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Abstract

A pair (A,B) of square (0, 1)-matrices is called a Lehman pair if ABT = J + kI
for some integer k ∈ {−1, 1, 2, 3, . . .}. In this case A and B are called Lehman
matrices. This terminology arises because Lehman showed that the rows with the
fewest ones in any non-degenerate minimally nonideal (mni) matrix M form a square
Lehman submatrix of M . Lehman matrices with k = −1 are essentially equivalent
to partitionable graphs (also known as (α, ω)-graphs), so have been heavily studied
as part of attempts to directly classify minimal imperfect graphs. In this paper,
we view a Lehman matrix as the bipartite adjacency matrix of a regular bipartite
graph, focusing in particular on the case where the graph is cubic. From this
perspective, we identify two constructions that generate cubic Lehman graphs from
smaller Lehman graphs. The most prolific of these constructions involves repeatedly
replacing suitable pairs of edges with a particular 6-vertex subgraph that we call a 3-
rung ladder segment. Two decades ago, Lütolf & Margot initiated a computational
study of mni matrices and constructed a catalogue containing (among other things)
a listing of all cubic Lehman matrices with k = 1 of order up to 17 × 17. We
verify their catalogue (which has just one omission), and extend the computational
results to 20 × 20 matrices. Of the 908 cubic Lehman matrices (with k = 1) of
order up to 20 × 20, only two do not arise from our 3-rung ladder construction.
However these exceptions can be derived from our second construction, and so our
two constructions cover all known cubic Lehman matrices with k = 1.

Mathematics Subject Classifications: 05B20, 05C75, 05C69
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1 Introduction

This paper is concerned with certain square (0, 1)-matrices that we call Lehman matrices1,
which are defined in the following way.

Definition 1. A pair (A,B) of square (0, 1)-matrices of the same order is called a Lehman
pair if ABT = J+kI for some integer k ∈ {−1, 1, 2, 3, . . .}, where J is the all-ones matrix.
An individual matrix is called a Lehman matrix if it is in a Lehman pair.

We say that a (0, 1)-matrix is r-regular if each of its rows and columns sum to r.
If (A,B) is a Lehman pair, then there are integers r and s so that A is A is r-regular,
B is s-regular, and k = rs − n. This was proved by Bridges and Ryser [3] for k > 0.
The analogous statement for k = −1 follows from work of Padberg [19] on minimally
imperfect graphs, but was given explicitly in matrix form by Chvátal, Graham, Perold
and Whitesides [7]. In either case, we say that A has type (n, r, s) or just that A is an
(n, r, s)-Lehman matrix (and so B is an (n, s, r)-Lehman matrix).

If k = −1, then we say that the Lehman pair is negative and that A and B are negative
Lehman matrices, and analogously a Lehman pair and its matrices are positive if k > 0.
However we alert the reader to the fact that graphs essentially equivalent to negative
Lehman matrices have previously been extensively studied as partitionable graphs (α, ω)
partitionable graphs or simply (α, ω)-graphs. (We will elaborate on these connections
below, but details may be found in Boros, Gurvich and Hougardy [2] and the references
therein.) As we wish to emphasize the parallels between positive and negative Lehman
matrices and the constructions that create positive Lehman matrices from negative ones
(and vice versa), we will still use the term “negative Lehman matrix” in the context of
this paper.

A small Lehman pair is shown in Figure 1; in this case A is the point-line incidence
matrix of the Fano plane and B = A. In this example, r = s = 3 and k = 2.



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1





1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1


=



3 1 1 1 1 1 1
1 3 1 1 1 1 1
1 1 3 1 1 1 1
1 1 1 3 1 1 1
1 1 1 1 3 1 1
1 1 1 1 1 3 1
1 1 1 1 1 1 3



Figure 1: The Fano plane gives a (7, 3, 3)-Lehman matrix

Both positive and negative Lehman matrices originally arose in the context of two areas
of research generally viewed as part of combinatorial optimization, namely the search for
minimal imperfect graphs and for minimal nonideal clutters. In the next two subsections
we give a brief overview of the background and prior literature in each case.

1As detailed below, this terminology differs slightly from that of some previous authors.
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1.1 Minimal Imperfect Graphs

A graph is perfect if it, and all of its induced subgraphs, have chromatic number equal to
the size of the maximum clique. In the 1960s, Berge famously conjectured that a graph is
perfect if and only if it does not have an odd cycle or the complement of an odd cycle as an
induced subgraph. An equivalent formulation of the Strong Perfect Graph Conjecture is
that the only minimal imperfect graphs (i.e., minimal with respect to induced subgraphs)
are the odd cycles and their complements. As a result, there is a substantial body of work
dedicated to elucidating more and more properties of minimal imperfect graphs, with the
intention of proving Berge’s conjecture by showing that these conditions were sufficiently
onerous that they could be met only by odd cycles and their complements.

Lovász [16] initiated this line of enquiry by showing that if G is a minimal imper-
fect graph with maximum clique of size ω(G) and maximum coclique of size α(G), then
|V (G)| = α(G)ω(G) + 1 and for every v ∈ V (G), the set V (G)\{v} can be partitioned
into α(G) cliques of size ω(G) and ω(G) cocliques of size α(G).

Padberg [19] derived a number of even stronger properties, including the fact that a
minimal imperfect graph G must have exactly |V (G)| cliques of size ω(G) and |V (G)|
cocliques of size α(G), and that each ω(G)-clique is disjoint from a unique α(G)-coclique.
Although Padberg’s properties appear very restrictive, Bland, Huang and Trotter [1]
showed that they satisfied by a much larger class of graphs, namely the class of parti-
tionable graphs, which are defined as follows: An (r, s)-partitionable graph G is a graph
for which there are integers r, s so that |V (G)| = rs + 1, and for any vertex v, the
set V (G)\{v} has a partition into r cliques of size s and s cocliques of size r. They
showed that in this case r = α(G) and s = ω(G), and so such graphs are also known as
(α, ω)-partitionable graphs, or just (α, ω)-graphs.

Chvátal, Graham, Perold and Whitesides [7] expressed these results in matrix terms,
observing that associated with any (α, ω)-graph, there are two 0/1-matrices A, B satis-
fying ABT = J − I. The rows of A and B are the characteristic vectors of the cliques of
G, and the cocliques of G, respectively. Conversely, given a negative Lehman matrix, the
graph whose edge set is the union of cliques on the support of each row is an (α, ω)-graph.
As it may be possible to add one or more edges to an (α, ω)-graph without changing the
set of maximum cliques or cocliques, several different (α, ω) graphs may yield the same
pair of matrices. To avoid this minor irritation, an (α, ω)-graph is called normalized if
every edge lies in a maximum clique, and then normalized (α, ω)-graphs are essentially
the same as negative Lehman matrices.

Although the existence of (α, ω)-graphs sharing so many stringent properties with
minimal imperfect graphs complicated the situation, it was still the case that character-
ising (α, ω)-graphs would resolve the Strong Perfect Graph Conjecture. Consequently a
steady stream of theoretical and computational results appeared, variously determining
additional properties of (α, ω)-graphs (e.g. Sebő [21]), finding all small (α, ω)-graphs (e.g.
Lam, Swiercz, Thiel and Regener [13], Whitesides [23] and Boros, Gurvich and Hougardy
[2]), and finding new constructions for (α, ω)-graphs [2].

Amongst all these results, it is the paper of Boros, Gurvich and Hougardy [2] that is
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the most directly relevant to our work. In addition to giving cryptomorphic definitions
of partitionable graphs in graph-theoretic, matrix-theoretic and geometric terms, they
devised a recursive technique for constructing larger (α, ω)-graphs from smaller ones.
Although phrased in entirely different language, our 3-rung ladder extension applied to
negative Lehman graphs is just a rediscovery of their recursive technique. The concepts
and terminology can more or less be directly translated between the two settings, at least
for cubic graphs — for example, what we call a “3-rung ladder” appears in their paper
as a “gem”. Although ultimately equivalent, some concepts and structures are easier to
manipulate in (α, ω)-graphs than in our bipartite graphs, and vice versa. With more
structural constraints available, it is easier to compute (α, ω)-graphs than negative cubic
Lehman graphs. In particular, Boros, Gurvich and Hougardy [2] constructed all (α, 3)-
graphs on up to 22 vertices, which is one case further than the extent of our computations.
Fortunately, in all the cases of overlap our numbers agreed.

Eventually, the Strong Perfect Graph Theorem was proved by Chudnovsky, Robertson,
Seymour and Thomas [6], and although their work built on some of the known properties
of minimal imperfect graphs, it primarily used techniques from structural graph theory. In
particular, it did not use or create a characterisation of (α, ω)-graphs. Despite this, there
is still interest in the class of (α, ω)-graphs, and it is not impossible that a characterisation
of them could yet lead to an alternative proof of the Strong Perfect Graph Theorem.

1.2 Minimal Nonideal Clutters

The connection to combinatorial optimization arises from attempts to classify minimally
nonideal clutters. Here, a clutter (also known as a Sperner family) is a pair C = (V,E)
where V is a finite set and E ⊆ 2V is a set of subsets of V such that no element of E
contains another. The elements of V are usually called the vertices of the clutter, and
those of E the hyperedges (or just edges) of the clutter. A clutter can be represented by
a (0, 1)-matrix, with rows indexed by E, columns indexed by V , and where each row is
the incidence vector of the corresponding hyperedge. Conversely, any (0, 1)-matrix with
the property that there is no row whose support contains the support of another row
is a clutter matrix (i.e., the matrix of some clutter). We will often blur the distinction
between a clutter and its matrix.

If C is a clutter with an m× n clutter matrix A, then C (and also A) is called ideal if
the polyhedron Q(A) = {x ∈ Rn : Ax � 1 and x � 0} has integral vertices. Here 0 and
1 represent the all-0 and all-1 vectors respectively and � indicates that the inequality
holds for each coordinate. If a clutter matrix A is ideal, then any integer program with
coefficient matrix A has the same solutions as its linear program relaxation (where the
integer requirement is dropped). As integer programs are computationally hard to solve
and linear programs computationally feasible, this is a desirable situation, and hence one
that we wish to better understand.

There are notions of deletion and contraction, and hence minors, for clutters that are
reminiscent of the same notions for graphs or matroids. If C is a clutter and v is a vertex
of C, then C\v (C delete v) is the clutter with vertex set V \{v} whose hyperedges are
the hyperedges of C that do not contain v. The clutter C/v (C contract v) is the clutter

the electronic journal of combinatorics 26(3) (2019), #P3.54 4



with vertex set V \{v} whose hyperedges are the minimal sets (under inclusion) of the
form H\{v} where H is a hyperedge of C. In matrix terms, if A is a clutter matrix and
c a column, then A\c is obtained by deleting any row that contains a 1 in column c, and
then deleting the entire column. The contraction A/c is produced by first deleting column
c, and then deleting any rows whose support is no longer minimal under set inclusion.
Any clutter (or clutter matrix) obtained by a possibly-empty sequence of deletions and
contractions is a minor of the original clutter (or clutter matrix).

