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Abstract

In 2007, McNamara proved that two skew shapes can have the same Schur
support only if they have the same number of k× ` rectangles as subdiagrams. This
implies that two ribbons can have the same Schur support only if one is obtained
by permuting row lengths of the other. We present substantial progress towards
classifying when a permutation π ∈ Sm of row lengths of a ribbon α produces a
ribbon απ with the same Schur support as α; when this occurs for all π ∈ Sm, we
say that α has full equivalence class. Our main results include a sufficient condition
for a ribbon α to have full equivalence class. Additionally, we prove a separate
necessary condition, which we conjecture to be sufficient.

Mathematics Subject Classifications: 05E05

1 Introduction

The question of when two skew diagrams yield equal skew Schur functions has been
studied in detail. For instance, this question is addressed by Billera, Thomas, and van
Willigenburg in [2], by McNamara and van Willigenburg in [8], and by Reiner, Shaw,
and van Willigenburg in [10]. In this paper, we consider the related question of when
two skew diagrams yield skew Schur functions such that when expanded, the same set of
Schur functions appear with nonzero coefficient. In other words, we consider the question
of when two skew diagrams have equal Schur support (Definition 1). This question has
received less attention, with the most substantial progress coming from McNamara in
2007 [6] and from McNamara and van Willigenburg in 2011 [7].
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Despite receiving relatively little attention, the study of Schur support equality and
containment has potentially profound consequences. For instance, Schur support con-
tainment provides information regarding the Schur-positivity of differences of skew Schur
functions. Specifically, defining the Schur-positivity order on skew shapes as B ⩽ A if
sA − sB is Schur-positive, we have as a strong necessary condition for B ⩽ A that the
Schur support of B is contained in that of A. The study of Schur-positive functions has
applications to a broad range of mathematics, including to the representation theory of
the symmetric group; McNamara and van Willigenburg have more on this in [8].

McNamara and van Willigenburg also explicitly determine the Schur support for a
special class of skew shapes called equitable ribbons, which, by definition, are ribbons such
that the lengths of any two nonempty rows differ by at most one and that the lengths
of any two nonempty columns differ by at most one [7, Definition 3.4]. Furthermore,
McNamara and van Willigenburg show that equitable ribbons are the maximal connected
skew shapes in the Schur support containment order, and that there is a unique such
maximal element with ` rows for each ` [7, Theorem 1.5].

Since the property of being equitable is preserved under permuting row lengths, it
follows that equitable ribbons have the same Schur support under all permutations of
row lengths, or, using our terminology, that equitable ribbons have full equivalence class
(Definition 7). However, being equitable is not a necessary condition for a ribbon to have
full equivalence class (see Theorem 25).

This definition of full equivalence class is motivated by the result of McNamara that
any two skew diagrams with the same Schur support necessarily contain the same number
of k × ` rectangles as subdiagrams, for every k, ` ⩾ 1 [6, Corollary 3.10]. From this, it
follows easily that two ribbons can have equal Schur support only if one is obtained
from the other by permuting its row lengths (Corollary 6). This reduces the problem of
determining the support equivalence class of a ribbon to determining which permutations
of the ribbon’s row lengths preserve its support.

In this paper, we seek to address a portion of the Schur support equality problem
by working to classify which ribbons have full equivalence class. In the next section, we
provide preliminary information and address several edge cases to ensure the complete-
ness and comprehensibility of our statements throughout the remainder of the paper. In
Section 3, we prove our main result (Theorem 25), which states that a sufficient con-
dition for a ribbon to have full equivalence class is that all 3-subsets of its row lengths
satisfy the strict triangle inequality (Definition 18); simply put, this condition requires
that the largest of the three row lengths is strictly less than the sum of the other two.
This is a weaker condition than being equitable; thus, this result generalizes the finding
of McNamara and van Willigenburg in [7, Theorem 1.5] that equitable ribbons have full
equivalence class. The key tools in our proof are the celebrated Littlewood-Richardson
Rule [5] and an R-matrix algorithm originally due to Nakayashiki and Yamada [9] that is
presented more clearly for our purposes by Inoue, Kuniba and Takagi in [4].

Section 4 gives a necessary condition on the row lengths for a ribbon to have full
equivalence class (Theorem 27). This necessary condition is not simple to state, but
in a forthcoming paper, Azenhas and Mamede [1] find additional meaning behind it,
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Figure 1: A semistandard Young tableau (left) and the ribbon (4,3,2) (right).

showing that it coincides with their classification of when a monotone ribbon has full
Schur support. (A skew shape A with n parts has full Schur support, by definition, when
its Schur support is equal to its Schur interval – a subset of the partitions of n defined
with respect to the partitions r(A) and c(A) formed by the row lengths and column
lengths of A, respectively [1].) We conjecture that our necessary condition for a ribbon to
have full equivalence class is also sufficient, which we, along with Tran, have shown to be
true for ribbons with 3 or 4 rows [3]. If our conjecture is true in general, then the work
of Azenhas and Mamede would imply that a monotone ribbon has full Schur support if
and only if it has full equivalence class. Finally, in Section 5, we give concluding remarks
and pose problems for future consideration.

2 Preliminaries

We begin by establishing some basic definitions relating to Schur functions and ribbons.
We will then introduce the Littlewood-Richardson rule, which is the underlying tool used
in many of our proofs. Additionally, we will introduce an algorithm given by R-matrices,
which will dictate a way to swap adjacent row lengths in a ribbon tableau, while preserving
the content of the filling and semistandardness within the two swapped rows. This algo-
rithm is an important part of our proof of a sufficient condition for full equivalence class
(Theorem 25). Finally, we will consider several edge cases to allow for cleaner statements
of results throughout the remainder of the paper.

2.1 Schur Functions

The Young diagram corresponding to a partition λ = (λ1 ⩾ λ2 ⩾ . . . ⩾ λm > 0) of an integer
n is a collection of n boxes arranged in left-aligned rows, where the ith row from the top
has λi boxes. A Young diagram filled with integers that increase weakly across rows and
strictly down columns is called a semistandard Young tableau (SSYT) (Figure 1 (left)).

We use content to refer to the multiset of integers in the filling of a tableau. The
content is denoted by a tuple ν = (ν1, ν2, . . . , νk), where νi is the number of i’s in the filling
of the tableau. For example, the content of the tableau from Figure 1 is ν = (5,4,3,3,3).

Schur functions are often considered to be the most important basis for the ring of
symmetric functions. Schur functions are indexed by integer partitions, where the Schur
function sλ corresponding to a partition λ is defined as
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sλ(x1, x2, x3, . . .) = ∑
T ∶ SSYT of

shape λ

xT = ∑
T ∶ SSYT of

shape λ

xν11 x
ν2
2 x

ν3
3 ⋯ (1)

where νi is the number of occurrences of i in T .
We can generalize this notion of Schur functions to apply to skew shapes, which are

obtained by removing the Young diagram corresponding to the partition µ from the top-
left corner of a larger Young diagram corresponding to the partition λ. Here, we require
that the diagram for µ is contained in the diagram for λ, and we write the resulting skew
shape as λ/µ. When µ is the empty partition, λ/µ is said to be straight. Skew Schur
functions have an analogous definition to that of straight Schur functions, where the sum
in Equation 1 is instead over skew semistandard Young tableaux of shape λ/µ.

