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Abstract

In this article we prove the following: Let G be a 2-connected graph with cir-
cumference c(G). If c(G) 6 5, then G has a spanning trail starting from any vertex,
if c(G) 6 7, then G has a spanning trail.

As applications of this result, we obtain the following.

(1) Every 2-edge-connected graph of order at most 8 has a spanning trail starting
from any vertex with the exception of six graphs.

(2) Let G be a 2-edge-connected graph and S a subset of V (G) such that E(G−
S) = ∅ and |S| 6 6. Then G has a trail traversing all vertices of S with the
exception of two graphs, moreover, if |S| 6 4, then G has a trail starting from
any vertex of S and containing S.

(3) Every 2-connected claw-free graph G with order n and minimum degree δ(G) >
n
7 + 4 > 23 is traceable or belongs to two exceptional families of well-defined
graphs, and moreover, if δ(G) > n

6 + 4 > 13, then G is traceable.

All above results are sharp in a sense.

Mathematics Subject Classifications: 05C38, 05C45

1 Introduction

A graph G is simple if it has no loops or parallel edges, otherwise we say that G is
a multigraph. We consider finite simple undirected graphs G = (V (G), E(G)), and for
concepts and notations not defined here we refer to [1].

Let G be a graph, and let H1, H2 be two subgraphs of G. For a vertex v ∈ V (G), we
define NH1(v) = {u ∈ V (H1) | uv ∈ E(G)}. We define NH2(H1) =

⋃
v∈V (H1)

NH2(v). The

degree v in H1 is denoted dH1(v) = |NH1(v)|. The circumference of G, denoted by c(G), is
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the length of a longest cycle of G. For S ⊂ V (G) (or S ⊂ E(G)), we use 〈S〉G to denote
the subgraph of G induced by S. A pendant vertex of a graph is a vertex of degree 1, and
a pendant edge is an edge having a pendant vertex as an end vertex.

Let G be a graph and H a subgraph of G. For u, v ∈ V (H), the distance between u
and v in H, denoted distH(u, v), the length of a shortest path between u and v in H. The
contraction G/H is the graph obtained from G by replacing H by a vertex vH such that
the number of edges in G/H joining any v ∈ V (G − V (H)) to vH in G/H equal to the
number of edges joining v in G to H. A graph G is contractible to a graph G′ if G contains
pairwise vertex-disjoint connected subgraphs H1, · · · , Ht with

⋃t
i=1 V (Hi) = V (G) such

that G′ is obtained from G by successive contracting each Hi (1 6 i 6 t). Each subgraph
H ∈ {H1, · · · , Ht} is called the preimage of the vertex vH of G′. A vertex vH in G′ is
nontrivial if vH is the contraction image of a nontrivial connected subgraph H of G.

A graph is called hamiltonian if it contains a Hamilton cycle, i.e., a cycle containing
all its vertices. A graph is called traceable if it contains a Hamilton path, i.e., a path
containing all its vertices. A trail in a graph G is a sequence W := v0e1v2 · · · vl−1elvl,
whose terms are alternately vertices (not necessarily distinct) and distinct edges of G,
such that vi−1 and vi are ends of ei for 1 6 i 6 l. For convenience, we sometimes
abbreviate the term v0e1v1 · · · vl−1elvl to v0v1 · · · vl−1vl. A spanning trail of a graph G is
a trail that contains all vertices of G. For a subset S ⊆ V (G), if a trail of G traverses all
vertices of S, then we call it S-trail. A subgraph H of a graph G is dominating if every
edge of G has at least one end in H. A a graph G is even if every vertex of G has even
degree. If H is a graph, then the line graph of H, denoted L(H), is the graph with E(H)
as vertex set, in which two vertices are adjacent if and only if the corresponding edges
have a vertex in common.

A vertex x ∈ V (G) is locally connected if the neighborhood of x induces a connected
subgraph in G. For x ∈ V (G), the graph G′x obtained from G by adding the edges
{yz : y, z ∈ NG(x) and yz /∈ E(G)} is called the local completion of G at x. The closure
of a claw-free graph G, denoted by cl(G), is obtained from G by recursively performing lo-
cal completions at any locally connected vertex with non-complete neighborhood, as long
as it is possible. If G is a claw-free graph such that G = cl(G), then we say that G is closed.

A well-known result on spanning closed trail was obtained by Jaeger, later proved
independently by Catlin.

Theorem 1. (Catlin [4] and Jaeger [12]) Every 4-edge-connected graph has a spanning
closed trail.

Lai et al. presented a sufficient condition for spanning closed trail of 3-edge-connected
graphs involved circumference, which was used in hamiltonian claw-free graphs in the
same paper.

Theorem 2. (Lai et al. [16]) Every 3-edge-connected graph G with c(G) 6 8 has a span-
ning closed trail.

The above result is sharp because the Pertersen graph has circumference 9 without
any spanning closed trail. Chen et al. studied the existence of a spanning closed trail H
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Figure 1: G1 has no spanning trail starting from v, G2 and G3 have no spanning trail.

of 3-edge-connected graphs G such that H contains a given set of vertices of G, which
was also used in the hamiltonian line graphs in their paper.

Theorem 3. (Chen et al. [6]) Let G be a 3-edge-connected graph and let S ⊆ V be a
vertex subset such that |S| 6 12. Then either G has a spanning closed trail H such that
S ⊆ V (H), or G can be contracted to the Petersen graph in such a way that the preimage
of each vertex of the Petersen graph contains at least one vertex in S.

Finding similar sufficient conditions for the existence of a spanning closed trail in a
2-edge-connected graph is somewhat trivial because K2,3 is a counter-example even for
the case |S| = 3. However, it is nontrivial to use the circumference condition to study the
existence of a spanning trail of 2-connected graphs, we prove the following in this paper.

Theorem 4. Let G be a 2-connected graph. Then

(1) if c(G) 6 5, then G has a spanning trail starting from any vertex,

(2) if c(G) 6 7, then G has a spanning trail.

Theorem 5. Let G be a 2-edge-connected graph and S a subset of V (G) such that E(G−
S) = ∅ and |S| 6 6. Then G has an S-trail or G ∈ {G2, G3}, where G2, G3 are shown in
Figure 1, moreover, if |S| 6 4, then G has an S-trail starting from any vertex of S.

Theorem 4 is sharp because of graphs G1, G2, G3 shown in Figure 1. For more results
involved spanning trail we refer to [3][5][8][15][18]. In [22], Tian et al. applied Theorem 4
to prove that every 2-edge-connected graph of order at most 11 has a spanning trail with
the exception of six graphs. We also apply Theorem 4 to prove the similar result on
special spanning trail.