Any minor of an ideal clutter is itself ideal, which raises the possibility of an excluded-
minor characterisation of ideal clutters. Thus we define a clutter, or a clutter matrix, to
be minimally nonideal (mni) if it is not ideal, but every proper minor is ideal. The weight
of a 0/1-vector is the number of ones in the vector. Lehman [15] proved the seminal result
that if A is an mni clutter matrix, then either A belongs to a particular sporadic family
(the degenerate projective planes) or the rows of A of minimum weight form a (positive)
Lehman matrix as defined in Definition 1. Therefore we may assume that the first n
rows of any mni clutter matrix of order m × n form a positive Lehman matrix. This
raises the possibility of a two-stage approach to understanding mni matrices, namely first
characterise Lehman matrices and then understand how additional rows can be added to
a Lehman matrix to form a larger mni matrix. Unfortunately, this latter step appears
to be extremely difficult because the property of being mni does not behave nicely under
addition of rows. In particular, it is possible that adding a row to an mni matrix may
result in one that is not mni, and conversely. Cornuéjols and Guenin [9] give a readable
and comprehensive treatment of ideal clutters that provides useful additional background
and a wider context to this work than we have given here.

More than 20 years ago, Lütolf & Margot [17] conducted a computational search based
on these observations in order to provide a collection of small mni matrices. They observed
that “we lack a good understanding of the structure of mni matrices”, and hoped to provide
a significant number of examples of mni matrices in the hope that further study would
shed light on their structure. For particular values of r, they implemented an orderly
algorithm [20] to produce a complete list (up to permutations of rows and columns) of
r-regular (0, 1)-matrices and then extracted the Lehman matrices from this list. They
identified the Lehman matrices that are already mni (without adding any rows) and used
a heuristic search to produce non-square mni matrices by adding additional rows to each
Lehman matrix. Their results mostly cover the cases where r = 3, the matrices have
order at most 17× 17, and k = 1. The constraints on size and valency are consequences
of the very rapid increase in the numbers of regular bipartite graphs as the size, and
especially the valency, increases. Lehman matrices with k > 1 appear to be very rare,
with the incidence matrices of projective planes being the only known infinite family and
the adjacency matrices of the Moore graphs giving a handful of sporadic examples. We
note that this takes the usual adjacency matrix, and then treats it as a clutter matrix.

In this paper, we consider in detail the structure of Lehman matrices by viewing them
as bipartite graphs in the following manner. An r-regular (0, 1)-matrix can be viewed as
the bipartite adjacency matrix of an r-regular bipartite graph and vice versa, so we say
that a graph is a Lehman graph if its bipartite adjacency matrix is a Lehman matrix. We
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note that this differs from the (α, ω)-graph associated with a negative Lehman matrix,
where each row of the matrix determines a clique of the graph, and every clique of the
graph corresponds to a row of the matrix. Using the analogous graph for positive Lehman
matrices immediately runs into problems because the graph usually has morecliques than
there are rows in the matrix.

A matrix of order n×n corresponds to a bipartite graph of order 2n with n black and n
white vertices. We primarily consider the case when r = 3, where both the theoretical and
computational tools give us most traction, and we call these graphs cubic Lehman graphs.
Figures 2 and 3 show all four cubic Lehman graphs on 22 vertices. It is immediately
apparent that they are qualitatively rather similar and in particular all of them seem to
be very “ladder-like”. The first graph of Figure 2 actually is the cubic Möbius ladder
of order 22, while the others all appear to consist of ladder segments of varying lengths
connected together. We shall see that this is no accident and that a single construction
technique involving the replacing of suitable pairs of edges by 6-vertex ladder segments
accounts for almost all of the known cubic Lehman graphs.

Figure 2: Two (11, 3, 4)-Lehman graphs

Figure 3: The other two (11, 3, 4)-Lehman graphs

More precisely, we show that if a cubic Lehman graph with k = ±1 contains a ladder
segment with 3 rungs, then it can be reduced to a smaller cubic Lehman graph with the
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same k by removing the ladder segment and adding two edges to repair the regularity.
We show that this process can be reversed, and used to construct huge numbers of cubic
Lehman matrices with k = ±1 starting from the cubic planar ladder on 8 vertices (for
k = −1) or cubic Möbius ladder on 10 vertices (for k = 1), and then repeatedly inserting
3-rung ladder segments.

We repeat, verify, and extend Lütolf & Margot’s computations, in the process discov-
ering that their catalogue of 17 × 17 Lehman matrices omitted just one matrix — the
graph corresponding to this matrix is shown in Figure 4. The sole omission is a Lehman
graph of type (17, 3, 6) that has no 4-rung ladder segment, but that does have 3-rung
ladder segments. It is unclear as to how this graph/matrix was missed as the search
described by Lütolf & Margot should certainly have constructed it at some stage.

Figure 4: The “missing” Lehman graph on 34 vertices

The computations also give us some sense of how many of the small cubic Lehman
graphs arise from ladder insertions, simply by testing which of them have a 3-rung ladder.
Rather surprisingly, there are only two cubic Lehman graphs with k = 1 on up to 40
vertices (corresponding to 20 × 20 matrices) that do not have a 3-rung ladder segment
(Figure 5 shows the smaller example). The smallest cubic Lehman graph with k = 1 is
the Möbius ladder on 10 vertices, which is a (5, 3, 2)-Lehman graph. Therefore all except
two cubic Lehman graphs (with k = 1) on up to 40 vertices arise from the Möbius ladder
on 10 vertices by iterated ladder insertion.

The two exceptional cubic Lehman graphs having no 3-rung ladder are also highly
structured, in that their vertices can be partitioned into 4-cycles. Motivated by this
example, we describe a second reduction operation, which involves replacing the 4-cycles
with edges, thereby “compressing” a cubic Lehman graph with k = 1 into a smaller cubic
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Lehman graph, but this time with k = −1. Unlike ladder insertion and its reverse, this
construction is applicable to Lehman graphs of higher valency. If an r-regular Lehman
graph with k = ±1 can be partitioned into copies of the complete bipartite graph Kr−1,r−1
(which we denote bicliques) then each biclique can be compressed to a single edge leaving
a smaller r-regular graph with k = ∓1 (respectively). We call this operation biclique
compression and we determine the circumstances under which it can be reversed (biclique
expansion) thereby producing a second construction technique for Lehman graphs. The
square mni matrices discovered by Wang [22] have the property that their vertices can be
partitioned into copies of Kr−1,r−1 and so are instances of this construction.

Figure 5: A (14, 3, 5)-Lehman graph with no 3-rung ladder segment

We note that it is always possible to insert enough 3-rung ladder segments into a
cubic Lehman graph with k = 1 to ensure that the vertices of the resulting graph can
be partitioned into 4-cycles. Therefore every cubic Lehman graph with k = 1 can be
obtained from a negative cubic Lehman graph by a combination of biclique expansion
followed by 3-rung ladder reduction. In principle then, it suffices to characterise cubic
negative Lehman graphs.

The paper is structured as follows: Section 2 contains all necessary background, def-
initions and notation for what follows. Section 3 gives a detailed analysis of the ladder
reduction and insertion operations, while Section 4 does the same for biclique compression
and expansion. Section 5 gives the results of a computer search for cubic Lehman graphs
(with k = ±1) of order up to 20 × 20. Subsequent analysis of the data reveals that all
of these Lehman graphs arise from the repeated application of our constructions (mostly
ladder insertion) from a tiny number of base graphs.

Section 6 addresses the question of when the square submatrix formed by the mini-
mum weight rows of a minimally nonideal matrix is the point-line incidence matrix of a
projective plane. It is known that the point-line incidence matrix of the Fano plane (with
no added rows) is mni. We conjecture that no other mni matrices, square or otherwise,
can be obtained by adding (zero or more) rows to the point-line incidence matrix of a
projective plane. We prove that the conjecture holds if the projective plane is the Fano
plane PG(2, 2) or the ternary plane PG(2, 3).
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2 Preliminaries

In this section we establish some the basic results regarding Lehman matrices that we will
need later. Although many of these results apply equally for k = −1 and k > 0, most
previous authors have focused on one case or the other. Indeed, a substantial majority of
the literature is devoted to the case k = −1 because, as outlined above, negative Lehman
matrices are essentially equivalent to normalized (α, ω)-graphs about which a great deal
is known.

The following theorem is due to Bridges & Ryser [3] for k > 0, although their proof
works unchanged for k = −1.

Theorem 2. Let A and B be n× n non-negative integral matrices with n > 1 such that
ABT = J + kI, where k is in {−1, 1, 2, 3, . . .}. Then BTA = ABT and there are integers
r, s such that A is r-regular, B is s-regular and rs = n+ k.

Thus, if A is a Lehman matrix, then A has constant row- and column-sum, and
moreover, the matrix B that satisfies ABT = J + kI is also a Lehman matrix. Given a
non-singular (0, 1)-matrix A and an integer k, the only possible matrix that might form
a Lehman pair with A is

B =
(
A−1(J + kI)

)T
so (A,B) is a Lehman pair if and only if B is a (0, 1)-matrix. However a matrix can
belong to two different Lehman pairs — the bipartite adjacency matrix of the 6-cycle is
a (3, 2, 1) Lehman matrix and also a (3, 2, 2) Lehman matrix.

Corollary 3. Let A be a Lehman matrix satisfying ABT = J + kI. Then ATB = J + kI.

Proof. Assume that ABT = J + kI. Theorem 2 says that BTA = J + kI. Therefore
J + kI = (J + kI)T = (BTA)T = ATB.

Let G be a connected bipartite graph whose vertices are partitioned into two inde-
pendent sets GB = {b1, b2, . . . , } and GW = {w1, w2, . . . , }, which we refer to as the black
vertices and the white vertices of G, respectively. Then the bipartite adjacency matrix of
G is the matrix M with rows indexed by GB and columns indexed by GW where Mbw = 1
if and only if b is adjacent to w. Conversely, any (0, 1)-matrix corresponds to a bipartite
graph in the obvious fashion. If the matrix is a Lehman matrix, then its associated bipar-
tite graph is regular. A bipartite graph is called a Lehman graph if its bipartite adjacency
matrix is a Lehman matrix. We note that for negative Lehman matrices, this bipartite
representation is different from the representation as an (α, ω)-graph. In particular, given
a negative bipartite Lehman graph G, the corresponding (α, ω)-graph Γ has the white
vertices of G as its vertices, and a clique on the neighbours of each black vertex. Thus
a white vertex of G corresponds to a vertex of Γ, a black vertex of G corresponds to
an ω-clique of Γ and an edge of G corresponds to a “pointed clique” (a clique with a
distinguished vertex) of Γ. If v is a vertex in a loopless graph, let N(v) stand for its open
neighbourhood : that is, the set of vertices adjacent to v. The following proposition just
reinterprets the definition of a Lehman matrix in graph-theoretical terms.
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Proposition 4. Let G be a regular bipartite graph with bipartition {GB, GW}. Then G
is a Lehman graph if and only if there is some integer k ∈ {−1, 1, 2, . . . , } such that for
every black vertex b, there is a set ΓG(b) ⊆ GW of white vertices such that, for all b′ ∈ GB

|ΓG(b) ∩N(b′)| =

{
k + 1, b′ = b;

1, b′ 6= b.