Skew Schur functions have the nice property that they are Schur-positive, meaning
that for any skew shape λ/µ, we can write

sλ/µ =∑
ν

cλµ,νsν

where ν denotes a straight partition, and where all coefficients cλµ,ν ⩾ 0. The coefficients
cλµ,ν are called Littlewood-Richardson coefficients, and will play an important role in the
Littlewood-Richardson rule (which we introduce in Theorem 9). Since such a decompo-
sition of a skew Schur function into a linear combination of straight Schur functions is
unique, the following notion is well-defined:

Definition 1. The Schur support of a skew shape λ/µ, denoted [λ/µ], is defined as

[λ/µ] = {ν ∶ cλµ,ν > 0}.

In other words, the support of a skew shape λ/µ is the set of straight shapes ν such
that sν appears with nonzero coefficient in the expansion of sλ/µ into a linear combination
of straight Schur functions.

Remark 2. It is well known [11, Exercise 7.56(a)] that [α○] = [α], where α○ is the antipodal
(180○) rotation of a ribbon α.

2.2 Ribbons

A ribbon is a connected skew shape which does not contain a 2× 2 rectangle as a subdia-
gram. Compositions of n with m parts are in natural bijection with ribbons with n boxes
and m rows; hence, we will use the notation α = (α1, α2, . . . , αm) to denote the ribbon
with m rows in which the length of the ith row is αi. For example, Figure 1 (right) shows
the ribbon (4,3,2).

Definition 3. Let α = (α1, α2, . . . , αm) and απ = (απ−1(1), απ−1(2), . . . , απ−1(m)) be ribbons,
where π ∈ Sm. We say απ is a permutation of α.

Example 4. Figure 2 depicts all permutations of the ribbon α = (4,3,2).

the electronic journal of combinatorics 26(3) (2019), #P3.52 4



α = α(2 3) = α(1 2) =

α(1 3 2) = α(1 2 3) = α(1 3) =

Figure 2: Permutations of the ribbon α = (4,3,2).

In [6], McNamara proves a useful necessary condition for Schur support equality:

Proposition 5 ([6, Corollary 3.10]). Let A,B be skew shapes. If [A] = [B], then A and
B contain the same number of k × ` rectangles as subdiagrams, for all k, ` ∈ N.

In particular, if α and β are ribbons satisfying [α] = [β], Proposition 5 gives that
α and β contain the same number of 2 × 1 rectangles as subdiagrams, and hence have
the same number of rows. Moreover, Proposition 5 gives that α and β contain the same
number of 1×k rectangles for every k ∈ N. Consequently, α and β have not only the same
number of rows, but also the same multiset of row lengths. Thus, we have the following:

Corollary 6. Let α,β be ribbons. If [α] = [β], then β is a permutation of α.

Definition 7. A ribbon α = (α1, α2, . . . , αm) has full equivalence class if [α] = [απ] for all
permutations π ∈ Sm.

For instance, the ribbon α = (4,3,2) from Example 4 has full equivalence class, since
all of its permutations have support {(7,2), (7,1,1), (6,3), (6,2,1), (5,4), (5,3,1), (5,2,2),
(4,4,1), (4,3,2)}.

2.3 Yamanouchi Words and Tableaux

We now introduce the concepts of Yamanouchi words and Yamanouchi tableaux, which
will be essential for using and defining our main tool for proving support equality — the
Littlewood-Richardson rule.

A Yamanouchi word is a word with the property that all of its prefixes contain no
more (i + 1)’s than i’s, for all integers i ⩾ 1. For our purposes, we are concerned with
the reverse reading word (henceforth RRW ) of a tableau, which reads right-to-left across
rows and top-to-bottom from one row to the next. A Yamanouchi tableau is a tableau
whose RRW is a Yamanouchi word.

Example 8. The tableau depicted in Figure 3 is Yamanouchi because each prefix of its
RRW (i.e. of 112213321) contains no more 2’s than 1’s, and contains no more 3’s than
2’s.

2.4 Littlewood-Richardson Tableaux

Littlewood-Richardson tableaux (which we often abbreviate as LR-tableaux ) are tableaux
which are both semistandard and Yamanouchi. These tableaux play an important role in
the Littlewood-Richardson rule, which we are now ready to state.
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1 1
1 2 2

1 2 3 3

Figure 3: Young tableau with RRW 112213321.

Theorem 9 (Littlewood-Richardson rule [5] or [11, Theorem A.1.3.3]). If

sλ/µ =∑
ν

cλµ,νsν ,

then the number of Littlewood-Richardson tableaux of shape λ/µ and content ν is cλµ,ν.

The following corollary follows immediately from Theorem 9 and the definition of
Schur support (Definition 1), and will be more directly applicable to the proofs in the
remainder of the paper.

Corollary 10. Let ν be a straight shape and λ/µ a skew shape. Then ν ∈ [λ/µ] if and
only if there exists a Littlewood-Richardson tableau of shape λ/µ and content ν.

Example 11. The tableau in Figure 3 is both semistandard and Yamanouchi, with con-
tent (4,3,2). It follows from Corollary 10 that the straight shape (4,3,2) is in the support
of the ribbon with row lengths (2,3,4).

2.5 R-Matrices

We will now introduce an algorithm which will be instrumental in proving our sufficient
condition for a ribbon to have full equivalence class. The R-matrix algorithm, described
by Inoue, Kuniba and Takagi in [4, Section 2.2.3], provides a way to swap two consecutive
row lengths in an arbitrary ribbon with a semistandard filling so that the filling within
the two rows remains semistandard and has the same content as before. Note, however,
that semistandardness of the ribbon as a whole is not necessarily preserved.

Let A be a ribbon tableau of shape α = (α1, . . . , αm), and assume that αj > αj+1 (note
that if αj < αj+1, we can swap αj and αj+1 by performing this algorithm on the antipodal
rotation α○, and then taking the antipodal rotation of the result). The algorithm proceeds
as follows.

1. Convert the fillings of rows j and j + 1 to a “box-ball system” as follows. Let e
denote the maximal entry in the jth and (j+1)st rows. Create two length-e columns
of boxes. If (ν1, . . . , νe) is the content of the jth row, place νi balls in the ith box
from the top of the left column for each 1 ⩽ i ⩽ e. Do the same for the (j + 1)st row
in the right column.

2. For each ball on the right (in any order), connect it to an unconnected ball on the
left strictly above it which is as low as possible. If there is no such ball on the left,
connect it to the lowest unconnected ball on the left.
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3. Shift all unconnected balls on the left horizontally to the right.

4. Convert this box-ball system back into rows of a ribbon tableau by doing the inverse
of the operation described in (1).

