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Abstract

The k-colour bipartite Ramsey number of a bipartite graph H is the least inte-
ger N for which every k-edge-coloured complete bipartite graph KN,N contains a
monochromatic copy of H. The study of bipartite Ramsey numbers was initiated
over 40 years ago by Faudree and Schelp and, independently, by Gyárfás and Lehel,
who determined the 2-colour bipartite Ramsey number of paths. Recently the 3-
colour Ramsey number of paths and (even) cycles, was essentially determined as
well. Improving the results of DeBiasio, Gyárfás, Krueger, Ruszinkó, and Sárközy,
in this paper we determine asymptotically the 4-colour bipartite Ramsey number
of paths and cycles. We also provide new upper bounds on the k-colour bipartite
Ramsey numbers of paths and cycles which are close to being tight.

Mathematics Subject Classifications: 05C35,05C35,05C55

1 Introduction

Ramsey theory refers to a large body of mathematical results, which roughly say that any
sufficiently large structure is guaranteed to have a large well-organised substructure. For
example, the celebrated theorem of Ramsey [18] says that for any fixed graph H, every
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k-edge-colouring of a sufficiently large complete graph contains a monochromatic copy of
H. The k-colour Ramsey number of H is defined to be the smallest order of a complete
graph satisfying this property.

Despite significant attention paid to Ramsey problems, there are very few examples of
families of graphs whose Ramsey numbers are known exactly, or even just asymptotically.
An early example of an exact Ramsey result was obtained in 1967 by Gerencsér and
Gyárfás [8], who determined the 2-colour Ramsey number of paths. Ramsey numbers of
paths and cycles have since been studied extensively, and they are known precisely for
two and three colours (in most cases only for sufficiently large n), see [6, 19, 17, 13, 10, 1].
However, despite extensive research, less is known for more than three colours. A rare
exception is a recent result of Jenssen and Skokan [11], who showed that the k-colour
Ramsey number of an odd cycle Cn is exactly 2k−1(n − 1) + 1 for all sufficiently large
n; interestingly, this does not hold for all k and n, see Day and Johnson [4]. For a path
Pn, the k-colour Ramsey number is known to be at least (k − 1 + o(1))n (see Yongqi,
Yuansheng, Fengand and Bingxi [21]), and at most (k − 1/2 + o(1))n (see Knierim and
Su [14]); the same bounds also hold for even cycles Cn.

Over the years, many generalisations of Ramsey numbers have been considered (an
excellent survey [3] by Conlon, Fox and Sudakov contains many examples); one natural
example that we consider here is obtained by replacing the underlying complete graph
by a complete bipartite graph. In particular, the k-colour bipartite Ramsey number of
a bipartite graph H is the least integer N such that in any k-colouring of the complete
bipartite graph KN,N there is a monochromatic copy of H.

The study of bipartite Ramsey numbers was initiated in the early 70s by Faudree and
Schelp [7] and independently Gyárfás and Lehel [9] who determined the 2-colour bipartite
Ramsey numbers of paths; see also [22, 23, 12] for some results regarding the natural
extension to cycles. Recently, we [2] determined, asymptotically, the 3-colour Ramsey
number of a path or a cycle of length 2n, showing that it is equal to (3 + o(1))n. Further
related results were obtained by [15, 16].

Similarly to the standard Ramsey numbers, less is known regarding bipartite path-
or-cycle Ramsey numbers for more than three colours. The best known lower bound for
the k-colour bipartite Ramsey number of a path or a cycle of length 2n is 5n for k = 4
and (2k − 4)n for k > 5, while the best known upper bound is k(1 +

√
1− 2/k + o(1))n

(which is roughly (2k−1+o(1))n for large k). Both results are due to DeBiasio, Gyárfás,
Krueger, Ruszinkó and Sárközy [5] who also say that obtaining improvement to either of
these bounds would be very interesting.

In this paper we achieve this, improving the best known upper bound for all k > 4.

Theorem 1. Let k > 4. The k-colour bipartite Ramsey number of a cycle or path of
order 2n is at most (2k − 3 + o(1))n.

As an immediate corollary (using the lower bound mentioned above, see also Theo-
rem 17), we determine, asymptotically, the 4-colour bipartite Ramsey number of a path
or a cycle.
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Corollary 2. The 4-colour bipartite Ramsey number of a cycle or path of order 2n is
(5 + o(1))n.

For larger k, we are able to use our methods to improve on Theorem 1.