Proof. If G is a Lehman graph with bipartite adjacency matrix A, then it belongs to a
Lehman pair (A,B) and we can take the rows of B to be the (incidence vectors of the)
sets ΓG(b). The Lehman condition for the matrix is then identical to the intersection
conditions for the sets. The converse is very similar – if a collection of suitable sets
{ΓG(b)}b∈GB

exists, then the matrix B with the incidence vectors of these sets as its rows
will form a Lehman pair with A.

We will call the set ΓG(b) the mate of b, and will drop the subscript G if the graph
is uniquely determined by context. For both positive and negative Lehman graphs, each
set Γ(b) is a set of white vertices that dominates every black vertex other than b exactly
once, while dominating b exactly k + 1 times. Figure 6 shows the mate of a vertex in
the Desargues graph, which is a (10, 3, 4)-Lehman graph. As k = 3 × 4 − 10 = 2, the
Desargues graph is one of the rare Lehman graphs with k 6= ±1. The set of four circled
vertices dominates the marked black vertex b three times, and all other black vertices
exactly once each.

If G is a Lehman graph with bipartite adjacency matrix A, then the incidence vector
x of the mate of the vertex bi is the unique solution to Ax = 1 + kei (where ei is the
standard basis vector with a single 1 in the ith position). Therefore if any black vertex
of a regular bipartite graph G has no mates or more than one mate, then G is not a
Lehman graph. If every black vertex of G has at least one mate, then every black vertex
must have exactly one mate, and the graph is a Lehman graph. By Corollary 3, we can
swap the words “black” and “white” wherever they occur, and so every white vertex of a
Lehman graph also has a unique mate. Our arguments in subsequent sections will largely
be based around showing that a vertex in a candidate Lehman graph has too few, too
many, or exactly the right number of mates.

b

Figure 6: A mate in the unique (10, 3, 4)-Lehman graph
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Proposition 5. Let G be a Lehman graph and suppose that b is a black vertex, and w is
a white vertex. Then w is in the mate of b if and only if b is in the mate of w.

Proof. Let A be the Lehman matrix associated with G, and let B be the matrix satisfying
ABT = J+kI. The rows of B are the incidence vectors of the mates of the black vertices,
and so w is in the mate of b if and only if Bbw = 1. Now ATB = J + kI, by Corollary 3,
and so the rows of BT are the incidence vectors of the mates of the white vertices. Thus
b is in the mate of w if and only if (BT )wb = 1, which happens if and only if Bbw = 1.

The Hadamard product of two square matrices X and Y , written X ◦Y , is component-
wise product of X and Y ; that is, [X ◦ Y ]i,j = [X]i,j[Y ]i,j for all i and j. Let (A,B) be
a Lehman pair satisfying ABT = J + kI. Then A ◦ B is a (k + 1)-regular matrix. Thus
the bipartite graph corresponding to A ◦ B is (k + 1)-regular. We call this the auxiliary
graph of A (or B) and denote it aux(A). If G is a cubic Lehman matrix with k = 1,
then its auxiliary graph is 2-regular, and so the edges not in the auxiliary graph form
a perfect matching of G. We will call the edges of this distinguished perfect matching
the rungs of G. This terminology arises from the observation that if the graph actually
is a ladder, either a cubic planar ladder or a cubic Möbius ladder, then the rungs of the
Lehman graph are actually the rungs of the ladder in the normal graph-theoretical sense.

Figure 7 shows a (14, 3, 5)-Lehman graph, with the diagram on the left highlighting
the auxiliary graph and the diagram on the right highlighting the rungs.

Figure 7: Auxiliary graph and rungs of a (14, 3, 5)-Lehman graph

3 Ladder reduction and insertion

In this section, we describe the first of the two ways in which certain Lehman graphs can
be reduced to smaller Lehman graphs, and when this operation can be reversed. This
operation applies only to cubic Lehman graphs with k ∈ {−1, 1}.

A 3-rung ladder segment is a 6-vertex induced subgraph isomorphic to the graph
obtained from the cube Q3 by deleting two adjacent vertices, along with their incident
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edges. Except for two small base cases, we show that it is always possible to delete a
3-rung ladder segment from a cubic Lehman graph and then add two edges to repair the
regularity in such a way that the resulting graph is also a Lehman graph. This reduction
produces Lehman graphs with six fewer vertices than the original graph, but with the
same “sign” (i.e. positive or negative).

Boros, Gurvich and Hougardy [2] found a reduction operation that produces an (α−
1, ω)-graph by removing the vertices of a critical clique from an (α, ω)-graph and adding
new edges to restore partitionability. Although the language used is quite different, it is
straightforward to see that their clique-reduction and our ladder-reduction coincide when
ω = 3 and k = −1.

3.1 Ladder Reduction For Cubic Lehman Graphs

We define a reduction operation, which we denote 3-rung ladder reduction, that preserves
the property of being a cubic Lehman graph. More precisely, suppose that L is a 3-rung
ladder segment in a cubic graph G, that there are four distinct vertices {wL, bL, wR, bR}
that are adjacent to, but outside, L (as shown in Figure 8), and that the pairs (bL, wR)
and (wL, bR) are not edges of G. The dotted lines in the figure represent edges that may or
may not be present. Then the 3-rung ladder reduction of G with respect to L is the graph
G↓L obtained from G by deleting the six vertices of L and then restoring 3-regularity by
adding the edges (bL, wR) and (bL, wR).

w0 w1

w2

wL

wR

b0 b1

bL

b2

bR wL

wRbL

bR

Figure 8: A 3-rung ladder reduction

The constraints on L and its vertices of attachment are simply the conditions required
to ensure that G↓L is actually cubic. These conditions are necessary because there are
two small Lehman graphs that each contain a 3-rung ladder, but which cannot be reduced
with this operation. These graphs, illustrated in Figure 9 are the cubic planar ladder on
8 vertices (i.e. the cube) and the cubic Möbius ladder on 10 vertices. The cube cannot be
reduced because the vertices {bL, wL, bR, wR} are not distinct while the 10-vertex ladder
cannot be reduced because bL is already adjacent to wR (similarly for wL and bR).

Our first lemma shows that for all larger cubic Lehman graphs, any 3-rung ladder
segment meets these additional constraints, and so is suitable for ladder reduction.
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Figure 9: Lehman graphs of type (4, 3, 1) and (5, 3, 2)

Lemma 6. Suppose that G is a Lehman graph of type (n, 3, s) where k = 3s−n ∈ {1,−1},
and that G contains a 3-rung ladder L. If k = −1 and s > 1, or if k = 1 and s > 2, then
bL, wL, bR, wR are distinct, wL is not adjacent to bR, and wR is not adjacent to bL.

Proof. First consider the case where k = 1 and suppose, for a contradiction, that G
contains a 3-rung ladder segment L where bL = bR, as shown in Figure 10. (Here wL and
wR may be the same or distinct.) The mate Γ(b1) contains two vertices from {w0, w1, w2}.
However any pair of vertices from that set dominates two vertices twice, and so cannot
be contained in the mate of any black vertex. Therefore the four vertices {bL, wL, bR, wR}
are indeed distinct.

w0 w1 w2

wL wR

b0 b1

bL = bR

b2

w0 w1

w2

wL

wR

b0 b1

bL

b2

bR

Figure 10: Configurations in a cubic Lehman graph

Next we will show that bL is not adjacent to wR. Again we proceed by contradiction
starting from the second diagram of Figure 10. Suppose that b 6= b1 and that Γ(b) contains
w0. Then w1, w2 /∈ Γ(b) and so to dominate b2 it is forced that wR ∈ Γ(b) and as bL is
now twice-dominated, it follows that b = bL. Thus w0 is in at most two mates, hence it
follows that s 6 2, contradicting our assumptions. (We note that this configuration can
occur when s = 2, as it is a subgraph of the cubic Möbius ladder on 10 vertices, which is
a Lehman graph of type (5, 3, 2).)

Next consider the case where k = −1 and suppose, again for a contradiction that
G contains the configuration of Figure 10. Now we will consider the mates of the white
vertices, which are sets of black vertices dominating each white vertex bar one exactly once
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each. The exceptional white vertex is not dominated at all. If a mate contains one vertex
from {b0, b1, b2} then it cannot contain bL for then we would have a vertex dominated
twice. As w1 is the only vertex whose mate contains no vertices from {b0, b1, b2} this
means bL is only in one mate. Therefore s = 1, wL = wR and the entire graph is the cube.

Next we will show that bL is not adjacent to wR and again proceed by contradiction
starting from the second diagram of Figure 10. Let b be an arbitrary black vertex and
suppose that w0 ∈ Γ(b). Then w1, w2, wR /∈ Γ(b) because that would cause either b0, b1 or
bL to be twice dominated. As Γ(b) misses the entire neighbourhood of b2, it follows that
b = b2 and s = 1, contradicting our assumptions.

The main purpose of Lemma 6 is to ensure that for any Lehman graph other than
the cube and the cubic Möbius ladder on 10 vertices, a 3-rung ladder reduction will at
least give a cubic graph. Next we show that reducing 3-rung ladders also preserves the
Lehman property.

Proposition 7. Suppose that G is a Lehman graph of type (n, 3, s) where k = 3s − n ∈
{1,−1}. Furthermore, assume that s > 2 if k = 1 and s > 1 if k = −1. If G contains a
3-rung ladder L, then G↓L is a Lehman graph of type (n− 3, 3, s− 1).

Proof. From Lemma 6, any 3-rung ladder L in G has the form depicted in Figure 8 where
{wL, wR, bL, bR} are distinct vertices and (wL, bL) and (wR, bR) are the only possible edges
between vertices in this set. Therefore G↓L is at least a cubic graph.

To show that it is a Lehman graph, we show that each black vertex b ∈ V (G↓L) has
a mate, and in fact we claim that

ΓG↓L(b) = ΓG(b)\{w0, w1, w2}.

In other words, take the mates of all the vertices in G, completely throw away the mates
of b0, b1 and b2 and then just delete w0, w1 and w2 from the remainder.

First we show that in both the positive and negative cases, the mate in G of any
black vertex b /∈ {b0, b1, b2} contains the vertex w0 if and only if it contains wR. This
follows because if w0 ∈ ΓG(b) then w1, w2 /∈ ΓG(b) (as this would result in either b0 or b1
being twice-dominated). As b 6= b2, the mate of b must dominate b2 exactly once and so
wR ∈ ΓG(b). For the converse, note that if wR ∈ ΓG(b), then w1, w2 /∈ ΓG(b) because that
would cause b2 to be twice-dominated. In order to dominate b1, it must be the case that
w0 ∈ ΓG(b). Symmetrically, w2 ∈ ΓG(b) if and only if wL ∈ ΓG(b).

