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Abstract

Following the work of Cano and Dı́az, we consider a continuous analog of lattice
path enumeration. This process allows us to define a continuous version of many
discrete objects that count certain types of lattice paths. As an example of this
process, we define continuous versions of binomial and multinomial coefficients, and
describe some identities and partial differential equations that they satisfy. Finally,
as an important byproduct of these continuous analogs, we illustrate a general
method to recover discrete combinatorial quantities from their continuous analogs,
via an application of the Khovanski-Puklikov discretizing Todd operators.

Mathematics Subject Classifications: 05C38, 68R15

1 Introduction

Cano and Dı́az [1, 2] have recently explored a novel method of obtaining continuous
analogues of discrete objects such as binomial coefficients and Catalan numbers. First,
they realized these discrete quantities as the number of certain lattice paths. Next, they
considered directed paths as continuous extensions of lattice paths and define moduli
spaces of directed paths. Finally, they declared the volumes of these moduli spaces to
be the continuous versions of the original discrete objects.

Here we extend some of Cano and Dı́az’s work to higher dimensions, obtaining a
partial differential equation that the continuous multinomials satisfy, which generalizes
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the partial differential equation of Cano and Dı́az from dimension 2 to dimension n. In
addition, we show how to use Todd operators to discretize these moduli spaces, enabling
us to retrieve the number of lattice paths from their associated continuous moduli space.

One strong motivation for extending the study of lattice paths to a natural continuous
analogue is that it is difficult to count discrete lattice paths satisfying various geometric
constraints; it might be much easier to compute the volume of a related polytope (or union
of polytopes) in some cases. This can in turn give us natural bounds for the number of
lattice paths, and especially lattice paths under additional geometric constraints.

We begin by describing the work of Cano and Dı́az in some detail. Consider a collection
of vectors W = {w1, . . . ,wN} in Zd which all lie on the same side of some fixed hyperplane
containing the origin. The vectors wi are called admissible directions. We define a
lattice path as an ordered (n+ 1)-tuple of integer vectors

(0,p1, . . . ,pn), with each pj ∈ Zd, and where (1)

pk := pk−1 + λkwck ,

for some wck ∈ W, and λk ∈ Z>0. Intuitively, a lattice path is a finite path in Zd that
follows (some of) the directions w1, . . . ,wN using integer steps. The classical example of
lattice path counting is the binomial coefficient

(
b
a

)
, which counts the number of lattice

paths in R2 from the origin to a point q := (a, b−a) ∈ Z2
>0, using the directions w1 := (1, 0)

and w2 := (0, 1). It is also desirable to give a 1− 1 correspondence between each lattice
path and the relevant λk that define it, as is done in (2) below.

We would like to explore the space of all paths from the origin to some fixed q ∈ Rd,
still using the admissible directions W, but now using real coefficients. Following Cano
and Dı́az, we define a directed path using the same set-up as in definition (1) above
except for the important difference that now each coefficient λi is a non-negative real
number. Consider the set of all directed paths from the origin to a fixed q ∈ Rd, using
the set of directions from the admissible directions W. That is, we define

P (q, c) := {(λ1, . . . , λn) ∈ Rn
>0 | λ1wc1 + · · ·+ λnwcn = q}, (2)

for some wc1 , . . . ,wcn ∈ W. By definition, P (q, c) is a polytope, which we call a path
polytope. We call the collection of indices used here, namely c := (c1, . . . , cn), a pattern
for the directed paths. It also follows easily from this definition that the path polytope
P (q, c) ⊂ Rn has dimension n− d. Most importantly, we can interpret the set of integer
points in P (q, c) as the set of lattice paths, with pattern c, defined by (1). In other words,
we define

L(q, c) := {P (q, c) ∩ Zd}, (3)

the set of integer points in P (q, c), which is also the set of lattice paths (from 0 to q)
that use the subset wc1 , . . . ,wcn of the admissible directions W.

We next describe the moduli space of all directed paths from the origin to any q ∈ Rd.
In order to do so, we must first consider all “words” in the alphabet consisting of the
“directions” given by W. Precisely, let D(n,N) be the set of words of length n, in N
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symbols, with no occurrence of two equal consecutive symbols appearing in any word.
Such words are also known as Smirnov words. In this context, we use the Smirnov
words to keep track of the indices of the admissible directions in a given path, which each
pattern c represents.