Theorem 3. Let k > 8. The k-colour bipartite Ramsey number of a cycle or path of
order 2n is at most

(
2k − 3.5 + 1

k−2 + o(1)
)
n.

We believe that the correct bound may be close to the latter theorem, namely about
(2k− 3.5 + o(1))n. As evidence, we give such a lower bound for k = 5 which was initially
found with the help of a computer. Despite our best efforts, we have not been able (either
by computer search or by hand) to extend this bound to larger values of k. Nevertheless,
we believe that such a bound may hold for all k > 5.

Theorem 4. The 5-colour bipartite Ramsey number of a cycle or path of order 2(n+ 1)
is larger than 6.5n.

1.1 Organisation of the paper

In our proofs we use  Luczak’s method of converting problems about cycles and paths
to problems about connected matchings. The method requires us to work with the so-
called reduced graph, obtained by applying Szemerédi’s regularity lemma, and look for a
monochromatic connected matching (i.e. a matching that is contained in a monochromatic
component) in this graph, which is almost complete bipartite. In our previous paper [2],
we showed that it suffices to consider connected matchings in complete bipartite graphs;
we give more details on these two topics in Section 3. Our main efforts are thus devoted
to the problem of finding monochromatic connected matchings in k-coloured complete
bipartite graphs, which we consider in Section 2. We describe the lower bound mentioned
in Theorem 4, as well as the best known lower bounds for general k, in Section 4. We
conclude the paper in Section 5 with some remarks and open problems.

2 Monochromatic connected matchings in Kn,n

A connected matching in a graph H is a matching that is contained in a connected
component of H, and a connected k-matching is a connected matching that consists of
k edges. In an edge-coloured graph H, a c-coloured connected matching is a connected
matching in the subgraph of H whose edges are the edges of H of colour c. We shall use

the notation CM(n) to denote the family of connected n-matchings. We write G
k−→ F

if in every k-colouring of G there is a monochromatic copy of some graph in F , where F
is some family of graphs. In particular, G

k−→ CM(n) means that in every k-colouring of
G there is a monochromatic connected n-matching. Let rk(n) denote the smallest integer
N such that for any k-colouring of KN,N there is a monochromatic connected n-matching.
In this section we shall prove upper bounds on rk(n + 1), from which Theorems 1 and 3
can be deduced, using  Luczak’s method and our Theorem 16. We shall make use of the
following result which we proved in [2].
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Theorem 5. r3(n+ 1) = 3n+ 1.

We begin by setting the stage and proving some simple propositions. Throughout
this section, let G be a k-coloured KN,M , and denote its bipartition by {X, Y }, where
|X| = N and |Y | = M . We assume that G does not have a monochromatic connected
(n + 1)-matching. Let C1, . . . , Ct denote all the monochromatic components of G and
let c(i) denote the colour of component Ci. By König’s theorem, each monochromatic
component has a cover of size at most n; fix a minimum cover τi for Ci, so |τi| 6 n. Let
us start by observing a simple property.

Claim 6. Let v be a vertex and suppose that it is incident with at least n + 1 edges of
colour c. Then v ∈ τi for some i with c(i) = c.

Proof. We call the colour c red. Let Ci be the red component that contains v (so v ∈ V (Ci)
and c(i) = c). We know, since |τi| 6 n, that at least one of the red neighbours of v is not
in τi, say w. Since the edge vw is covered by τi, it follows that v ∈ V (Ci), as claimed.

We will always have N,M > kn+ 1 in our arguments since otherwise it is easy to find
a k-colouring of KN,M without monochromatic connected (n+1)-matchings. This implies
that every vertex has degree at least n + 1 in some colour. By Theorem 6, every vertex
belongs to some τi. We say that a vertex is special if it belongs to exactly one τi, in which
case we say that it is special of colour c(i). Let us prove some simple properties of special
vertices. We call a component special if it contains a special vertex of its colour.

Proposition 7. The following assertions hold.

(1) Let v ∈ X be a red special vertex. Then v has red degree at least M − (k − 1)n.
Similarly, if v ∈ Y is a red special vertex then it has red degree at least N− (k−1)n.

(2) If there are two distinct special red components then all red special vertices belong
to the same side of the bipartition.

Proof. For (1) notice that since v is special in red it has degree at most n in every colour
other than red, by Theorem 6. In particular, since v has degree M in G and there are
k − 1 colours other than red, its red degree is at least M − (k − 1)n.