We use this fact to show that for any b /∈ {b0, b1, b2}, the set ΓG(b)\{w0, w1, w2} is a
mate for the vertex b in G↓L. First observe that ΓG(b) contains exactly one vertex in
{w0, w1, w2}. This follows because b1 must be dominated at least once, and only ΓG(b) can
contain either zero or two of these vertices (in the negative, positive case respectively). If
ΓG(b) contains w0 (the case w2 is equivalent), then it also contains wR, and although bL is
no longer dominated in G↓L by the deleted vertex w0, it is now dominated by wR via the
added edge. Hence ΓG(b)\{w0, w1, w2} dominates the black vertices in G↓L exactly the
same number of times as ΓG(b) dominates the same vertices in G. If ΓG(b) contains w1,
then it does not contain any of w0, w2, wL, or wR, for otherwise b0 or b2 is dominated twice,
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and b 6= b0, b2. Therefore every black vertex of G↓L is dominated by ΓG(b)\{w0, w1, w2}
exactly the same number of times as the same vertex was dominated by ΓG(b) in G.

So we have shown that each black vertex has a mate, and therefore there is a solution
to the defining (matrix) equation of a Lehman matrix and so G↓L is a Lehman graph.
As G↓L has six fewer vertices than G, and each mate in G↓L has cardinality s − 1, we
see that its parameters are (n− 3, 3, s− 1).

The consequence of this result is that any cubic Lehman graph on more than 10
vertices with k = 1 and with a 3-rung ladder segment can be reduced to a smaller cubic
Lehman graph with k = 1. If the reduced graph itself has a 3-rung ladder segment, then
the process can be iterated, ending with either the cubic Möbius ladder on 10 vertices or
an “irreducible” Lehman graph with no 3-rung ladder segment. Our exhaustive computer
search for cubic Lehman graphs with k = 1 on up to 40 vertices show that there are just
two irreducible graphs in this range, the smaller of which is shown in Figure 5.

3.2 Ladder Insertion For Cubic Lehman Graphs

Now we consider when the reverse operation of a 3-rung ladder reduction can be per-
formed. The reverse operation consists of removing a non-incident pair of edges e =
(wL, bR) and f = (wR, bL), adding a new 3-rung ladder segment L (again labelled as in
Figure 8), and finally adding the edges (w0, bL), (w2, bR) (wL, b0) and (w2, bR). We denote
the resulting graph by G↑{e, f} and call the pair of edges expandable if G↑{e, f} is a
Lehman graph.

For a cubic Lehman graph with k = 1, the partition of the edge set into the 2-regular
auxiliary graph and its complementary perfect matching play a major role in determining
when a 3-ladder expansion yields a larger Lehman graph. The next proposition gives
some simple conditions sufficient to guarantee that {e, f} is an expandable pair of edges.
In this proof, we will frequently need to refer to the rows, columns and individual entries
of several different matrices, so to avoid cramped subscripts we temporarily use more
prominent notation. More precisely, if a matrix X has rows indexed by black vertices and
columns by white vertices then X(b, w) will refer to the (b, w)-entry of the matrix, X(b)
will refer to the row indexed by b and X(w) will refer to the column indexed by w.

Proposition 8. Let G be a (3s − 1, 3, s)-Lehman graph and let e = (wL, bR) and f =
(wR, bL) be non-incident edges of G. If e and f are in the auxiliary graph of G, the mates
of bL and bR are disjoint, and the mates of wL and wR are disjoint, then G↑{e, f} is a
(3(s+ 1)− 1, 3, s+ 1)-Lehman graph.

Proof. Suppose that A and A′ are the bipartite adjacency matrices of G and G↑{e, f}
respectively. Simply translating the insertion operation into matrix terms, we see that A′

is obtained from A by adding three additional rows and columns, and has the block form

A′ =

[
A′11 A′12
A′21 A′22

]
,
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where A′11 is equal to A except that A′11(bL, wR) and A′11(bR, wL) have been changed from
1 to 0 (the dashed arrows in Figures 11 and 12 indicate that the original 1 has been
“moved” leaving behind a 0 entry). Then A′12 is a (3s − 1) × 3 matrix with just two
non-zero entries in the (bL, w0) and (bR, w2) positions, and A′21 is a 3 × (3s − 1) matrix
with just two non-zero entries in the (b0, wL) and (b2, wR) positions. Finally A′22 is the
3× 3 matrix shown in Figure 11.

A

wL wR w0w1w2

bR

bL

b0
b1
b2

0

0

1

1

1

1

0 1 1
1 1 1
1 1 0

B

wL wR w0w1w2

bR

bL

b0
b1
b2

1

10

0

0 1 0
1 0 1
0 1 0

B
(w

R
)

1
−
B

(w
R

)−
B

(w
L

)
B

(w
L

)

B(bL)
1−B(bR)−B(bL)

B(bR)

Figure 11: A′ and B′ after a 3-ladder insertion in a positive Lehman graph

Now we will define a matrix B′, and then prove that A′B′ = J + I as required. This
is constructed from B (the partner of A in the Lehman pair (A,B)) by adding three
additional rows and columns, and is illustrated in the second diagram of Figure 11. The
upper left submatrix of B′ is simply equal to B, while the new rows and columns of B′

are defined in the following way: B′(b0) is obtained by duplicating B(bR) and extending
it by adding three more coordinates equal to (0, 1, 0). Thus, using block vector notation,
and with 1 being the all-ones vector, we have

B′(b0) = (B(bR) | 0, 1, 0),

B′(b1) = (1−B(bL)−B(bR) | 1, 0, 1),

B′(b2) = (B(bL) | 0, 1, 0).

The new columns are defined analogously using vectors B(wR), 1−B(wR)−B(wL), and
B(wL), and extending them as shown in Figure 11. The condition that the mates of bL
and bR are disjoint ensures that 1−B(bR)−B(bL) is a (0, 1)-vector and that every column
of B′21 sums to one, and analogously for the rows of B′12. Note that because e and f are
in the auxiliary graph, we know that wR is in the mate of bL, and wL is in the mate of
bR. Thus B(bL, wR) = B(bR, wL) = 1. Since these mates are disjoint, we also see that
B(bL, wL) = B(bR, wR) = 0.

Now we must show that for every pair of black vertices b, b∗ ∈ V (G) ∪ {b0, b1, b2} we
have

A′(b) ·B′(b∗) =

{
1, b 6= b∗;

2, b = b∗.
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We break into three cases.
Case 1: b ∈ {b0, b1, b2}.

It is easy to check directly that when both b, b∗ ∈ {b0, b1, b2} the dot products have
the correct values, so we may take b∗ ∈ V (G). First assume that b = b1, in which case the
dot product A′(b) · B′(b∗) = B′(b∗, w0) + B′(b∗, w1) + B′(b∗, w2) which is equal to one, as
it is simply the row-sum of B′12(b

∗). Next assume b = b0, in which case the dot product
A′(b) ·B′(b∗) = B′(b∗, wL) +B′(b∗, w0) +B′(b∗, w1). If B′(b∗, wL) = 1, then B′(b∗, w0) = 0,
because the mates of bL and bR are disjoint. Similarly B′(b∗, w1) = 0, so A′(b) ·B′(b∗) = 1.
If B′(b∗, wL) = 0, then exactly one of B′(b∗, w0) and B′(b∗, w1) is equal to one, so again
the dot product takes the value one. By symmetry the same holds when b = b2.
Case 2: b ∈ {bL, bR}.

Without loss of generality we assume that b = bL. If b∗ ∈ V (G), then the dot product
A′(b) ·B′(b∗) will be equal to the dot product A(b) ·B(b∗), except in the cases where the
(b∗, wR)-entry of B′ is one (when the dot product will be reduced by one), and where the
(b∗, w0)-entry of B′ is one (where it will be increased by one). By construction, either
both or neither of these occur and so the net result is that A′(b) ·B′(b∗) = A(b) ·B(b∗). If
b∗ = b0, then A′(b) and B′(b∗) do not share a non-zero entry in the last three columns, or
the wL or wR columns. It now follows that A′(b) ·B′(b∗) = A(bL) ·B(bR) = 1. Assume that
b∗ = b1. Note that there is a single column from the last three columns in which A′(b)
and B′(b∗) are both non-zero. In all columns other than the last three, A′(b) contains
two non-zeroes. One of these non-zeroes is in the same column as a non-zero of B(bR),
and the other is in the same column as a non-zero of B(bL). From these facts we see
that A′(b) · B′(b∗) = 1. Finally, if b∗ = b2, then the zero in A′(bL, wR) means that
A′(bL) ·B′(b∗) = A(bL) ·B(bL)−1 = 1. Now we have completed the analysis when b = bL.
Case 3: b ∈ V (G)\{bL, bR}.

The last three coordinates of A′(b) are all zero and so any dot products involving A′(b)
can be rewritten using only A(b). If b∗ ∈ V (G), then A′(b) · B′(b∗) = A(b) · B(b∗), and
because (A,B) is a Lehman pair, these dot products have the required values. If b∗ = b0,
then A′(b) · B′(b∗) = A(b) · B(bR) which again has the required value because (A,B) is
a Lehman pair. A symmetrical argument holds when b∗ = b2. Finally if b∗ = b1 then
A′(b) ·B′(b∗) = A(b) · (1−B(bR)−B(bL)) which is equal to 3− 1− 1 using the fact that
A is cubic, and that the dot-products with the two rows of B are each equal to 1.

There is one simple situation where the conditions for inserting a 3-ladder are auto-
matically satisfied, namely when there is a rung connecting a vertex of e to a vertex of f .
To show this, we start with a lemma outlining how the mates of two vertices intersect.

Lemma 9. Suppose that A is the matrix associated with a cubic Lehman graph, and that
B is the (0, 1)-matrix satisfying ABT = J + I. Let b1 6= b2 be distinct black vertices, let w
be a white vertex and suppose that A(b1, w) = A(b2, w) = 1 (in other words, w is adjacent
to b1 and b2). Then for all w′ 6= w, either B(b1, w

′) = 0 or B(b2, w
′) = 0.

Proof. If there is some w′ such that B(b1, w
′) = B(b2, w

′) = 1, then the (w′, w)-entry of
BTA is at least 2 contradicting Theorem 2.
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Corollary 10. Let G be a (3s − 1, 3, s) Lehman graph and let e = (wL, bR) and f =
(wR, bL) be edges of G. If (wL, bL) is a rung of G, then G↑{e, f} is a (3(s+1)−1, 3, s+1)
Lehman graph.

Proof. By definition, the edges of G incident with (but not equal to) a rung are in the
auxiliary graph, and so satisfy the first condition of Proposition 8. Now we show that the
mates of bL and bR are disjoint. As A(bL, wL) = A(bR, wL) = 1 it follows from Lemma 9
that for any white vertex w 6= wL, at least one of {B(bL, w), B(bR, w)} is zero. As (bL, wL)
is a rung, B(bL, wL) is zero. This covers all white vertices, so no white vertex is in the
mate of both bL and bR. By symmetry, the mates of wL and wR are also disjoint.

