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Abstract

The oriented chromatic polynomial of a oriented graph outputs the number
of oriented k-colourings for any input k. We fully classify those oriented graphs
for which the oriented graph has the same chromatic polynomial as the underlying
simple graph, closing an open problem posed by Sopena. We find that such oriented
graphs can be both identified and constructed in polynomial time as they are exactly
the family of quasi-transitive oriented co-interval graphs. We study the analytic
properties of this polynomial and show that there exist oriented graphs which have
chromatic polynomials have roots, including negative real roots, that cannot be
realized as the root of any chromatic polynomial of a simple graph.

Mathematics Subject Classifications: 05C15,05C20

1 Introduction

An oriented graph arises by assigning directions to the edges of a simple graph. For an
oriented graph, G, we let U(G) denote the underlying simple graph. We say that G is an
orientation of U(G). Alternately, an oriented graph is an irreflexive and anti-symmetric
digraph.

The generalization of proper colouring to graph homomorphism provides a path to
define proper colouring for oriented graphs in a way that takes into account the orientation.
For an oriented graph G, an oriented k-colouring of G is a homomorphism to a tournament
(i.e., an orientation of a complete graph) on k vertices. One can see that this definition of
oriented colouring is equivalent the following one, which dispenses with the need to invoke
homomorphism. For an oriented graph G = (VG, AG), a function c : VG → {1, 2, . . . k} is
an oriented k-colouring when
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fo (G, λ) = λ7 − 6λ6 + 10λ5 + 6λ4 − 34λ3 + 33λ2 − 10λ

Figure 1: An oriented graph and its oriented chromatic polynomial.

1. c(u) 6= c(v) for all uv ∈ AG, and

2. for uv, xy ∈ AG, if c(u) = c(y), then c(v) 6= c(x).

This second condition implies directly that non-adjacent vertices at the end of a directed
path of length two (a 2-dipath) are assigned distinct colours in any oriented colouring.

Since their introduction by Courcelle in his treatment of monadic second order logic
and graph structure [8], oriented colourings have provided a fertile area for fundamental
research in mathematics and theoretical computer science. Many of the questions that
have interested both applied and theoretical researchers in the study of graph colourings
find an analogue in the study of oriented graphs. In addition to bounds for a variety of
graph families [7, 9, 10, 11, 16], researchers have examined the computational complexity
of related decision problems [2, 13], the notion of clique for oriented graphs [3], oriented
arc-colourings [15], oriented list-colourings [23] and even an oriented colouring game [14].
An excellent overview of the state-of-the-art is given in [21].

For an oriented graph G, we define the oriented chromatic polynomial to be the unique
interpolating polynomial fo(G, λ) so that fo(G, k) is the number of k-colourings of G.
Figure 1 gives an oriented graph together with its oriented chromatic polynomial.

The oriented chromatic polynomial was first introduced by Sopena in [20]. Here he
established some basic properties of fo(G, k), provided a recursive construction, and ex-
hibited some oriented graphs for which the analytic behaviour of the oriented chromatic
polynomial diverged wildly from possible behaviour of the chromatic polynomial of any
graph.

The definition of the oriented chromatic polynomial follows the from definition of the
chromatic polynomial, f(Γ, λ), for a graph Γ. The polynomial f(Γ, λ) is defined to be the
unique interpolating polynomial so that f(Γ, k) is the number of k-colourings of Γ.
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We call an oriented graph chromatically invariant when fo(G, λ) = f(U(G), λ). One
can see that the oriented graph given in Figure 1 is not chromatically invariant; the
coefficients of fo(G, λ) do not alternate sign, a feature of every chromatic polynomial. This
further implies, in fact, that there is no graph Γ such that fo(G, λ) = f(Γ, λ). We say that
a graph Φ and an oriented graph H are chromatically equivalent if fo(H, λ) = f(Φ, λ).

The zeros of graph polynomials have been an active area of research for many years.
One such graph polynomial whose zeroes have been studied is the chromatic polynomial.
The real roots of such polynomials are dense in the interval [32/27,∞) and there are no
real roots in the interval (0, 1) ∪ (1, 32/27][4, 5]. The complex roots of such polynomials
are dense in the complex plane [19].

