•

• •

•

•

(c) The chair

Figure 2: The net, bull and chair graphs.
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• •

Figure 3: The generalized bull

2 Background and Notation

We begin by defining both graph theory and symmetric function terms and notation.
Let G = (V ,E) be a finite, simple, undirected graph with vertex set V and edge set E.
We assume all graphs are connected, an assumption necessary because of Lemma 2. For
vertices u, v ∈ V , define d(u, v) to be the length of the shortest path between u and v. For
a vertex v ∈ V , the open neighbourhood of v is defined by N(v) = {u ∈ V : uv ∈ E}. For
U ⊆ V , let [U ] denote the induced subgraph of G induced by U . For a set H of graphs,
define H-free to be the class of graphs that do not contain any graph in H as an induced
subgraph.

Let Pk be the chordless path on k vertices and Ck be the chordless cycle on k vertices.
The complete graph (or clique) Kn is the graph on n vertices such that there is an edge
between all pairs of vertices. A K-chain is a graph that is a sequence of complete graphs
attached to one another sequentially at a single vertex, i.e. a vertex can belong to at most
two maximal cliques. The graph K3 is called the triangle, and its complement 3K1, is
called the co-triangle. The bull graph is the graph on 5 vertices and 5 edges arranged as a
triangle with two pendant edges. See Figure 2. The generalized bull graphs are the family
of graphs that can be constructed from the bull graph where each vertex in the triangle
of the bull is substituted by a clique (nonempty), i.e. every vertex is replaced by a clique
and there are all edges between any two of these cliques. See Figure 3.

A stable set is a set S of vertices of a graph such that there are no edges between any
of the vertices in S, e.g. a co-triangle is a stable set of size 3. Let α(G) denote the size of
the largest stable set in G. An astroidal triple (AT) in a graph G is a stable set of three
vertices in G such that for any pair of vertices in the set, there is a path between them
that does not intersect the neighbourhood of the third. A graph is called AT -free exactly
when it does not contain an astroidal triple.

A coloring of a graph G is a function κ from V to the positive integers Z+: κ : V → Z+.
A coloring κ is proper if κ(u) 6= κ(v) whenever vertex u is adjacent to vertex v. Chromatic
symmetric functions were defined by Stanley [19] as a generalization of the chromatic
polynomial. Indeed, if we set x1 = x2 = x3 = . . . = xn = 1 and any remaining variables

the electronic journal of combinatorics 26(3) (2019), #P3.51 4



to zero, this expression reduces to the chromatic polynomial for a graph.

Definition 1. For a graph G with vertex set V = {v1, v2, . . . , vN} and edge set E, the
chromatic symmetric function is defined to be

XG =
∑
κ

xκ(v1)xκ(v2) · · ·xκ(vN )

where the sum is over all proper colorings κ of G.

A function is symmetric if a permutation of the variables does not change the func-
tion. In precise terms, using the wording of Stanley [18, p286], “it is a formal power
series

∑
α cαx

α where (a) α ranges over all weak compositions α = (α1, α2, . . .) of n
(of infinite length), (b) cα ∈ R, (c) xα stands for the monomial xα1

1 x
α2
2 . . ., and (d)

f(xw(1), xw(2), . . .) = f(x1, x2, . . .) for every permutation w of the positive integers” (note
that R is a commutative ring with identity). Full background details can be found in
Macdonald [16] or Stanley [18]. It is well-known that certain sets of symmetric functions
act as bases for the algebra of symmetric functions. One such set is the set of elementary
symmetric functions. The ith elementary symmetric function, ei(x), is defined as

ei(x) =
∑

j1<j2<···<ji

xj1 · · ·xji .

We can extend this definition using partitions. A partition λ = (λ1, λ2, . . . , λ`) of a
positive integer n is a nonincreasing sequence of positive integers: λ1 > λ2 > . . . > λ`,
where λi is called the ith part of λ, 1 6 i 6 `. The transpose, λ′, of λ, is defined by
its parts: λ′i = |{j : λj > i}|. The elementary symmetric function, eλ(x), is defined as
eλ(x) = eλ1eλ2 . . . eλ` . Note that we will use the notation ei for ei(x) and eλ for eλ(x).