The situation for negative cubic Lehman graphs is slightly different in that certain
matrix entries must be 0 rather than 1, but it is very similar in style, and we omit
all but the broadest outline. This construction was previously given by Boros, Gurvich
and Hougardy [2] as the inverse operation of their reduction operation as described in
Section 3.1.

Proposition 11. Let G be a (3s + 1, 3, s)-Lehman graph and let e = (wL, bR) and f =
(wR, bL) be edges of G. If wL is not in the mate of bL and wR is not in the mate of bR
and the mates of bL and bR are disjoint and the mates of wL and wR are disjoint, then
G↑{e, f} is a (3(s+ 1) + 1, 3, s+ 1)-Lehman graph.

Proof. As previously, let A, B and A′, B′ denote the matrices associated with G and
G↑{e, f}. Figure 12 shows how A′ is related to A (which is the same as in positive case),
and how B′ is related to B (which is slightly different to the positive case). The arguments
showing that the rows of A′ and B′ have the “right” dot product are entirely analogous
to those given in Proposition 8 for the positive case.

A

wL wR w0w1w2

bR

bL

b0
b1
b2

0

0

1

1

1

1

0 1 1
1 1 1
1 1 0

B

wL wR w0w1w2

bR

bL

b0
b1
b2

0

0

1 0 0
0 0 0
0 0 1

B
(w

R
)

1
−
B

(w
R

)−
B

(w
L

)
B

(w
L

)

B(bL)
1−B(bR)−B(bL)

B(bR)

Figure 12: A′ and B′ after a 3-ladder insertion in a negative Lehman graph
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4 Biclique compression and expansion

In this section we consider r-regular Lehman graphs whose vertex set can be partitioned
into copies of Kr−1,r−1. By a slight abuse of terminology, we will refer to these copies
of Kr−1,r−1 as the bicliques of the graph. (Normally, ‘biclique’ refers to any maximal
induced complete bipartite subgraph not just those of a particular valency.) We start
by showing that any r-regular Lehman graph with a partition into bicliques must have
k ∈ {−1, 1}, and moreover must have r = 3 if k = −1. Then each biclique can be
compressed to an edge, yielding a smaller Lehman graph that is still r-regular, but of the
opposite sign. The edges of the smaller graph corresponding to the compressed bicliques
form a perfect matching. We then consider the reverse “expansion” operation, whereby
the edges of a perfect matching are expanded into copies of Kr−1,r−1. We show that any
perfect matching in a negative Lehman graph can be expanded to yield a larger Lehman
graph with k = 1. In contrast, if G is a cubic Lehman graph with k = 1, then the only
perfect matching that can be expanded to yield a Lehman graph is the perfect matching
of rungs (that is, the set of edges not in the auxiliary graph of G).

4.1 Biclique compression

First we describe the process of biclique compression: Let G be an r-regular bipartite
graph, and let P be a partition of V (G) into blocks each of which induces a copy of
Kr−1,r−1. Each black vertex, b, of G is adjacent to the r − 1 white vertices in its own
block, and exactly one additional vertex in a different block; we call this vertex the
out-neighbour of b. Only Lehman graphs with certain parameters may possibly admit a
partition into bicliques.

Lemma 12. Let G be an r-regular Lehman graph with r > 3. If G has a partition into
copies of Kr−1,r−1, then either k = −1 and r = 3, or k = 1.

Proof. Suppose first that k > 0, and consider the mate of a black vertex b. As b has
a unique out-neighbour, its mate Γ(b) contains at least k white vertices from the block
containing b. But now all the black vertices in this block (of which there are at least two)
are dominated at least k times by Γ(b) and so k = 1.

Now suppose that k = −1 and that r > 3. Let X be a block of P , and let b1, b2,
and b3 be distinct black vertices in X. Let w1 be the out-neighbour of b1. Consider the
mate, Γ(b2), of b2. It cannot contain any white vertex of X, since b2 is not adjacent with
a vertex in its mate. But b1 is adjacent with a vertex in Γ(b2), so w1 ∈ Γ(b2). Exactly
the same argument shows that w1 is in Γ(b3).

Now Proposition 5 says that b2 and b3 are both in the mate of w1. Therefore any white
vertex in X is adjacent to two vertices in this mate, and this is a contradiction.

We now define a bipartite graph, c(G,P), that will be the graph obtained by com-
pressing each biclique to an edge. More formally, for each block X ∈ P , the graph c(G,P)
contains a black vertex, bX , and a white vertex, wX . A black vertex bX is adjacent to
a white vertex wY if and only if X = Y , or there is a black vertex in X adjacent to a
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white vertex in Y . (Alternatively, we can see this as the image of G under the graph
homomorphism that, for each block X, maps the white vertices of X to wX and the black
vertices of X to bX .) The edges {{bX , wX} : X ∈ P} form a perfect matching in c(G,P).

Proposition 13. Let G be an r-regular Lehman graph with k = 1 and r > 3, and let P
be a partition of G into copies of Kr−1,r−1. Then c(G,P) is r-regular.

Proof. Certainly c(G,P) is a bipartite graph with maximum degree at most r, and the
number of white vertices is equal to the number of black vertices. Now it is easy to see
that if c(G,P) is not r-regular, then there is a block X ∈ P , and distinct black vertices,
b1, b2 ∈ X, such that b1 and b2 are adjacent with white vertices in the same block, Y .
Assume that bi is adjacent with wi ∈ Y for i = 1, 2, and note that w1 6= w2.

Let n be the number of black vertices of G. Then Theorem 2 says that rs = n + 1,
where s is the number of white vertices in each mate Γ(b). Moreover, each white vertex
is in exactly s mates of black vertices. If s = 1, then each black vertex is adjacent with
n + 1 white vertices, which is clearly impossible. Therefore s > 1. Hence we can choose
a set Γ(b) such that w1 ∈ Γ(b) and b 6= b1. Now Γ(b) does not contain a vertex in X, for
otherwise b1 would be adjacent with both that vertex, and with w1, which is impossible
as b1 is not b. Now b2 must be adjacent with at least one vertex in Γ(b), so it follows that
w2 is in Γ(b). We choose a black vertex b′ ∈ Y that is not b. Therefore b′ is adjacent with
both w1 and w2, and these vertices are in Γ(b), so we have a contradiction.

Lemma 12 shows that only cubic graphs can occur in the analogous result for negative
Lehman graphs.

Proposition 14. Let G be a cubic negative Lehman graph, and let P be a partition of
G into copies of K2,2. If G is not the graph produced from K4,4 by removing a perfect
matching, then c(G,P) is cubic.

Proof. We again assume that there is a block X ∈ P , and distinct black vertices, b1, b2 ∈
X, such that the out-neighbours of b1 and b2 are in the same block, Y . Let wi be the
out-neighbour of bi, for i = 1, 2. Let n be the number of black vertices in G. Then
3s = n − 1, where s = |Γ(b)| for any black vertex b. If s > 1, then we choose a set Γ(b)
such that w1 ∈ Γ(b) and b 6= b2. Then X ∩ Γ(b) = ∅, for otherwise b1 is adjacent with
two vertices in Γ(b). Because b2 6= b, we see that b2 is adjacent with exactly one vertex in
Γ(b), so w2 is in Γ(b). Then any black vertex in Y is adjacent with two vertices in Γ(b).
This contradiction means that s = 1 and hence n = 4. Thus G is a cubic bipartite graph
with eight vertices. It immediately follows that G is isomorphic to the graph produced
from K4,4 by removing a perfect matching.

Our next two lemmas, one for the positive case, and one for the negative case, show
that biclique compression preserves the property of being a Lehman graph, but reverses
the sign.

Lemma 15. Let G be an r-regular Lehman graph with k = 1 and r > 3. Assume that P
is a partition of G into copies of Kr−1,r−1. Then c(G,P) is an r-regular negative Lehman
graph.
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Proof. Let bX be an arbitrary black vertex in c(G,P). We will prove the existence of a
mate for bX , namely a set of white vertices containing no neighbours of bX and exactly
one neighbour of every other black vertex.

Let b be a black vertex of G in the block X, and w be the out-neighbour of b which
(by definition) is contained in a block Y distinct from X. Let ΓG(w) be the mate of w in
G; this is well-defined by Corollary 3. So ΓG(w) is a set of black vertices containing two
neighbours of w and exactly one neighbour of every other white vertex in G. Note that
no block of P contains more than one vertex of ΓG(w), for otherwise that block would
contain a white vertex, not equal to w, that is dominated by two vertices in ΓG(w). In
particular, Y does not contain two vertices in ΓG(w). Therefore b is in ΓG(w), along with
exactly one vertex in Y .

We now describe a set of vertices Γ in c(G,P), and then show that it is a mate for bX .
The set Γ is defined as follows:

Γ = {wZ : Z ∈ P , Z ∩ ΓG(w) = ∅}.

In other words, Γ contains the white vertices of c(G,P) corresponding to the blocks that
contain no vertices of ΓG(w).

Now let Z be a block of P and suppose that its black vertices are b1, b2, . . . , br−1
with out-neighbours w1, w2, . . . , wr−1 that lie in blocks Z1, Z2, . . . , Zr−1 respectively (see
Figure 13). The key observation is that unless {bi, wi} = {b, w},

Zi ∩ ΓG(w) = ∅ if and only if bi ∈ ΓG(w). (1)

This follows from the fact that each white vertex other than w is dominated by a unique
black vertex in ΓG(w). Assume that {bi, wi} 6= {b, w}. In this case, if bi ∈ ΓG(w) then wi

is dominated by bi so none of the black vertices in Zi are in ΓG(w). On the other hand, if
bi /∈ ΓG(w) then the vertex dominating wi must lie in Zi and so Zi does contain a vertex
of ΓG(w). Note that when {bi, wi} = {b, w}, we have Z = X and Zi = Y . In this case,
Zi contains an element of ΓG(w), since Y contains a single vertex of ΓG(w), even though
b = bi is also in ΓG(w).

In the compressed graph c(G,P), the neighbours of bZ are wZ1 , wZ2 , . . . , wZr−1 along
with wZ , so we must count how many of these vertices are in Γ. First consider the case
where Z 6= X. In this case, (1) implies that if Z ∩ ΓG(w) = ∅, then wZ ∈ Γ, but none
of wZ1 , wZ2 , . . . , wZr−1 are in Γ and so bZ is adjacent to exactly one vertex in Γ. On the
other hand, if Z ∩ ΓG(w) = {bi}, then wZ is not in Γ. On the other hand, Zi contains no
vertex in ΓG(w) by (1). Therefore wZi

is in Γ. Because Z contains exactly one vertex in
ΓG(w), no vertex bj is in ΓG(w) when j 6= i. Therefore Zj ∩ ΓG(w) is non-empty by (1),
so wZj

is not in Γ. Therefore exactly one neighbour of bZ is in Γ.
Finally we consider the case that Z = X. We assume bi = b, in which case Zi = Y . As

both X and Y contain a vertex of ΓG(w), it follows that wX , wY /∈ Γ. Since Z contains
a unique vertex of ΓG(w), we see that bj is not in ΓG(w) when j 6= i. Therefore (1)
implies that Zj contains an vertex of ΓG(w). This means that none of the white vertices
wZ1 , wZ2 , . . . , wZr−1 are in Γ. Therefore Γ dominates every black vertex of c(G,P) other
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Figure 13: Configuration in biclique compression

than bX exactly once each and does not dominate bX at all, and so is a mate for bX . As
every black vertex of c(G,P) has a mate, and as each mate fails to dominate a unique
vertex, it follows that c(G,P) is a negative Lehman graph.