Our work proceeds as follows. In the following section we review and recontextualize
the recursive construction of fo(G, k) given by Sopena for the purposes of providing an
explicit formula for the coefficient of λn−2 in fo(G, k). In Section 3 we provide a full
classification of chromatically invariant oriented graphs, show they can be recognized
in polynomial time and further explore the relationship between the oriented chromatic
polynomial and the chromatic polynomial. We provide a partial answer to the more
general question of finding chromatically equivalent pairs of oriented graphs and graphs.
In Section 4 we study the roots of oriented chromatic polynomials and show that there
exist oriented graphs whose oriented chromatic polynomials have roots that cannot be
realized as a root of a chromatic polynomial. In particular we exhibit oriented graphs
whose polynomials have negative real roots – a feature of no chromatic polynomial.

All graphs considered herein are simple. That is, we do not allow loops or multiple
edges. Further, in graphs with more than one type of adjacency, we allow at most one
type of adjacency between a pair of vertices. We refer the reader to [6] for graph theoretic
definitions and notation.

2 The Oriented Chromatic Polynomial

Let G = (V,E,A) be a mixed graph. That is, G is a graph in which a subset (possibly
empty) of the edges have been oriented to be arcs. We say that c is an oriented colouring
of G when c is an oriented colouring when G is restricted to the arcs and a proper
colouring when G is restricted to the edges. Notice that if every pair of vertices is either
adjacent or at the ends of a directed path of length 2, then every vertex must receive a
distinct colour in every colouring. We define the oriented chromatic polynomial of a mixed
graph analogously to that of oriented graphs. In this section we observe that the oriented
chromatic polynomial introduced by Sopena can be generalized as the oriented chromatic
polynomial of mixed graphs. This generalization allows us to find a closed form for the
third coefficient of the oriented chromatic polynomial of mixed graphs. As every oriented
graph is a mixed graph with an empty arc set, this expression leads us to a closed form
for the third coefficient of the chromatic polynomial of an oriented graph. The expression
for the third coefficient provides us with a tool to study chromatically invariant oriented
graphs.

We begin by providing a recursive formula for the oriented chromatic polynomial of
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= λ(λ − 1)(λ − 2)(λ − 3) + λ(λ − 1)(λ − 2)
= λ4 − 4λ3 + 5λ2 − 2λ

+ +=

+ λ(λ − 1)(λ − 2)

Figure 2: Computing the oriented chromatic polynomial by way of reduction.

mixed graphs. Let G = (VG, AG, EG) be a mixed graph. If every pair of vertices is either
adjacent or at the ends of a directed path of length 2 (a 2-dipath), then

fo(G, λ) =
i=n−1∏
i=0

(λ− i)

Otherwise, let u and v be a pair of vertices that are neither adjacent nor at the ends
of a directed path of length two. In this case we have

fo(G, λ) = fo(G+ uv, λ) + fo(Guv, λ),

where

• G+ uv is the mixed graph formed from G by adding an edge between u and v; and

• Guv is the mixed graph formed from G by identifying u and v into a single vertex,
deleting all parallel arcs and edges, and deleting any edge that is parallel with an
arc.

Following the usual convention of having the picture of a graph stand in for its polynomial,
an example of this recursion is provided in Figure 2.

The correctness of this reduction follows from the proof of the reduction provided in
[20]. The appendix gives Maple code for generating the oriented chromatic polynomial of
a mixed graph.

For a mixed graph G, let DG be the set of pairs of vertices that are at the ends of an
induced 2-dipath. In Figure 1 we have DG = {{u4, u6}}.

Theorem 1. [20] For any mixed graph G = (VG, EG, AG) with n vertices
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1. f(G, λ) is a polynomial of order n in λ;

2. the coefficient of λn is 1;

3. f(G, λ) has no constant term;

4. the coefficient of λn−1 is −(|AG|+ |EG|+ |DG|); and

5. if G has an isolated vertex x, then fo(G) = λ · fo(G− x, λ).

Let G = (VG, AG, EG) be an mixed graph with non-incident arcs uv, xy ∈ AG. We say
that the arcs uv, xy are obstructing, when

1. u and y are not the ends of a 2-dipath;

2. v and x are not the ends of a 2-dipath and

3. uy, vx /∈ EG.