If a given symmetric function can be written as a nonnegative linear combination of
elementary symmetric functions we say the symmetric function is e-positive. By abuse
of notation we say a graph is e-positive if its chromatic symmetric function is e-positive.
Furthermore, we say that a class of graphs is e-positive if every graph in the class is
e-positive.

Note that the property of a graph being e-positive is not hereditary. That is, if a graph
is e-positive, all of its induced subgraphs are not necessarily e-positive. For example, the
chair (or fork) graph (see Figure 2) is e–positive with chromatic symmetric function
XF = e2,2,1 + 2e3,1,1 + e3,2 + 7e4,1 + 5e5, but contains an induced claw K1,3 which is not
e-positive, as XK1,3 = e4 + 5e3,1 − 2e2,2 + e2,1,1. In Section 4 we consider graphs whose
induced subgraphs are all e-positive and dub these graphs strongly e-positive.

The following lemmas from Stanley [19] is useful in constructing new classes of graphs:

Lemma 2 ([19], Proposition 2.3). If a graph G is a disjoint union of subgraphs G1 ∪G2,
then XG = XG1XG2.

Lemma 3 ([19], Corollary 3.6). If the vertices can be partitioned into disjoint cliques,
then the graph is e-positive.
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co-diamond
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• •

•

2K2

•

• •

•
co-paw

•

• •

•

co-claw

Figure 4: All four-vertex graphs.

Set H Positivity Reference

P3 e-positive Theorem 5
3K1 e-positive [18]

claw, K3 e-positive Theorem 5
claw, co-P3 e-positive Theorem 5

Figure 5: Table of e-positivity for H-free graphs where H contains a three-vertex graph.

Set H Positivity Reference

claw, P4 e-positive [22]
claw, paw e-positive [10]

claw, co-paw e-positive [10]
claw, co-claw (excluding the net) e-positive Corollary 17

claw, co-diamond conjectured e-positive Conjecture 22
claw, diamond not necessarily e-positive [10]

claw, K4 not necessarily e-positive [10]
claw, 4K1 not necessarily e-positive [10]
claw, C4 not necessarily e-positive [10]

claw, 2K2 not necessarily e-positive [10]

Figure 6: Table of e-positivity for H-free graphs where H contains four-vertex graphs.
Note that the exceptional case, the net, is not e-positive.
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The following theorem summarizes the e-positive status of a number of graph classes:

Theorem 4. The following graph classes are known to be e-positive (proofs in the indi-
vidual references given):

1. Pk [19]

2. Ck [19]

3. Kn [2]; implicit in [19]

4. co-triangle-free [18, p514]

5. K-chains [7]

6. generalized bull [1]

7. (claw, P4-free) [22]

8. (claw, paw)-free [10]

9. (claw, co-paw)-free [10]

Theorem 5. The following graph classes are e-positive:

1. P3-free

2. (claw, triangle)-free

3. (claw, co-P3)-free

Proof. We have the following arguments:

Item 1: If G is P3-free then the components of G are cliques. By [2], restated in Theorem
4, and Lemma 2, G is e-positive.

Item 2: If G is (claw, triangle)-free, then each component of G is a chordless path or
cycle. Then together with [19], restated in Theorem 4, and Lemma 2, G is e-positive.

Item 3: The class of (claw, co-P3)-free graphs is a subclass of (claw, co-paw)-free graphs
which was shown to be e-positive in [10].

Finally, this is Stanley and Stembridge’s celebrated conjecture. They expressed it in
terms of incomparability graphs of (3+1)-free posets.

Conjecture 6 ([21]). A claw-free, co-comparability graph is e-positive.
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In [10] classes of (claw, H)-free graphs were analyzed, where H is a graph on 4 vertices.
However several classes of graphs, including (claw, diamond)-free graphs and (claw, co-
claw)-free graphs are not necessarily e-positive, as was demonstrated using a counter-
example. The counter-example that is used is a six-vertex graph called the net (Figure
2). Here we extend the results of [10] to remark that there are infinite families of non-e-
positive graphs:

Theorem 7. There are infinitely many (claw, diamond)-free graphs, (claw, C4)-free
graphs, (claw, K4)-free graphs, and (claw, 2K2)-free graphs that are not e-positive.

