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Abstract

A d-dimensional simplicial complex is balanced if the underlying graph is (d +
1)-colorable. We present an implementation of cross-flips, a set of local moves
introduced by Izmestiev, Klee and Novik which connect any two PL-homeomorphic
balanced combinatorial manifolds. As a result we exhibit a vertex minimal balanced
triangulation of the real projective plane, of the dunce hat and of the real projective
space, as well as several balanced triangulations of surfaces and 3-manifolds on few
vertices. In particular we construct small balanced triangulations of the 3-sphere
that are non-shellable and shellable but not vertex decomposable.

Mathematics Subject Classifications: 05E45, 57Q15, 52B05

1 Introduction

The study of the number of faces in each dimension that a triangulation of a manifold
M can have is a very classical and hard problem in combinatorial topology. Even for the
case of triangulated spheres the characterization of these numbers is a celebrated unsolved
problem, known as the g-conjecture. On an apparently simpler level one can ask the fol-
lowing question: what is the minimum number of vertices needed to triangulate a manifold
M? Again the picture is far from being complete. An interesting tool to approach these
and other kind of problems are bistellar flips, a finite set of local moves which preserves
the PL-homeomorphism type, and suffices to connect any two combinatorial triangula-
tions of a given manifold (equivalently, triangulations of PL-manifolds). Björner and Lutz
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[3] designed a computer program called BISTELLAR, employing bistellar flips in order
to obtain triangulations on few vertices and heuristically recognize the homeomorphism
type. This tool led to a significant number of small or even vertex-minimal triangulations
which are listed in The Manifold Page [14], along with many other interesting examples
(see also [5] and [3]).
In this article we focus on the family of balanced simplicial complexes, i.e., d-dimensional
complexes whose underlying graph is (d + 1)-colorable, in the classical graph theoretic
sense. Many questions and results in face enumeration have balanced analogs (see for
instance [9, 10, 11, 13]. In particular we can ask the following question: what is the
minimum number of vertices that a balanced triangulation of a manifold M can have?
Izmestiev, Klee and Novik introduced a finite set of local moves called cross-flips, which
preserves balancedness, the PL-homeomorphism type, and suffices to connect any two
balanced combinatorial triangulations of a manifold. We provide primitive computer pro-
gram implemented in Sage [20] to search the set of balanced triangulations of a manifold
and we obtain the following results:

• We find balanced triangulations of surfaces on few vertices. In particular we describe
the unique vertex minimal balanced triangulation of RP2 on 9 vertices.

• We find a balanced triangulation of the dunce hat on 11 vertices. Section 4.2 is
devoted to the proof of its vertex-minimality.

• In Section 5 we discuss balanced triangulations of 3-manifolds on few vertices. In
particular we exhibit a vertex minimal balanced triangulation of RP3 on 16 vertices
with interesting symmetries, and triangulations of the connected sums (S2 × S1)#2

and (S2 " S1)#2 that belong to the balanced Walkup class.

• Finally in Section 5.4 we construct balanced 3-spheres on few vertices that are non-
shellable and shellable but not vertex decomposable, using results in knot theory.

The source code and the list of facets of all simplicial complexes appearing in this paper
are made available in [21].

2 Preliminaries

An abstract simplicial complex ∆ on [n] is a collection of elements of 2[n] that is closed
under inclusion. The elements F ∈ ∆ are called faces, and those that are maximal w.r.t.
inclusion are called facets. A simplicial complex is uniquely determined by its facets: for
elements Fi ∈ 2[n] we define the complex generated by {F1, . . . , Fm} as

⟨F1, . . . , Fm⟩ ∶= {F ∈ 2[n] ∶ F ⊆ Fi, for some i = 1, . . . ,m} .

A subcomplex of ∆ is any simplicial complex Φ ⊆ ∆, and such a subcomplex Φ on V ⊆ [n]
is induced if for every subset G ⊆ 2V such that G ∈ ∆ then G ∈ Φ. The dimension of
a face F is the integer dim(F ) ∶= ∣F ∣ − 1, and the dimension of a simplicial complex is
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the maximal dimension of its facets. 0-dimensional and 1-dimensional faces are called
vertices and edges, and faces that are maximal w.r.t. inclusion are called facets. A
complex whose facets all have the same dimension is called pure. We denote with fi(∆)
the number of faces of ∆ of dimension i, and we collect them together in the f -vector
f(∆) = (f−1(∆), f0(∆), . . . , fdim(∆)(∆)). Given two simplicial complexes ∆ and Γ, their
join is defined to be