Lemma 16. Let G be a cubic negative Lehman graph, and let P be a partition of G into
copies of K2,2. Then c(G,P) is a cubic Lehman graph with k = 1.

Proof. This proof is almost identical to that of Lemma 15. Once again, we select a block
X, and then construct a set of vertices that will be a mate for bX . As before, fix a vertex
b ∈ X, and consider its out-neighbour w in a block Y . Then take the mate ΓG(w). Note
that no block contains more than one vertex of ΓG(w). Define a set Γ of vertices of c(G,P)
by

Γ = {wZ : Z ∈ P , Z ∩ ΓG(w) = ∅}.

As ΓG(w) does not contain any neighbours of w, it does not contain b nor any of the
vertices of Y . We need an analogue of (1), so suppose that Z is a block containing black
vertices b1, b2 with out-neighbours, w1 and w2 respectively, that lie in blocks Z1 and Z2

respectively. Then unless {bi, wi} = {b, w},

Zi ∩ ΓG(w) = ∅ if and only if bi ∈ ΓG(w). (2)

In the exceptional case, when Z = X and Zi = Y , neither X nor Y contain any vertices
of ΓG(w).

Now we determine which neighbours of bZ are in Γ. First we assume Z 6= X. If
Z ∩ ΓG(w) = ∅, then wZ ∈ Γ, but neither of wZ1 , wZ2 ∈ Γ, and so bZ has a unique
neighbour. If Z ∩ ΓG(w) = {bi} for some i, then wZi

is the unique neighbour of bZ in Γ.
Finally, both X and Y contain no vertices of ΓG(w) and hence bX is adjacent to both wX

and wY , thereby being twice dominated as required.
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4.2 Biclique expansion

Next, we show how to reverse the construction discussed in the previous results in this
section, that is, we determine when it is possible to replace each edge in a perfect matching
with a biclique while preserving the property of being a Lehman graph.

Let G be an r-regular bipartite graph with black vertices b1, . . . , bn, and white vertices
w1, . . . , wn. Assume that M = {biwi : 1 6 i 6 n} is a perfect matching of G. Now we
define the bipartite graph e(G,M), which will be the biclique-expansion of G. For each
black vertex bi of G there is a set Bi of r − 1 black vertices, and for each white vertex
wj, a set Wj of r− 1 white vertices. For each i, join every vertex of Bi to every vertex of
Wi so that the subgraphs induced by Bi ∪Wi are all bicliques. Now, for every edge not
in M, say {bi, wj} where i 6= j, we add a single edge between Bi and Wj in such a way
that e(G,M) is r-regular. To see that this can always be done, consider the following
procedure: for each black vertex b, arbitrarily order the edges of G that are incident with
b, but not in M. Similarly, arbitrarily order the non-matching edges incident with each
white vertex. Now consider an edge e = {b, w} which is a non-matching edge of G, with
corresponding blocks B, W . If e is the ith edge in the ordering for b and the jth edge in
the ordering for w, then join the ith vertex of B to the jth vertex of W . Then e(G,M)
is r-regular as the r − 1 edges of G incident with a given vertex b correspond to r − 1
edges of e(G,M) each using a different vertex of B. Moreover, the vertices of each colour
within a biclique can be permuted arbitrarily without altering the isomorphism class of
the whole graph, so every choice of edge-orderings gives an isomorphic graph.

This construction is illustrated in Figure 14. The orderings of the edges at each
vertex are given in the natural left-to-right order; for example, the two non-matching
edges incident with b2 are ordered ({b2, w1}, {b2, w4}), while the two non-matching edges
incident with w4 are ordered ({b2, w4}, {b3, w4}). So the edge between B2 and W4 connects
the second vertex of B2 to the first vertex of W4.

b1 b2 b3 b4

w1 w2 w3 w4

W1 W2 W3 W4

B1 B2 B3 B4

Figure 14: The r-regular bipartite graph, G, and e(G,M).

Lemma 17. Let M be a perfect matching of the r-regular negative Lehman graph G.
Then e(G,M) is an r-regular Lehman graph with k = 1.
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Proof. Assume that G has black vertices b1, b2, . . . , bn and white vertices w1, w2, . . . , wn

and that M = {biwi : 1 6 i 6 n}. As above, for each i, let Bi denote the set of (r − 1)
black vertices associated with bi and Wi the set of white vertices associated with wi.
This is illustrated in Figure 15, where the complete connection between Bi and Wi is
represented by a zigzag line.

B1 B2 B3 B4 B5 B6 B7

W1 W2 W3 W4 W5 W6 W7

b

w

Figure 15: Finding the mate of b in e(G,M) when G is negative

Now let b be an arbitrary black vertex of e(G,M). We will show that there is a set
Γ of white vertices of e(G,M) that is a mate for b. Let w be the out-neighbour of b and
assume that b ∈ Bi and w ∈ Wj, for some i 6= j. In Figure 15 we have taken i = 1 and
j = 2 but this is purely for illustrative purposes: the argument only requires i 6= j.

The vertex wj in G has a mate ΓG(wj), which is a set of black vertices of G that
dominates every white vertex exactly once, except for wj, which is not dominated at
all. Now from this mate, define a set Γ of white vertices of e(G,M) by taking the out-
neighbours of the vertices in any set B` such that b` ∈ ΓG(wj) and adding the vertex w.
In Figure 15, the marked sets B3 and B6 correspond to the vertices in ΓG(wj), and so it
is their out-neighbours, together with w, that form the purported mate of b. Note that
no white vertex of G is dominated twice by ΓG(wj), which means that no set W` contains
more than one vertex of Γ.

There are three types of black set, namely the set Bi containing b, the sets correspond-
ing to the vertices in ΓG(wj) (that is, B3 and B6 in Figure 15) and the remaining sets.
Note that wi 6= wj, so wi is adjacent to exactly one vertex in ΓG(wj), say b`. Furthermore,
` 6= i, for otherwise wj is dominated by a vertex in ΓG(wj), which is impossible. Therefore
Wi contains an out-neighbour of a vertex in B`, so Wi contains a vertex in Γ. All of the
black vertices in Bi are dominated by the vertex in Wi ∩ Γ. In addition, b (alone) is
dominated a second time by w. Let ` be different from i. Assume that b` is in ΓG(wj). If
W` contains a vertex in Γ, then that vertex is an out-neighbour of a set that corresponds
to a member of ΓG(wj). But this would mean that w` is dominated by two vertices in
ΓG(wj), an impossibility. Therefore W` ∩ Γ = ∅, but each vertex of B` is dominated by
its unique out-neighbour. On the other hand, if b` /∈ ΓG(wj), then Γ does contain exactly
one vertex of W`, but does not contain the out-neighbour of any of the vertices in B`, so
every vertex of B` is dominated exactly once by the sole vertex in Wi ∩ Γ.

Therefore, every black vertex of e(G,M) is dominated once except for b, which is
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dominated twice, and so Γ is a mate for b. As a mate can be found for every black vertex
of e(G,M), it follows that it is a Lehman graph with k = 1.

When we expand a Lehman graph satisfying k = 1, we must restrict to the cubic case,
by Proposition 12. In addition, not every perfect matching can be expanded, but only
the one formed from the edges not in the auxiliary graph, which we previously termed
the rungs.

Lemma 18. Let G be a cubic Lehman graph with k = 1, and let R be the perfect matching
of rungs. Then e(G,R) is a cubic negative Lehman graph.

Proof. We use the notation from Lemma 17, and use Figure 16 as an analogous figure to
Figure 15. As before, let b be an arbitrary black vertex lying in a set Bi and let w be its
out-neighbour lying in block Wj. In Figure 16, b ∈ B2 while w ∈ W3, but the argument
only requires that i 6= j.

B1 B2 B3 B4 B5 B6 B7 B8

W1 W2 W3 W4 W5 W6 W7 W8

b

w

Figure 16: Finding the mate of b in e(G,M) when G is positive

As G is a Lehman graph with k = 1, the vertex wj has a mate ΓG(wj) which is a set
of black vertices dominating wj twice and every other black vertex once. As {bj, wj} is a
rung of G, it follows that bj /∈ ΓG(wj) and hence bi ∈ ΓG(wj). From this mate, we define
a set Γ of white vertices of e(G,M) by taking the out-neighbours of the vertices in the
sets B` provided b` ∈ ΓG(wj) and then removing the vertex w.

Then arguments essentially identical to those in Lemma 17 apply unchanged, except
for the special status of b and w. In summary, for ` 6= i, the vertices of B` are either
all dominated by a single vertex in W`, or each vertex in B` is dominated by its out-
neighbour. Which case occurs depends on whether b` ∈ ΓG(wj) or not. As bi ∈ ΓG(wj)
this general rule indicates that b ∈ Bi should be dominated by its out-neighbour, which is
w, but as this has been explicitly excluded from Γ, the vertex b is the unique undominated
black vertex, as required for the mate of b in a negative Lehman graph.

We note, without proof, that if N is any perfect matching of G other than the rungs,
then although e(G,N ) is a well-defined r-regular graph, it is not a Lehman graph.

Let G be the graph obtained from Kr+1,r+1 by deleting a perfect matching. Then
the bipartite adjacency matrix A of this graph is equal to J − Ir+1. If B = Ir+1, then
ABT = J − Ir+1 and so G is a negative Lehman graph of type (r + 1, r, 1). Up to
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isomorphism, G has a unique perfect matchingM and the expanded graph e(G,M) is a
Lehman graph of type (r2 − 1, r, r). The clutter matrices of these graphs are those found
by Wang [22], who also showed that these matrices are minimally nonideal.

5 A catalogue of cubic Lehman matrices

In this section we describe the computation of a catalogue of cubic Lehman matrices
with k = ±1 thereby partially extending, verifying, and in one instance correcting, the
catalogue of Lütolf & Margot. Here we recall that our Lehman matrices are square but
may have k = −1, while their Lehman matrices need not be square, but must have k > 0.
In addition, they were primarily focussed on (not-necessarily square) mni matrices and so
the two catalogues overlap, but are not directly comparable.

We used Gunnar Brinkmann’s cubic graph generator minibaum [4] to generate cubic
bipartite graphs on up to 40 vertices from which to extract the Lehman graphs. Although
this is a huge computation, it is possible to prune the generation tree to some extent. For
example, if two vertices of degree three in a partially-constructed graph have the same
neighbourhood, then any cubic graph constructed by adding additional vertices will have
a singular bipartite adjacency matrix, so there is no point in further extending that graph.
It is certainly possible to do more sophisticated pruning, but there is a complicated trade-
off between computer time, programming time, and the chance of introducing subtle bugs.
In the end we opted to modify minibaum by the smallest amount required to make the
computation feasible, in the end spending about two months on four 12-core computers.