Remark 12. The result of the R-matrix algorithm depends only on which of the balls on
the left become connected to a ball on the right. As a result, when executing the R-matrix
algorithm, the order in which the balls on the right are connected to balls on the left does
not matter.

Proposition 13. The R-matrix algorithm applied to a two-row semistandard ribbon
tableau A outputs a two-row semistandard ribbon tableau.

Proof. Since A is semistandard, there is at least one entry a in the second row of A that is
strictly greater than the smallest entry in the first row of A. After A has been converted
into a box-ball system, this means that there is at least one ball on left strictly above the
ball corresponding to a on the right. In light of Remark 12, we can then assume without
loss of generality that the ball corresponding to a on the right is connected to a ball above
it on the left (as opposed to being connected to the lowest ball ball overall on the left).
Recall that this ball above a on the left corresponds to an entry less than a from the top
row. Since only the unconnected balls are slid over to the right column, this means that
at the completion of the algorithm, the top row still has an entry that is strictly less than
a.

The rows in the outputted tableau are weakly increasing simply because of how we
convert a box-ball system back into a tableau. Then the above argument establishes that
the 2 × 1 rectangle where the rows overlap in the outputted tableau is semistandard, so
the proof is complete.

Although the R-matrix algorithm preserves semistandardness when applied to two-
row ribbon tableaux, we would often like to apply the algorithm to two-row subtableaux
of semistandard ribbon tableaux. Suppose the R-matrix algorithm is applied to rows i
and i + 1 of a ribbon tableau A, and call the resulting tableau A(i i+1). Then the two-row
subtableau formed by rows i and i + 1 of A(i i+1) will be semistandard (Proposition 13),
but A(i i+1) will not necessarily be semistandard (Example 15).

Example 14. [4, Sect. 2.2.3] We borrow an example from Inoue, Kuniba and Takagi.
Suppose we have a ribbon whose jth and (j + 1)st rows are as in Figure 4 (left). Steps
1-3 of the R-matrix algorithm as applied to this partial tableau are depicted in Figure
4 (middle). Notice that the only ball movement is two balls in the third box from the
top shifting from the left to the right, as these were the only two unconnected balls on
the left. After applying step 4 of the R-matrix algorithm, we obtain the partial tableau
depicted in Figure 4 (right). Notice that the row lengths have swapped, while the content
and semistandardness of the filling has been preserved, as promised. Moreover, in this
example, both the rightmost entry in the jth row and the leftmost entry in the (j+1)st row
remain unchanged, meaning semistandardness of the entire ribbon would be preserved.
This will not always be the case, as will be illustrated in the next example.
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1 3 3 4 7
1 3 5

1 4 7
1 3 3 3 5

Figure 4: R-matrix algorithm in action

1 2 5 7
2 5 7

1 2 5
2 5 7 7

Figure 5: R-matrix algorithm that changes top right entry

Example 15. Consider a ribbon whose jth and (j + 1)st rows are as in Figure 5 (left).
An application of steps 1-3 of the R-matrix algorithm to these rows is shown in Figure 5
(middle), with the resulting partial tableau shown in Figure 5 (right). As in the previous
example, both the content of and semistandardness between the jth and (j + 1)st rows
have been preserved. However, the rightmost entry of the jth row is changed from a 7
to a 5. As a result, we see that if the leftmost entry in the (j − 1)st row is, say, a 6,
then semistandardness between the (j − 1)st and jth rows would not be preserved by this
application of the R-matrix algorithm.

2.6 Edge Cases

To conclude the Preliminaries, we classify which ribbons have full equivalence class in
a couple of edge cases: ribbons with fewer than three rows and ribbons with row(s) of
length one. Addressing these edge cases here will allow for cleaner statements of our main
results later.

Proposition 16. Any ribbon α with at most two rows has full equivalence class.

Proof. If α has one row, then it trivially has full equivalence class. If α has two rows,
then α has full equivalence class by Remark 2.

Proposition 17. Let α = (α1, α2, . . . , αm) be a ribbon with m ⩾ 3. If αi = 1 for some i ∈
{1,2, . . . , ,m}, then α has full equivalence class if and only if αj = 1 for all j ∈ {1,2, . . . ,m}.

Proof. (⇐): Trivially, if every row has length one, then α has full equivalence class.
(⇒): Arguing by contrapositive, we first consider the case where α has exactly m − 1

rows of length one (so only one “long” row of length > 1). Let αβ be a permutation of α
in which the long row is the first row and αγ a permutation of α in which the long row is
the second row. Then we notice that αβ has an m× 1 rectangle ranging vertically over all
rows; however, αβ does not contain an m × 1 rectangle. So by Proposition 5, α does not
have full equivalence class.
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Now assume that α has exactly k rows which are of length 1, where 1 ⩽ k ⩽m− 2. Let
ασ be any permutation of α such that the first k rows of ασ have length 1. Let απ be
the permutation of α obtained from ασ by swapping the lengths of the first and (k + 1)st

rows. Notice that απ has a (k + 2) × 1 rectangle as a subdiagram, whereas aσ does not.
Hence, by Proposition 5, α does not have full equivalence class.

3 A Sufficient Condition

In this section, we prove a sufficient condition for a ribbon to have full equivalence class;
the statement of this condition requires the following notion:

Definition 18. A set {x, y, z} of three integers x ⩽ y ⩽ z satisfies the strict triangle
inequality if z < x + y.

Theorem 25. Let α = (α1, α2, . . . , αm) be a ribbon with each αi ⩾ 2 and m ⩾ 3. If all
3-subsets of {αi}mi=1 satisfy the strict triangle inequality, then α has full equivalence class.

Towards the goal of proving this sufficient condition for a ribbon to have full equiv-
alence class, we begin with two lemmas. In Lemma 19, we prove that the R-matrix
algorithm preserves the Yamanouchi property of ribbon LR-tableaux. Lemma 20 shows
that the R-matrix algorithm, when applied to a ribbon LR-tableau, preserves some of the
semistandardness of the tableau. In particular, if we use the R-matrix algorithm to swap
rows j and j + 1 of a ribbon LR-tableau A, then semistandardness is preserved between
the (j + 1)st and (j + 2)nd rows of A.

We use the results of these two lemmas to show in Theorem 21 that given three adjacent
rows satisfying the strict triangle inequality (with the second row longer than the third),
the bottom two of the three adjacent row lengths can be swapped while preserving the
Yamanouchi property and semistandardness of the tableau. Extending this condition to
all row length triples, we obtain a sufficient condition for a ribbon to have full equivalence
class (Theorem 25).

Lemma 19. Let A be a ribbon LR-tableau of shape α = (α1, . . . , αm) and let i ∈ {1,2, . . . ,
m − 1}. If A(i i+1) is the ribbon tableau of shape α(i i+1) that results from applying the
R-matrix operation to rows i and i + 1 of A, then A(i i+1) is a Yamanouchi tableau.