∆ ∗ Γ ∶= {F ∪G ∶ F ∈ ∆,G ∈ Γ} .
In particular, for two vertices i, j ∉ ∆ the operations ∆ ∗ ⟨{i}⟩ and ∆ ∗ ⟨{i} ,{j}⟩ are
respectively the cone and the suspension over ∆. To every face F ∈ ∆ we associate the
two simplicial complexes

lk∆(F ) ∶= {G ∈ ∆ ∶ F ∪G ∈ ∆, F ∩G = ∅} ,

and
st∆(F ) ∶= ⟨F ⟩ ∗ lk∆(F ),

called the link and the star of ∆ at F , which describe the “local” properties of ∆. There
is a canonical way to associate to an abstract simplicial complex ∆ a topological space,
denoted by ∣∆∣, and via this correspondence the terminology and the operations defined
above represent discrete analogs of well known tools from classical topology. On the other
hand, given a topological space X, a triangulation of X is any simplicial complex ∆ such
that ∣∆∣ ≅ X. For example the complex ∂∆d+1 ∶= ⟨[d + 2] ∖ {i} , i ∈ [d + 2]⟩ is a standard
triangulation of the d-sphere Sd. More specifically we define the following.

Definition 1. A pure d-dimensional simplicial complex ∆ is a combinatorial d-sphere if
∣∆∣ is PL-homeomorphic to ∣∂∆d+1∣. A pure connected d-dimensional simplicial complex
is a (closed) combinatorial d-manifold if the link of each vertex is a combinatorial (d−1)-
sphere.

Even though there is a subtle difference between the class of combinatorial manifolds
and that of simplicial complexes homeomorphic to a manifold (often called simplicial
manifolds), they are known to coincide for d ≤ 3 (see Section 5.2 for more details in the
case d > 3). For a fixed field F a relaxation of the above definitions is given by the class
of F-homology d-manifolds, that is pure d-dimensional simplicial complexes such that
H̃i(lk∆(F );F) ≅ H̃i(Sd−dim(F )−1;F) holds for every nonempty face F and for every i ≥ 0
(i.e., lk∆(F ) is a F-homology (d − dim(F ) − 1)-sphere).
In this paper we study a family of complexes with an additional combinatorial property,
introduced by Stanley in [18].

Definition 2. A d-dimensional simplicial complex ∆ on [n] is balanced if there is a map
κ ∶ [n]Ð→ [d + 1], such that κ(i) ≠ κ(j) for every {i, j} ∈ ∆.

In words ∆ is balanced if the graph given by its vertices and edges is (d + 1)-colorable
in the classical graph theoretic sense, therefore we often refer to the elements in [d + 1]
as colors, and to the preimage of a color as color class. Although a priori the map κ
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is part of the data defining a balanced complex, in all the examples considered in this
paper κ is unique up to permutations of the colors. We turn our attention to balanced
triangulations of interesting topological spaces. As a guide example we consider the d-
dimensional complex

∂Cd+1 ∶= ⟨{0} ,{v0}⟩ ∗ ⋅ ⋅ ⋅ ∗ ⟨{d} ,{vd}⟩ , (1)

on the set {0, . . . , d, v0, . . . , vd}. This is indeed a balanced vertex minimal triangulation of
Sd, and it is in particular isomorphic to the boundary of the (d + 1)-dimensional cross-
polytope. In general it is possible to turn any triangulation ∆ of a topological space into
a balanced one by considering its barycentric subdivision Bd(∆), defined as

Bd(∆) ∶= {{vF1 , . . . , vFm} ∶ F1 ⊊ ⋅ ⋅ ⋅ ⊊ Fm, Fi ∈ ∆} .

Indeed more generally for the order complex of a ranked poset, the rank function gives
a coloring which provides balancedness (see [18]). Among the many results on face enu-
meration that have been recently proved to have balanced analogs we focus on a work of
Izmestiev, Klee and Novik [9], which specializes the theory of bistellar flips to the balanced
setting. In their work the following operation preserving balancedness is defined.

Definition 3. Let ∆ be a pure d-dimensional simplicial complexes and let Φ ⊆ ∆ be an
induced subcomplex that is PL-homeomorphic to a d-ball and that is isomorphic to a
subcomplex of ∂Cd+1. The operation

∆z→ χΦ(∆) ∶= ∆ ∖Φ ∪ (∂Cd+1 ∖Φ)

is called a cross-flip on ∆.

Figure 1: All non-trivial basic cross-flips for d = 2.