The moduli space of all directed paths from the origin to q ∈ Rd is defined by
the union of the following polytopes:

MW(q) =
∞∐
n=0

∐
c∈D(n,N)

P (q, c)

This moduli space can be endowed with a natural flat metric, which is one of the innova-
tions in the work of Cano and Dı́az. This definition of the muduli space of directed paths
also suggests a natural definition for the volume of the moduli space, namely:

vol(MW(q)) :=
∞∑
n=0

∑
c∈D(n,N)

volP (q, c).

These definitions also appeared in [2]. To be concrete, we first demonstrate the novel
extension of the classical binomial coefficients to continuous binomial coefficients. Namely,
Cano and Dı́az defined for each q := (s, x − s) ∈ R2

>0, with 0 < s < x, the following
continuous binomial coefficient:{

x
s

}
:= vol(MW(q)) :=

∞∑
n=0

∑
c∈D(n,2)

volP (q, c). (4)

We note that here the dimension is d = 2, the set of admissible directions is W :=
{(1, 0), (0, 1)}, and so N = 2. In addition, each path of length n has a pattern c :=
(c1, . . . , cn), and hence the dimension of the corresponding path polytope P (q, c) has
dimension n− 2.

Moreover Cano and Dı́az obtained the following interesting formula for the continuous
binomial coefficients:{

x
s

}
= 2I0

(
2
√
s (x− s)

)
+

x√
s (x− s)

I1

(
2
√
s (x− s)

)
, (5)

where Iν(z) denotes the modified Bessel function of the first kind.
We study the d-dimensional extension of this continuous binomial coefficient to contin-

uous multinomial coefficients. Suppose we consider all lattice paths from the origin 0 to
any q ∈ Zd, using the standard basis as the set of admissible directions E := {e1, . . . , ed}.
The classical fact here is that the number of such lattice paths equals the multinomial
coefficient: (

q1 + · · ·+ qd
q1 . . . qd

)
:=

(q1 + · · ·+ qd)!

q1! . . . qd!
.

the electronic journal of combinatorics 26(3) (2019), #P3.57 3



We fix any q ∈ Rd
>0, and as before we consider all directed paths between the origin

and q. Fixing a pattern c := (c1, . . . , cn), we get a path polytope P (q, c) with dimension
n− d. A natural definition for the continuous multinomial would then be:{

x1 + · · ·+ xd
x1 . . . xd

}
:= vol (ME(x)) =

∞∑
n=0

∑
c∈D(n,d)

volP (q, c). (6)

However, here we must correct an irregularity in the work of Cano and Dı́az. There
was a minor error in their calculation of P (q, c) amounting to an extra multiplicative
factor of

√
d, where d is the dimension of the ambient space. This leads us to consider

a new definition for the continuous multinomial coefficient, with more details appearing
below in Section 2. Assuming this new definition of a continuous multinomial, we can now
state our main results. We recall the Borel transform B(f), which acts on a univariate
function f(x) =

∑∞
i=0 kix

i (which must therefore be analytic at the origin) by the formula:

B(f)(x) :=
∞∑
i=0

ki
i!
xi.

For a multi-variable analytic function f(x) =
∑∞

i1,...,id=0 ki1...idx
i1 . . . xid , we define sim-

ilarly its Borel transform as

B(f)(x1, . . . , xd) :=
∞∑

i1,...,id=0

ki1...id
i1! . . . id!

xi1 . . . xid .

Theorem 1. Let

F (x1, . . . , xd) :=
1

1−
(

x1
1+x1

+ · · ·+ xd
1+xd

) , (7)

which is analytic at (0, . . . , 0). Then the continuous multinomial is equal to{
x1 + · · ·+ xd
x1 . . . xd

}
=

∂

∂x1
· · · ∂

∂xd
B(F )(x1, . . . , xd).

Another interesting result of Cano and Diaz [2] is the following elegant and surprising
identity for the continuous binomial coefficients (in dimension 2):

∂

∂x

∂

∂y

{
x+ y
x

}
=

{
x+ y
x

}
. (8)

This appears to be the continuous analogue of the usual identity

∆n∆k

(
n+ k

k

)
=

(
n+ k

k

)
for binomial coefficients, where ∆nf (n) = f (n+ 1) − f (n) is the forward difference
operator.