Proof. Since A is Yamanouchi, we only need to show that the prefixes of the RRW up
through the ith and (i + 1)st rows of A(i i+1) are Yamanouchi. Consider the ith and (i +
1)st rows of A. Fix any positive integer j and assume that j and j + 1 appear in the
aforementioned rows as follows (with a, b, c, d possibly zero):
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Let ηj and ηj+1 denote the number of j’s and (j +1)’s, respectively, in the RRW of A(i i+1)
by the end of the (i − 1)st row. Since A is assumed to be Yamanouchi, we have that
ηj − ηj+1 ⩾ b and ηj − ηj+1 ⩾ b + d − a.

We now execute the R-matrix algorithm. Let x be the number of balls in the jth box
on the left that are connected to a ball on the right. Similarly,let y be the number of
balls in the (j + 1)st box on the left that are connected to a ball on the right. Notice that
x ⩾ min(a, d). Following the R-matrix algorithm, j and j + 1 occur in the ith and (i+ 1)st

rows of A(i i+1) as follows:

Let R be the word (j + 1)yjx(j + 1)b+d−yja+c−x. Define the function r(n) to be the
number of (j + 1)’s minus the number of j’s in the first n elements of the word R. We
have left to show that r never exceeds ηj − ηj+1. Since r is maximal at y and at b + d + x,
it suffices to show that r(y) ⩽ ηj − ηj+1 and r(b + d + x) ⩽ ηj − ηj+1.

Notice that r(y) = y and r(b+d+x) = (y+(b+d−y))−x = b+d−x. Since y ⩽ b ⩽ ηj−ηj+1,
we have that r(y) ⩽ ηj − ηj+1. For r(b + d + x), we consider two cases. If x ⩾ d, then
r(b + d + x) = b + d − x ⩽ b ⩽ ηj − ηj+1, as desired. On the other hand, if x < d, then since
x ⩾ min(a, d) (as noted above), we have x ⩾ a. Then r(b+d+x) = b+d−x ⩽ b+d−a ⩽ ηj−ηj+1.
This completes the proof.

We have just shown that the R-matrix algorithm preserves the Yamanouchi prop-
erty in ribbon LR-tableaux. Recall from the Preliminaries that the R-matrix operation,
as applied to a two-row subtableau of a ribbon LR-tableau, preserves semistandardness
within the subtableau; however, semistandardness of the entire ribbon is not necessarily
preserved. Our next lemma shows that applying the R-matrix algorithm to rows i and
i+1 of a ribbon LR-tableau cannot increase the leftmost element in the (i+1)st row. This
result is a step towards establishing how we might use the R-matrix algorithm to swap
row lengths, while preserving the semistandardness of the entire ribbon.

Lemma 20. Let A be a ribbon LR-tableau of shape α = (α1, . . . , αm) and let i ∈ {1,2, . . . ,
m − 1}. Denote by A(i i+1) the ribbon of shape α(i i+1) obtained by applying the R-matrix
algorithm to rows i and i + 1 of A. Let x be the leftmost element of the (i + 1)st row of A
and let y be the leftmost element of the (i + 1)st row of A(i i+1). Then y ⩽ x.

Proof. Since x is in the (i + 1)st row of A, by the R-matrix algorithm, there is also an x
in the (i + 1)st row of A(i i+1). The result follows because the (i + 1)st row of A(i i+1) is
weakly increasing.

The remaining way in which A(i i+1) may fail to be semistandard is for the number
in the rightmost box of the ith row of A(i i+1) to be less than or equal to the number in
the leftmost box of the (i − 1)st row. This last obstacle is the main focus of the following
proof.
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Figure 6: Box labellings of A (top) and A(i i+1) (bottom).

Theorem 21. Let α = (α1, α2, . . . , αm) be a ribbon, where each αi ⩾ 2 and m ⩾ 3. Suppose
that αi+1 < αi < αi−1 + αi+1 for some 1 ⩽ i ⩽ (m − 1), where α0 = ∞ for notational
convenience. Then [α] ⊆ [α(i i+1)].

Proof. Let A be a ribbon LR-tableau with shape α and content ν. By Corollary 10, it
suffices to show that there is some ribbon LR-tableau with shape α(i i+1) and content ν.

Applying the R-matrix algorithm to rows i and i + 1 of A yields a ribbon tableau
A(i i+1) of shape α(i i+1) and content ν. By Lemma 19, A(i i+1) is Yamanouchi. If A(i i+1) is
also semistandard, we are done. Recall from Proposition 13 that applying the R-matrix
algorithm to rows i and i + 1 of A preserves the semistandardness within the two rows.
Moreover, we have by Lemma 20 that the leftmost entry in the (i + 1)st row of A(i i+1)
is not greater than that of A. Consequently, if i = 1, then A(i i+1) is semistandard, and
we are done. Supposing i > 1, the only way in which A(i i+1) can fail to be semistandard
is if the rightmost entry in the ith row of A(i i+1) is less than or equal to the leftmost
entry in the (i − 1)st row of A(i i+1). Assume that this is the case (i.e. that A(i i+1) is not
semistandard). In the remainder of the proof, we show that A(i i+1) can be modified to
produce a tableau which is both semistandard and Yamanouchi. Each modification will
preserve both shape and content, so the resulting tableau will still have shape α(i i+1) and
content ν.

Let L (resp. L′) denote the leftmost box in the (i − 1)st row of A (resp. A(i i+1)).
Similarly, let R (resp. R′) denote the rightmost box in the ith row of A (resp. A(i i+1)).
These labellings are shown in Figure 6. Let `, r, `′, and r′ be the entries in boxes L, R,
L′, and R′, respectively. In the following claim, we argue that we can assume the content
of A(i i+1) to be of a specific form, showing that in all other cases, A(i i+1) can be modified
to produce a ribbon LR-tableau.

Claim 22. We can assume that every entry in the ith and (i − 1)st rows (except possibly
the rightmost in the (i − 1)st row) of A(i i+1) is an r′ (see Figure 8).

Proof of Claim 22. By our assumption that A(i i+1) is not semistandard, we have that
`′ ⩾ r′. If `′ > r′, we can simply swap the positions of `′ and r′ to obtain a semistandard
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Figure 7: Assumed entries of A (top) and A(i i+1) (bottom).

tableau. This swap preserves the Yamanouchi property, as the RRW of the resulting
tableau can be obtained from that of A(i i+1) without moving i to before i − 1 for any
2 ⩽ i ⩽m. We can therefore assume that `′ = r′.

Let w denote the leftmost entry in the (i−1)st row of A(i i+1) that is greater than r′ = `′

(if such a w exists). If w is not the rightmost entry of the row, then we can swap it with
the r′ in box R′, yielding a semistandard tableau A(i i+1),w. That A(i i+1),w is Yamanouchi
follows easily from the fact that A(i i+1) is Yamanouchi.

Therefore, in the case that w exists and is not the rightmost entry of row i−1, we have
obtained an LR-tableau with content ν. Thus we may assume that all entries, except
possibly the rightmost, of the (i − 1)st row of A(i i+1) equal r′ = `′. Recall that A and
A(i i+1) differ only in their ith and (i+1)st rows. Therefore, our assumptions regarding the
entries of the (i−1)st row of A(i i+1) apply also to the (i−1)st row of A. These assumptions
are depicted in Figure 7.