In [9] the authors require the subcomplexes Φ and ∂Cd+1∖Φ to be shellable (see Section 5.4
for a definition), but since all the subcomplexes we consider in our implementation satisfy
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this condition we do not include it in Definition 3. We now describe an interesting family
of subcomplexes of ∂Cd+1: for 0 ≤ i ≤ d + 1 define

Φi ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⟨{v0}⟩ ∗ ⟨{i + 1} ,{vi+1}⟩ ∗ ⋅ ⋅ ⋅ ∗ ⟨{d} ,{vd}⟩ for i = 0

⟨{0, . . . , i − 1, vi}⟩ ∗ ⟨{i + 1} ,{vi+1}⟩ ∗ ⋅ ⋅ ⋅ ∗ ⟨{d} ,{vd}⟩ for 1 ≤ i ≤ d
⟨{0, . . . , d}⟩ for i = d + 1

,

and let ΦI ∶= ⋃i∈I Φi, for every I ⊆ [d + 1]. It is not hard to see that those complexes are
indeed shellable subcomplexes of the boundary of the (d + 1)-dimensional cross-polytope
in (1). A cross-flip replacing a subcomplex ΦI with its complement ΦJ (note that this
family is closed under taking complement w.r.t. ∂Cd+1) is called a basic cross-flip. The
basic cross-flip replacing Φ{0} with ∂Cd+1∖Φ{0} ≅ Φ{0} is referred to as trivial flip, because
it clearly does not affect the combinatorics, and every non-trivial basic cross-flips either
increases or decreases the number of vertices. We refer to the former as up-flips and to the
latter as down-flips. Moreover two distinct sets I ≠ J ⊆ [d + 1] might lead to isomorphic
subcomplexes ΦI ≅ ΦJ , and certain basic cross-flips can be generated (i.e. written as
combination) by some others. As an example, the flips in the second line of Figure 1 (we
count the arrows separately) can be obtained via a combination of the four moves in the
first row. These issues, as well as a description of the possible f -vectors of the complexes
ΦI , have been studied in [12].

Theorem 4 ([12]). There are precisely 2d+1−2 non isomorphic non-trivial basic cross-flips
in dimension d. Moreover 2d of them suffice to generate them all.

The case of surfaces has been also studied in [16]. The interest in cross-flips, and in
particular in basic cross-flips, is due to the following result.

Theorem 5 ([9]). Let ∆ and Γ be balanced combinatorial d-manifolds. Then the following
conditions are equivalent:

• ∣∆∣ and ∣Γ∣ are PL-homeomorphic;

• ∆ and Γ are connected by a sequence of cross-flips;

• ∆ and Γ are connected by a sequence of basic cross-flips.

Essentially Theorem 5 states that any two balanced PL-homeomorphic combinatorial
manifolds can be transformed one into the other by a sequence of a finite number of flips.
This serves as a motivation to develop an implementation of this moves, as it was done
in the setting of bistellar flips by Björner and Lutz in [3] with BISTELLAR. In particular
our goal is to find balanced triangulations of a given manifold on few vertices, since taking
barycentric subdivision typically leads to large complexes.

Remark 6. We conclude this section by offering a way to visualize the results above.
Consider a graph whose vertices are all the balanced combinatorial triangulation of a
certain manifold M , and whose edges are basic cross-flips. We call this graph the cross-flip
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graph of M , and observe that Theorem 5 states that this graph is connected. Furthermore
we can associate to M another connected graph on the same vertex set, but with edges
the sufficient flips guaranteed in Theorem 4. We call this graph the reduced cross-flip
graph. Figure 2 shows a plot of a subgraph of the reduced cross-flip graph, displayed by
ranking the (all non-isomorphic) complexes according to the number of vertices (see the
numbers on the left). Here we stop performing up-flips on a sphere ∆ if f0(∆) ≥ 14. Note
that there is no guarantee of enumerating all the balanced spheres in this way: as an
example all the spheres in Figure 2 with f0(∆) = 16 satisfy f1(∆) ≤ 72, whereas in [22] a
balanced 3-sphere on 16 vertices with 96 edges is constructed.

J f(ΦJ) K f(∂Cd+1 ∖ΦJ) = f(ΦK)
[3] (1,4,6,4,1) [0,1,2,3] (1,8,24,32,15)
[2] (1,5,9,7,2) [0,1,2] (1,8,24,31,14)
[2,3] (1,6,12,10,3) [0,1,3] (1,8,24,30,13)
[1] (1,6,13,12,4) [0,1] (1,8,23,28,12)
[1,3] (1,7,16,15,5) [0,2,3] (1,8,23,27,11)
[1,2] (1,7,17,17,6) [0,2] (1,8,22,25,10)
[1,2,3] (1,7,18,19,7) [0,3] (1,8,21,23,9)
[0] (1,7,18,20,8) [0] (1,7,18,20,8)

Table 1: f -vectors of 3-dimensional basic cross-flips.