Let OG denote the set of unordered pairs of obstructing arcs in G, a mixed graph. In
Figure 1 we have

OG = {{u1u2, u4u3}, {u1u2, u4u5}, {u1u2, u5u6}, {u1u2, u7u6}} .

Lemma 2. If OG 6= ∅ or DG 6= ∅, then fo(G, λ) 6= f(U(G), λ).

Proof. Observe that every colouring of G using k colours is a colouring of U(G). However
if G has an induced 2-dipath or a pair of obstructing arcs, then the converse does not
hold. As such, there exists k such that fo(G, k) < f(U(G), k).

Let ci(f, λ) be the coefficient of λn−i in f(G, λ).

Theorem 3. For a mixed graph G = (VG, AG, EG), we have

c2(G, λ) =

(
|AG|+ |DD|+ |EG|

2

)
− |TG| − |DG| − |OG|,

where TG is the set of induced subgraphs isomorphic to K3 in U(G).

Proof. Let G be a minimum counter-example with respect to number of vertices. Among
all such counter examples, let G be the one that maximizes |AG|+ |EG|+ |DG|. Note that
we may further assume DG = ∅ by adding an edge between every pair of vertices in DG.
The resulting mixed graph has the same set of oriented colourings, and thus the same
oriented chromatic polynomial.

The oriented chromatic polynomial of a mixed complete graph on n is equal to the
chromatic polynomial of a complete graph on n vertices. The third coefficient of such a

graph is given by
((n

3)
2

)
−
(
n
3

)
[18]. Therefore the claim holds for mixed complete graphs.

As G is a minimum counter example, G is not a complete mixed graph. As such there
exists u, v ∈ V (G) such that u and v are not adjacent, nor at the ends of a 2-dipath.
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Therefore c2(G, λ) = c2(G + uv, λ) + c1(Guv, λ). By the choice of G, the claim holds for
both G+ uv and Guv.

Let C be the set of common neighbours of u and v in U(G). Each of these common
neighbours forms a triangle in G + uv. And so |TG| = |TG+uv| + |C|. Further observe
that in Guv, the arcs/edges from u and v to a common neighbour c ∈ C becomes a single
adjacency in Guv. Therefore |AG|+ |EG| = |AGuv |+ |EGuv | − |C|.

A pair of obstructing arcs in G is not obstructing in G+ uv if and only if u and v are
the head and tail, in some order, of the pair of obstructing arcs. Let Ouv

G be the set of such
arcs. No new obstructing arcs can be created by adding an edge. Therefore |OG| − |Ouv

G |
= |OG+uv|. Also note that a pair of obstructing arcs in |Ouv

G | form a 2-dipath in Guv with
centre vertex uv. All other induced 2-dipaths in G are retained in Guv, as u and v are
not the ends of a 2-dipath. Therefore |DG|+ |Ouv

G | = |DGuv |.

c2(G, λ) = c2(G+ uv, λ) + c1(Guv, λ) (1)

=

(
|AG|+ |DG|+ |EG|+ 1

2

)
− (|TG+uv|+ |DG+uv|+ |OG+uv|)

−(|AGuv |+ |EGuv |+ |DGuv |)

=

(
|AG|+ |DG|+ |EG|+ 1

2

)
− (|TG| − |C|+ |DG|+ |OG| − |Ouv

G |)

−(|AG|+ |EG|+ |C|+ |DG|+ |Ouv
G |)

=

(
|AG|+ |DG|+ |EG|+ 1

2

)
− (|AG|+ |DG|+ |EG|)− |TG| − |DG| − |OG|

=

(
|AG|+ |DG|+ |EG|

2

)
− |TG| − |DG| − |OG.|

Thus the claim holds for G, contradicting the choice of G as a minimum counter
example.

For the case E = ∅, we arrive at the desired result for oriented graphs.

Corollary 4. For an oriented graph G, we have

c2(G, λ) =

(
|AG|+ |DG|

2

)
− |TG| − |DG| − |OG|.

We further note that in the case A = ∅, we arrive at the usual result for the third
coefficient of the chromatic polynomial: c2(G, λ) =

(|EG|
2

)
− |TG|.
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G Γ

fo (G, λ) = f(Γ, λ) = λ5 − 7λ4 + 18λ3 − 20λ2 + 8λ

Figure 3: An oriented graph and a graph with the same chromatic polynomial.