We also obtain the following generalization of (8), in the case of dimension d, for the
multinomial coefficients.
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Theorem 2. As a multi-variable function, the continuous multinomial satisfies the fol-
lowing partial differential equation:

d∏
j=1

(
1 +

∂

∂xj

){
x1 + · · ·+ xd
x1 . . . xd

}
=

d∑
i=1

∏
j 6=i

(
1 +

∂

∂xj

){
x1 + · · ·+ xd
x1 . . . xd

}
. (9)

The paper is organized as follows: in Section 2 we motivate our definition of the
continuous multinomial and recall the work of [1] and [2], and then In Section 3 we prove
Theorem 1 and derive a closed form expression for the continuous multinomial in terms
of the Borel transform. In Section 4 we prove Theorem 2 and extend the two dimensional
PDE identity of Cano and Dı́az. In Section 5 we show how to recover discrete multinomials
from continuous multinomials, and carry out the calculation in two dimensions.

2 Preliminaries

We point out that the papers of Cano and Diaz [[1], [2]] use a different definition for
volumes of simplices than the usual Riemannian definition of volume. We now explain
this discrepancy between the two definitions of the volume of a simplex. Consider the
n-simplex

∆t
n := {s0, . . . , sn ∈ R>0 : s0 + · · ·+ sn = t}, (10)

which is embedded in Rn+1. Now let P t
n be the convex hull of the origin and ∆t

n. We
note that ∆1

n is the convex hull of the standard basis {e0, . . . , en} while P 1
n is the convex

hull of {0, e0, . . . , en}. The (n + 1) dimensional volume of P 1
n is 1

(n+1)!
, but is also equal

to 1
n+1

vol(∆1
n)d(0,∆1

n), where vol is the n-dimensional volume of ∆1
n and d(0,∆1

n) is the

distance from the origin to ∆1
n. It can be observed that d(0,∆1

n) = 1√
n+1

. Therefore,

vol(∆1
n) =

1

(n+ 1)!

n+ 1

d(0,∆1
n)

=

√
n+ 1

n!
(11)

and

vol(∆t
n) =

tn
√
n+ 1

n!
. (12)

For instance, when n = 1, ∆1
n is the segment connecting (1, 0) and (0, 1) which has length√

1+1
1!

=
√

2.
The work [1] calculates the volume differently. It uses the following parametrization

of ∆1
n:

l1 = s0, l2 = s0 + s1, . . . , ln =
n−1∑
i=0

si, (13)

and writes
∆t
n = {(l1, . . . , ln) ∈ Rn : 0 6 l1 6 · · · 6 ln 6 ln+1 = t}. (14)
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The paper then claims that vol(∆t
n) = tn

n!
. Although the coordinate change is linear (and

is given by an upper triangular matrix) and does not alter the (n+1)-dimensional volume
on Rn+1, it does change the induced n-dimensional volume on most affine hyperplanes.
The example above demonstrates this point for n = 1.

Let T denote the above coordinate change. We note that using T will destroy the
product structure which is crucial in the computation of the volume of the moduli space
of directed paths. More specifically, given a product of two simplices ∆1 ×∆2, its image
T (∆1 × ∆2) is not a product of two simplices. For example, take ∆1 and ∆2 to be two
intervals (1-simplices). Then their product is a rectangle, which is transformed by T into
an parallelogram, which in general is not a product of 1-simplices.

We now discuss what this means for the continuous multinomial case. As a preliminary,
the frequency vector ν(c) of a Smirnov word c encodes the number of times each letter
appears in c. Note that the coordinates of ν(c) sum up to n. We now consider{

x1 + · · ·+ xd
x1 . . . xd

}
:= vol (ME(x)) :=

∞∑
n=0

∑
c∈D(n,d)

volP (q, c), (15)

the previously motivated definition of the continuous multinomial. We take k = d and
W = E := {e1, . . . , ed} the standard basis of Rd. Let ν = (ν1, . . . , νd) ∈ Zd>0 be an integer
vector with ν1 + · · · + νd = n and c a Smirnov word with frequency vector ν. Then, we
have the following identities:

Mc
E(x) = {a1, . . . , an ∈ R>0 : a1ec1 + · · ·+ anecn = x} (16)

= {a1, . . . , an ∈ R>0 :
∑

i1:ci1=1

ai1 = x1, . . . ,
∑

id:cid=d

aid = xd}. (17)

In other words, the vector identity in (16) breaks into d independent scalar identities in
(17). Therefore, Mc

E(x) is the direct product of d simplices isomorphic to ∆n1(x1), . . . ,
∆nd(xd), where

∆m(y) := {b1, . . . , bm ∈ R>0 : b1 + · · ·+ bm = y}.

Stricly speaking, the volume of the simplex ∆m(y) is ym−1√m
(m−1)! .