3 The implementation

The main purpose of our implementation is to obtain small, possibly vertex minimal,
balanced triangulations of surfaces and 3-manifolds. To achieve this we start from the
barycentric subdivision of a non-balanced triangulation, many of which can be found
in [14], and reduce them using cross-flips. We first establish some notations: a vertex
v ∈ ∆ is called removable if there exists a down flip χΦ such that v ∉ χΦ(∆). A balanced
simplicial complex without removable vertices is called irreducible. In Figure 2 irreducible
triangulations of S3 can be visualized as vertices not connected with any lower vertex.

Remark 7. While a vertex minimal balanced triangulation is clearly irreducible, the con-
verse is not true. Indeed irreducible triangulations are quite many, and they can have a
large vertex set, as shown in Corollary 9.

Lemma 8. Let ∆ be a pure d-dimensional balanced simplicial complex. If a vertex v ∈ ∆
is removable then f0(lk∆(v)) = 2d.

Proof. If the vertex v is removable then there exists an induced subcomplex Γ ⊆ ∆ that is
isomorphic to a subcomplex of ∂Cd+1, such that Γ is a d-ball and v is in the interior of Γ,
because vertices on the boundary are preserved. Since the link of a vertex in the interior
of a balanced d-ball is a balanced (d − 1)-sphere, and the only such subcomplex of ∂Cd+1

is isomorphic to ∂Cd it follows that lk∆(v) ≅ ∂Cd, hence f0(lk∆(v)) = 2d.
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∂C48

11

10

12

13

14

15

16

17

f0

1

1

1

7

8

52

125

228

95

#

J

[3]

[2, 3]

[1, 3]

[1, 2, 3]

K

[0, 1, 2, 3]

[0, 1, 3]

[0, 2, 3]

[0, 3]

ΦK := ∂C4 \ ΦJ

Figure 2: The subgraph of the reduced cross-flips graph of S3 obtained applying the 4
sufficient cross-flips ∆z→ χΦJ

(∆), starting from ∂C4. Edges represent flips, and different
colors correspond to different flips. Up-flips are performed for f0 < 14.
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Corollary 9. Let ∆ be a combinatorial d-manifold, with d ≥ 3. Then the barycentric
subdivision Bd(∆) is irreducible.

Proof. For each vertex vF ∈ Bd(∆), corresponding to a k-face F ∈ ∆, we have lkBd(∆)(vF ) ≅
Bd(∂∆k)∗Bd(lk∆(F )). Moreover, since lkBd(∆)(vF ) is a combinatorial (d−k−1)-sphere,
it has at least fi(∂∆d−k) i-faces. Hence

f0(lkBd(∆)(vF )) = 2k+1 − 2 +
d−k−1

∑
i=0

fi(lk∆(F ))

≥ 2k+1 − 2 +
d−k−1

∑
i=0

fi(∂∆d−k)

= 2d−k+1 + 2k+1 − 4.

For a fixed d the last expression is minimized when k = d
2 , and in that case we have

f0(lkBd(∆)(vF )) ≥ 4 (2
d
2 − 1), which is strictly larger than 2d, for d ≥ 3.

Note that Corollary 9 holds for more general classes, e.g., homology manifolds, for which
the inequality fi(lk∆(F )) ≥ fi(∂∆d−k) still holds for every k-face F and for every i. The
computation above also shows that for d = 2 every vertex vF arising from the subdivision of
an edge F has degree 4, hence it is potentially removable. Since the barycentric subdivision
is the standard way of turning any triangulation into a balanced triangulation of the same
space, for d ≥ 3 the result above represents a bad news. Indeed Corollary 9 states that
to reduce such a subdivision we are forced to start with some up-flips and to increase the
number of vertices, which for the case of barycentric subdivisions is typically quite large.
Our code presents two main challenges:

• List all the flippable subcomplexes of any type;

• Decide which type of move to apply and which subcomplex to flip.

Already in dimension 1 the problem of deciding if a fixed complex has a subcomplex
isomorphic to a given one, known as the subgraph isomorphism problem, is NP-complete.
However since graphs are computationally well studied it is convenient to reduce the
problem to the one dimensional case, to employ structures and algorithms designed for
graphs. We say that a pure strongly connected d-dimensional simplicial complex is a
pseudomanifold if every (d − 1)-face is contained in exactly two facets.