3 Oriented Chromatic Equivalence

A folklore construction gives an orientation G of Kn,n so that the resulting oriented graph
has chromatic number 2n (see [9]). This common example is used to convince the reader
that the oriented chromatic number and the chromatic number of the underlying simple
graph can be arbitrarily far apart. We note, however that the set of colourings of G
using λ > 2n colours is exactly that of colourings of K2n using λ colours. And so though
the chromatic number of U(G) differs greatly to G, there is still a relationship between
colourings of G and colourings of some simple graph. In this section we find a set of
sufficient conditions so that the λ-colourings of an oriented graph G are exactly those of
some simple graph Γ. We conclude this section by using these sufficient conditions to
compute the chromatic polynomial of orientations of stars.

We are interested in the following decision problems:
CHROM-INVAR

Instance: A graph Γ.
Question: Is there an orientation O(Γ) such that fo(O(Γ), λ) = f(Γ, λ)?

OCHROM-INVAR
Instance: An oriented graph G.
Question: Does fo(G, λ) = f(U(G), λ)?

OCHROM-EQUIV
Instance: An oriented graph G.
Question: Is there a graph Γ such that fo(G, λ) = f(Γ, λ)?

Figure 3 gives an example of an oriented graph G and a graph Γ so that G and Γ are
chromatically equivalent.

Let G be an oriented graph. Let G? be the mixed graph resulting from G by adding
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an edge between u and v whenever u and v are at the ends of an induced 2-dipath. We
observe the following.

Lemma 5. fo(G, λ) = fo(G
?, λ).

Proof. G is a subgraph of G?. Therefore fo(G, λ) 6 fo(G
?, λ). Every oriented colouring of

G? using k colours is also an oriented colouring of G, therefore fo(G, λ) > fo(G
?, λ).

Theorem 6. For G, an oriented graph, fo(G, λ) = f(U(G?), λ) if and only if OG = ∅.

Proof. By Lemma 5 it suffices to show fo(G
?, λ) = f(U(G?), λ). Notice that G has no

obstructing arcs if and only if G? has no obstructing arcs. By Lemma 2 it suffices to
show that if G? has no obstructing arcs, then every colouring of U(G?) is an oriented
colouring of G. Let c be a colouring of U(G?). Since c is a proper colouring, if c is not an
oriented colouring of G?, then the second condition of oriented colouring as been violated.
However, this not possible as G? has neither an induced 2-dipath nor a pair of obstructing
arcs.

Recall the result of Corollary 4. If G has no pair of obstructing arcs, then in G? we
have OG = DG = ∅. And so c2(G

?, λ) =
(|AG|+|EG|

2

)
− |TG|. Notice that this is exactly the

third coefficient of the chromatic polynomial of U(G?).

Corollary 7. An oriented graph G is chromatically invariant if and only if G has no
induced 2-dipath and U(G) is 2K2-free.

Proof. Assume G has no induced 2-dipath and that U(G) is 2K2-free. It follows directly
that G has no obstructing arcs and that G = G?. The conclusion follows by Theorem 6.

Let G be a chromatically invariant oriented graph. By definition, every proper k-
colouring of U(G) is an oriented colouring of G. Therefore G has no induced 2-dipath,
nor does G contain a pair of obstructing arcs. Since G contains no pair of obstructing
arcs, if U(G) contains an induced copy of 2K2, say uv, xy, then without loss of generality,
there must be an induced 2-dipath between u and y. This contradicts that G contains no
induced 2-dipath. Therefore G has no induced 2-dipath and U(G) is 2K2-free.

Introduced by Ghouila-Houri, oriented graphs that contain no induced 2-dipath are
called quasi-transitive.

Theorem 8. [12] A graph Γ admits a quasi-transitive orientation if and only if Γ is a
comparability graph.

Notice that the family of 2K2-free comparability graphs is exactly the family of co-
interval graphs. And so combining Corollary 7 and Theorem 8 yields the following clas-
sification.

Theorem 9. An oriented graph is chromatically invariant if and only if it is a quasi-
transitive orientation of a co-interval graph.
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This theorem fully classifies chromatically invariant oriented graphs, as well as those
graphs that admit a chromatically invariant orientation. This closes an open problem
posed by Sopena in [20] and provides a geometric interpretation of chromatically invariant
oriented graphs as co-interval graphs.