2.1 An alternate definition of volume

If, instead of the usual Riemannian volume, we would use the Cano and Diaz modified
volume measure, which we call volCD, and defined by:

volCD(∆m(y)) =
ym−1

(m− 1)!
, (18)

then our continuous binomial coefficient would coincide with that of Cano and Dı́az.
Therefore, by the product rule of volumes of products of simplices, we would obtain the
modified result

volCD(Mc
E(x)) =

xν1−11

(ν1 − 1)!
. . .

xνd−1d

(νd − 1)!
.
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and one could interpret this as a definition for the continuous multinomial coefficient, as
follows:

Definition 3. Let ν denote the frequency vector of the Smirnov word c. Then{
x1 + · · ·+ xd
x1 . . . xd

}
:=

∞∑
n=0

∑
c∈D(n,d)

xν1−11

(ν1 − 1)!
. . .

xνd−1d

(νd − 1)!
. (19)

We emphasize that this is the object considered in the Cano and Dı́az papers [1] and
[2], and in the two dimensional case this coincides with the continuous binomial of Cano
and Dı́az: {

x
s

}
= 2I0

(
2
√
s (x− s)

)
+

x√
s (x− s)

I1

(
2
√
s (x− s)

)
.

While the continuous multinomial loses some of its geometric intuition and motivation,
this renormalized volume (18) leads to an object with very interesting analytic proper-
ties - see the companion article [10] for more details. In addition, the non-normalized
version with the square root correction terms does not have a closed form in terms of
hypergeometric functions, even in two dimensions.

There are two competing definitions for the continuous multinomial. The object{
x1 + · · ·+ xd
x1 . . . xd

}
always refers to the definition without a

√
n term, so Section 3 and

4 refer to the continuous multinomial without the
√
n term. However, Section 5 deals

directly to the simplices defining the continuous multinomial. This means that we are

using the normal Lebesgue measure on Rn, so we do not use the notation

{
x1 + · · ·+ xd
x1 . . . xd

}
anywhere. Therefore, if we were to calculate volumes we would include the

√
n term.

3 Continuous multinomials

Proof of Theorem 1. Given a vector ν = (ν1, . . . , νd) ∈ Zd>0 such that ν1 + · · ·+νd = n, let
D(n, d; ν) denote the subset of Smirnov words in D(n, d) whose frequency vectors are all
equal to ν. As shown by Flajolet and Sedgewick [3, p. 205], the cardinality of D(n, d; ν)
is the coefficient of yν11 . . . yνdd in the power series representation of the rational function

F (y1, . . . , yd) =
1

1−
(

y1
1+y1

+ · · ·+ yd
1+yd

) .
We expand F into a Taylor series about the origin:

F (x1, . . . , xd) =
1

1−
(

x1
1+x1

+ · · ·+ xd
1+xd

) =
∞∑

ν1,...,νd=0

fν1,...,νdx
ν1
1 . . . xνdd ,
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where fν1,...,νd counts the number of Smirnov words with frequency vector (ν1, . . . , νd), as
mentioned above. Therefore,{

x1 + · · ·+ xd
x1 . . . xd

}
=
∞∑
n=0

∑
c∈D(n,d)

xν1−11

(ν1 − 1)!
. . .

xνd−1d

(νd − 1)!

=
∞∑

ν1,...,νd=0

fν1,...,νd
xν1−11

(ν1 − 1)!
. . .

xνd−1d

(νd − 1)!

=
∂

∂x1
· · · ∂

∂xd

(
∞∑

ν1,...,νd=0

fν1,...,νd
xν11
ν1!

. . .
xνdd
νd!

)

=
∂

∂x1
· · · ∂

∂xd
B(F )(x1, . . . , xd),

which completes the proof.

When d = 2, we can set (x1, x2) = (x, y) and compute

F (x, y) = (1 + x+ y) +
∞∑
n=1

(
xnyn + xnyn+1 + xn+1yn

)
,

and

B(F )(x, y) = (1 + x+ y) +
∞∑
n=1

(
xn

n!

yn

n!
+
xn

n!

yn+1

(n+ 1)!
+

xn+1

(n+ 1)!

yn

n!

)
,

Therefore, we retrieve the formula for the continuous binomials in [2]:{
x+ y
x

}
=

{
x+ y
x y

}
=

∂

∂x

∂

∂y
B(F )(x, y)

=
∞∑
n=0

(
xn

n!

yn

n!
+
xn

n!

yn+1

(n+ 1)!
+

xn+1

(n+ 1)!

yn

n!