Theorem 6. Let G be a 2-edge-connected graph. If |V (G)| 6 8, then either G has
a spanning trail starting from any vertex or G ∈ {F1, F2, F3, F4, F5, F6}, where Fi is
shown in Figure 2. Moreover, if G ∈ {F1, F2, F3, F4, F5}, then G has no spanning trail
starting from any vertex in {u, x1, x2}, but has a spanning trail starting from any vertex
in {u1, u2, · · · , u7}.
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Figure 2: Fi (1 6 i 6 6) is a graph of order at most 8 that has no spanning trail starting
from x1, x2 and u, but has a spanning trail starting from any vertex in V (Fi)\{x1, x2}.

Actually, we use Theorems 4 and 6 to prove Theorem 5. As an application of Theo-
rem 5, we obtain the following result (i.e., Theorem 7). We believe that Theorem 4 may
have further applications in similar researches, as shown in the concluding remarks.

Before stating the following result, we need to define two families of graphs.
C1 = {H : H is obtained from G2 shown in Figure 1, by adding at least one pendant

edge to each vertex of degree two},
C2 = {H : H is obtained from G3 shown in Figure 1, by adding at least one pendant

edge to each vertex of degree two}.

Theorem 7. Let G be a 2-connected claw-free graph of order n > 133 such that δ(G) >
n
7

+ 4. Then G is traceable or cl(G)= L(H) where H ∈ C1 ∪ C2.

As a corollary of Theorem 7, we prove the following result.

Corollary 8. Let G be a 2-connected claw-free graph of order n > 54 with δ(G) > n
6

+ 4.
Then G is traceable.

In fact, the results on claw-free graph are already known in [14], it is enough to check
the exceptions for traceability. But only computer proofs were known so far.

In the next section, we will present some necessary results involved Ryjáček closure
and Catlin reduction. In Section 3, we will complete the proof of Theorem 4. In Sections 4
and 5, we will prove Theorems 6 and 5, respectively. In Section 6, we will prove Theorem 7
and Corollary 8. In the final section, we will give some concluding remarks.

2 Preliminaries and basic results

2.1 Ryjáček closure

Ryjáček [20] first investigated the closure of a claw-free graph G, which becomes a useful
tool in investigating hamiltonian properties of claw-free graphs. And in [20], he proved
the following well-known theorem.
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Theorem 9. (Ryjáček [20]) Let G be a claw-free graph. Then

(1) cl(G) is uniquely determined,

(2) cl(G) is claw-free,

(3) cl(G) is the line graph of a triangle-free graph.

Theorem 10. (Brandt, Favaron and Ryjáček [2]) Let G be a claw-free graph. Then G is
traceable if and only if cl(G) is traceable.

2.2 Catlin reduction

For a graph G and a subgraph H of G, let O(H) denote the set of all odd degree vertices
in H. We say that G is collapsible if for every subset X ⊆ V (G) with |X| even, there is
a spanning connected subgraph HX of G such that O(HX) = X. In [4], Catlin showed
that every graph G has a unique collection of pairwise vertex-disjoint maximal collapsible
subgraphs H1, · · · , Ht such that

⋃t
i=1 V (Hi) = V (G). The reduction G′ of a graph G is the

graph obtained from G by contracting each maximal collapsible subgraph Hi (1 6 i 6 t)
into a single vertex vi.

Theorem 11. (Catlin [4]) Let G be a connected graph. Then the reduction of G is a
simple graph and has no cycle of length less than four.

Theorem 12. (Catlin [4]) Let G be a connected graph and H a collapsible subgraph of G.
Then G has a spanning closed trail if and only if G/H has a spanning closed trail.

Theorem 13. (Xiong, et al. [25]) Let G be a connected graph and G′ the reduction of G.
Then G has a spanning trail if and only if G′ has a spanning trail.

We prove a similar result on special spanning trail.

Theorem 14. Let G be a connected graph and G′ the reduction of G. Then G has a
spanning trail starting from any vertex of G if and only if G′ has a spanning trail starting
from any vertex of G′.

Proof. G has a spanning trail starting from any vertex if and only if for any collapsible
subgraph H of G, G/H has a spanning trail starting from any vertex in G/H. Note that
a graph has a spanning trail T starting from v if and only if one can add at most one edge
ev to create a spanning closed trail. Also note that G + ev has a spanning closed trail if
and only if (G+ ev)/H has a spanning closed trail for any collapsible subgraph H. Thus
Theorem 12 implies that Theorem 14 holds.
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3 The proof of Theorem 4

Let G be a 2-connected graph and C a cycle of G. Then every component D of G−V (C)
has at least two distinct neighbors on C. For any path P in D, if the two ends (possibly
only one if P is a vertex) of P have two distinct neighbors x1, x2 on C, then P is called
a 2-attaching path of C in D, and these two vertices x1, x2 are called a 2-attaching pair
of P on C. We observe that if D ∼= K1 or K2, then D is the 2-attaching path of C.
Furthermore, if D has a longest 2-attaching path P of order k, then D is called a k-

component of G − V (C). For any cycle of a graph G, we can give C an orientation
−→
C .

We can bound any component of G− V (C) by the circumference c(G).

Lemma 15. Let G be a 2-connected graph with circumference c(G) and C a longest cycle
of G. Then

(1) every k-component D of G− V (C) holds k 6 b c(G)
2
c − 1,

(2) if c(G) 6 5, then every vertex v of G lies on a longest cycle.

Proof. Suppose, by contradiction, that D is a k-component of G−V (C) with k > b c(G)
2
c.

Then C has a 2-attaching path Pk(k > b c(G)
2
c) in D with a 2-attaching pair x1, x2, thus

either x1
−→
Cx2Pkx1 or x1

←−
Cx2Pkx1 is a cycle of length at least k + b c(G)

2
c + 1 > c(G), a

contradiction. This proves Lemma 15(1).
We now show (2), it suffices to consider the case when v /∈ V (C). Since c(G) 6 5, by

Lemma 15(1), v is a 1-component of G − V (C) and let x1, x2 be a 2-attaching pair of v

on C. Then either x1
−→
Cx2vx1 or x1

←−
Cx2vx1 is a cycle of length c(G), we are done.

We denote by G[x; y1, y2, · · · , yt] a star with x as its center and y1, y2, · · · , yt are its
leaves.

Lemma 16. Let G be a 2-connected graph and C a longest cycle of G, and let D be a
2-component of G− V (C). Then

(1) D is a star, denoted by G[x; y1, y2, · · · , yt],

(2) if 6 6 |V (C)| 6 7 and t = 1, then |NG(D) ∩ V (C)| = 2 and 2 6 dG(y1) 6 3,

(3) if 6 6 |V (C)| 6 7 and t > 2, then |NG(D)∩V (C)| = 2 and dG(yi) = 2, for 1 6 i 6 t.

Proof of Lemma 16. Let C = v0v1 · · · vc(G)−1v0 be a longest cycle of G. We have the
following fact.