Proof. The family of triangle tower graphs, described in [4] are not e-positive, but are
(claw, diamond, C4, K4)-free. The family of generalized nets, described in [5] are not
e-positive, but are (claw, 2K2)-free.

Returning to Stanley’s singular counter-example—the net—we focus on this special
graph. In the next section we will show it is the only (claw, co-claw)-free graph that is
not e-positive. We also note that the net contains an asteroidal triple and this causes us
to turn our focus to AT-free graphs. In particular, we note this significant result of Kloks,
Kratsch, and Müller which shows that the claw-free, co-comparability graphs are one half
of the set of (claw, AT)-free graphs.

Theorem 8 ([14]). A connected graph G is claw-free and AT-free if and only if at least
one of the following holds:

1. G is a claw-free co-comparability graph.

2. G is co-triangle-free.

Together with a result from [18] (restated in Theorem 4), Conjecture 6 would imply
that the class of claw-free AT-free graphs is e-positive.

3 Unit interval graphs

An interval graph G is a graph whose vertices can be represented by intervals on a straight
line where two vertices in G are adjacent if and only if their corresponding intervals
intersect. A unit interval graph is an interval graph whose intervals are given by unit
lengths. It has been shown in [15] that interval graphs are exactly the class of chordal
AT -free graphs, where a graph is a chordal graph if each of its cycles of length at least four
has a chord, i.e. an edge that is not part of the cycle but connects two vertices of the cycle.
At the same time, unit interval graphs have been shown to be exactly the class of claw-
free interval graphs [6]. Guay-Paquet [8] has proved that Conjecture 6 can be reduced
to the statement that the chromatic symmetric function of unit interval graphs are e-
positive. So proving certain classes of unit interval graphs are e-positive will support this
conjecture. This gives the motivation to study H-free unit interval graphs or equivalently
(claw, H)-free AT -free chordal graphs.
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Graph H Positivity Reference

P4 e-positive [22]
paw e-positive [10]

co-paw e-positive [10]
co-claw e-positive Theorem 18

diamond e-positive Theorem 10
co-diamond unknown unknown

K4 unknown unknown
4K1 unknown unknown
2K2 unknown unknown

Figure 7: Table of e-positivity results for H-free unit interval graphs where H is a four-
vertex graph.

We investigate two different angles on the e-positivity question on unit interval graphs:
1) unit interval graphs that are H-free for H a four vertex graph; and, 2) co-claw-free
unit interval graphs.

3.1 H-free unit interval graphs

The table in Figure 7 summarizes what is known about H-free unit interval graphs,
where H is a four vertex graph. This lemma from Hempel and Kratsch is required in
what follows:

Lemma 9 ([11]). Let G=(V ,E) be a claw-free, AT-free graph. Let N0 = {w}, N1 = N(w),
N2, . . . , Ni = {x ∈ V |d(x,w) = i} for i > 2. Then the following holds:

1. Ni is a clique for all i = 0, 2, 3, . . .

2. α([N1]) 6 2.

Theorem 10. If G is a diamond-free unit interval graph, then G is e-positive.

Proof. Let G = (V,E) be a diamond-free unit interval graph. From Lemma 9, fix w ∈ V
and define N0 = {w}, N1 = N(w), N2, . . . , Ni = {x ∈ V |d(x,w) = i} for i > 2. By
Lemma 9, Ni is a clique for all i 6= 1. Since G is diamond-free, [N1] must be P3-free. Then
since α([N1]) 6 2, either [N1] is a complete graph or the disjoint union of two complete
graphs.

Case 1. Suppose [N1] is a complete graph.