)
= 2I0 (2

√
xy) + (x+ y)

I2
(
2
√
xy
)

√
xy

.

4 Partial differential identity

Proof of Theorem 2. Our approach is inspired by the method of dynamic programming
in computer science.

Let us write M(x) = ME(x). The moduli space M(x) can be decomposed into
subspacesMx1

n+1(x), . . . ,Mxd
n+1(x) of directed paths of length n+ 1 whose last step are in

directions e1, . . . , ed, respectively.
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Consider the subspaceMn+1(x) of directed paths of length n+1 from 0 to x following
the directions of the standard basis vectors e1, . . . , ed. As above, this subspace can be
further decomposed into d pieces Mx1

n+1(x), . . . ,Mxd
n+1(x), where Mxi

n+1(x) is the set of
such directed paths whose last step follows the direction of ei.

Let 1 6 i 6 d. Suppose the last step is of distance xi − s in direction ei. Then the
corresponding slice of Mxi

n+1(x) can be identified isometrically with the disjoint union of
Mxj

n (x1, . . . , xi−1, s, xi+1, . . . , xd) for j 6= i. Therefore, by Fubini’s theorem, we have

vol(Mxi
n+1(x)) =

∫ xi

0

∑
j 6=i

vol(Mxj
n (x1, . . . , xi−1, s, xi+1, . . . , xd))ds,

which implies,
∂

∂xi
vol(Mxi

n+1(x)) =
∑
j 6=i

vol(Mxj
n (x)). (20)

The base case is n = d with vol(Mxi
d (x)) = (d − 1)!. By convention, for n < d,

vol(Mxi
n+1(x)) = 0. Summing equation (20) over all n > d, we obtain the following

identity:
∂

∂xi
vol(Mxi(x)) =

∑
j 6=i

vol(Mxj(x)). (21)

or equivalently, (
1 +

∂

∂xi

)
vol(Mxi(x)) =

d∑
j=1

vol(Mxj(x)) = vol(M(x)). (22)

This infers
n∏
j=1

(
1 +

∂

∂xj

)
vol(Mxi(x)) =

∏
j 6=i

(
1 +

∂

∂xj

)
vol(M(x)). (23)

Summing this identity over 1 6 i 6 n, we obtain the desired identity.

In the case that the dimension d = 2 and (x, y) = (x1, x2), identity (9) becomes(
1 +

∂

∂x

)(
1 +

∂

∂y

){
x+ y
x

}
=

(
1 +

∂

∂x
+ 1 +

∂

∂y

){
x+ y
x

}
,

which simplifies to the Cano and Dı́az result

∂

∂x

∂

∂y

{
x+ y
x

}
=

{
x+ y
x

}
.

the electronic journal of combinatorics 26(3) (2019), #P3.57 9



5 Recovering discrete objects

In this section, we retrieve discrete binomial coefficients from the continuous binomial
case. This is due to a general result in lattice point counting, the Khovanskii-Pukhlikov
theorem. We describe the theorem, and then carry out a calculation involving it.

We begin with the fundamental Todd operator, which is defined to be the following
differential operator:

Toddh :=
d/dh

1− e−d/dh
=
∑
k>0

(−1)k
Bk

k!

(
d

dh

)k
= 1 +

1

2

d

dh
+

1

12

(
d

dh

)2

− 1

720

(
d

dh

)4

+ . . .

Here, Bk = Bk (0) are the Bernoulli numbers and Bk (x) are the Bernoulli polynomials
with generating function ∑

k>0

zk
Bk (x)

k!
=

zezx

ez − 1
.

We next consider unimodular integral polytopes, i.e. polytopes whose vertices
have integer coordinates and whose vertex tangent cones are generated by some basis of
Zd (and hence simple). Given a polytope P and vertex v, we define the vertex tangent
cone at v to be

{v + λ(y − v) : y ∈ P, λ ∈ R>0}.
Suppose P has the hyperplane description

P = {x ∈ Rd : Ax 6 b},

where the column vectors of A are primitive integer vectors in Zd. We define the perturbed
polytope

P (h) = {x ∈ Rd : Ax 6 b + h},
for some small h = (h1, h2, . . . , hm). We also define the multi-dimensional Todd operator

Toddh :=
m∏
k=1

Toddhk .

The fundamental role of Todd operators is highlighted by the Khovanskii-Pukhlikov
theorem for a unimodular polytope P :

#(P ∩ Zd) = Toddh vol(P (h))|h=0 .