Claim 17. D is a tree.

Proof. Suppose, by contradiction, that there is a cycle C ′ in D. Since G is 2-connected,
there exist two pairwise disjoint paths in G joining C ′ and C. This yields a 2-attaching
path of C in D containing at least three vertices of C ′, which contradicts the fact that D
is a 2-component of G− V (C). This proves Claim 17.
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Claim 18. diam(D) 6 2.

Proof. Suppose to the contrary that diam(D) > 3. Then there is a diameter path P =
x1 · · ·xk in D with k > 4. By Claim 17, D is a tree and hence x1, xk are two leaves
of D. Since G is 2-connected, each xi has a neighbor on C for i = 1, k. Since D is a
2-component of G − V (C), P cannot be a 2-attaching path of C in D, implying that
|(NG(x1) ∪ NG(xk)) ∩ V (C)| = 1, say (NG(x1) ∪ NG(xk)) ∩ V (C) = {v}. Since G is
2-connected, there exist two pairwise disjoint paths Q1, Q2 in G joining P and C, then
one of them joins some internal vertex of P and some vertex of V (C)\{v}. This yields a
2-attaching path of D containing at least three vertices, which contradicts the fact that
D is a 2-component of G− V (C). This proves Claim 18.

By Claims 17 and 18, D is a star. This proves Lemma 16(1). LetD ∼= G[x; y1, y2, · · · , yt]
be a star. Since t = 1, D is an edge xy1. It is easy to see that xy1 is the 2-attaching path
of C. Let x1, x2 be a 2-attaching pair of xy1 on C. Then distC(x1, x2) > 3, otherwise

either x1
−→
Cx2xy1x1 or x1

←−
Cx2xy1x1 is a cycle of length at least c(G) + 1. Hence, by

6 6 |V (C)| 6 7 we have distC(x1, x2) = 3. Therefore, since C is a longest cycle of G,
NG(D) ∩ V (C) = {x1, x2}. This proves Lemma 16(2).

Since G is 2-connected and D is a star, NG(yi) ∩ V (C) 6= ∅ for 1 6 i 6 t. By the
definition of 2-component, NG(yi) ∩ V (C) and NG(yj) ∩ V (C) have the same vertex v0
(say) for any pair of {i, j} ⊆ {1, 2, · · · , t}, this implies that dG(yi) = 2 for 1 6 i 6 t.
Since G is 2-connected, (NG(x) ∩ V (C))\{v0} 6= ∅, then xyi is a 2-attaching path of C in
D for 1 6 i 6 t. Therefore, since C is a longest cycle of G, |(NG(x) ∩ V (C))\{v0}| = 1.
Then, since NG(yi)∩ V (C) = NG(yj)∩ V (C) = {v0} for any pair of {i, j} ⊆ {1, 2, · · · , t},
we have |NG(D) ∩ V (C)| = 2. This proves Lemma 16(3).

Let G be a 2-connected graph and C a cycle of G. Let D1 and D2 be two components
of G−V (C) and let P, P ′ be two 2-attaching paths of C in D1 and D2 with two 2-attaching
pairs {x1, x2} and {x3, x4}, respectively. If x1, x3, x2, x4 are four distinct vertices that lie

along the direction of
−→
C , then we say that D1 overlaps D2 on C. If {x1, x2} = {x3, x4},

then we say that D1 is equivalent to D2.

Proof of Theorem 4. Let C = v0v1v2 · · · vc(G)−1v0 be a longest cycle of G. By deleting all
chords of C, the resulting 2-connected graph G1 is a spanning subgraph of G. It suffices to
show that G1 has a spanning trail. If V (G1) \ V (C) = ∅, then C is our desired spanning
connected even subgraph. Hence we assume that V (G1) \ V (C) 6= ∅ and we have the
following fact.

Claim 19. Any pair of components of G1 − V (C) cannot overlap on C.

Proof. Suppose, by contradiction, that there is a pair of components D1, D2 in G1−V (C)
such that they overlap each other. Then there exist two 2-attaching paths P and P ′ of
C in D1 and D2 with two 2-attaching pairs {x1, x2}, {x3, x4} on C, respectively, such

that x1, x3, x2, x4 are four distinct vertices along the orientation
−→
C . Therefore, either
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x1Px2
←−
Cx3P

′x4
−→
Cx1 or x1Px2

−→
Cx4P

′x3
←−
Cx1 is a cycle of length at least d |V (C)|

2
e+ 4, then

d |V (C)|
2
e+ 4 > |V (C)| for |V (C)| 6 7, a contradiction. This proves Claim 19.

Since C is a longest cycle of G, we clearly have the following two facts.

Claim 20. For any 2-attaching path P of C and for each 2-attaching pair x1, x2 of P , it
holds distC(x1, x2) > 2.

Claim 21. For any 2-component D of G1 − V (C) and for any longest 2-attaching path
P of C in D, it holds distC(x1, x2) > 3 for each 2-attaching pair x1, x2 of P .

We first show Theorem 4(1). Fix a vertex v in G, it suffices to show that G1 has a
spanning trail starting from v. By Lemma 15(2), v lies on a longest cycle of G. Without
loss of generality, we may assume that v ∈ V (C). Let X be the set of all vertices in G1

with degree odd. Since c(G1) 6 5 and C is a longest cycle of G1, every component of
G1−V (C) is a 1-component by Lemma 15(1). Again, since C is a longest cycle of G, every
component of G1 − V (C) has exactly two neighbors on C, implying that X ⊆ V (C). If
|X| = 4, then there exist four vertices of V (C) that are consecutive on C. Without loss of
generality, we may assume that say X = {v0, v1, v2, v3}. Since C has no chord and every
component of G1 − V (C) has exactly two neighbors on C and by Claim 20, there exist
two components w1, w2 of G1 − V (C) such that NG(w1) ∩ {v0, v1, v2, v3} = {v0, v2} and
NG(w2) ∩ {v0, v1, v2, v3} = {v1, v3}, then w1 overlaps w2, contradicting Claim 19. Hence
we have |X| < 4, then |X| = 0, 2, it suffices to consider the case when |X| = 2 (if |X| = 0,
then G1 is a connected even graph, clearly G1 has a spanning trail starting from v). If
v ∈ X, then G1 obviously has a spanning trail starting from v.

Hence we assume that v /∈ X and let X = {vi, vj} with i 6= j. If vivj ∈ E(C), then
G1\vivj is a connected even graph, clearly G1 has a spanning trail starting from v. Hence
we assume that vivj /∈ E(C), then by |V (C)| 6 5, there is a vertex in {vi, vj}, say vi, that
is adjacent to v, then G1\vvi is a connected spanning subgraph of G1 with exactly two
odd degree vertices v, vi, and hence G has a spanning trail starting from v. This proves
Theorem 4(1).