For (2) assume to the contrary that there are two red special vertices v and w, where
v ∈ X and w ∈ Y and they belong to different red components. The edge vw is not
coloured red since v and w belong to different red components, so say that vw is blue.
But if Ci is the blue component containing the edge vw then at least one of v and w
belongs to τi, and in particular it is not a red special vertex, a contradiction.

We say that a vertex v ∈ τi is somewhat special in colour c(i) if it is not c(i) special
and there is a c(i) special vertex in Ci on the other side of the bipartition from v. For a
component Ci let ti denote the number of somewhat special vertices of colour c(i) in Ci,
and let T =

∑t
i=1 ti. The double counting argument in the next lemma gives us a lower

bound on the number of special vertices and is at the heart of most of our arguments.
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Before proceeding, let us give some intuition behind the concept of somewhat special
vertices. Given a red component Ci, which contains a red special vertex in part X of
the bipartition, by Theorem 7 (1) we know that Y ∩ Ci is pretty big. Notice that all the
vertices of τi∩Y are somewhat special and moreover Ci \ τi spans no red edges, thus if we
can show that Ci contains only a few somewhat special vertices we obtain a rather large
set not spanning any red edges. This set can be used to induct on the number of colours.
The term depending on the somewhat special vertices in the following lemma allows us to
show that there will indeed be few somewhat special vertices in each special component.

Lemma 8. There are at least NM/n − (N + M)(k − 2) + T (min(N,M)/n − k) special
vertices.

Proof. Let P be the set of pairs (v, e) where v ∈ τi and e is an edge of colour c(i) incident
to v, for some i.

Given an edge e, let c be its colour, and let Ci be the component of colour c that
contains e. Since τi is a cover of Ci, it contains one of the vertices in e, so there is at least
one pair in P that contains e. In particular,

|P| > NM. (1)

On the other hand, given i, write xi = |τi ∩ X| and yi = |τi ∩ Y |, and let zi =
|(V (Ci) ∩ X) \ τi| and wi = |(V (Ci) ∩ Y ) \ τi|. In particular, xi + yi = |τi| 6 n and
xi + yi + zi + wi = |Ci|. Moreover, as τi is a minimum cover of Ci of size xi + yi, and
V (Ci) ∩X is another cover of Ci, of size xi + zi, we find that zi > yi; similarly, wi > xi.

In fact, we know more: if there is a special vertex of Ci in Y then, by Theorem 7 (1),
xi + zi > N − (k− 1)n implying that zi− yi > N − (k− 1)n−xi− yi > N − kn. Similarly
if Ci has a special vertex in X then wi − xi > M − kn. We claim that the following
inequality holds, where ti is the number of somewhat special vertices in Ci.

xi(zi − yi) + yi(wi − xi) > ti(min(N,M)− kn). (2)

Indeed, if Ci is not a special component, then ti = 0 and the inequality follows from the
observation that zi > yi and wi > xi. Now suppose that Ci is a special component, but
all its special vertices (in colour c(i)) appear in one side of the bipartition, say X. Then
ti 6 yi, hence, as explained above, yi(wi−xi) > yi(M−kn) > ti(min(N,M)−kn). Finally,
if Ci contains special vertices in both sides of the bipartition, then xi(zi−yi)+yi(wi−xi) >
xi(N − kn) + yi(M − kn) > (xi + yi)(min(N,M)− kn) > ti(min(N,M)− kn), where the
last inequality holds because, trivially, ti 6 xi + yi.

Now let us count the number of pairs (v, e) in P for which e is an edge of Ci. Let
e = vw be an edge of Ci. If both v and w are in τi then e appears in two pairs of P ,
and otherwise it appears in exactly one pair in P . As there are at most xiyi edges of the
former type and at most xiwi + yizi of the latter type, we find that the number of pairs
in P that contain an edge from Ci is bounded from above by

2xiyi + ziyi + wixi = (zi + wi)(xi + yi)− xi(zi − yi)− yi(wi − xi)
6 (|Ci| − xi − yi)n− ti(min(N,M)− kn)

= (|Ci| − |τi|)n− ti(min(N,M)− kn).
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where we used the inequality in (2) for the inequality. Summing over all components we
obtain:

|P| 6
t∑
i=1

(
|Ci| − |τi| − ti

(
min(N,M)

n
− k
))

n

= (N +M)kn−
t∑
i=1

|τi|n− T
(

min(N,M)

n
− k
)
n,

(3)

where we used the fact that the sum of sizes of components of any given colour is N +M ,
because every vertex belongs to exactly one component of each colour.