Definition 10. For a pure d-dimensional pseudomanifold ∆ the dual graph G(∆) is the
graph with vertex set {F ∈ ∆ ∶ dim(F ) = d} and edge set {{Fi, Fj} ∶ dim(Fi ∩ Fj) = d − 1}.

Given a d-dimensional pseudomanifold ∆ and a pure subcomplex Φ ⊆ ∂Cd+1 that is a
ball, we list all subgraphs of G(∆) that are isomorphic to G(Φ) using an algorithm such
as the VF2 algorithm [6], from which we only keep those that correspond to induced
subcomplexes. This check can be performed rather efficiently by direct inspection on the
faces of ∆.
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Remark 11. In general, the information encoded in the dual graph is not sufficient to
reconstruct the simplicial complex. Let Φ be a d-ball. If ∆ is a combinatorial d-manifold
and Γ ⊆ ∆ a subcomplex, then G(Γ) ≅ G(Φ) does not imply Γ ≅ Φ. However, if ∆ is in
addition balanced and Φ ⊆ ∂Cd+1 then the following holds.

Lemma 12. Let ∆ be a balanced combinatorial d-manifold, Γ ⊆ ∆ a pure subcomplex and
Φ ⊆ ∂Cd+1 a d-ball. If G(Γ) ≅ G(Φ), then Γ ≅ Φ.

Proof. Assume that Γ ≇ Φ. Since G(Γ) ≅ G(Φ), Γ is isomorphic to Φ modulo identifying
vertices, without affecting d- and (d − 1)-dimensional faces. Since ∆ is balanced, the
identification has to preserve the coloring, that is, a vertex v has to be identified with a
vertex w of the same color. Finally we observe that if v and w are vertices of the same
color in Φ ⊆ ∂Cd+1, then there exists a (d−1)-dimensional face F ∈ Φ such that F ∪{v} ∈ Φ
and F ∪ {w} ∈ Φ. For an explicit description of all possible subcomplexes Φ we refer to
[12, Section 4.3]. The simplicial map identifying v and w then also identifies F ∪ {v} and
F ∪ {w}, which is in contradiction with G(Γ) ≅ G(Φ).

Moreover once a flip ∆ z→ χΦ(∆) =∶ ∆′ is performed we do not need to rerun the check
on the entire complex to list all the flippable subcomplexes of ∆′, but it suffices to up-
date the list locally, by considering only the induced subcomplexes of ∆′ that are not
induced subcomplexes of ∆. Even though this idea allows to deal with relatively large
3-dimensional complexes, higher dimensions appear to be still out of reach.
For the second problem, namely to decide which subcomplex to flip, we propose and
combine two very naive strategies: given a balanced pseudomanifold ∆ we choose a sub-
complex Φ among those which

• maximize ∣{v ∈ χΦ(∆) ∶ f0(lkχΦ(∆)(v)) = 2d}∣,

• maximize ∑
v∈χΦ(∆),dim(v)=0

(f0(lkχΦ(∆)(v)))2.

We maximize the two functions in the order as presented above. With the first condition
we simply maximize the number of potentially removable vertices, while maximizing the
sum of squares of the vertex degrees forces the new triangulation to have an inhomoge-
neous degree distribution, and hence some very poorly connected vertices.

Remark 13. Typically, starting from a large triangulation, we cannot hope to reduce dras-
tically the number of vertices through a sequence consisting only of down-flips, because
irreducible triangulations are quite frequent. Even a restricted example like Figure 2
reveals several irreducible triangulations of S3 on few vertices. We can overcome this
inconvenience by interposing a certain number of random up-flips to avoid local minima.

Remark 14. We make no claim of efficiency, and we do not take into account the time
needed to reduce a triangulation. Undoubtedly many details in the implementation can
be improved, and the strategies refined. So far we were able to obtain small balanced
f -vectors of all the 3-dimensional examples considered. In general, the problem of finding
subcomplexes of the boundary of the cross-polytope in a triangulation is significantly
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harder than finding subcomplexes of the boundary of the simplex. This fact, and the
issue pointed out in Remark 13 make our code slower than the program BISTELLAR. In
particular, the technique of simulated annealing employed in [3] does not appear to be
effective in this setting.

4 Surfaces and the Dunce Hat

The first complexes we consider are triangulations of compact 2-manifolds. In this case
the number of vertices uniquely determines the remaining entries of the f -vector. In
Table 2 we display a list of minimal known f -vectors of several surfaces, as well as the
f -vectors of the corresponding barycentric subdivisions, which is always the starting input
for our procedure. Finally in the fourth column we report the smallest known f -vectors
of balanced triangulations found via the program.