There are two natural notions of equivalence for Lehman graphs/matrices one of which
is a refinement of the other. In the graph context, we may view two Lehman graphs as
being equivalent if and only if there is a colour-preserving isomorphism between them.
However it is equally natural to just take graph isomorphism (ignoring the vertex colours)
as the appropriate concept of equivalence, which we denote colour-blind isomorphism.
In matrix terms, this corresponds to viewing two matrices as equivalent if one can be
obtained from the other by using only row- and column-permutations, or whether matrix
transposition is also permitted. The relationship between the two notions of equivalence
is straightforward. Each Lehman graph (counted up to graph isomorphism) contributes
either 1 or 2 to the count of Lehman graphs up to colour-preserving graph isomorphism,
depending on whether it has a colour-reversing automorphism or not, respectively. In
Tables 1 and 2 the columns `(n) and `′(n) give the numbers of Lehman graphs up to
colour-blind and colour-preserving isomorphism respectively.

The numbers given in Table 1 differ in only one place from the corresponding numbers
found by Lütolf & Margot [17] — we find 98 Lehman graphs (up to colour-preserving
isomorphism) of type (17, 3, 6) compared to the 97 that they found. By downloading
the files associated with their paper, we have confirmed that this is a genuine omission
and that our catalogues correspond in all other respects. This omitted graph is shown in
Figure 4.

The numbers given in Table 2 coincide with those found by Boros, Gurvich and
Hougardy [2], with the minor caveat that they were only concerned with the total numbers
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(n, r, s) 2n `(n) `′(n)
(5, 3, 2) 10 1 1
(8, 3, 3) 16 2 2
(11, 3, 4) 22 4 4
(14, 3, 5) 28 17 18
(17, 3, 6) 34 71 98
(20, 3, 7) 40 491 785

Table 1: Cubic Lehman matrices (with k = 1) of order at most 20

(n, r, s) 2n `(n) `′(n)
(4, 3, 1) 8 1 1
(7, 3, 2) 14 1 1
(10, 3, 3) 20 2 2
(13, 3, 4) 26 5 5
(16, 3, 5) 32 19 21
(19, 3, 6) 38 105 154
(22, 3, 7) 44 853 1488

Table 2: Negative cubic Lehman matrices of order at most 22

of (α, ω)-graphs, so did not give values for `(n).

5.1 Cubic mni matrices

Recall that a clutter matrix is minimally nonideal (mni) if it is not ideal, but all of its
proper minors are ideal. A (not-necessarily square) mni matrix A consists of a (necessarily
square) Lehman submatrix containing all the rows of minimum weight, say r, along with
zero or more additional rows of strictly greater weight. It is easy to see that the polyhedron
Q(A) has a vertex at 1

r
1 (the point with all coordinates equal to 1

r
) and [15] showed that

if A is mni then this is the unique fractional vertex of Q(A).
There are two common ways to represent a polyhedron computationally — the H-

representation is a list of inequalities defining half-spaces whose intersection is the poly-
hedron, and the V -representation is a list of the vertices. In our situation, if A is an m×n
clutter matrix, then Q(A) is defined by m + n inequalities. The first m inequalities, one
per row of A, are all of the form

ai,0x0 + ai,1x1 + · · ·+ ai,nxn > 1,

while the remaining n inequalities, one per column of A, are simple non-negativity con-
straints of the form xj > 0. Software is readily available (e.g. in SageMath) to convert
the H-representation of a polyhedron to the V -representation (and vice versa if desired).
For the sizes we are considering (matrices with around 20 rows and columns), the process
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Parameters Number
(5, 3, 2) 1
(8, 3, 3) 2
(11, 3, 4) 4
(14, 3, 5) 9
(17, 3, 6) 4
(20, 3, 7) 0

Table 3: Numbers of cubic mni Lehman matrices

takes no more than a second or so, and as the coordinates of the vertices of Q(A) are
rational, it is easy to check how many are fractional.

In this fashion, we can determine which of the Lehman matrices we have constructed
are mni themselves (i.e. with no additional rows), and these numbers are shown in Table 3
(all these are equivalent to their transpose). This data is consistent with the view that
only a small cubic Lehman graph can be mni, and that in general more constraints tend
to create more fractional vertices. This seems convincing enough that we are willing to
make the following conjecture.

Conjecture 5.1. There are no n× n cubic mni matrices for n > 17.

As difficult as it seems to understand square mni matrices, even just cubic ones, the
situation is far worse when considering non-square mni matrices. Adding a row to a clutter
matrix alters the polyhedron by intersecting it with a new halfspace, thereby both cutting
off some existing vertices and adding some new ones. If the new halfspace cuts off more
fractional vertices than it creates then (in some sense) the matrix is getting “closer” to
being mni. Lütolf & Margot used a heuristic based on this general idea to add collections
of rows to the (17, 3, 6) Lehman matrices that they had constructed, and succeeded in
extending them to an mni matrix about 30% of the time. We have not attempted to
extend this part of their project.

6 Projective planes

The general problem of deciding when a Lehman matrix can be extended to an mni matrix
by adding rows seems very difficult. In this section, we consider a very special sub-case
of this problem, namely when the Lehman matrix in question is the point-line incidence
matrix of a non-degenerate projective plane.

To do this, we need some more notation and background results about clutters and
mni matrices. A transversal of the clutter C = (V,E) is a subset of V having non-empty
intersection with every element of E. The blocker of C, written b(C), is the clutter having
V as its vertex set, and the set of all minimal transversals of C as hyperedges. Edwards and
Fulkerson made the observation that b(b(C)) = C [12]. The blocker involution exchanges
deletion and contraction: b(C\v) = b(C)/v for all v ∈ V . The blocker of an ideal clutter
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is also ideal [14] (see also [8, Theorem 1.17]). Therefore the blocker of an mni clutter is
also mni. Let A be an mni clutter matrix. We say that the core of A, written core(A),
is the submatrix consisting of the minimum weight rows of A. For an integer t > 2, let
Jt be the clutter ({0, 1, . . . , t}, {{1, . . . , t}, {0, 1}, {0, 2}, . . . , {0, t}}). Then Jt is mni [8,
Exercise 4.2]. We call any clutter isomorphic to Jt a degenerate projective plane. We
can now state the fundamental theorem of minimally nonideal matrices, which is due to
Lehman ([15], see also [8, Theorem 4.3 and Corollary 4.5]).

Theorem 19 (Lehman). Let C be a minimally nonideal clutter. Let A be the clutter matrix
corresponding to C, and let B be the matrix corresponding to b(C). If C is not a degenerate
projective plane, then we can permute rows as necessary so that (core(A), core(B)) is a
Lehman pair.

Any non-degenerate projective plane can be considered as a clutter, where the vertex
set is the set of points, and the hyperedges are the lines. These clutters are heavily-studied
and highly-structured, so we might hope that it would be possible to classify mni matrices
whose core is such a clutter. We make the following conjecture:

Conjecture 6.1. If A is a minimally nonideal matrix whose core is a non-degenerate
projective plane, then A is square and equal to the point-line incidence matrix of the
Fano plane.

Novick [18] showed that the Fano plane is the only non-degenerate projective plane
whose point-line incidence matrix is mni, thus proving Conjecture 6.1 under the assump-
tion that A is square. Her proof was not phrased in geometric terms, so we give an
alternative proof that rehearses some of the terminology and ideas we will use later. A
triangle in a projective plane is the union of three lines that do not share a common point.
The corners of the triangle are the points in two of the lines.

Proposition 20 (Novick [18]). Let A be the point-line incidence matrix of a projective
plane P, where P is non-degenerate. Then A is an mni matrix if and only if P is the
Fano plane.

Proof. One direction of the proof is well known. Suppose that P is a projective plane of
order k > 2, and let T be a triangle of P . Form a minor of P (now viewed as a clutter)
by first deleting all points not in T , and then contracting all the points in T except for
the corners. As each line of P contains at least four points, the only lines contained in
T are the three lines of the triangle. This means that after deleting the points not in T ,
we obtain a clutter with exactly three hyperedges. After subsequently contracting the
non-corner points, we have a minor isomorphic to the degenerate projective plane J2. As
P has a proper minor that is mni, it is not mni itself.

Our next results show that no counterexample to Conjecture 6.1 can have a core that
is the point-line incidence matrix of either the Fano plane PG(2, 2) or the ternary plane
PG(2, 3). (In [17], Lütolf & Margot denote PG(2, 3) as L4

13(1). In a footnote to that
paper, they assert without proof the result stated in Theorem 22.)
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Theorem 21. If A is a minimally nonideal clutter matrix whose core is the point-line
incidence matrix of the Fano plane PG(2, 2), then A is square.

Theorem 22. There is no minimally nonideal clutter matrix whose core is the point-line
incidence matrix of PG(2, 3).

The proofs of these results rely on the following lemmas. We are hopeful that the
geometric approach underlying these lemmas may be further developed. A blocking set of
a projective plane P is a minimal set of points that meets every line of P , but does not
completely contain any of the lines (see Bruen [5]).

Lemma 23. Let A be a minimally nonideal clutter matrix for a clutter C whose core is a
non-degenerate projective plane P. Then

(i) The blocker b(C) also has P as its core.

(ii) Every hyperedge of C is either a line of P, or contains a blocking set, but not a line,
of P.

Proof. Let the order of P be k. From the properties of projective planes, we know that
core(A) core(A)T = J + kI. Furthermore, Theorem 19 says that core(A) core(b(A))T =
J + k′I, for some positive integer k′. Assume that core(b(A)) 6= core(A), so that k′ 6= k.
The dot product of any row in core(A) with the corresponding column of core(b(A))T is
k′ + 1, but the row of core(A) has weight k + 1. Therefore k′ < k. Theorem 2 says that
(k + 1)s′ = n+ k′, where each row or column sum of core(b(A)) is s′. The same theorem
says that (k + 1)2 = n+ k. This implies that (k + 1)(k + 1− s′) = k − k′. But the right
side of this equation is positive and less than k, and if the left side is positive, it is at least
k + 1. This contradiction proves (i). As b(C) contains the lines of P , and b(b(C)) = C, it
follows that every hyperedge of C is a transversal to P . Therefore each hyperedge of C
is a line of P or contains a blocking set of P . As C is a clutter, no hyperedge of C can
properly contain a line of P .

For the remainder of this section, we fix some notation as follows. Throughout, A is a
minimally nonideal clutter matrix for a clutter C whose core is a projective plane P . Let
C denote the vertices of C (and hence P), although we will usually call them points in
our geometric arguments. Through an abuse of notation, we also use C to refer to the set
of hyperedges in C. We frequently argue with respect to an arbitrary triangle T which,
unless otherwise stated, is the union of three lines Lx, Ly and Lz that pairwise meet in
three distinct corner points x = Ly ∩ Lz, y = Lx ∩ Lz and z = Lx ∩ Ly. The non-corner
points of the three lines are partitioned into the sets X = Lx − {y, z}, Y = Ly − {x, z},
and Z = Lz − {x, y}. (For convenience, this notation is illustrated in Figure 17.)