By comparing (1) and (3) we find that

t∑
i=1

|τi| 6 (N +M)k − NM

n
− T

(
min(N,M)

n
− k
)
. (4)

Finally, denote the number of special vertices by s. Since every vertex is in at least
one set τi and every non-special vertex is in at least two such sets, we have

∑t
i=1 |τi| >

2(N +M)− s. Combining this with (4) we obtain the inequality

s >
NM

n
− (N +M)(k − 2) + T

(
min(N,M)

n
− k
)
,

as desired.

Let us now use Theorem 8 to obtain an upper bound on rk(n + 1) which is tight for
k = 4 and is not far from being tight in general.

Theorem 9. For k > 3 we have rk(n+ 1) 6 (2k − 3)n+ 1.

Proof. Our proof is by induction on k. The base case of k = 3 follows from our previous
result Theorem 5. For the induction step, let k > 4 and N = (2k− 3)n+ 1. Assume that
rk−1(n + 1) 6 (2k − 5)n + 1 = N − 2n, so every (k − 1)-coloured KN−2n,N−2n contains a
monochromatic connected (n+ 1)-matching.

Suppose towards a contradiction that G is a k-coloured KN,N that does not have
an connected (n + 1)-matching. We shall be using the notation introduced earlier in the
section. In particular, we assume that C1, . . . , Ct is the list of monochromatic components
of G and τi is some minimum cover of Ci, for every 1 6 i 6 t. By Theorem 8, there are
at least N2/n − 2N(k − 2) > N(2k − 3 − 2(k − 2)) = N > kn + 1 special vertices. In
particular, there are at least n+ 1 special vertices of the same colour, say red.

Claim 10. Precisely two red components contain red special vertices.

Proof. Notice that any red special vertex is a cover vertex of its own red component. Since
each component contains at most n cover vertices, at least two distinct red components
contain a red special vertex. Together with Theorem 7 (2), it follows that all the red special
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vertices are in the same side of the bipartition of G, say X. By (1) in the same proposition,
every red special vertex has red degree at least (2k−3)n+ 1− (k−1)n = (k−2)n+ 1. In
particular, every red special component contains at least (k − 2)n + 1 vertices of Y and
these sets are disjoint for distinct components. But |Y | = (2k−3)n+ 1 < 3((k−2)n+ 1),
so at most two red components contain red special vertices.

Let Ci and Cj be the red components that contain red special vertices. Recall that
all red special vertices are in the same side of G (by Theorem 7 (2)), say X. Let X ′ :=
X \ (τi ∪ τj) and Y ′ := (Y ∩ (V (Ci) ∪ V (Cj))) \ (τi ∪ τj). Note that |X ′| > |X| − 2n =
N − 2n. Moreover, since all the red special vertices are contained in (τi ∪ τj) ∩ X, and
there are at least n + 1 such vertices, we have |(τi ∪ τj) ∩ Y | 6 n − 1. Since each of
Ci and Cj contains at least (k − 2)n + 1 vertices of Y (by Theorem 7 (1)), we have
|Y ′| > 2((k − 2)n + 1) − |(τi ∪ τj) ∩ Y | > (2k − 5)n + 3 > N − 2n. Notice also that
since neither X ′ nor Y ′ contain a vertex of τi or τj, and Y ′ ⊆ V (Ci)∪V (Cj), there are no
red edges between X ′ and Y ′. This means that G[X ′, Y ′] is a (k − 1)-coloured complete
bipartite graph where each side has size at least N − 2n. By our inductive assumption,
G[X ′, Y ′] contains a monochromatic connected (n+ 1)-matching, a contradiction.

Theorem 11. Let k > 4, N = d(2k − 3.5)n+ 1e and M = (2k−2)n+1. Then KN,M
k−→

CM(n+ 1).

Proof. Suppose, towards a contradiction, that G is a k-coloured KN,M that does not have
a monochromatic connected (n + 1)-matching. As usual, we shall be using the notation
introduced earlier in the section. By Theorem 8 we know that G contains at least the
following number of special vertices.