4.1 Real projective plane

We found a unique vertex minimal balanced triangulation ∆RP2

9 of the real projective
plane, which is depicted in two ways in Figure 3. The f -vector is f(∆RP2

9 ) = (1,9,24,16).
The non balanced minimal one has 6 vertices.

8 9

7

89

7

1
6 5

2 3

4

5 7

6

1

57

6

1

9

2

3

8 4

Figure 3: The simplicial complex ∆RP2

9 represented as the quotient of a disk in two
different ways.

Lemma 15. The simplicial complex ∆RP2

9 is a vertex (hence every fi) minimal balanced
triangulation of the projective plane.

Proof. The claim follows from a result of Klee and Novik ([[13], Proposition 6.1]) which
states that any balanced triangulation of an homology d-manifold ∆ that is not an ho-
mology d-sphere has at least three vertices in each color class. We briefly recall their
argument. Assume there exists a color (say 1) whose class contains less than three ver-
tices: if there is only one vertex colored with 1 then ∆ is a cone, since every facet contains
one vertex per color, and hence contractible. In the same way, since every (d − 1)-face
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colored with [d] ∖ {1} is connected to exactly 2 vertices of color 1, if ∆ has precisely two
of color 1 is 2, say v1 and v2, then ∆ is a suspension over the homology (d − 1)-sphere
lk∆(v1) ≅ lk∆(v2). Hence ∆ is an homology sphere.

Remark 16. Since triangulated surfaces on 9 vertices are listed in [14], we can check that
∆RP2

9 is indeed the unique balanced triangulation of RP2 on 9 vertices.

∣∆∣ Min f(∆) f(Bd(∆)) Min. Bal. f known Notes
S2 (1,4,6,4) (1,14,36,24) (1,6,12,8)∗ ∂C3

T (1,7,21,14) (1,42,126,84) (1,9,27,18)∗ see [13]
T#2 (1,10,36,24) (1,70,216,144) (1,12,42,28)
T#3 (1,10,42,28) (1,80,252,168) (1,14,54,36)
T#4 (1,11,51,34) (1,96,306,204) (1,14,60,36)
T#5 (1,12,60,40) (1,112,360,240) (1,16,72,48)
RP2 (1,6,15,10) (1,31,90,60) (1,9,24,16)∗ ∆RP2

9

(RP2)#2 (1,8,24,16) (1,48,144,96) (1,11,33,22)
(RP2)#3 (1,9,30,20) (1,59,180,120) (1,12,39,26)
(RP2)#4 (1,9,33,22) (1,64,198,132) (1,12,42,28)
(RP2)#5 (1,9,36,24) (1,69,216,144) (1,13,48,32)

Table 2: A table reporting some small f -vectors of balanced surfaces. The symbol ”*”
indicates that the corresponding value of f0 is the minimum number of vertices of a
balanced triangulation of ∣∆∣.

4.2 Dunce hat

The dunce hat is a topological space which exhibits interesting properties: it is contractible
but non-collapsible, and its triangulations are Cohen-Macaulay over any field but not
shellable. For the definition of shellability we refer to Section 5.4, while we avoid defining
Cohen-Macaulay simplicial complexes here, since they go beyond the aim of this article.
The interested reader can find an extensive treatment of this topic in [19]. The dunce
hat can be visualized as a triangular disk whose edges are identified via a non-coherent
orientation. Surprisingly, even if it is possible to construct a balanced triangulation by
allowing only 3 vertices to be on the boundary of such disk, the vertex minimal one, which
is depicted in Figure 4, is achieved when the singularity contains 4 vertices. Its f -vector
is f(∆DH) = (1,11,34,24). In the rest of this section we prove that this is indeed the
least number of vertices that a balanced triangulation of the dunce hat can have. We call
the singularity of a triangulation of the dunce hat the 1-dimensional subcomplex of faces
whose link is not a sphere. Note that the link of edges in the singularity consists of three
isolated vertices. The set of faces whose link is a sphere is called the interior of the dunce
hat, and it coincides with the interior of the triangular disk.
Since the dunce hat is not a manifold the number of vertices of a triangulation does not
uniquely determine the other face numbers, but the number of vertices involved in the
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singularity also plays a role. If we let f sing
0 be this number, then the f -vector (1, f0, f1, f2)

of any triangulation of the dunce hat satisfies the following equations:

⎧⎪⎪⎨⎪⎪⎩

f0 − f1 + f2 = 1

f sing
0 + 2f1 − 3f2 = 0

. (2)

In particular it holds that f1 = f sing
0 + 3f0 − 3. We proceed now with a sequence of lemmas

leading to Proposition 23, proving that the triangulation in Figure 4 is indeed a balanced
vertex minimal triangulation of the dunce hat.