We now show Theorem 4(2). By Theorem 4(1), it suffices to consider the case 6 6
c(G) 6 7. Since C is a longest cycle of G1 and by Lemma 16(2)-(3), we have the following.

Claim 22. Every 2-component of G1 − V (C) has exactly two neighbors on C.

Claim 23. For any pair of 2-components D1 and D2 of G1−V (C), it holds that NG1(D1)∩
NG1(D2) ∩ V (C) 6= ∅.

Proof. Suppose, by contradiction, that there is a pair of 2-componentsD1, D2 ofG1−V (C)
such that NG1(D1) ∩ NG1(D2) ∩ V (C) = ∅. Then by Claim 22, there exist four distinct
vertices vi, vj, vk, vl on C such that vi, vj and vk, vl are two neighbors of D1 and D2,
respectively. By Claim 19, we may, without loss of generality, assume that 0 6 i < j <
k < l 6 c(G) − 1. Since C is a longest cycle of G and by the definition of 2-component,
distC(vi, vj) > 3 and distC(vk, vl) > 3. This implies that j − i > 3 and l − k > 3, hence
|V (C)| > 8, a contradiction. This proves Claim 23.
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Claim 24. The neighbors of all 2-components of G1 − V (C) on C are at most three.

Proof. If all 2-components of G1−V (C) are equivalent each other, then by Claim 22, the
neighbors of all 2-components of G1 − V (C) on C are exactly two, we are done.

Hence we assume that there is a pair of 2-components D1 and D2 of G1 − V (C) such
that they are not equivalent. By Claims 22 and 23, |NG1(D1)∩NG1(D2)∩V (C)| = 1, say
NG1(D1)∩ V (C) = {v0, vi} and NG2(D1)∩ V (C) = {v0, vj} with 0 < i < j. By Claim 21,
we have distC(v0, vi) > 3 and distC(v0, vj) > 3. Hence, by 6 6 c(G) 6 7 and i < j, we
have c(G) = 7 and then i = 3, j = 4.

We will show that the neighbors of all 2-components of G1 − V (C) on C belong to
{v0, v3, v4} to complete the remaining part of the claim, it is suffices to show that any
2-component of G1−V (C) is equivalent to D1 or D2. Suppose not. Then G1−V (C) has a
2-componentD3 is neither equivalent toD1 nor toD2, thus (NG(D3)∩V (C))\{v0, v3, v4} 6=
∅, say vk ∈ (NG(D3)∩V (C))\{v0, v3, v4}. This implies that vk ∈ {v1, v2} or vk ∈ {v5, v6}.
Up to symmetry, we may assume that vk ∈ {v1, v2}, then by Claims 19 and 22, there is
only one vertex vl ∈ (NG1(D3) ∩ V (C))\{vk} such that vl /∈ {v4, v5, v6} and hence vl ∈
{v0, v1, v2, v3}\{vk}. Since vk, vl ∈ NG1(D3) ∩ V (C), by Claim 22, there is a 2-attaching

path P of C in D3 with 2-attaching pair vk, vl, then either vkPvl
−→
C vk or vkPvl

←−
C vk is a

cycle of length at least 8, a contradiction. This proves Claim 24.

By Lemma 16(1), every 2-component of G1 − V (C) is a star. By Claim 24, we
may assume that vi′ , vi′′ , vi′′′ are neighbors of all 2-components of G1 − V (C) on C
and 2 6 |{vi′ , vi′′ , vi′′′}| 6 3. By Claim 22, every 2-component of G1 − V (C) has ex-
actly two neighbors on C. By Claim 21 and |V (C)| 6 7, no triple of 2-components
F1, F2, F3 of G1 − V (C) holds that NG1(F1) ∩ V (C) = {vi′ , vi′′} and NG1(F2) ∩ V (C) =
{vi′′ , vi′′′} and NG1(F3) ∩ V (C) = {vi′ , vi′′′}. Without loss of generality, we may let
H1 = {D1, D2, · · · , Ds1} be the set of all 2-components of G1−V (C) such that NG1(Dj)∩
V (C) = {vi′ , vi′′} and let H2 = {Ds1+1, Ds1+2, · · · , Ds2} be the set of all 2-components of
G1 − V (C) such that NG1(Dj) ∩ V (C) = {vi′′ , vi′′′}, where Dj

∼= G[xj; yj,1, yj,2, · · · , yj,tj ].
Let H3 = {Ds2+1, Ds2+2, · · · , Ds3} be the set of all 1-components of G1 − V (C). Since
6 6 c(G1) 6 7 and C is a longest cycle of G1, G1−V (C) has no i-component with i > 3 by
Lemma 15(1). This implies that H1 ∪H2 ∪H3 is the set of all components of G1− V (C).

Without lose of generality, let H = {D1, · · · , Ds} be the set of all 2-components of
G1 − V (C) such that Dj is an edge xjyj,1. Clearly H ⊆ H1 ∪ H2. By Lemma 16(2),
2 6 dG1(yj,1) 6 3 for all j ∈ {1, 2, · · · , s}. Let G2 be a spanning subgraph of G1 obtained
from G1 by deleting all edges yj,1z such that dG1(yj,1) = 3 for all j ∈ {1, · · · , s}, where
z ∈ {vi′ , vi′′ , vi′′′}. Then dG2(yj,1) = 2 for all j ∈ {1, 2, · · · , s}. For s + 1 6 i 6 s2, j ∈
{1, 2, · · · , ti}, we have dG2(yi,j) = 2 by Lemma 16(3). Again, by Lemma 16(2)-(3), each
xj in Dj such that 2 6 dG2(xj) 6 3 with 1 6 j 6 s2. Let G3 be the resulting graph
obtained from G2 by deleting exactly one edge xjz such that dG2(xj) = 3 where z is a
neighbor of xj in {vi′ , vi′′ , vi′′′} for 1 6 j 6 s2. Clearly, G3 is a spanning subgraph of G1

and dG3(w) is even for any w ∈ V (
⋃s2
i=1Di). It suffices to show that G3 has a spanning

trail.
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For any 1-component x of G3 − V (C), it holds that |NG3(x) ∩ V (C)| > 2, and we
take exactly two edges ex, e

′
x incident with x. Let E1 = {ex, e′x : x is a 1-component of

G3 − V (C)}, and let G4
∼= 〈E(G3 −

⋃s3
i=s2+1 V (Di)) ∪ E1〉G3 . Clearly, G4 is a spanning

subgraph of G3, it suffices to show that G4 has a spanning trail. Let Y be the set of all
odd degree vertices in G4. Then Y ⊆ V (C). Since |Y | 6 7, we have |Y | ∈ {0, 2, 4, 6}, it
suffices to consider the case when |Y | = 4 or 6. (if |Y | = 0 or 2, then G4 obviously has
a spanning trail). Suppose first that |Y | = 6. Without loss of generality, we may assume
that Y = {v0, v1, v2, v3, v4, v5}, then G4\{v0v1, v3v4} is a connected spanning subgraph of
G4 with exactly two odd degree vertices; otherwise G4\{v0v1, v3v4} has two components
such that one of them has only one odd degree vertex v2, this contradicts the fact that
every graph has even number of vertices with degree odd. Therefore, G4\{v0v1, v3v4} has
a spanning trail, implying that G4 has a spanning trail.