NM

n
− (N +M)(k − 2)

>
1

n
((2k − 3.5)n+ 1)((2k − 2)n+ 1)− ((4k − 5.5)n+ 2.5)(k − 2)

= 2.5kn− 4n+ 1.5k − 0.5 +
1

n
> (2k − 1)n+ 1,

(5)

where in the first inequality we used N = d(2k − 3.5)n+ 1e 6 (2k − 3.5)n + 1.5 and in
the last inequality k > 6. Note that any special vertex of colour c in X has c-degree at
least M − (k − 1)n > M/2. This means that X does not contain two special vertices of
the same colour which belong to distinct components of this colour. Similarly, since every
special vertex of colour c in Y has c-degree at least N − (k − 1)n > N/3, Y does not
contain three special vertices of colour c, each from a distinct component. In particular,
by Theorem 7 (2), there are at most 2n special vertices of any colour and if there are
more than n they all lie in Y. Together with (5) this implies that every colour must
have more than n special vertices, so they all lie in Y, which is a contradiction since
|Y | = (2k − 2)n+ 1 < (2k − 1)n+ 1.
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For k = 4, 5 we have 5kn/2 − 4n + 2 > (2k − 2)n + 2 so we know there can be at
most one colour which has at most n special vertices and all other colours have all their
special vertices in Y. If all colours have more than n then we can reach a contradiction
as before, so we assume that exactly k− 1 colours have more than n special vertices. For
any of these k − 1 colours, if Ci, Cj are the special components of this colour we know
|(Ci∪Cj)∩X| > (2(k−1)−3)n+ 1 so if |Y \ (Ci∪Cj)| > (2(k−1)−3)n+ 1 we are done
by Theorem 9. In particular, we may assume that |Y ∩ (Ci ∪ Cj)| > 3n + 1. Inheriting
notation from the proof of Theorem 8 this means that yi+wi+yj +wj > 3n+1, so (using
wi > xi, xi + yi 6 n, and the analogous inequalities for j)

yi(wi − xi) + yj(wj − xj) > yi max(wi + yi − n, 0) + yj max(wj + yj − n, 0)

> min(yi, yj)(yi + wi + yj + wj − 2n)

> min(yi, yj)(n+ 1)

> (yi + yj − n)n.

Now, we find that the sum of xi(zi− yi) + yi(wi−xi) over all monochromatic components
Ci, is at least the sum of yi(wi − xi) over all components with colours with more than
n special vertices (using wi > xi and zi > yi), which by the above inequality is at least
(s − n)n − (k − 1)n2 > (k − 2)n2 > 2n2, where s is the number of special vertices.
Continuing as in the proof of Theorem 8, we find that the number of special vertices is,
in fact, at least NM/n− (N +M)(k − 2) + 2n > 2kn+ 2, a contradiction.

In the above two theorems we used a weaker estimate than the one provided by
Theorem 8, namely we ignored the term that includes T , the number of somewhat special
vertices. In the next lemma, which will lead to the proof of our main results, Theorems 1
and 3, we shall make use of the stronger statement given by Theorem 8.

Lemma 12. Let k > 5 and let N,M be integers that satisfy the following conditions.

1. N,M > (2k − 3.5)n,

2. NM/n− (k − 2)(N +M) > kn,

3. KN ′,M ′
k−1−→ CM(n+ 1), when N ′ = N − 2n and M ′ = 2M − 2n(k − 1)− 2n

2k−5 ,

4. KN ′,M ′
k−1−→ CM(n+ 1), when N ′ = 2N − 2n(k − 1)− 2n

2k−5 and M ′ = M − 2n.

Then KN,M
k−1−→ CM(n+ 1).

Proof. Suppose, towards a contradiction, that G is a k-coloured KN,M that does not have
an connected (n + 1)-matching. Recall that, by Theorem 7 (1), every special vertex of
colour c in X has c-degree at least M−(k−1)n > M/3, thus there are at most two special
vertices of colour c in X that belong to distinct components. It follows from this and the
corresponding statement for Y , as well as Theorem 7 (2), that at most two components
of any given colour contain special vertices of that colour.
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Claim 13. There is a colour in which there are precisely two components that contain
special vertices, and which has most 2n/(2k − 5) somewhat special vertices.

Proof. By Theorem 8, the number of special vertices is at least

NM

n
− (k − 2)(N +M) + T

(
min(N,M)

n
− k
)
> kn+ T (k − 3.5), (6)

where we used Conditions 1 and 2. Let S be the set of colours in which there are at least
n + 1 special vertices, and denote m = |S|. As the number of special vertices is larger
than kn, we have m > 1. Call the colour in S, with the least number of somewhat special
vertices, red, and let t be this number. We shall show that t 6 2n/(2k − 5), an assertion
which would complete the proof of the claim.