Every vertex in N2 must have exactly one neighbour in N1. If y ∈ N2 has two neighbours
x1, x2 ∈ N1 then {w, x1, x2, y} induces a diamond. Then every vertex in N2 must be
adjacent to the same vertex in N1 say x, or G will contain an induced C4, which contradicts
G being chordal. For i > 0, this arguement can be continuely applied to Ni+2 since there
is a vertex in Ni that every vertex in Ni+1 is adjacent to. Therefore G is a K-chain and
by [7], restated in Theorem 4, G is e-positive.
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•

•a b

c

Figure 8: A generalized pyramid

Case 2. Suppose [N1] is the disjoint union of two complete graphs.

Note that no vertex in N2 can have more than one neighbour in N1. If a vertex in N2 has
two neighbours in the same component of [N1], then G will contain an induced diamond.
If a vertex in N2 has a neighbour in each component of [N1], then G will contain an
induced C4. Thus every vertex in N2 has exactly one neighbour in N1. Every vertex in N2

has the same neighbour in N1 or G will contain an induced C4 or C5. Then one component
of [N1] has no neighbours in N2. For i > 0, a similar argument can be continually applied
to Ni+2 since there is a vertex in Ni that every vertex in Ni+1 is adjacent to. Therefore
G is a K-chain and by [7], restated in Theorem 4, G is e-positive.

We also remark that it can be shown that a graph is a K-chain graph if and only if it
is diamond-free unit interval graph.

In the next theorem we will make use of the following term: G is a generalized pyramid
if every oval is a clique and there are all edges between any two ovals if there was an edge
between them in the original graph (see Figure 8).

Theorem 11. If G is a (2K2, co-diamond)-free unit interval graph, then G is e-positive.

Proof. From [10], it was determined that (claw, co-diamond, 2K2)-free graphs that are
not known to be e-positive are the generalized pyramid graphs. Note that if all 3 ovals of
G are non-empty, then G contains an astroidal triple {a, b, c}. Since unit interval graphs
are AT -free, it must be the case that one or two ovals of G are empty. In either case, G
is a generalized bull graph, and from [1], restated in Theorem 4, G is e-positive.

As a side issue we can consider the families of 2K2-free unit interval graphs that
are not known to be e-positive. Let G = (V,E) be a 2K2-free unit interval graph.
We can assume G is connected since if not G has at most one component that is not
an isolated vertex. From Lemma 9, fix w ∈ V and define N0 = {w}, N1 = N(w),
N2, . . . , Ni = {x ∈ V |d(x,w) = i} for i > 2. Since G is 2K2-free, Ni = ∅ for all i > 4.
Then by Lemma 9, Ni is a clique for i = 0, 2, 3 and α([N1]) 6 2. If N3 has an edge {z1z2}
then for any vertex x ∈ N1, {w, x, z1, z2} induces a 2K2 in G. Then either N3 is empty
or N3 has a single vertex.
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Case 1. Suppose [N1] is not connected.

Then [N1] has two components, say N1,0 and N1,1, otherwise G contains an induced claw.
At least one component of [N1] is a single vertex, say N1,1, and the other is a clique. If
N2 is empty, then G can be partitioned into 2 cliques, N0 ∪ N1,0 and N1,1, and by [19],
restated in Lemma 3, G is e-positive. Now suppose y1 ∈ N2. Then vertices in N2 can only
have neighbours in one component of [N1] or G will have a chordless cycle on at least 4
vertices. Then if N3 6= ∅ or [N2] has an edge, this edge together with the edge formed by
w and a vertex from the component of [N1] with no neighbours in N2, will induce a 2K2

in G. Then N2 has exactly one vertex and N3 is empty. In this case G is a generalized
bull, and by [1], restated in Theorem 4, G is e-positive.

Case 2. Suppose [N1] is connected.

Suppose N3 has a single vertex, z. Any vertex y1 ∈ N2 that is adjacent to z must be adja-
cent to every vertex in N1. If y1 is not adjacent to x ∈ N1, then {w, x, y1, z} induces a 2K2

in G. Also any vertex y2 ∈ N2 that is not adjacent to z must be adjacent to every vertex
in N1. If y2 is not adjacent to x ∈ N1 then {y1, y2, z, x} induces a claw in G. It must also
be the case that N1 is a clique. If x1, x2 ∈ N1 are not adjacent then {x1, x2, y1, z} induces
a claw in G. Then G is a generalized bull and by [1], restated in Theorem 4, G is e-positive.