Now suppose that |Y | = 4. Then, by |V (C)| 6 7, there is a pair of vertices vi, vj in Y
such that vivj ∈ E(C). Therefore, G4\vivj is a connected spanning subgraph of G4 with
exactly two odd degree vertices, then G4\vivj has a spanning trail, therefore, G4 has a
spanning trail. This completes the proof.

4 The proof of Theorem 6

Suppose that there is a vertex u in G that has no spanning trail starting from u. It
suffices to show that G ∈ {F1, F2, F3, F4, F5, F6}, where Fi is shown in Figure 2. Let G′

be the reduction of G. By Theorem 14, G′ has no spanning trail starting from u. By
Theorem 11, G′ is triangle-free.

Suppose first that κ(G′) = 1. Since G′ is triangle-free, every block of G′ has at least
four vertices. Since |V (G′)| 6 8, G′ has exactly two blocks H1, H2 with 4 6 |V (Hi)| 6 5.
If |V (H1)| = |V (H2)| = 4, then clearly G′ ∼= C4∪C4 is even, contradicting our hypothesis.
Hence one of H1, H2 has exactly five vertices. Without loss of generality, we may assume
that |V (H1)| = 5. Since |V (G′)| 6 8, we have |V (H2)| = 4, then H2

∼= C4. Recall that
G′ has no spanning trail starting from u, so H1 � C5, otherwise G′ ∼= C5 ∪ C4 is even.
Therefore, since G′ is triangle-free, H1

∼= K2,3 and then G′ ∈ {F1, F2}, where F1, F2 are
shown in Figure 2.

Let us in the following consider the case when κ(G′) > 2. Let C = v0v1 · · · vc(G)−1v0 be
a longest cycle of G′. Then c(G′) 6 7, otherwise C is a Hamilton cycle of G′. Since G′ has
no spanning trail starting from u, by Theorem 4(1) we have c(G′) > 6. Since |V (G′)| 6 8
and 6 6 |V (C)| 6 7, G′ − V (C) has at most two vertices. Possibly G′ − V (C) ∼= K1, K2

or 2K1. Let H be the set of all components of G′− V (C). Then clearly |H| 6 2. For any
F ∈ H, there is a path PF in G′ joining two distinct vertices of C and containing V (F ).
Let G1 = 〈E(C)

⋃
F∈HE(PF )〉G. Then G1 is a 2-connected spanning subgraph of G′. Let

X be the set of all vertices in G1 with degree odd. Then X ⊂ V (C) and |X| = 2, 4. (If
|X| = 0, then G1 is even).

We now distinguish the following two cases.
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Case 1. |V (C)| = 6.

Case 1.1. G1 − V (C) ∼= K2.
Let V (G1) \ V (C) = {x1, x2}. By the definition of G1, |X| = 2 and let NG1(x1) ∩

V (C) = {vi} and NG1(x2) ∩ V (C) = {vj}. Since C is a longest cycle of G1, we have
distC(vi, vj) = 3. Without loss of generality, we may assume that vi = v0, vj = v3,
then E(G1) = {x1v0, x2v3, x1x2} ∪ E(C), hence G1 has a spanning trail starting from
any vertex of {v0, v3}. Note that for any vertex v ∈ V (G1)\{v0, v3}, there is an edge
e ∈ E(G1) incident with v such that G1\e has exactly two vertices with degree odd. Since
G1\e is connected, G1 has a spanning trail starting from any vertex in V (G1)\{v0, v3}.
Therefore, the above facts imply that G1 has a spanning trail starting from any vertex, a
contradiction.

Case 1.2. G1 − V (C) ∼= 2K1.
Let V (G1) \ V (C) = {y1, y2}. If |X| = 4, then G1 has a cycle of length at least 7.

Hence we have |X| = 2 and let X = {w1, w2}. By the definition of G1, |NG1(y1) ∩X| =
|NG1(y2) ∩ X| = 1 and NG1(y1) ∩ X ∩ NG1(y2) = ∅. Without loss of generality, we may
assume that w1 ∈ NG1(y1) ∩ X and w2 ∈ NG1(y2) ∩ X, then by the definition of G1,
there is a vertex w in V (C)\{w1, w2} such that w ∈ NG1(y1) ∩ NG1(y2). Since C is a
longest cycle of G1, we have 2 6 distC(wi, w) 6 3 for each i ∈ {1, 2}. Suppose that
distC(wi, w) = 3 for some i ∈ {1, 2}, say i = 1. Without loss of generality, we may
assume that w1 = v0, w = v3, then, since C is a longest cycle of G1, w2 /∈ {v2, v4}
and thus w2 ∈ {v1, v5}. Without loss of generality, we may assume that w2 = v5, then
E(G1) = {y1v0, y1v3, y2v3, y2v5} ∪ E(C), thus G1\v0v5 is even, a contradiction.

Hence distC(wi, w) = 2 for all i ∈ {1, 2}. Without loss of generality, we may assume
that w1 = v0, w = v2, then w2 = v4. Hence E(G1) = {y1v0, y1v2, y2v2, y2v4} ∪ E(C), then
G1 has a spanning trail starting from any vertex of {v0, v4}. Note that for any vertex
v ∈ {y1, y2, v1, v3, v5}, there is an edge e ∈ E(G1) incident with v such that G1\e has
exactly two vertices with degree odd. Since G1\e is connected, G1 has a spanning trail
starting from any vertex of {y1, y2, v1, v3, v5}. Therefore, the above facts imply that G1

has a spanning trail starting from any vertex in {y1, y2, v0, v1, v3, v4, v5}. However, G1 has
no spanning trail starting from v2 and thus u = v2, hence G1

∼= F3, where F3 is shown in
Figure 2.

We claim that G′ ∼= G1
∼= F3. Otherwise, there is an edge f ∈ E(G′)\E(G1). Since

G′ is triangle-free and C is a longest cycle of G1, f ∈ {v0v3, v2v5, v1v4, y1v4, y2v0}, thus
G1 ∪ {f} has a spanning trail starting from v2. This implies that G′ has a spanning trail
starting from any vertex, a contradiction.