As T is the number of somewhat special vertices, we have T > mt. Since there are at
most (k −m)n special vertices in colours outside of S, the number of special vertices in
the colours in S is at least kn + T (k − 3.5) − (k −m)n > mn + mt(k − 3.5). It follows
that for some colour in S, say blue, there are at least n + t(k − 3.5) special vertices.
Since the blue special and somewhat special vertices all belong to a minimum cover of
one of two blue components, there are at most 2n such vertices. It follows that there are
at most n − t(k − 3.5) blue somewhat special vertices. By definition of t, we find that
n− t(k − 3.5) > t, i.e. t 6 2n/(k − 5), as needed.

Let red be the colour given by the above claim and let Ci and Cj be the red special
components. Recall that all red special vertices need to be on the same side of G (by
Theorem 7 (2)).

Let us first assume that this side is X. In this case, (τi ∪ τj) ∩ Y constitutes the set
of all red somewhat special vertices of this colour and |(τi ∪ τj) ∩ Y | 6 2n/(2k − 5) by
the above claim. Let X ′ := X \ (τi ∪ τj) and Y ′ := (Y ∩ (Ci ∪ Cj)) \ (τi ∪ τj). Note that
|X ′| > |X| − 2n = N − 2n. Since each of Ci and Cj contains at least M − (k − 1)n
vertices of Y (by Theorem 7 (1)), we have |Y ′| > 2(M − (k − 1)n) − |(τi ∪ τj) ∩ Y | >
2(M − (k− 1)n)− 2n/(2k− 5). Notice also that since neither X ′ nor Y ′ contain a vertex
of τi or τj, and Y ′ ⊆ V (Ci) ∪ V (Cj), there are no red edges between X ′ and Y ′. This
means that G[X ′, Y ′] is a (k− 1)-coloured complete bipartite graph with sides of sizes at
least N − 2n and 2M − 2n(k − 1 + 1/(2k − 5)), respectively, so by Condition 3 contains
a monochromatic connected (n+ 1)-matching, a contradiction to our assumption that G
does not have a monochromatic connected (n+ 1)-matching.

In the other case we analogously obtain X ′, Y ′ with |Y ′| > M − 2n and |X ′| >
2N − 2n(k − 1 + 1/(2k − 5))n, which gives a contradiction, using Condition 4.

Theorem 14. Let k > 5, N =
⌈(

2k − 3 + 1
2k−5

)
n
⌉

+ 1 and M =
⌈(

2k − 3.5 + 1
2k−5

)
n
⌉

+

1. Then KN,M
k−→ CM(n+ 1).

Proof. We use Theorem 12. To that end, let us check that Conditions 1 to 4 hold.
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Condition 1, that N,M > (2k − 3.5)n, clearly holds. Next, note that

NM

n
− (N +M)(k − 2) > (2k − 3) (2k − 3.5)n− (4k − 6.5)n(k − 2)

= kn+ (k − 5)n/2

> kn,

(7)

where we used the fact that NM/n − (N + M)(k − 2) is increasing for both N and M
whenever N,M > (k − 2)n, and the assumption that k > 5. This implies that Condition
2 holds.

Next, notice that

N − 2n > (2(k − 1)− 3)n+ 1

2M − 2n(k − 1)− 2n

2k − 5
> (2(k − 1)− 3)n+ 1,

so Condition 3 holds by Theorem 9. Similarly,

2N − 2n(k − 1)− 2n

2k − 5
> (2(k − 1)− 2)n+ 1

M − 2n > (2(k − 1)− 3.5)n+ 1.

Thus, Condition 4 holds by Theorem 11, for which we require k − 1 > 4. We have seen
that all the conditions of Theorem 12 hold. The proof follows.

Theorem 15. For k > 6 we have rk(n+ 1) 6
(
2k − 3.5 + 1

k−2

)
n+ 1.

Proof. We again use Theorem 12 with M = N =
(
2k − 3.5 + 1

k−2

)
n + 1. Note that

Condition 1 of Theorem 12 holds, as M,N > (2k − 3.5)n. Next, note that

N2

n
− 2N(k − 2) >

(
2k − 3.5 +

1

k − 2
− 2(k − 2)

)
N

=

(
1

2
+

1

k − 2

)
N

>

(
k +

1

4
+

1.5

k − 2

)
n

> kn,

so Condition 2 holds. Finally, note that

N − 2n >

(
2(k − 1)− 3.5 +

1

k − 2

)
n+ 1 >

(
2(k − 1)− 3.5 +

1

2(k − 1)− 5

)
n+ 1,

as k > 5, and, using k > 6,

2N − 2n(k − 1)− 2n

2k − 5
=

(
2k − 5 +

2

k − 2
− 2

2k − 5

)
n+ 2

>

(
2(k − 1)− 3 +

1

2(k − 1)− 5

)
n+ 1.
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It follows from Theorem 14 that Conditions 3 and 4 hold (note that they are equivalent
here, since N = M). The proof now follows from Theorem 12.