Now suppose N3 is empty. Then if N1 is a clique, G can be partitioned into two cliques,
N0∪N1 and N2, and by [19], restated in Lemma 3, G is e-positive. Then N1 must contain
an induced P3.

The family of 2K2-free unit interval graphs that are not known to be e-positive have
[N1] connected, [N1] contains an induced P3, α([N1]) = 2, N2 6= ∅, and all Ni = ∅ for
i > 3.

3.2 The structure of (claw, co-claw)-free graphs

As a preliminary to considering co-claw, unit interval graphs, we investigate (claw, co-
claw)-free graphs. First observe that the net is a (claw, co-claw)-free graph that is not
e-positive. Here we will show this is the only graph in this class that is not e-positive.
Theorems 12 and 13 below are implicitly implied by the proof of Theorem 3 in [13]. For
the sake of completeness, we will give a proof of both theorems here. Note that the
complement of the net is called the 3-sun.

Theorem 12 ([13]). Let G be a (claw, co-claw)-free graph. If G contains a triangle and
a co-triangle that are vertex-disjoint, then G contains a net or a 3-sun as an induced
subgraph.

Proof. Let G be a (claw, co-claw)-free graph. Suppose G contains a triangle T with
vertices c1, c2, c3 and a co-triangle C with vertices s1, s2, s3 such that the triangle and
co-triangle are vertex-disjoint. We claim that

For a triangle R, every vertex in G−R is adjacent to at least one vertex in R. (1)

the electronic journal of combinatorics 26(3) (2019), #P3.51 11



If (1) failed then R and a vertex of G− R with no neighbors in R would form a co-claw
with R, a contradiction.

Suppose s1 is adjacent to all vertices of the triangle T . Consider the triangle {s1, c1, c2}.
By (1), vertex s2 is adjacent to c1, or c2. We may assume s2 is adjacent to c2. We have
the following implications:

• the vertex c2 is not adjacent to s3, for otherwise {c2, s1, s2, s3} induces a claw, a
contradiction

• the vertex s3 is adjacent to c1, for otherwise {s3, c1, c2, s1} induces a co-claw, a
contradiction

• the vertex s3 is adjacent to c3, for otherwise {s3, c2, c3, s1} induces a co-claw, a
contradiction

• the vertex s2 is not adjacent to c1, for otherwise {c1, s1, s2, s3} induces a claw, a
contradiction

• the vertex s2 is not adjacent to c3, for otherwise {c3, s1, s2, s3} induces a claw, a
contradiction

• the vertex {s2, c1, c3, s1} induces a co-claw, a contradiction.

Thus, we may assume that every si (i = 1, 2, 3) is non-adjacent to at least one cj (j =
1, 2, 3). Consider the vertex s1 and suppose s1 is adjacent to two vertices of {c1, c2, c3}.
We may assume s1 is adjacent to c1, c2 and non-adjacent to c3. If c1 is adjacent to both
s2, s3, then {c1, s1, s2, s3} induces a claw, a contradiction. Thus, we may assume c1 is not
adjacent to s2. We have the following implications:

• the vertex s2 is adjacent to c2, for otherwise, {s2, c1, c2, s1} induces a co-claw

• the vertex s3 is not adjacent to c2, for otherwise, {c2, s1, s2, s3} induces a claw

• the vertex s3 is adjacent to c1, for otherwise {s3, c1, c2, s1} induces a co-claw

• the vertex s3 is adjacent to c3, for otherwise {c1, s1, c3, s3} induces a claw

• the vertexs2 is adjacent to c3, for otherwise {s2, c1, c3, s3} induces a co-claw.

Now, T ∪C induces a 3-sun in G. So, we may assume every vertex in C is adjacent to
exactly one vertex in T . If two vertices of C are adjacent to the same vertex in T, then
G contains a claw. It is now easily to see that T ∪ C induces a net in G.