Case 1.3. G1 − V (C) ∼= K1.
Let V (G1) \ V (C) = {z}. By the definition of G1, NG1(z) = X and |X| = 2, and let

X = {vi, vj}. Since C is a longest cycle of G1, we have 2 6 distC(vi, vj) 6 3. Suppose
that distC(vi, vj) = 3. Without loss of generality, we may assume that vi = v0, vj = v3,
then E(G1) = {zv0, zv3} ∪ E(C), hence G1 has a spanning trail starting from any vertex
in {v0, v3}. Note that for any vertex v in V (G1) \ {v0, v3}, there is an edge e ∈ E(G1)
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incident with v such that G1\e has exactly two vertices with degree odd. Since G1\e
is connected, G1 has a spanning trail starting from any vertex in V (G1) \ {v0, v3}. The
above facts imply that G1 has a spanning trail starting from any vertex, a contradiction.

Hence we have distC(vi, vj) = 2. Without loss of generality, we may assume that
vi = v0, vj = v2, then E(G1) = {zv0, zv2} ∪ E(C), hence G1 has a spanning trail starting
from any vertex of {v0, v2}. Note that for any v ∈ {z, v1, v3, v5}, there is an edge e ∈ E(G1)
incident with v such that G1\e has exactly two vertices with degree odd. Since G1\e is
connected, G1 has a spanning trail starting from any vertex of {z, v1, v3, v5}. The above
facts imply that G1 has a spanning trail starting from any vertex of {z, v0, v1, v2, v3, v5}.
However, G1 has no spanning trail starting from v4 and then u = v4, hence G1

∼= F6,
where F6 is shown in Figure 2.

We claim that G′ ∼= G1
∼= F6. Suppose not. Then there is an edge f ∈ E(G′)\E(G1).

Since G′ is triangle-free and C is a longest cycle of G′, f ∈ {v0v3, v1v4, v2v5, zv4}, thus
G1 ∪ {f} has a spanning trail starting from v4. This implies that G′ has a spanning trail
starting from any vertex, a contradiction.

Case 2. |V (C)| = 7.
Then G1 − V (C) has only one vertex z. By the definition of G1, NG1(z) = X and

|X| = 2, and let X = {vi, vj}. Since C is a longest cycle of G1, we have 2 6 distC(vi, vj) 6
3. Suppose that distC(vi, vj) = 2. Without loss of generality, we may assume that
vi = v0, vj = v2, then E(G1) = {zv0, zv2} ∪ E(C), hence G1 has a spanning trail start-
ing from any vertex of {v0, v2}. Note that for any vertex v ∈ {v1, v3, v6, z}, there is an
edge e ∈ E(G1) incident with v such that G1\e has exactly two vertices with degree odd.
Since G1\e is connected, G1 has a spanning trail starting from any vertex of {v1, v3, v6, z},
hence G1 has a spanning trail starting from any vertex of {v0, v1, v2, v3, v6, z}. However,
G1 has no spanning trail starting from any vertex of {v4, v5} and then u ∈ {v4, v5},
hence G1

∼= F4 where F4 is shown in Figure 2. We claim that G′ ∼= G1
∼= F4. Sup-

pose, to the contrary, and let f be an edge in E(G′)\E(G1). Since G′ is triangle-free,
f ∈ {v0v3, v0v4, v1v4, v1v5, zv4, zv5, v2v5, v2v6, v3v6}, then G1 ∪ {f} has a spanning trail
starting from v4. This implies that G′ has a spanning trail starting from any vertex, a
contradiction.

Hence we have distC(vi, vj) = 3. Without loss of generality, we may assume that
vi = v0, vj = v3, then E(G1) = {zv0, zv3} ∪E(C). Hence G1 has a spanning trail starting
from any vertex of {v0, v3}. Note that for any vertex v ∈ {z, v1, v2, v4, v6}, there is an edge
e ∈ E(G1) incident with v such that G1\e has exactly two vertices with degree odd. Since
G1\e is connected, G1 has a spanning trail starting from any vertex of {z, v1, v2, v4, v6}.
Hence G1 has a spanning trail starting from any vertex of {z, v0, v1, v2, v3, v4, v6}. However,
G1 has no spanning trail starting from v5 and then u = v5, hence G1

∼= F5, where F5 is
shown in Figure 2. We claim that G′ ∼= G1

∼= F5. Suppose not, and let f be an edge in
E(G′)\E(G1). Since G is triangle-free, f ∈ {v0v3, v0v4, v1v5, zv5, v2v5, v3v6}, thus G1∪{f}
has a spanning trail starting from v5. This implies that G′ has a spanning trail starting
from any vertex, a contradiction.

Summarizing all possible cases, we obtain that G′ ∈ {F1, F2, F3, F4, F5, F6}, where Fi
is shown in Figure 2. We claim that G ∼= G′. Suppose not. Then there is a vertex
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v in G′ which is the contraction image of some nontrivial collapsible graph H of G,
|V (G)| > V (G′) + |V (H)| − 1 > 7 + 3 − 1 = 9, because the nontrivial subgraph with
smallest number of vertices is the triangle, a contradiction. This proves Theorem 6.

5 The proof of Theorem 5

The proof of Theorem 5 can be separated the following two results.

Theorem 25. Let G be a 2-edge-connected graph and S a subset of V (G) such that
E(G− S) = ∅ and |S| 6 4. Then G has an S-trail starting from any vertex of S.

Theorem 26. Let G be a 2-edge-connected graph and S a subset of V (G) such that
E(G − S) = ∅ and |S| 6 6. Then G has an S-trail or G ∈ {G2, G3}, where G2, G3 are
shown in Figure 1.

Proof of Theorem 25. Suppose, by contradiction, that G is a counterexample to the the-
orem such that the number of blocks of G is minimized. We now distinguish the following
two cases to obtain our desired contradiction.

Case 1. κ(G) > 2.
Let C = v1v2 · · · vc(G)v1 be a longest cycle of G. Then G − V (C) contains at least

one vertex of S, otherwise C is a Hamilton cycle. Therefore, since |S| 6 4, we have
|V (C) ∩ S| 6 3. Since C is a subgraph of G and E(G− S) = ∅, we have E(C − S) = ∅.
Note that G has no spanning trail starting from some vertex of S. By Theorem 4(1) we
have c(G) > 6. If c(G) > 7, then |V (C) ∩ S| > 4 since E(C − S) = ∅, contradicting
|V (C) ∩ S| 6 3. Hence we have c(G) = 6, then |V (C) ∩ S| > 3 since E(C − S) = ∅,
thus |V (C) ∩ S| = 3. We therefore assume that V (C) ∩ S = {v1, v3, v5} and V (C)\S =
{v2, v4, v6}. Since |S| 6 4 and G − V (C) contains at least one vertex of S, G − V (C)
contains exactly one vertex of S, say b. Let D be a component of G − V (C) such that
b ∈ V (D). Then S ⊂ V (C) ∪ V (D). Let G′ ∼= 〈V (C) ∪ V (G/D)〉G. Clearly, G′ has
exactly seven vertices. Since G has no spanning trail starting from some vertex of S and
by the the definition of G′, G′ also has no spanning trail starting from some vertex of S.
By Theorem 6, G′ is isomorphic to F6 shown in Figure 2. Let U1 be the set of vertices of
degree two in F6 and U2 the set of vertices of degree three in F6. Then {v2, v4, v6} ⊂ U1

and U2 ⊂ {v1, v3, v5}, one can easily check that F6 has an S-trail starting from any vertex
of S, a contradiction.