Theorem 9 implies that the decision problems CHROM-INVAR and OCHROM-INVAR
can be restated in terms of co-interval graph recognition. As co-interval graphs can be
identified in linear time [22], we arrive at the following classification of CHROM-INVAR
and OCHROM-INVAR.

Corollary 10. The decision problems CHROM-INVAR and OCHROM-INVAR are Poly-
nomial.

We note that such an orientation of a co-interval graph need not be unique (up to
converse). There are many methods in the literature (for example see [1]) that give a quasi-
transitive orientation of a comparability graph. A common element of these methods is
the construction of an auxiliary graph, Aux(G), so that a 2-colouring of G corresponds to
a quasi-transitive orientation. Such constructions imply that a comparability graph has
a unique quasi-transitive orientation (up to converse) if and only if Aux(G) is connected.
As such constructions can be carried out in polynomial time, we find that given a co-
interval graph Γ, one may find in polynomial time an orientation of Γ, O(Γ), so that
f(Γ, λ) = fo(O(Γ), λ).

We now consider an application of Theorem 6 and find the oriented chromatic polyno-
mial of the family of orientations of stars. Let Si,o be the orientation of a star on i+ o+ 1
vertices, with centre vertex x, so that x has i in-neighbours and o out-neighbours.

Corollary 11. fo(Si,o) = λ · f(Ki,o, λ− 1)

Proof. Observe that S?
i,o has no obstructing arcs. Further observe that U(S?

i,o) consists
of a copy of Ki,o together with a universal vertex. By Theorem 6, we have fo(Si,o) =
λ · f(Ki,o, λ− 1).

Conversely, using the results from Section 2, one can find families of oriented graphs
for which there is no chromatically equivalent graph. Let G be an orientation of tK2 for
some t > 1. Recalling the notation of the previous section we have

• |AG| = t;

• |EG| = |DG| = 0;

• |OG| =
(
t
2

)
; and

• |TG| = 0.

If there exists Γ such that fo(G, λ) = f(Γ, λ), then by Theorem 1 and Corollary 4, it
must be that Γ has 2t vertices, t edges and

(
t
2

)
copies of K3. A simple counting argument

implies that no such Γ can exist.
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Conjecture 12. Let G be an oriented graph. There is a graph Γ such that G and Γ are
chromatically equivalent if and only if G has no obstructing pairs of arcs.

When restricted to oriented graphs that contain no pair of obstructing arcs, OCHROM-
EQUIV is Polynomial; every instance is a YES instance. However, for arbitrary inputs
is not clear if OCHROM-EQUIV is contained in NP, as constructing the chromatic poly-
nomial of a graph is NP-hard. We conjecture, however, that those oriented graphs with
no obstructing arcs are the only oriented graphs whose λ-colourings have a one-to-one
correspondence with the λ-colourings of some graph Γ. If Conjecture 12 is true, then
OCHROM-EQUIV is Polynomial for arbitrary inputs.

Conjecture 12 is not true when we allow G to be a mixed graph, even when we require
A 6= ∅. Let H be the mixed graph formed from a pair of disjoint arcs by adding an edge
between the heads and an edge between the tails. Using the reduction given in Section 2,
we find fo(H, λ) = λ4− 4λ3 + 5λ2− 2λ. Notably, this is exactly the chromatic polynomial
of the example, G, given in Figure 2. The oriented graph G has DG = ∅. Therefore
G = G?. Further OG = ∅. And so by Theorem 6 we have f(U(G), λ) = fo(G, λ) =
fo(H,λ). In particular, H has a pair of obstructing arcs, but yet there is graph Γ such
that fo(H, λ) = f(Γ, λ). From this example, one may generate an example on n vertices
for any n > 4 by repeatedly adding universal vertices to H and U(G).

4 Roots of Oriented Chromatic Polynomials

The location of the roots of polynomials has been well studied for a variety of graph
polynomials, such the independence, domination, reliability and chromatic polynomials.
In this section we provide results regarding the roots of the oriented chromatic polyno-
mial. Chromatic polynomials have roots that are dense in the complex plane [19]. Their
coefficients alternate in sign and hence have no negative real roots [17]. We show the
following:

Theorem 13. For every integer k > 0, there exists an oriented graph G so that fo(G, λ)
has a root k′ so that k′ < −k.