Let x be the rightmost entry of the ith row of A(i i+1) that is less than r′ (if such an x
exists). Unless x is the leftmost entry of the row, we can swap x with the r′ in box L′ to
obtain a semistandard tableau. As before, the resulting tableau is Yamanouchi. We can
therefore assume that all entries in the ith row of A(i i+1), except possibly the leftmost,
are equal to r′. We proceed to show that in fact, we may also assume that the leftmost
entry of this row is r′.

Since A is semistandard, the element r in box R of A must be strictly greater than
r′. Recall that the ith and (i + 1)st rows of A and A(i i+1) have the same content. Noting
that all entries in the ith row of A(i i+1) are at most r′, there must therefore be an r in the
(i + 1)st row of A(i i+1).

Now, let y denote the leftmost entry of the ith row of A(i i+1), and consider the case
where y ≠ r′. Using that the R-matrix algorithm preserves semistandardness within the
rows it swaps (Proposition 13), we have that y < r′. We can therefore swap this y with
the r′ in box L′ of A(i i+1) to obtain a semistandard tableau. As before, this swap does
not violate the Yamanouchi property. We may therefore assume that y = r′. By the
above arguments, we may now assume that the entries of A(i i+1) are as shown in Figure
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Figure 8: Assumed entries of A(i i+1).

Figure 9: Entries of Az
(i i+1)

.

8, completing the proof of Claim 22.

We continue with the proof of Theorem 21. In this next portion of the proof, the idea
is to swap the rightmost r′ in the ith row of A(i i+1) with the appropriate entry from the
row below to obtain an LR-tableau. In doing so, our assumptions regarding the content
of A(i i+1) become even stronger. In particular, consider the leftmost box in the (i + 1)st

row of A(i i+1) with entry greater than r′, and call this entry z.

Claim 23. We can assume that every entry in the (i + 1)st row of A(i i+1) is a z (see
Figure 11).

Proof of Claim 23. We first argue that the leftmost box in the (i + 1)st row of A(i i+1)
with entry greater than r′ cannot be the rightmost box of the (i + 1)st row of A(i i+1).
Suppose, for the sake of contradiction, that the former box is in fact the rightmost box
of the (i + 1)st row of A(i i+1). Then the ith and (i + 1)st rows of A and A(i i+1) have only
one entry that is greater than r′ (namely, z). In particular, using our previous notation
(see Figure 7), we have that r = z. Since there is only one element greater than r′ in
these two rows, we have by the semistandardness of A that the leftmost element in the
ith row of A is strictly less than r′ (otherwise r′ would occur twice in the same column of
A). However, the R-matrix algorithm makes it impossible for both z and the entry less
than r′ to be moved to the (i + 1)st row, while r′’s remain in the ith row. We therefore
conclude that the leftmost box in the (i+ 1)st row of A(i i+1) with entry greater than r′ is
not the rightmost box of the row. Consequently, swapping the leftmost z of the (i + 1)st

row of A(i i+1) with the r′ in box R′ of A(i i+1) will produce a semistandard tableau Az
(i i+1)

(see Figure 9). If Az
(i i+1)

is Yamanouchi, then the proof is complete. We now show that
Az
(i i+1)

can only fail to be Yamanouchi in a very narrow set of cases.
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Figure 10: This figure (top) depicts entries of A(i i+1) as well as subwords of the RRW of
A(i i+1). The gray shading indicates entries corresponding to the subword X, while the “?”
indicates the last element of the subword W . This figure (bottom) depicts the analogous
entries and subwords of Az

(i i+1)
.

Let X denote the subword of the RRW of A(i i+1) and Az
(i i+1)

formed by the entries

strictly between the entries we swapped to obtain Az
(i i+1)

from A(i i+1) (see Figure 10).
If z ≠ r′ + 1, then this subword does not contain either r′ + 1 or z − 1. Consequently,
this swap preserves the Yamanouchi property when z ≠ r′ + 1. We may therefore assume
that z = r′ + 1. Thus, given that A(i i+1) is Yamanouchi, the only way in which Az

(i i+1)

can fail to be Yamanouchi is if the following phenomenon occurs: within the subword
X, the number of z’s in the RRW of Az

(i i+1)
overtakes the number of r′’s in the RRW

of Az
(i i+1)

. To understand the set of cases in which this phenomenon can occur, let us
further investigate the RRW of Az

(i i+1)
.

Noting that the subword X begins with αi+1 − 1 occurrences of r′, it suffices to inves-
tigate the portion of X determined by elements in the (i + 1)st row of Az

(i i+1)
. If there

are no z’s in this row, then there is nothing to check. Therefore, assume that there is at
least one z in the (i + 1)st row of Az

(i i+1)
. By the semistandardness of Az

(i i+1)
, this means

that there is exactly one contiguous string of z’s in this portion of X (say, of length k).
Moreover, by definition of X, this contiguous string is a suffix of X.

Let Z denote the prefix of the RRW of Az
(i i+1)

formed by truncating after X. It follows
that if Az

(i i+1)
violates the Yamanouchi property, then so does Z. Also, let W denote the

prefix of the RRW of A(i i+1) and Az
(i i+1)

of length ∑
i−2
j=1(αj) + 1 (i.e. the prefix ending

immediately after the rightmost element of the (i − 1)st row). Note that we can write
Z = W (r′)αi−1−1 z X (see Figure 10). The prefix of A(i i+1) of the same length can be
written as W (r′)αi−1 X (see Figure 10).

Let d be the number of r′’s that occur in W minus the number of z’s that occur in
W . Since W is Yamanouchi and z = r′ + 1, we have that d ⩾ 0. Recalling that A(i i+1) is
Yamanouchi, we have

d + (αi−1 − 1) + αi+1 − (k + 1) ⩾ 0. (2)
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Figure 11: Assumed entries of A(i i+1).

Suppose that Az
(i i+1)

is not Yamanouchi. Then

d + (αi−1 − 1) − 1 + (αi+1 − 1) − k = (d + (αi−1 − 1) + αi+1 − (k + 1)) − 1 < 0. (3)

Together, (2) and (3) give that d + (αi−1 − 1) + αi+1 − (k + 1) = 0. Noting that k + 1 ⩽ αi ⩽
αi−1 + αi+1 − 1, we have

d = d + (αi−1 + αi+1 − 1) − (αi−1 + αi+1 − 1)

⩽ d + αi−1 + αi+1 − 1 − αi

⩽ d + (αi−1 − 1) + αi+1 − (k + 1) = 0.

Recalling that d ⩾ 0, this gives that d = 0. This is the crucial consequence of the rows
satisfying the strict triangle inequality.

Plugging this into (3) gives that αi−1 + αi+1 − 1 ⩽ k + 1. Thus, we have

αi−1 + αi+1 − 1 ⩽ k + 1 ⩽ αi ⩽ αi−1 + αi+1 − 1,

meaning αi−1 + αi+1 − 1 = k + 1 = αi. This means that all αi entries in the (i + 1)st row of
A(i i+1) are z’s, as desired.