Case 2. κ(G) = 1.
Since E(G− S) = ∅, each cycle of G contains at least two vertices of S.

Claim 27. |V (F ) ∩ S| > 3 for any end block F of G.

Proof. Suppose, by contradiction, that there is an end block F of G such that |V (F )∩S| 6
2. Let C be a cycle in F that contains the only cut vertex of G in F . Since E(G−S) = ∅,
each cycle of G contains at least two vertices of S, then C contains all vertices in V (F )∩S
since |V (F ) ∩ S| 6 2.
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Consider the graph G/F such that the contraction image v of F is in S. Then
|V (G/F ) ∩ S| 6 4 − 2 + 1 = 3. Note that G/F has blocks less than G and G/F is
also 2-edge-connected, by the choice of G, G/F has an S ∩ V (G/F )-trail T starting from
any vertex of S, then T ∪ C is an S-trail of G since C contains all vertices in V (F ) ∩ S,
a contradiction. This proves Claim 27.

Let F1 and F2 be two end blocks of G. By Claim 27, |S ∩ V (Fi)| > 3 for 1 6 i 6 2,
then |S| > |S∩V (F1∪F2)| = |S∩V (F1)|+ |S∩V (F2)|− |S∩V (F1∩F2)| > 3+3−1 = 5,
a contradiction. This proves Theorem 25.

We will apply Theorem 25 and the following result to prove Theorem 26.

Theorem 28. (Niu. et. al [19]) Let G be a 2-edge-connected graph of order at most ten.
Then G has a spanning trail or G ∈ {G2, G3}, where G2, G3 are shown in Figure 1.

Proof of Theorem 26. Suppose, by contradiction, that G is a counter-example to the the-
orem such that the number of blocks of G is minimized. Then G has no spanning trail.
Let S be a subset of V (G) such that E(G − S) = ∅ and |S| 6 6. We now consider two
cases to obtain our desired contradiction.

Case 1. κ(G) > 2.
Let C = v1v2 · · · vc(G)v1 be a longest cycle of G. Then G − V (C) contains at least

two vertices of S, otherwise G obviously has a spanning trail. Then, by |S| 6 6, we have
|V (C) ∩ S| 6 4. Since C is a subgraph of G and E(G− S) = ∅, we have E(C − S) = ∅.
If c(G) 6 7, then by Theorem 4(2), G has a spanning trail, a contradiction. If c(G) > 9,
then |V (C) ∩ S| > 5 since E(C − S) = ∅, contradicting |V (C) ∩ S| 6 4. Hence we have
c(G) = 8, then |V (C) ∩ S| = 4. We therefore assume that V (C) ∩ S = {v1, v3, v5, v7}
and V (C)\S = {v2, v4, v6, v8}. Therefore, since G − V (C) contains at least two vertices
of S and |S| 6 6, G − V (C) contains exactly two vertices of S, say b1, b2. Then b1 and
b2 cannot lie in a same component of G− V (C); otherwise, one can easily find an S-trail
of G. Let D1 and D2 be two components of G − V (C) such that bi ∈ V (Di). Then
S ⊂ V (C) ∪ V (D1) ∪ V (D2). Let G′ = 〈V (C) ∪ V (G/D1) ∪ V (G/D2)〉G. Clearly, G′ has
exactly ten vertices. Since G has no S-trail and by the definition of G′, G′ has no S-trail,
implying that G′ has no spanning trail. Note that G′ is also 2-connected. By Theorem 28,
G′ ∈ {G2, G3}, where G2, G3 are shown in Figure 1.

Let U1 be the set of vertices of degree two in G′ and U2 the set of vertices of degree
three in G′. Then |U1| = 6 and |U2| = 4. Note that S = {v1, v3, v5, v7, b1, b2}. Then
U1 = S, otherwise, |U2∩S| 6= ∅, one can easily find an S-trail of G′. We furthermore have
V (Di) = {bi} for 1 6 i 6 2, otherwise contradicting E(G− S) = ∅. This implies that G′

is a subgraph of G.

Claim 29. V (G) = V (G′).

Proof. Suppose to the contrary that there is a vertex w ∈ V (G) \ V (G′). Then there
exist two edges between w and C in G since G is 2-connected. Therefore, since G′ is a
subgraph of G and U1 = S, one can easily find an S-trail of G, a contradiction. This
proves Claim 29.
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Since G′ ⊆ G and by Claim 29, G′ is a spanning subgraph of G. Since G′ ∈ {G2, G3},
it is easy to check that adding any edge to G′ can make it have an S-trail, this implies
that G ∼= G′, contradicting the hypothesis.

Case 2. κ(G) = 1.
Then G has at least two blocks.

Claim 30. |V (F ) ∩ S| > 3 for any end block F of G.

Proof. Suppose, by contradiction, that there is an end block F of G such that |V (F )∩S| 6
2. Let C be a cycle in F that contains the only cut vertex of G in F . Since E(G−S) = ∅,
each cycle of G contains at least two vertices of S, then C contains all vertices in V (F )∩S
since |V (F ) ∩ S| 6 2.

Consider the graph G/F such that the contraction image v of F is in S. Then
|V (G/F ) ∩ S| 6 6 − 2 + 1 = 5. Note that G/F has blocks less than G, G/F has an
S∩V (G/F )-trail T ; otherwise, by the choice of G, the connectivity of G/F is at least two,
by Case 1 we have G/F ∈ {G2, G3}, where G2, G3 are shown in Figure 1. Let U be the set
of vertices of degree two in G/F . Then |U | = 6. Since G/F has no S∩V (G/F )-trail, this
implies that U ⊆ (S∩V (G/F )), then |V (G/F )∩S| > 6, contradicting |V (G/F )∩S| 6 5.
Therefore, v ∈ V (T ), T ∪ C is an S-trail of G since C contains all vertices in V (F ) ∩ S,
a contradiction. This proves Claim 30.

Claim 31. G has exactly two end blocks.