Proof. Let Dn be the oriented graph on n vertices that consists of a directed path
v1, v2, v3, v4 with n− 4 leaves, x directed from x to v4.

The oriented chromatic polynomial can be computed in the following way. Vertex v1
has λ colour choices, v2 has λ− 1 colour choices and v3 has λ− 2 colour choices. Now for
v4 we have two options. If v4 is the same colour as v1 then the n − 4 leaves have λ − 2
choices of colour, since it can not be the same colour at v4 or v2. If v4 is a different colour
than the others in the path it has λ − 3 colour choices and the leaves have λ − 1 colour
choices. This means

fo(Dn, λ) = λ(λ− 1)(λ− 2)((λ− 2)n−4 + (λ− 3)(λ− 1)n−4)

The polynomial fo(Dn, λ) has real roots at λ = 0, 1, 2. We show we can obtain
arbitrarily large negative real roots by showing that a real root exists between λ = −n
and λ = − ln(n) for n even.
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Observe,

fo(Dn,−n) = (−1)3n(n+ 1)(n+ 2)((−1)n−4(n+ 2)n−4 + (−1)n−3(n+ 3)(n+ 1)n−4)

It can be shown that (n+ 2)n−4 < (n+ 3)(n+ 1)n−4 if(
1 +

1

n+ 1

)n−4
< n+ 3.

The quantity
(

1 + 1
n+1

)n−4
is bounded above by e, and e < n + 3 for all values of n,

therefore fo(Dn,−n) > 0 for all even values of n.
Now consider fo(Dn,− ln(n)).

fo(Dn,− ln(n)) = (−1)3(ln(n))(ln(n) + 1)(ln(n) + 2) ∗(
(−1)n−4(ln(n) + 2)n−4 + (−1)n−3(ln(n) + 3)(ln(n) + 1)n−4

)
Clearly (ln(n) + 2)n−4 > (ln(n) + 3)(ln(n) + 1)n−4 when(

1 +
1

ln(n) + 1

)n−4
> ln(n) + 3.

Let g(n) =
(

1 + 1
ln(n)+1

)n−4
− ln(n)− 3. The derivative of this function is

g′(n) =
(
1 + (ln (n) + 1)−1

)n−4(
ln
(
1 + (ln (n) + 1)−1

)
− n−4

(ln(n)+1)2n(1+(ln(n)+1)−1)

)
− 1

n
.

We have limn→∞ g
′(n) = ∞, thus there exists N so that for all n > N . Further,

g(n) is an increasing function, as the derivative of g is positive, and hence g(n) > 0 and
fo(Dn,− ln(n)) < 0 for large values of n.

It then follows by the intermediate value theorem that fo(Dn, λ) can have an arbitrarily
large negative root.

A chromatic polynomial cannot have root in the interval (−∞, 0)∪ (0, 1)∪ (1, 32
27

) [17].
We have shown that oriented chromatic polynomials can have negative real roots. In
addition, there exist oriented chromatic polynomials in the interval (0, 1), as fo(D5, λ)

has a root at λ = 3
2
−
√
5
2

. Open problems regarding the roots of oriented chromatic
polynomials include: does there exist an oriented graph whose real roots lie in (1, 32

27
)?

What is the closure of the complex roots for the oriented chromatic polynomial?

5 Conclusion

The study of oriented graphs often goes hand-in-hand with that of signed graphs. Though
the methods contained herein will extend to the study of chromatic polynomials of signed
graphs, there will be a marked difference in the classification of chromatically invariant
signed graphs. For example, letting all the edges of 2K2 be positive leads to a chromati-
cally invariant signed graph. However, all possible orientations of 2K2 leads to an oriented
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graph that is not chromatically invariant. Of course, with this approach, every graph can
have edge signs trivially assigned so that the resulting signed graph has the same chro-
matic polynomial as the underlying graph. And so one may require that there is at least
one edge of each sign. With this added restriction it is unclear if chromatically invariant
signed graphs can be identified in polynomial time, as we expect the characterization to
require that signs be given so that there is no 2K2 where the edges have different signs.
Similarly, the generalization of signed graphs and oriented graphs to (m,n)-mixed graphs
should yield a definition of a chromatic polynomial that obeys the reduction outlined in
Section 2. Consequently we expect the results of Theorems 1 and 3 to generalize in the
same manner. One may also ask, then, for which graphs Γ is there an assignment of arcs,
edges, and corresponding colours, so that the resulting (m,n)-mixed graph is chromat-
ically invariant. We have shown that for oriented graphs that Γ must be a co-interval
graph.
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[10] J. Dybizbański and A. Szepietowski. The oriented chromatic number of Halin graphs.
Information Processing Letters, 114(1):45–49, 2014.