Theorem 13 ([13]). Let G be a (claw, co-claw)-free graph. If G contains a net or a 3-sun
as an induced subgraph, then G is a net, or a 3-sun.
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Figure 9: The antenna

Proof. Let G be a (claw, co-claw)-free graph. Suppose that G contains a net with vertices
c1, c2, c3, s1, s2, s3 such that C = {c1, c2, c3} induces a triangle, S = {s1, s2, s3} induces a
co-triangle, and ci is adjacent to si for i = 1, 2, 3. Consider a vertex t not belonging to
the net. Vertex t cannot be adjacent to all vertices of S, for otherwise S ∪ {t} induces
a claw. So we may assume t is not adjacent to s1. Suppose t is adjacent to c1. Since
{c1, s1, c2, t} cannot induce a claw, t must be adjacent to c2. Similarly, since {c1, s1, c3, t}
cannot induce a claw, t must be adjacent to c3. Now {s1, t, c2, c3} induces a co-claw, a
contradiction.

So we know t is not adjacent to c1. Vertex t must be adjacent to c2, or c3 (or both),
for otherwise, {t, c1, c2, c3} induces a co-claw, a contradiction. Without loss of generality,
assume t is adjacent to c2. Since {c2, c1, s2, t} cannot induce a claw, t must be adjacent
to s2. But now {s1, t, c2, s2} induces a co-claw. We now can conclude that if G contains
a net, the G is a net. By considering the complement of G, it follows that if G contains
a 3-sun, then G is a 3-sun.

Theorem 14. Let G be a (claw, co-claw)-free graph. If G contains an antenna, then G
is an induced subgraph of the graph F1.

Proof. Let G be a (claw, co-claw)-free graph. Suppose G contains an antenna A with
vertices c1, c2, c3, s1, s2, s3 as indicated by Figure 9 (the vertices ci’s form a clique, the set
{s1, s2, s3} contains an unique edge s2s3, and si is adjacent to ci for i = 1, 2, 3.). Let D1

be the set of vertices in G−A that are adjacent to s2, s3, c1, s1 and no other vertices in A.
Let D2 be the set of vertices in G−A that are adjacent to s1, c2, s2 and no other vertices
in A. Let D3 be the set of vertices in G − A that are adjacent to s1, c3, s3 and no other
vertices in A. We claim that

Every vertex in G− A belong to D1 ∪D2 ∪D3. (2)

Let v be a vertex in G − A. Consider the triangle T with vertices c1, c2, c3. Then v
must be adjacent to at least one vertex in T , for otherwise v and T form a co-triangle.
Suppose that v is adjacent to both c2 and c3. We have the following implications:

• the vertex v is adjacent to s1, for otherwise, {s1, v, c2, c3} induces a co-claw
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• the vertex v is not adjacent to s3, for otherwise, {v, s1, c2, s3} induces a claw

• the vertex v is adjacent to c1, for otherwise, {c3, c1, v, s3} induces a claw

• the vertex {s3, v, c1, s1} induces a co-claw, a contradiction.

So v must be non-adjacent to c2, or c3. Suppose that v is non-adjacent to both c2
and c3. We will show that v must be in D1. Note that v is adjacent to c1 for otherwise
{v, c1, c2, c3} induces a co-claw. We have the following implications:

• the vertex v is adjacent to s1, for otherwise {c1, s1, v, c3} induces a claw

• the vertex v is adjacent to s3, for otherwise {s3, v, c1, s1} induces a co-claw

• the vertex v is adjacent to s2, for otherwise {s2, v, c1, s1} induces a co-claw

Thus, v belongs to D1. So we may assume v is adjacent to exactly one vertex of
{c2, c3}. Suppose that v is adjacent to c3 but not to c2. We will show that v belongs to
D3. We have the following implications:

• the vertex v is adjacent to s3, for otherwise, {c3, c2, v, s3} induces a claw

• the vertex v is adjacent to s1, for otherwise, {s1, v, c3, s3} induces a co-claw

• the vertex v is non-adjacent to s2, for otherwise, {v, s1, c3, s2} induces a claw

• the vertex v is non-adjacent to c1, for otherwise, {s2, v, c1, s1} induces a co-claw

Thus, v belongs to D3. By symmetry, if v is adjacent to c2 but not to c3, then v
belongs to D2. We have established (2). If some Di contains at least two vertices, then
it is easy to see that G contains a claw, or co-claw. Thus G has at most 9 vertices and is
an induced subgraph of F1.