We note that it is not hard to obtain a slightly weaker result, that still beats Theorem 1,
and applies for k = 5 as well.

3 From connected matchings to paths and cycles

In [17]  Luczak introduced a method that reduces problems about paths and cycles to
problems about connected matchings. As this method has become standard, we do not
give precise details here, instead we give a brief overview of how to make use of Theorems 9
and 15 to deduce Theorems 1 and 3 (see, e.g., our previous paper [2] on this subject for
more details in a very similar setup).

Let k be an integer, and suppose that we have an upper bound of the form rk(n+1) 6
αkn which holds for every large enough n (this is what we get from Theorems 9 and 15).
Let n be very large, and consider a k-colouring of KN,N , denoted G, where N is a bit
larger than αkn. Our aim is to find a cycle (or path) of length 2n.

Apply Szemerédi’s regularity lemma (see [20]) to G. We obtain a partition of the
vertices into a not-too-small and not-too-large number of clusters of almost equal size,
such that the graph between almost every pair of clusters behaves almost randomly in
every colour. Now consider the graph G, whose vertices represent the clusters, and for
which there is an edge of colour c between two clusters if the graph of c-coloured edges
between them behaves randomly and is somewhat dense. By removing a few clusters and
insisting that clusters are subsets of one of the parts of G, we may assume that G is a
balanced bipartite graph, whose every vertex is joined to almost every vertex on the other
side.

 Luczak’s interesting observation is that a monochromatic connected matching M in
this graph can be lifted to a path that covers almost all the vertices in the clusters ofM
and very few other vertices. Thus, in order to find a path (or, with a little more effort, a
cycle) of length 2n in G, it suffices to find a connected matching of size almost 1

2αk
|G| in

G.
So, our task boils down to proving that G has a monochromatic connected matching of

the required size. The next theorem allows us to reduce the problem of finding monochro-
matic connected matchings in almost complete bipartite graphs to the same problem in
complete bipartite graphs. Thus, by the assumption that rk(n + 1) 6 αkn, we are done.
Theorems 1 and 3 follow by the above argument, the following theorem, and Theorems 9
and 15.

Theorem 16. Let 0 < ε < (8k)−2k = c−1k and N > (1+εck)rk(n+1). Let G be a subgraph
of KN,N of minimum degree at least N − εn. Then, in every k-colouring of G, there is a
monochromatic connected (n+ 1)-matching.

We omit the proof of this theorem since it is essentially the same as the one given in
our previous paper [2], albeit only for 3 colours. In [2] we also discuss the by now standard
connected matching method of  Luczak described in this section in more details.
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4 Lower bounds

The authors in [5] were interested in the function f(k), defined to be the minimum N such
that in every k-colouring of KN,N there is a monochromatic P4 (i.e. a path of length 3).
Since a bipartite graph is P4-free if and only if it is a star forest, f(k)−1 is the maximum
N such that KN,N can be k-coloured in such a way that all monochromatic components
are stars. They determined f(k) for every k, as follows.

f(k) =


k + 1 k 6 3
6 k = 4
2k − 3 k > 5.

(8)

The function f(k) is relevant to the study of bipartite Ramsey numbers of paths, cycles,
or connected matchings. Indeed, we note the following observation made in [5]; here
rbip(H, k) denotes the k-colour bipartite Ramsey number of H.

Observation 17. Let N = (f(k) − 1)n. There is a k-colouring of KN,N without a
monochromatic connected (n + 1)-matching, which can be obtained by blowing up a con-
struction for f(k), by replacing each vertex by n new vertices. In particular, by (8), we
have

rbip(C2(n+1), k) > rbip(P2(n+1), k) > rbip(CM(n+ 1), k) >


kn k 6 3
5n k = 4
(2k − 4)n k > 5.

(9)

This establishes the lower bound in Theorem 2. It also shows that the upper bounds
in Theorems 1 and 3 are close to being tight.

We believe that the lower bounds in Theorem 17 could be improved, possibly close to
(2k − 3.5)n (thus almost matching the upper bound in Theorem 3). For five colours, we
indeed obtain such an improvement.