In the following claim, we continue the proof of Theorem 21 by once again strength-
ening our assumptions regarding the entries of A(i i+1).

Claim 24. We can assume that the leftmost entry in the (i− 2)nd row of A(i i+1) is an r′,
and that the rightmost entry in the (i − 1)st row of A(i i+1) is a z (see Figure 12).

Proof of Claim 24. Let s denote the leftmost entry in the (i− 2)nd row of A(i i+1), and let
t denote the rightmost entry in the (i−1)st row of A(i i+1) (see Figure 11). (Note that the
(i − 1)st row cannot be the top row of A(i i+1), as this would require that t = r′ = 1, which
are incompatible with the assumptions that d = 0 and that A(i i+1) is Yamanouchi.)

We now argue that we can assume s = r′. First note that t ≠ r′, since if t = r′, then
the assumption that d = 0 would imply that the prefix of the RRW ending immediately
before t contains one more z than r′, a violation of the Yamanouchi property. Therefore,
t > r′.

If s < r′, then the r′ in box R′ can be swapped with t to obtain an LR-tableau. If
s > r′, then we can perform the following two swaps to obtain an LR-tableau: swap the
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Figure 12: Assumed entries of A(i i+1).

r′ in box R′ with t, and then swap the same r′ with the s above it. We can therefore
assume that s = r′.

Moreover, we argue that t = z = r′ + 1. Recall that d = 0; if t ≠ z, then the prefix of the
RRW of A(i i+1) formed by truncating immediately before s is not Yamanouchi. These
updated assumptions are shown in Figure 12.

We will now complete the proof of Theorem 21 by investigating A(i i+1), with content
assumed to be as shown in Figure 12. In particular, we will scan A(i i+1) upwards from
the ith row, arguing that we must eventually find an entry we can swap with the r′ in
either box L′ or box R′ of A(i i+1) to obtain an LR-tableau.

In what follows, a row of A(i i+1) will be called trivial if it is of length two and its
entries are “r′ z” when reading from left to right across the row; otherwise, the row will
be called nontrivial. There must be a nontrivial row among the first i− 2 rows of A(i i+1),
as otherwise the first letter of the RRW of A(i i+1) would be z > r′ ⩾ 1. Choose the maximal
j ⩽ i − 2 such that the jth row of A(i i+1) is nontrivial.

By our choice of j, all rows strictly between the jth and (i − 1)st rows are trivial, so
the rightmost box of the (j + 1)st row must contain a z (even if j = i − 2). Therefore, we
have by the semistandardness of A(i i+1) that the leftmost entry u of the jth row is at most
r′ = z − 1.

If u < r′, then the z in the rightmost box of the (j+1)st row can be swapped with the r′

in box R′ of A(i i+1) to obtain a semistandard tableau A(i i+1),z (see Figure 13). Moreover,
A(i i+1),z is Yamanouchi, since to obtain the RRW of A(i i+1),z from that of A(i i+1), one
does not move r′ in front of any (r′ − 1)’s, nor does one move z behind any (z + 1)′s. We
can therefore assume that u = r′.

Let v denote the entry to the right of u in the jth row of A(i i+1) (see Figure 13). Recall
that d = 0 and that all rows strictly between the jth and (i − 1)st rows are trivial. As a
result, if v = r′ as well, then the prefix of the RRW ending immediately before v is not
Yamanouchi. We can therefore assume that v > r′.

Suppose that αj > 2. Then v is not the rightmost element of the jth row of A(i i+1), so
we can swap it with the r′ in box R′ of A(i i+1) to obtain a semistandard tableau A(i i+1),v.
Moreover, A(i i+1),v is Yamanouchi, since to obtain its RRW from that of A(i i+1), one does
not move v behind any instances of v + 1, nor does one move r′ ahead of any instances of
r′ − 1. Therefore, let us assume that αj = 2.

If the leftmost entry in the (j − 1)st row of A(i i+1),v (call it q) is less than r′, then
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Figure 13: Assumed entries of A(i i+1) (top) and A(i i+1),z (bottom).

A(i i+1),v is again an LR-tableau. Therefore, assume that q ⩾ r′, in which case A(i i+1),v is
not semistandard. If q > r′, we can swap q with the r′ beneath it to obtain an LR-tableau.
We can therefore assume that q = r′.

We now return to considering the tableau A(i i+1), with the assumptions that αj = 2 and
q = r′. Recall again that d = 0 and that all rows strictly between the jth and (i−1)st rows of
A(i i+1) are trivial. If v ≠ z, then the prefix of the RRW ofA(i i+1) ending immediately before
q is not Yamanouchi. Consequently, we have that v = z, contradicting our assumption
that the jth row of A(i i+1) is nontrivial. Therefore we have already exhausted all possible
cases, showing in each one how to obtain a ribbon LR-tableau of shape α(i i+1) and content
ν. This completes the proof.

Since transpositions generate the symmetric group, Theorem 21 allows us to prove
the following sufficient condition for a ribbon to have full equivalence class. This result
generalizes the finding of McNamara and van Willigenburg that all equitable ribbons have
full equivalence class [7, Theorem 1.5].

Theorem 25. Let α = (α1, α2, . . . , αm) be a ribbon with each αi ⩾ 2 and m ⩾ 3. If all
3-subsets of {αi}mi=1 satisfy the strict triangle inequality, then α has full equivalence class.

Proof. Let i ∈ {1,2, . . . ,m − 1} be arbitrary. As noted above, it suffices to show that
[α] = [α(i i+1)]. If αi = αi+1, then [α] = [α(i i+1)] follows trivially. Thus, by Remark 2, we
can assume without loss of generality that αi > αi+1. By assumption, αi < αi−1 + αi+1, so
Theorem 21 implies that [α] ⊆ [α(i i+1)].
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To show containment the other way, we consider the antipodal rotation

α○ = (α○1, α
○

2, . . . , α
○

m) = (αm, αm−1, . . . , α1)

of α, with α○0 = ∞ for notational convenience. Set j = m + 1 − i, so that α○j = αi and
α○j−1 = αi+1. Note that 2 ⩽ j ⩽m since 1 ⩽ i ⩽m− 1. Since (α(i, i+1))○ = α

○

(j−1 j)
, we have by

Remark 2 that [α(i i+1)] = [α○
(j−1 j)

]. Hence, in light of Remark 2, it will suffice to show

that [α○
(j−1 j)

] ⊆ [α○].
Since αi > αi+1, we have that α○j > α○j−1. Moreover, we have by assumption that

α○j < α
○

j−1 + α
○

j−2. Thus, we have established that the ribbon α○
(j−1 j)

meets the conditions

from Theorem 21 with respect to its (j − 2)nd, (j − 1)st, and jth rows. Since swapping
α○j and α○j−1 in α○

(j−1 j)
gives us back α○, Theorem 21 implies that [α○

(j−1 j)
] ⊆ [α○], as

desired.