Theorem 15. Let G be a (claw, co-claw)-free graph. If G does not contain a net, a 3-sun,
or an antenna, and contains a bull, then G is an induced subgraph of the graph F2.

Proof. Let G be a (claw, co-claw)-free graph that does not contain a net, or an antenna,
but contains a bull B. Let the vertices of the bull B be c1, c2, c3, s1, s2 as indicated by
Figure 2 (the set {c1, c2, c3} forms a triangle, s1 is adjacent to ci for i = 1, 2). We may
assume G is not the bull, for otherwise we are done. Let X be the set of vertices of G−B
that are adjacent to s1, c1, s2 and non-adjacent to c2, c3. Let Y be the set of vertices of
G−B that are adjacent to s1, c2, s2 and non-adjacent to c1, c3. We are going to show that
every vertex in G−B belongs to X ∪ Y .

Consider a vertex v ∈ G − B. Suppose that v is adjacent to c3. Then v is non-
adjacent to at least one vertex of {s1, s2}, for otherwise, {v, s1, s2, c3} induces a claw,
a contradiction. Without loss of generality, assume v is non-adjacent to s1. Then v is
non-adjacent to c2, for otherwise, {s1, v, c2, c3} induces a co-claw. Now, v is non-adjacent
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Figure 10: The graphs F1 and F2

to c1, for otherwise, {c1, s1, v, c2} induces a claw. But then the set {c1, c2, c3, s1, s2, v}
induces a net or an antenna in G, a contradiction. So, v is non-adjacent to c3.

Consider the triangle with vertices c1, c2, c3. Vertex v must be adjacent to c1, or c2,
for otherwise, the triangle and v induce a co-claw. Suppose that v is adjacent to c1. Now
v must be adjacent to s1, for otherwise, {c1, s1, v, c3} induces a claw. Then v must be
adjacent to s2, for otherwise, {s2, s1, c1, v} induces a co-claw. Vertex v is non-adjacent
to c2, for otherwise, B and v induce a 3-sun, and we are done. Now we know v ∈ X.
Similarly, if v is adjacent to c2, the v ∈ Y . If X or Y contains two vertices, then it is easy
to see G contains a claw, or co-claw. So, G has at most seven vertices and is an induced
subgraph of the graph F2.

Let F1 (respectively, F2) be the class of graphs G such that G or G contains an antenna
(respectively, bull) and is an induced subgraph of F1 (respectively F2).

Theorem 16. Let G be a (claw, co-claw)-free graph. Then one of the following holds.

(i) G or G contain no triangle.

(ii) G or G is the net.

(iii) G or G belong to F1.

(iv) G or G belong to F2.

Proof. Let G be a (claw, co-claw)-free graph. We may assume G contains a triangle T
and a co-triangle C, for otherwise, (i) holds, and we are done. The sets T and C cannot
be vertex-disjoint, for otherwise, (ii) holds by Theorems 12 and 13, and we are done. So,
T and C must intersect at one vertex. It is easy to verify that T ∪ C induces a bull. We
may assume G contains no antenna, for otherwise, by Theorem 14, (iii) holds and we are
done. By Theorem 15, G belongs to F2, and so (iv) holds, and we are done.
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Corollary 17. If G is a (claw, co-claw)-free graph that is not isomorphic to the net, then
G is e-positive.

Proof. This follows directly from the Theorem 16 and the facts that all graphs in F1 and
F2 were verified by computer program to be e-positive, (claw, triangle)-free graphs and
co-triangle-free graphs are e-positive, and the complement of the net is e-positive.

The following theorem is one of our main results:

Theorem 18. If G is a co-claw-free unit interval graph, then G is e-positive.