[11] G. Fertin, A. Raspaud, and A. Roychowdhury. On the oriented chromatic number of
grids. Inform. Proc. Letters, 85:261–266, 2003.
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Appendix

> > 

           else  p2 = 0;
           fi:    
     E1 E1 union a1, a2 ;
     p3 ocpoly G, E1, locals ;
     return expand p2 p3 ;
 fi: 
 end proc:

> > 

> > 
> > 

with GraphTheory : with combinat : with plots : #Include necessary packages

#ocpoly recursively computes the chromatic polynomial of a mixed graph. 
#G is the directed graph, E is the set of edges and s is an integer that is larger than the number of vertices of G.
 

#We use s to give the right label to the newly created vertex when we identify a pair of vertices. This 
preserves vertex label uniqueness.

#We apply the reduction from Section 1 of the paper (see Figure 2).
#In the base case the input is a clique and so every vertex needs to get a unique colour   
ocpoly proc G, E, s option remember ; 
local i, A, V, locals, p2;
p2 0 :
locals  s 1;
H UnderlyingGraph G ; 
Ver Vertices G :
V :
for l from 1 to nops Ver  do
     if Degree H, op l, Ver 0 then V V union op l, Ver  fi:
 od:
iso nops Ver nops V ;
EH Edges H ;
newA choose convert V, set , 2  minus EH minus E; 

#This is the set of vertices that are not adjacent (in any sense) in G
E1 E;
newGarcs :
newEdges :
 

#If all pairs of vertices are adjacent (in any sense) then it is an oriented clique and so all vertices need their 
own colour. In this case we return the falling factorial.

 if nops newA = 0 then 
   

       p2 xiso

i = 0

nops V 1

x i ;

       return p2 ; 
 #Otherwise, there is a pair of non-adjacnent vertices that can be identifed. 
 else  
    #Find a pair of vertices a1,a2 such that a1 and a2 can be identified.
     a op 1, newA ;
     a1 op 1, a ;
     a2 op 2, a ;
     fl 0 :
          if convert Departures G, a1 , set  intersect convert Arrivals G, a2 , set   then fl 1; fi: 
          if convert Arrivals G, a1 , set  intersect convert Departures G, a2 , set   then fl 1; fi:
          if fl = 0 then
               EG Edges G ;
               for i from 1 to nops EG  do #Update the arc set after identying the vertices.
                     if op 1, op i, EG = a1 then newGarcs newGarcs union s, op 2, op i, EG  ; ;
                     elif op 1, op i, EG = a2 then newGarcs newGarcs union s, op 2, op i, EG  ;
                     elif op 2, op i, EG = a1 then newGarcs newGarcs union op 1, op i, EG , s  ;
                     elif op 2, op i, EG = a2 then newGarcs newGarcs union op 1, op i, EG , s  ;
                     else newGarcs newGarcs union convert op i, EG , list ;
                     fi: #changes E to EG, made set a list
                od:  
                for i from 1 to nops E1  do #Update the edge set after identifying the vertices.  
                      if op 1, op i, E1 = a1 then newEdges newEdges union s, op 2, op i, E1  ; 
                      elif op 1, op i, E1 = a2 then newEdges newEdges union s, op 2, op i, E1  ;
                      elif op 2, op i, E1 = a1 then newEdges newEdges union op 1, op i, E1 , s  ;
                      elif op 2, op i, E1 = a2 then newEdges newEdges union op 1, op i, E1 , s  ;
                      else newEdges newEdges union op i, E1 ;
                      fi: 
                od: 
               newG Digraph newGarcs ;
               p2  xiso ocpoly newG, newEdges, locals ;
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