4 A Necessary Condition

In this section, we prove a necessary condition for a ribbon to have full equivalence class,
which we conjecture to in fact be sufficient. Before we can state the condition, we need a
lemma.

Lemma 26. Let α = (α1, α2, . . . , αm) be a ribbon with α1 ⩾ α2 ⩾ . . . ⩾ αm, each αi ⩾ 2
and m ⩾ 3. Then for any 1 ⩽ j ⩽ m, any LR-tableau of shape α contains no more than
Mj ∶= ∑

m
i=j αi − (m − j) occurrences of j.

Proof. Fix a j with 1 ⩽ j ⩽m. If α is an LR-tableau, then there cannot be any j’s in the
first (j−1) rows of α. In the remaining m−j+1 rows, there are m−j pairwise-disjoint 2×1
rectangles (where consecutive rows overlap). At most one box in each of these rectangles
can contain a j, by semistandardness. Therefore, at most ∑

m
i=j αi − (m − j) =Mj boxes in

α can contain a j, as desired.

Theorem 27. Let α = (α1, α2, . . . , αm) be a ribbon with α1 ⩾ α2 ⩾ ⋯ ⩾ αm, where each
αi ⩾ 2, and m ⩾ 3. If [α] = [α(j j+1)], then Nj ⩽Mj+1, where

Nj ∶= max

⎧⎪⎪
⎨
⎪⎪⎩

k ∶ ∑
i⩽j∶ αi<k

(k − αi) ⩽m − j − 2

⎫⎪⎪
⎬
⎪⎪⎭

.

In particular, if α has full equivalence class, then, for all 1 ⩽ j ⩽m−2, we have Nj ⩽Mj+1.

In fact, we conjecture that this condition is also sufficient:

Conjecture 28. Let α = (α1, α2, . . . , αm) be a ribbon with α1 ⩾ α2 ⩾ ⋯ ⩾ αm, where each
αi ⩾ 2, and m ⩾ 3. Then α has full equivalence class if and only if Nj ⩽ Mj+1 for all
1 ⩽ j ⩽m − 2.

Remark 29. Note that the condition from Conjecture 28, if it is indeed sufficient, would
subsume the sufficient condition proved in Theorem 25.
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Remark 30. In general, to efficiently determine Nj, one can use the following algorithm:

1. Start with k = αj.

2. Set s = 0. For each αi ∈ {α1, α2, . . . , αj} with k > αi, add (k − αi) to s.

3. If s >m − j − 2, then Nj = k − 1. Otherwise, put k = k + 1 and return to step 2.

Remark 31. We always have αj ⩽ Nj ⩽ αj +m − j − 2. In particular, Nj = αj whenever
j =m − 2, while Nj = αj +m − j − 2 if and only if αj ⩽ αj−1 − (m − j − 2).

Remark 32. A much weaker but simpler version of our necessary condition is that αj <

∑
m
i=j+1αi for all 1 ⩽ j ⩽ m − 2, i.e. that each row is shorter than the sum of all the ones

after it.

Our necessary condition of Theorem 27 is certainly less penetrable than the sufficient
condition from Theorem 21, so before delving into the proof, we will illustrate the neces-
sary condition with an example and a non-example. Additionally, the proof we will give is
a constructive one, which we hope will make the above definition of Nj more transparent.

Example 33. Let α = (10,8,6,5,4) be a ribbon. Then α does not satisfy our sufficient
condition of Theorem 25 (as 10 ⩾ 5 + 4). However, we now show that it does satisfy the
necessary condition of Theorem 27. Since m = 5 in this example, checking the necessary
condition amounts to checking the inequalities corresponding to j = 1,2,3:

• We have

N1 = max{k ∶ ∑
i⩽1∶ αi<k

(k − αi) ⩽ 2} = max{k ∶ (k − 10) ⩽ 2} = 12.

Since 12 ⩽M2 =
5

∑
i=2

αi − 3 = 20, the necessary inequality holds for j = 1.

• We have

N2 = max{k ∶ ∑
i⩽2∶ αi<k

(k − αi) ⩽ 1} = 9,

since 9− 8 ⩽ 1, but 10− 8 > 1. Additionally, 9 ⩽M3 =
5

∑
i=3

αi − 2 = 13, so the inequality

corresponding to j = 2 holds.

• We have

N3 = max{k ∶ ∑
i⩽3∶ αi<k

(k − αi) ⩽ 0} = 6,

since the summation when k = 6 is the empty sum (and hence is zero), whereas

∑
i⩽3∶ αi<7

(7−αi) = 7−6 = 1 > 0. Since 6 ⩽M4 =
5

∑
i=4

αi−0 = 9, the inequality corresponding

to j = 3 holds.
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Non-Example 34. Let α = (13,10,5,4,3). Then

N2 = max{k ∶ ∑
i⩽2∶ αi<k

(k − αi) ⩽ 1} = 11.

Since 11 >M3 =
5

∑
i=3

αi − 2 = 10, this shows that the necessary inequality does not hold for

j = 2. As a result, Theorem 27 tells us that α does not have full equivalence class.

Having gained some familiarity with the necessary condition, we now turn towards its
proof, which we begin with a lemma.

Lemma 35. Let α = (α1, α2, . . . , αm) be a ribbon with α1 ⩾ α2 ⩾ ⋯ ⩾ αm, where each
αi ⩾ 2, and m ⩾ 3. If Nj >Mj+1 for some j ∈ {1,2, . . . ,m − 2}, then αj > αj+1.

Proof. The inequality Nj ⩾Mj+1 + 1 implies that

αj+1 ⩽ Nj + (m − j − 2) −
m

∑
i=j+2

αi ⩽ αj + 2(m − j − 2) −
m

∑
i=j+2

αi < αj,

where the second inequality comes from the upper bound on Nj given in Remark 31,
and the third inequality follows from the assumption that all rows are at least two boxes
long.

Proof of Theorem 27. We prove the contrapositive. Fix j ∈ {1,2, . . . ,m − 2} such that
Nj > Mj+1. We will show that there is no ribbon LR-tableau of shape α and content ν
satisfying νj+1 =Mj+1 + 1; we will then exhibit a ribbon LR-tableau of shape α(j j+1) with
such content.

From Lemma 26, we have that the maximum number of (j + 1)’s that can occur in an
LR-tableau of shape α is at most Mj+1. Therefore, there is no LR-tableau of shape α and
content ν satisfying νj+1 = Mj+1 + 1. However, the following argument shows that there
does exist a ribbon LR-tableau with such content.

Fill α(j j+1) as follows (we’ll call the resulting tableau A). Fill the ith row entirely with
i’s for i ⩽ j. Put (j + 1)’s in the αj+1 rightmost boxes of the (j + 1)st row and fill the
remaining boxes in this row with j’s. By Lemma 35 we have that αj > αj+1, meaning the
leftmost entry of the (j + 1)st row in this filling is a j.