1

2

3

4

1

4

3

2

1234

8

610

9 7

511

Figure 4: Minimal balanced triangulation ∆DH of the dunce hat.

Lemma 17. Let ∆ be a balanced 2-dimensional Cohen-Macaulay complex that is not
shellable. Then each color class contains at least two vertices.

Proof. Assume there exists a color class containing only one vertex v. As discussed in
Lemma 15 it follows that ∆ is a cone over the 1-dimensional subcomplex lk∆(v). It is
well known that the links of a Cohen-Macaulay simplicial complex are Cohen-Macaulay
(see e.g., [19]). But since every 1-dimensional Cohen-Macaulay complex is shellable, and
coning preserves shellability this implies that ∆ is shellable.

Lemma 18. Let ∆ be a balanced 2-dimensional Cohen-Macaulay complex that is not
shellable. Assume moreover that every edge of ∆ is contained in at least two triangles.
Then each color class contains at least three vertices.

Proof. By Lemma 17 we can assume that there are only two vertices of color 1, say v1

and v2. Let ∆[23] be the subcomplex generated by all faces of ∆ not containing color 1.
Since we assumed that every edge of ∆ is contained in at least two triangles it follows that
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every edge e of ∆[23] is contained in the two triangles e ∪ {v1} and e ∪ {v2}. This implies
that ∆ is obtained taking the suspension of ∆[23], and hence ∆[23] = lk∆(v1) = lk∆(v2). In
particular ∆[23] is Cohen-Macaulay and 1-dimensional, hence shellable. We deduce that
∆ is the suspension over the shellable complex ∆[23] and hence shellable, since suspension
preserves shellability.

Lemma 19. If f sing
0 (∆) = 3 then f0(∆) ≥ 10.

Proof. Observe that by Lemma 18 we need at least 9 vertices to triangulate the dunce hat
in a balanced way, and the only possible configuration is (n1, n2, n3) = (3,3,3), where ni is
the number of vertices of color i. Moreover note that in this case the singularity consists
of one vertex per color class. Let us consider the edge e in the singularity containing the
colors 1 and 2. Since there are three copies of e in the boundary of the disk, each of
which needs to be completed to a triangle using an interior vertex of color 3, we infer that
n3 ≥ 4, because another vertex of color 3 already lies in the singularity.

Remark 20. We suspect that the bound in Lemma 19 is far from being tight. Using our
computer program, the smallest balanced triangulation obtained for the case f sing

0 (∆) = 3
has 14 vertices. However Lemma 19 combined with Lemma 22 suffices for our purpose.

By bichromatic missing edge we mean a pair of vertices i, j, such that {i, j} ∉ ∆, and
κ(i) ≠ κ(j).

Lemma 21. Let ∆ be a balanced triangulation of the dunce hat. Then f0(∆) ≥ 10. Let
m be the number of bichromatic missing edges. If f sing

0 (∆) +m ≥ 7 then f0(∆) ≥ 11.

Proof. For any balanced 2-dimensional simplicial complex with ni vertices of color i, for
i = 1,2,3, the number of edges is clearly bounded by above by the number of edges of
the complete 3-partite graph Kn1,n2,n3 , which equals ∣E(Kn1,n2,n3)∣ = n1n2 + n1n3 + n2n3.
Combined with Lemma 19, which allows us to assume f sing

0 (∆) ≥ 4, this yields

f1(∆) = f sing
0 (∆) + 3f0(∆) − 3 ≤ n1n2 + n1n3 + n2n3 ≤

f0(∆)2

3
, (3)

where the last inequality follows by maximizing the function n1n2 + n1n3 + n2n3, under

the constraint ∑3
i=1 ni = f0(∆). Solving the inequality f sing

0 (∆) + 3f0(∆) − 3 ≤ f0(∆)
2

3 for
f0(∆) we obtain

f0(∆) ≥
9 +

√
81 + 12f sing

0 (∆) − 36

2
.

By Lemma 19 we can assume f sing
0 (∆) ≥ 4, from which it follows that f0(∆) ≥ 9,32. The

second statement follows in the same way by imposing f1(∆) ≤ n1n2 + n1n3 + n2n3 −m in
the first inequality, which yields

f0(∆) ≥
9 +

√
81 + 12(f sing

0 (∆) +m) − 36

2
.