Initially, we found a better example than the one mentioned above for five colours by
a computer, using a technique called simulated annealing. The example we present here
is constructed by hand, based on observations of the properties of the example found by
a computer.

While, by (8), it is not possible to 5-colour K7,7 such that all monochromatic compo-
nents are stars, such a colouring exists for the graph obtained from K7,7 by removing a
single edge, see Figure 1 below.

To make it easier to check the claimed properties of the figure, we coloured the vertices
as follows: for each monochromatic component, we know it is a star, and we colour a centre
of the star by the colour of the component (for stars that consist of a single edge we pick
exactly one of its vertices). In order to check that all monochromatic components in
this example are stars one only needs to check that for every edge one of its endpoints
is coloured in its colour (this might be easier using Figure 2) and that every vertex has
degree exactly one in all colours it is not coloured in (easier in Figure 1).

We are now ready to prove Theorem 4, which asserts that the bipartite Ramsey number
of a path or a cycle of order 2(n+ 1) is larger than 6.5n.
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Figure 1: A 5-colouring of the graph K7,7 with the edge u0v0 removed, where all the
monochromatic components are stars.

of Theorem 4. Note that the statement holds for n = 1, by (9).
Let G be the graph depicted in Figure 1, with an additional black edge between u0

and v0. Note that all monochromatic components in G are stars, with the exception of
the black component that contains u0 and v0, for which the set {v0, u0} is a vertex cover.

Replace each vertex vi (resp. ui) with a set of vertices Vi (resp. Ui) of size n if i > 1
and of size bn/2c if i = 0. Next, add all edges between Ui and Vj and colour them by the
colour of uivj in G. Call the resulting graph H.

The graph H is a 5-coloured KN,N , where N = b6.5nc, and we claim that H does not
contain a monochromatic connected (n+1)-matching. Indeed, note that every monochro-
matic connected component in H is a blow-up of a monochromatic connected component
in G. Now, the black component that contains U0 ∪ V0 (i.e. that corresponds to black
component that contains u0v0) has a cover U0 ∪ V0, of size 2 bn/2c 6 n. All other compo-
nents are blow-ups of a star by sets of size at most n, in particular they all have covers of
size at most n. Since, as we have now shown, every connected component has a cover of
size at most n, it follows that there are no monochromatic connected (n+ 1)-matchings,
as needed.

5 Concluding remarks and open problems

In this paper we determined, asymptotically, the 4-colour bipartite Ramsey number of
even cycles and consequently for paths. Specifically, we showed here that rbip(C2n, k) =
(2k − 3 + o(1))n holds for k = 4, a bound which also holds for k = 3 (as we showed in
[2]). This is in contrast to the non-bipartite Ramsey numbers, where already the four
colours case remains unresolved. We also showed that the behaviour changes as k grows,
by showing that rk(n + 1) 6 (2k − 3.5 + 1/(k − 2) + o(1))n for k > 6, which is quite
close to the lower bound of (2k − 4)n + 1 from [5]. We believe that our bound might
be asymptotically optimal, which is in part supported by our example for five colours
which shows that rk(n+ 1) > (2k− 3.5)n when k = 5. Our approach for obtaining upper
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Figure 2: A decomposition of the colouring given in Figure 1 making it more readable
(the numbers correspond to the indices of the vertices in Figure 1; the vertices on the
left-hand side are permuted so as to make the colouring in each subfigure look nicer).

bounds relies on having at least kn+ 1 special vertices, which guarantees the existence of
two components of the same colour that contain special vertices. As the smallest value
of N for which this is no longer guaranteed to occur is (2k − 3.5 + 1/k +O(1/k2))n, this
value seems to be a natural barrier for our arguments, giving further evidence towards
this bound being close to the truth. The most natural next question is to determine what
is the correct behaviour for five or more colours.

Another interesting direction might be to strengthen our results by obtaining exact
bounds for long enough paths or cycles, possibly by obtaining a stability version of our
results, similarly to [13, 10, 1].
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[2] M. Bucić, B. Sudakov, and S. Letzter, Three colour bipartite Ramsey number of cycles
and paths, J. Graph Theory, to appear.

[3] D. Conlon, J. Fox, and B. Sudakov, Recent developments in graph Ramsey theory,
Surveys in combinatorics 424 (2015), 49–118.

[4] A. N. Day and J. R. Johnson, Multicolour Ramsey numbers of odd cycles, J. Combin.
Theory Ser. B 124 (2017), 56–63.

the electronic journal of combinatorics 26(3) (2019), #P3.60 14
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