We now fill the remaining m − j − 1 rows with as many (j + 1)’s as possible (while
maintaining semistandardness, but perhaps not the Yamanouchi property, although we
will show with the upcoming arguments that it indeed is Yamanouchi); put (j + 1)’s in
all but the leftmost box of the next m− j −2 rows, as well as in every box in the last row.
Now the only empty boxes are the leftmost boxes in rows j + 2, j + 3 . . . ,m − 2,m − 1 (see
Figure 14). We will call these remaining boxes critical boxes.

Fill the critical boxes from top to bottom according to the following algorithm: in each
box, put the largest integer ⩽ j such that the prefix of RRW through that box remains
Yamanouchi. In practice, this means we will use exclusively j’s until the number of j’s in

the electronic journal of combinatorics 26(3) (2019), #P3.52 20



Figure 14: The filling of A, with critical boxes indicated by “?”.

the tableau equals the number of (j − 1)’s. Then, we will alternate between (j − 1)’s and
j’s until the both the number of j’s and of (j − 1)’s equals the number of (j − 2)’s. At
this point, we rotate between placing j’s, (j − 1)’s, and (j − 2)’s until the number of each
of these equals the number of (j − 3)’s. We continue in this manner until all boxes have
been filled. Towards proving that the resulting tableau A is Yamanouchi, we first show
that it contains exactly Nj j’s.

First we define a round. Let the variables c1, c2, . . . , cm−j−2 represent the entries in the
critical boxes, from top to bottom. Let J = {s ∶ cs = j}. Now partition {1,2, . . . ,m −

j − 2} into rounds, where each round s1, s1 + 1, . . . , s1 + d is a consecutive subsequence of
1,2, . . . ,m− j − 2 such that s1 + d ∈ J and p ∉ J for all s1 ⩽ p ⩽ s1 + d− 1 (i.e. a round ends
if and only if a j is encountered, counting from 1 up to m − j − 2).

Claim 36. If r rounds can be completed before reaching the bottom, then at the end of the
rth round, we have filled exactly ∑i⩽j∶ αi<αj+r(αj + r−αi) critical boxes. In particular, after
the rth round, each number i ⩽ j such that αi ⩽ αj + r has occurred in exactly αj + r − αi
critical boxes.

Proof of Claim 36. We will use induction on r. The claim trivially holds when r = 0.
Now consider an arbitrary r > 0 (such that r rounds can be completed before reaching the
bottom) and assume the claim holds for r−1. In the rth round, we will write every number
that was used in the (r−1)st round one additional time, as well as any number ` satisfying
α` = αj +r−1. Therefore, the latter numbers ` will each fill exactly one critical box after r
rounds, as is appropriate since, by choice of `, αj +r−α` = 1. All numbers which appeared
in the (r − 1)st round have now occurred in a critical box one more time than before. For
a fixed number i, by the induction hypothesis, this is αj +(r−1)−αi+1 = αj +r−αi times.
This completes the proof of Claim 36.

Clearly the number of j’s in A is αj plus the number of rounds executed before running
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out of critical boxes. That is, if νj is the number of j’s in A, then

νj = αj +max

⎧⎪⎪
⎨
⎪⎪⎩

r ∶ ∑
i⩽j∶αi<αj+r

αj + r − αi ⩽m − j − 2

⎫⎪⎪
⎬
⎪⎪⎭

= max

⎧⎪⎪
⎨
⎪⎪⎩

k ∶ ∑
i⩽j∶αi<k

(k − αi) ⩽m − j − 2

⎫⎪⎪
⎬
⎪⎪⎭

= Nj.

In particular, νj = Nj.
By construction, the number of (i+1)’s never surpasses the number of i’s in the RRW

of A, since 1 ⩽ i ⩽ j − 1. Semistandardness is also clear by construction, so all that is left
to check is that the number of (j + 1)’s never overtakes the number of j’s in the RRW of
A.

It is clear that the number of (j + 1)’s does not surpass the number of j’s in the first
j + 1 rows of the tableau. Since each of the remaining rows has at least as many (j + 1)’s
as j’s and the last row consists entirely of (j + 1)’s, the number of (j + 1)’s can only
overtake the number of j’s if the total number of (j + 1)’s in A is greater than the total
number of j’s in A (that is, if νj+1 > νj). Therefore, it suffices to show that νj = Nj ⩾ νj+1.
Indeed, observe that νj+1 =Mj+1+1, meaning this inequality follows immediately from our
assumption that Nj ⩾ Mj+1 + 1. This completes the argument that A (which has shape
α(j j+1)) is an LR-tableau.

Corollary 10 now gives that ν is in the support of α(j j+1), but is not in the support
of α, completing the proof.

We have proven that the condition in Theorem 27 is necessary for a ribbon to have full
equivalence class. In fact, in [3], the authors (along with Tran) proved that this condition
is both necessary and sufficient for ribbons with three or four rows to have full equivalence
class. (When m = 3, our necessary and sufficient conditions coincide, while the m = 4 case
requires additional analysis/case-work.) In addition, we have verified by computer that
this condition is sufficient for m = 5, m = 6, and m = 7 for certain n (where n is the
number of boxes in the diagram).

5 Concluding Remarks and Future Work

In this paper, we have presented substantial progress towards classifying when a permu-
tation π ∈ Sm of row lengths of a ribbon α produces a ribbon απ with the same Schur
support as α. However, there are several ways in which we would like to generalize our
results so as to obtain a more complete answer to the following central question:

Problem 37. Given two skew shapes λ1/µ1 and λ2/µ2, when is it the case that [λ1/µ1] =

[λ2/µ2]?

Although Problem 37 has proven to be difficult in general, one potentially feasible step
forward would be to develop analogues of our main results for skew shapes other than
ribbons.
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To fully understand when ribbons have equal Schur supports, we would first like to
prove Conjecture 28, which would completely classify when a ribbon has full equivalence
class. We would then like to investigate support equalities among ribbons which do not
have full equivalence class. Namely, we pose the following open question:

Problem 38. Given a ribbon α, for which π ∈ Sm do we have [α] = [απ]?

Theorem 21 offers progress towards answering this question, giving a sufficient condition
for the support containment [α] ⊆ [α(i i+1)] for any 1 ⩽ i ⩽ (m − 1).

Our final two questions take a step back from support equality to wonder how our
work might extend, or relate, to the domains of support containment and comparison
under the Schur-positivity order.

Problem 39. When a ribbon fails to have full equivalence class, are its permutations
still comparable to each other under the support containment order? If so, is there a
criterion which prescribes the direction of the containment for each pair of the ribbon’s
permutations?

Problem 40. Our results show that ribbons with full equivalence class are, in a sense,
“more equitable” than ribbons without full equivalence class (meaning the former’s row
lengths are more balanced than the latter’s). Since equitable ribbons are maximal with
respect to Schur-positivity order (as found by McNamara and van Willigenburg in [7]), we
ask: does full equivalence class predict a higher place in the Schur-positivity order? That
is, if α and β are ribbons with the same number of rows, columns, and boxes, such that
α has full equivalence class, but β does not, does it follow that sα − sβ is Schur-positive?
If this is too much to ask, then do we at least have that [β] ⊆ [α]?
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