Proof. Suppose, to the contrary, that G has three end blocks F1, F2 and F3. By Claim 30,
|S ∩ V (F1 ∪F2 ∪F3)| = |S ∩ V (F1)|+ |S ∩ V (F2)|+ |S ∩ V (F3)| − |S ∩ V (F1 ∩F2)| − |S ∩
V (F1 ∩ F3)| − |S ∩ V (F2 ∩ F3)|+ |S ∩ V (F1 ∩ F2 ∩ F3)| > 3 + 3 + 3− 1− 1− 1 + 1 = 7, a
contradiction. This proves Claim 31.

By Claim 31, let F1 and F2 be all end blocks of G such that vi is the cut vertex of G in
Fi. By Claim 30, |V (Fi)∩S| > 3 for 1 6 i 6 2. Since |S| 6 6, we have 3 6 |V (Fi)∩S| 6 4
for 1 6 i 6 2. Indeed, F1 ∪F2 contains all vertices of S. Let P be a path in G connecting
v1 and v2 (possibly P is a vertex). For i ∈ {1, 2}, Fi satisfies the conditions of Theorem 25,
Fi has an S ∩V (Fi)-trail starting from any vertex of S. Note that vi ∈ S or vi is adjacent
to some vertex in S for each i ∈ {1, 2}. This implies that Fi has an S ∩ V (Fi)-trail Ti
starting from vi for i = 1, 2, hence T1 ∪ P ∪ T2 is an S-trail of G, a contradiction. This
proves Theorem 26.

6 Proofs of Theorem 7 and Corollary 8

The core of a graph G, denoted by G0, is obtained by recursively deleting all pendant
vertices in G. The clique covering number of a graph G, denoted by θ(G), is the minimum
number of cliques necessarily that cover V (G). Color the vertices of a graph G black and
white, we use B(G) and W (G) to denote the set of black vertices and whites vertices in
G, respectively. A star decomposition of a graph G is a family F of edge-disjoint stars F
of G such that

⋃
F∈F E(F ) = E(G).
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Theorem 32. (Li, et al. [17]) Let G be a graph with |E(G)| > 3. Then the line graph
L(G) is traceable if and only if G has a dominating connected subgraph, i.e., dominating
trail.

Lemma 33. (Chvátal-Erdős, [7]) Every connected graph G of order at least three with
α(G) 6 κ(G) + 1 is traceable.

Lemma 34. (Kasier, et al. [13]) Every 5-connected claw-free graph with minimum degree
at least 6 is hamiltonian.

Lemma 35. (Favaron, et al. [9]) Let k > 2 be an integer and let G be a claw-free graph
of order n > 2k2 − 3k and minimum degree δ(G) > n

k
+ k − 2. Then θ(cl(G)) 6 k− 1.

Lemma 36. (Fronček, et al. [10]) Let k > 2 be an integer, let G be a claw-free graph
of order n and let κ = κ(cl(G)). Suppose that G is such that n > 3k2 − k − κ − 2 and
δ(G) > n+k2−4k+2+κ

k
. Then θ(cl(G)) 6 k− 1, or α(cl(G))) 6 κ.

Theorem 37. Let G be a 2-connected closed claw-free graph with θ(G) 6 6. Then G is
traceable or G = L(H) where H ∈ C1 ∪ C2.

Proof. Let G be a closed claw-free graphs with clique covering number θ. Let PG =
{B1, · · · , Bθ} be a clique covering of G such that each Bi is maximal. Then H = L−1(G)
has a star decomposition T1, · · · , Tθ such that L(Ti) ∼= Bi. Color black on those cen-
ters cBi of Ti and white on remaining vertices in V (H)\{cB1 , · · · , cBt}. Then B(H) =
{cB1 , · · · , cBθ}. Note that B(H) is a vertex covering of H (that is, every edge of H has
at least one vertex in B(H)), E(H −B(H)) = ∅.

Suppose that G is non-traceable. It suffices to show that H ∈ C1∪C2. By the definition
of the core H0, the black vertices of H are alway black in H0, i.e., B(H) = B(H0). Since
G is non-traceable and by Theorem 32, H0 has no B(H0)-trail. Since θ(G) 6 6, we have
|B(H)| 6 6 and then |B(H0)| 6 6. Since H0 is a subgraph of H and E(H−B(H)) = ∅, we
have E(H0−B(H0)) = ∅. Since H0 has no B(H0)-trail and by Theorem 5, H0 ∈ {G2, G3},
where G2, G3 are shown in Figure 1. Let U1 be the set of vertices of degree two in H0 and
U2 the set of vertices of degree three in H0. Then |U1| = 6 and |U2| = 4.

If U2 ∩B(H0) 6= ∅, then, since |B(H0)| 6 6 and |U1| = 6, we have U1 \B(H0) 6= ∅, say
u ∈ U1 \B(H0), it is easy to see that H0 − u has a spanning trail, then H0 has a B(H0)-
trail, a contradiction. Hence U2 ∩ B(H0) = ∅ and then B(H0) ⊆ U1, hence B(H0) = U1;
otherwise, one can easily check that H0 has a B(H0)-trail, a contradiction. Therefore,
every vertex in U1 has at least one pendant vertex in H, implying that H ∈ C1 ∪C2. This
proves Theorem 37.

The following result is a consequence of Theorem 37.

Corollary 38. Let G be a 2-connected closed claw-free graph with θ(G) 6 5. Then G is
traceable.
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Proof of Theorem 7. Suppose that G is non-traceable. Then by Theorem 10, cl(G) is
also non-traceable. By Lemma 33, α(cl(G)) > κ(cl(G)) + 1. Thus, Lemma 34 implies
1 6 κ(cl(G)) 6 5. The assumptions of theorem satisfy the conditions of Lemma 36 (for
k = 7), we then obtain θ(cl(G)) 6 6, by Theorem 37, cl(G) = L(H) where H ∈ C1 ∪ C2.
This proves Theorem 7.

Proof of Corollary 8. Let G satisfy the assumptions of Corollary 8. Then clearly so is
cl(G). Thus, suppose that G is closed. From Lemma 35 (for k = 6) we then obtain
θ(G) 6 5. By Corollary 38, G is traceable. This proves Corollary 8.

7 Concluding remarks

In this paper, we prove our main result (Theorem 4), we also use it to obtain Theorems 5
and 6. By using Theorem 5 and more detailed discussion as Theorem 7, Tian et al. [22]
gave a sharp slight weaker minimum degree sum of a pair of adjacent vertices for those 2-
connected claw-free graphs with minimun degree at least three to be traceable, and Tian et
al. [23] gave also a sharp minimun degree sum of t independent vertex set, however, these
2-connected claw-free traceable graphs deduced by these conditions have some exceptional
graphs obtained from G2, G3 shown in Figure 1.

We believe that Theorem 4 would have more applications. As Theorem 2 was used in
the forbidden subgraph condition for a 3-connected claw-free H-free graph to be hamil-
tonian, it will be also used in the similar forbidden subgraph condition for a 2-connected
claw-free graph to be traceable in our futher work [24].
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