Lemma 24. Let T be a triangle of P, and let R ∈ C − P be such that R ⊆ T . Then one
of the following statements holds.

(i) R = X ∪ Y ∪ Z.
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Figure 17: A triangle in a projective plane

(ii) R has the form {x} ∪ Y ∪ Z ∪X ′, {y} ∪X ∪ Z ∪ Y ′, or {z} ∪X ∪ Y ∪ Z ′, where
X ′, Y ′, and Z ′ are, respectively, non-empty subsets of X, Y , and Z.

(iii) R = {x, y, z} ∪X ′ ∪ Y ′ ∪ Z ′, where X ′, Y ′, and Z ′ are, respectively, proper subsets
of X, Y , and Z.

Proof. This argument falls into cases according to how many of the corners of the triangle
are contained in R.

If R contains all three corners of T then because R does not contain a line of P ,
statement (iii) holds.

Now suppose that R avoids at least one corner, say x /∈ R. If R avoids some point
x′ ∈ X, then R does not intersect the line through x and x′, a contradiction to Lemma
23 (ii). Thus X ⊆ R. Similarly, if R avoids y it contains Y and if it avoids z it contains
Z. Thus, if x, y, z /∈ R, statement (i) holds.

Now R cannot contain exactly two of x, y, and z, because if it contains, say, {x, y}
and avoids z, then Z ∪ {x, y} = Lz is contained in R, contradicting Lemma 23. Up to
symmetry, the last case we must consider is when x ∈ R and y, z /∈ R. Then Y ∪ Z ⊆ R.
Moreover, R must contain a non-empty set of points in X, or it avoids Lx. Thus statement
(ii) holds.

Let T be a triangle in P , and let R ⊆ T . If R has the form indicated in (i), (ii), or
(iii) in Lemma 24, then we refer to R as, respectively, a 0-corner, 1-corner, or 3-corner
of T . If R is a 1-corner containing x, then we call R an x-based 1-corner (or a 1-corner
based at x). The terms y-based and z-based are defined similarly.

Lemma 25. Let T be a triangle of P. Then C contains the 0-corner of T .

Proof. First suppose that C does not contain any 0-corner or 1-corner of T . As in the
proof of Lemma 20, let H be the clutter obtained by deleting all points outside T , and
contracting X ∪ Y ∪ Z. Then the hyperedges of H are the minimal sets of the form
R− (X ∪ Y ∪ Z), for some R ∈ C contained in T . By Lemma 24, the only hyperedges of
C contained in T are the lines of T and possibly some 3-corners. The lines of T give rise
to the sets {x, y}, {y, z}, and {x, z}, while every 3-corner becomes {x, y, z} and therefore
cannot be minimal. It follows that H is isomorphic to J2. Since C contains a proper
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J2-minor, it cannot be mni, and we have a contradiction. Therefore C contains a 0-corner
or a 1-corner of T .

Now suppose that C does not contain the 0-corner of T , in which case C at least one
1-corner of T . Without loss of generality, we can assume that C contains one or more
x-based 1-corners of T , say R1, . . . , Rd. Now let Xi = X ∩ Ri for i = 1, . . . , d, and let W
be a minimal subset of X such that W ∩ Xi 6= ∅ for i = 1, . . . , d. Since W is minimal,
for every w ∈ W there exists an i ∈ {1, . . . , d} such that Xi ∩W = {w}.

Now consider two cases, depending on whether all the 1-corners of T contained in C
are based at x or not. In both cases we show that C has a proper minor isomorphic to a
degenerate projective plane, contradicting the fact that A is minimally nonideal.

First suppose that all the 1-corners of T are based at x. Define the minor H = C\(C−
T )/(Y ∪Z∪(X−W )). The sets inH are the minimal sets of the form R−(Y ∪Z∪(X−W ))
for some R ∈ C such that R ⊆ T . The only members of C contained in T are the lines of
T (which produce the sets {x, y}, {x, z} and W ), the x-based 1-corners and possibly some
3-corners (which all contain {x, y} and will therefore not be minimal). The 1-corners that
have exactly one vertex in W produce sets {x,w} for every w ∈ W ; the other 1-corners
are not minimal. Thus the sets in H are {x, y}, {x, z}, and {{x,w}}w∈W . Thus H is
isomorphic to J|W |+2.

Now suppose that C contains a y-based 1-corner, as well as an x-based 1-corner.
Define H = C\((C − T ) ∪ {z})/(Y ∪ Z ∪ (X −W )). The sets in H arise from members
of C contained in T − z. These are Lz and the 1-corners based at x and y. The line
Lz becomes {x, y}, all the y-based 1-corners become the set {y} ∪W and, as before, the
x-based 1-corners produce {{x,w}}w∈W . Therefore H is isomorphic to J|W |+1, and the
proof is complete.

Lemma 26. Assume that the order of P is greater than two. Then C is not the clutter
obtained from P by adding all the 0-corners of triangles of P.

Proof. Assume the lemma fails, so that C contains the lines of P , the 0-corners of triangles,
and no other hyperedges. Consider three copunctual lines L1, L2, and L3, through the
point x, and a fourth line, L4, such that x /∈ L4. Let X be union of these four lines. For
i = 1, 2, 3, let yi be the point of intersection of Li with L4. This configuration contains
three triangles T1 = L2 ∪ L3 ∪ L4, T2 = L1 ∪ L3 ∪ L4, and T3 = L1 ∪ L2 ∪ L4. Let
R1, R2, and R3 be the 0-corners of T1, T2, and T3 respectively. For i = 1, 2, 3 pick a
point ai ∈ Li − {x, yi}. The clutter obtained from C by deleting all points not in X and
contracting all points in X other than {x, y1, y2, y3, a1, a2, a3} is the Fano plane. Therefore
C has a proper minor isomorphic to an mni clutter, implying that C is not mni, which
contradicts our assumption.

Now we can prove Theorems 21 and 22.

Proof of Theorem 21. By Lemma 23, any set in C −P contains a blocking set of the Fano
plane. As the Fano plane has no blocking sets (see Bruen [5]), it follows that C − P is
empty and A is the point-line incidence matrix of the Fano plane.
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Proof of Theorem 22. In this case, C contains at least the lines and the 0-corners of the
ternary plane PG(2, 3). The only blocking sets of PG(2, 3) are the 0-corners of the triangles
(Di Paola [11]), and as C is a clutter, it now follows that it contains exactly the lines and
the 0-corner of every triangle and no other sets, contradicting Lemma 26.

7 Open Problems

In the cubic Lehman graphs described in this paper, 4-cycles play a major role, either as
part of a ladder segment or as part of a biclique partition. While there is nothing in the
definition of Lehman graph that immediately implies the existence of 4-cycles, it seems
difficult to find Lehman graphs without them.

Question 7.1. Are there any cubic Lehman graphs (with k = 1) of girth at least 6?

The restriction of this question to k = 1 is necessary because the Heawood graph and
the Desargues graph, which are Lehman graphs of type (7, 3, 3) and (10, 3, 4) respectively,
both have girth 6 and k = 2.

Given any cubic bipartite graph with 2n vertices, we can count the number of vertices
of one colour that have a valid mate, knowing that the graph is a Lehman graph if and
only if this number is n. In a Lehman graph every vertex, black or white, has a mate,
but if the graph is not Lehman then there may be a different number of black vertices
with mates than white ones with mates. None of the cubic bipartite graphs on 17 + 17
vertices with girth 6 have more than six vertices with mates, far short of the 17 required
for the existence of a Lehman graph of that order.

Question 7.2. Are there any cubic mni Lehman matrices (with k = 1) of order greater
than 17× 17?

Table 3 shows that as s increases, the number of (3s−1, 3, s) Lehman matrices that are
mni first increases, reaching a maximum at s = 5, and then decreases, actually reaching
zero when s = 7. Given that the average number of fractional points in the polytopes
Q(A) increases rapidly as the order of A increases, it would not be surprising if square
cubic mni matrices only occurred for small orders. Indeed we conjecture that this is so
(Conjecture 5.1).

Question 7.3. Are there any mni matrices whose core is the point-line incidence matrix
of a non-degenerate projective plane of order greater than two?

If an mni matrix has a non-degenerate projective plane as a core, then the hyperedges
all have geometric interpretations as lines or blocking sets, enabling the use of geometric
arguments. It would be interesting if such arguments can be pushed further to eliminate
more non-degenerate projective planes as potential cores of mni matrices.

Cornuéjols, Guenin and Tunçel [10] call a Lehman matrix thin if k = 1 and asked the
following question:
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Question 7.4. Are there infinite families of Lehman matrices other than thin matrices
and projective planes?

The only known infinite family of Lehman matrices with k > 1 is the family of point-
line incidence matrices of non-degenerate projective planes, which are extremal structures
in many ways. We can make a heuristic argument that we expect Lehman matrices with
k > 1 to be far rarer, perhaps vanishingly rare. If (A,B) is a Lehman pair of type (n, r, s)
with k = rs−n, then det(A) det(B) = kn−1(n+ k) = kn−1rs. If k = 1, then | det(A)| = r
and | det(B)| = s. These are the smallest possible non-zero values for the absolute value
of the determinant of an r-regular (resp. s-regular) matrix, and so there are many such
r-regular matrices each of which is a candidate to be a Lehman matrix. However if k > 1,
then there is an extra factor of kn−1 in det(AB), which must be allocated between the
determinants of A and B. With far far fewer potential Lehman matrices, we are not
surprised that the known examples are either small, very highly-structured or both.

Question 7.5. Are there more infinite families of mni Lehman matrices?

For any odd n, the circulant matrix with first row (1, 1, 0, · · · , 0), and its blocker are
mni Lehman matrices. Apart from these, Wang’s [22] ingenious construction provides the
only known infinite family of mni Lehman matrices where both r, s > 2. On one hand,
the very existence of such a family makes it seem plausible that there are more, but on
the other hand, our structural results make it clear that this family really is very special.
It would be interesting to find any new square mni Lehman matrix.

Question 7.6. Can similar construction results be developed for higher valency Lehman
graphs?

With respect to this question, it would be interesting to know all the (15, 4, 4)-Lehman
graphs. Due to the sheer numbers of bipartite quartic graphs on 30 vertices, any exhaus-
tive computational approach is likely to require significantly stronger techniques for early
pruning of the search, or much stronger constraints on the graph structure. With a heuris-
tic local search based on finding edge-exchanges that increase the number of vertices-with-
mates, we have found 58 Lehman graphs of type (15, 4, 4) to date. Although we have no
good reason to believe that we have covered even a minuscule fraction of the search space,
the fact that our searches repeatedly find the same 58 matrices starting from numerous
randomly-chosen bipartite quartic graphs supports the view that there may be few others.
None of the 58 matrices are mni.
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