Proof. The only (claw, co-claw)-free graph that is not e-positive is the net and the net
is not a unit interval graph (since it contains an astroidal triple). Then it follows from
Corollary 17 that co-claw-free unit interval graphs are e-positive.

Corollary 19. If G is a unit interval graph and the complement of G is a unit interval
graph, then G is e-positive.

Proof. This follows directly from the previous theorem and the fact that if the complement
of G is a unit interval graph, then G is co-claw-free.

In fact, the class of graphs stated in Theorem 18 can be shown to be e-positive by
other means, i.e. this theorem does not provide any new examples of e-positive graphs.
The following proof is due to Timothy Y. Chow [3]:

Proof. (Alternative proof of Theorem 18) If the graph is triangle-free, then since it is a
unit interval graph, it must be a disjoint union of paths which, by [19] are e-positive. So
assume G contains a triangle. Since G is a unit interval graph, assume G is represented
as a set of unit intervals with vertices arranged left to right and that there is a triangle
formed by three consecutive vertices a, b, and c. Moreover, since all unit interval graphs
with at most five vertices are known to be e-positive, we may assume G has at least 6
vertices. This means there are two vertices we will call d and e either to the right of c
or to the left of a. Without loss of generality, assume they are to the right of c. But
then all vertices to the right of c, and, in particular d and e, must be adjacent to c and
to each other (since G is co-claw-free) so these vertices all form a clique. By a similar
argument, all vertices to the left of d form a clique. Since G is covered by two cliques,
its complement cannot contain a triangle, and by Theorem 4, property 4, we know that
complements of triangle-free graphs are e-positive.

4 Strongly e-positive graphs

As discussed in Section 1, the property of a graph being e-positive is not hereditary. This
gives motivation to seek out which graphs have this special property. We coin the term
strongly e-positive graphs for graphs with this property.

Definition 20. A graph G is strongly e-positive if for all induced subgraphs H of G, H
is e-positive.
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Note that the classes of claw-free co-comparability graphs, unit interval graphs, and
(claw, co-diamond)-free graphs are all subclasses of (claw, net)-free graphs. See Figure 1.
We conjecture that this class of graphs is exactly the class of strongly e-positive graphs.

Conjecture 21. A graph is strongly e-positive if and only if it is (claw, net)-free.

Clearly if a graph is strongly e-positive, then it is (claw, net)-free since both the
claw and net are not e-positive. However, proving the other direction seems to be quite
challenging. All (claw, net)-free graphs up to and including 9 vertices were verified by
computer to be e-positive. This provides strong evidence in support of the conjecture.

The contrapositive of part of this conjecture is:

Conjecture 22. If G is not e-positive, then G contains an induced claw or an induced
net.

Note a kinship between strongly e-positive and the nice property of Stanley [20] where
a graph G is nice if whenever there is a stable partition of G of type λ (i.e. a partition
into stable sets of size λ1, λ2, . . . ) and whenever µ 6 λ in dominance order, there exists a
stable partition of type µ. Then Proposition 1.6 of [20] states that a graph G and all its
induced subgraphs are nice if and only if G is claw-free.

We introduce a further conjecture that, in conjunction with a result from [12], would
show that (claw, bull)-free graphs are e-positive. The work of [12] shows that every
connected (claw, bull)-free graph is either the generalized graph of a path or cycle, or the
complement of a triangle-free graph. As we know from Theorem 4, the complement of a
triangle-free graph is e-positive, so the only remaining type of (claw, bull)-free graph to
consider are those that take the form of the generalized graph of a path or cycle. Again,
by Theorem 4 we know paths and cycles are e-positive. Creating the generalized graphs of
paths or cycles is akin to adding what are called twin vertices (defined below). Conjecture
23 proposes that this twinning preserves e-positivity.

Two vertices x and y are twins (also called true twins) if they are adjacent and any
vertex z is adjacent to both x and y or non adjacent to both x and y. Let G be a graph,
define G′ to be the graph obtained from G by adding a vertex x that is a twin with some
vertex y in G. Then the following conjecture would be implied by Conjecture 22:

Conjecture 23. If G is e-positive, then G′ is e-positive.
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