More generally, ∑
x∈P∩Zd

exp(x · z) = Toddh

∫
P (h)

exp(x · z)dx

∣∣∣∣
h=0

.

The assumption of unimodularity is important. Loosening it will require replacing the
Todd operator with much more complicated differential operators, as shown in a version
of Euler-Maclaurin formula for simple polytopes in [5].
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Lattice paths are directed paths whose steps are only allowed to be integer multiples
of one of the admissible directions. We now consider the binomial case. Given a combi-
natorial pattern, the moduli space of directed paths with the given pattern, from (0, 0) to
(x, y), is a (direct) product of simplices of the form

∆ := ∆x
n := {a1, . . . , an > 0, a1 + · · ·+ an = x}.

The space of lattice paths, with the same pattern, from (0, 0) to (x, y) is a (direct) product
of discrete simplices of the form

Λ := Λx
n := ∆x

n ∩ Zn+ = {a1, . . . , an ∈ Z, a1, . . . , an > 0, a1 + · · ·+ an = x}.

Note that the simplex ∆ is not full-dimensional, so the Khovanskii-Pukhlikov theorem
does not apply directly and we do need a small trick to make it work. For a small
h = (h1, . . . , hn, h+, h−), consider the perturbed simplex

∆(h) := {a1 > h1, . . . , an > hn, x− h− 6 a1 + · · ·+ an 6 x+ h+},

whose volume is

vol(∆(h)) =
1

n!
((x+ h+ − h1 − · · · − hn)n − (x− h− − h1 − · · · − hn)n) .

We expect

Toddh vol(∆(h))|h=0 = #Λ =

(
x− 1

n− 1

)
.

Set h′ = (h1, . . . , hn) and use the following notation.

∆′ := {a1, . . . , an > 0, a1 + · · ·+ an 6 x},
∆′(h′, h+) := {a1, . . . , an > 0, a1 + · · ·+ an 6 x+ h+},
∆′(h′, h−) := {a1, . . . , an > 0, a1 + · · ·+ an 6 x− h−},

Λ′+ := {a1, . . . , an ∈ Z, a1, . . . , an > 0, a1 + · · ·+ an 6 x},
Λ′− := {a1, . . . , an ∈ Z, a1, . . . , an > 0, a1 + · · ·+ an < x}.

By a polarized version of the Khovanskii-Pukhlikov theorem in [5], we have

Todd(h′,h+) vol(∆′(h′, h+))
∣∣
h′=0=h+

= #Λ′+ =

(
x

n

)
,

Todd(h′,h−) vol(∆′(h′, h−))
∣∣
h′=0=h−

= #Λ′− =

(
x− 1

n

)
.

These identities can also be verified manually from the definition of the Todd opearator.
Also, it is important to note that our simplex is unimodular. Otherwise, the Khovanskii-
Pukhlikov theorem does not apply, and we will have to use a more complicated version
by Karshon-Sternberg-Weitsman [5], which applies to all simple polytopes.
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Therefore,

Toddh vol(∆(h))|h=0

= Todd(h′,h+) vol(∆′(h′, h+))
∣∣
h′=0=h+

− Todd(h′,h−) vol(∆′(h′, h−))
∣∣
h′=0=h−

= #Λ′+ −#Λ′− =

(
x

n

)
−
(
x− 1

n

)
=

(
x− 1

n− 1

)
= #Λ.

6 Further remarks and open problems

In general, applying the Khovanskii-Pukhlikov theorem to the simplices that define our
continuous objects will recover the appropriate discrete objects. The Khovanskii-Pukhlikov
machinery also works in the case that the polytope is a simple polytope [5], not merely a
unimodular polytope. Thus one could in principle apply our approach to simple polytopes
in order to discretize them and perhaps obtain future discretization results of this flavor.
This would be a fruitful direction of investigation.

In principle, one could also begin with an arbitrary set of admissible directions which
are not even necessarily integer vectors, and develop an analogous theory, another inter-
esting direction of inquiry.

Another, perhaps more difficult, direction for the future is to consider how the recent
work on lattice path matroid polytopes is linked to these continuous analogues, and
whether one can use the discretizing Todd operators to recover some of this new work
and perhaps extend it (see [6])

Another interesting direction for future research is the pursuit of an L1-metric approach
to volumes, since incorporating such an L1 approach into the Cano-Diaz machine might
yield very interesting results.
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