Under the assumption f sing
0 (∆) +m ≥ 7 we obtain f0(∆) ≥ 10,18.
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In order to show that the minimum number of vertices for a balanced triangulation of the
dunce hat is 11 it remains to show that no such simplicial complex exists with f0(∆) = 10
and f sing

0 (∆) ∈ {3,4,5,6}.

Lemma 22. No balanced triangulation of the dunce hat on 10 vertices exists.

Proof. Since any triangulation ∆ of the dunce hat is Cohen-Macaulay, non-shellable, and
has the property that every edge is contained in two or three triangles, Lemma 17 and
Lemma 18 imply that every color class of ∆ contains at least three vertices. Assume
a balanced triangulation ∆ on 10 vertices exists. There is a unique way to partition 10
vertices in three classes, such that every class contains at least three, namely (n1, n2, n3) =
(3,3,4), where ni is the number of vertices of color i. Moreover, due to Lemma 21, we
can assume that f sing

0 (∆) ∈ {3,4,5,6}. In what follows we denote with nsing
i the number

of vertices in the singularity of color i. Note the following facts:

Claim 1: If f sing
0 (∆) = 3 then there are at least four missing bichromatic edges.

• Since the singularity is a triangle it must be colored using all three colors. This
implies that nsing

1 + nsing
2 ≤ 2, and hence there are at least four interior vertices

of color 1 or 2. Denote with v one of these vertices and assume κ(v) = 1. Since
the link of v is a polygon with an even number of vertices, but there are 7
remaining vertices of color 2 and 3 (3 and 4 respectively), then there exists a
vertex a of color 3 such that {v, a} ∉ ∆. We obtain in this way a bichromatic
missing edge for each of the four interior vertices of color 1 and 2.

Claim 2: If f sing
0 (∆) = 4 then there are at least three missing bichromatic edges.

• If (nsing
1 , nsing

2 ) ≠ (2,2) then there are at least three vertices of color 1 and 2 in
the interior of the disk and the link of these vertices is a polygon with an even
number of vertices. Let v be one of these vertices, and assume w.l.o.g. that
κ(v) = 1, where κ is the coloring map of ∆. Since n2 + n3(= n1 + n3) = 7 only
three of the vertices colored with 3 can appear in the link of v. Hence there is
at least one missing bichromatic edge for each of the three vertices.

• If (nsing
1 , nsing

2 ) = (2,2) then there are exactly two vertices of color 1 and 2 (say
v and w) in the interior of ∆ and their link is an even polygon. Again since
n2 + n3 = n1 + n3 = 7 each of these two vertices avoids at least one vertex of
color 3 and there is at least one missing bichromatic edge for each of the two
vertices. Let us denote with {v, a} and {w, b} these missing edges. If a ≠ b
then since a is in the interior and since the link of a contains at most two
vertices of color 1, it can only contain two vertices of color 2. Hence there is
at least a third bichromatic missing edge {z, a}. If a = b then the link of a is
the whole singularity (a square) and, in particular, there exists an edge {x, y}
in the interior of the disk whose endpoints are in the singularity. This yields
a contradiction, because in the case considered two vertices in the singularity
are either connected by an edge in the boundary of the disk, or they have the
same color.
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Claim 3: If f sing
0 (∆) = 5 then there are at least two missing bichromatic edges.

• Since the singularity is a 5-gon it must be colored using all the three color
classes. This implies that nsing

1 + nsing
2 ≤ 4, and hence there are at least two

interior vertices of color 1 or 2. As in the previous paragraph each of these
vertices must avoid at least one vertex of color 3, giving rise to two bichromatic
missing edges.

Claim 4: If f sing
0 (∆) = 6 then there is at least one missing bichromatic edge.

• If (nsing
1 , nsing

2 ) = (3,3) then the link of every interior vertex is the whole sin-
gularity, hence ∆ is the join of a triangulation of S1 with 4 isolated vertices.
This is clearly a contradiction.

• If (nsing
1 , nsing

2 ) ≠ (3,3) then there is at least one interior vertex of color 1 or
2. Once more its link cannot contain all the 7 remaining vertices of a different
color, so it must miss at least one vertex from the color class 3. This produces
a bichromatic missing edge.

If we let m be the number of bichromatic missing edges, then the four claims above imply
f sing

0 (∆) +m ≥ 7 for any f sing
0 (∆). We conclude using Lemma 21.

Proposition 23. The simplicial complex in Figure 4 is a vertex minimal balanced trian-
gulation of the dunce hat.

Proof. The claim follows combining Lemma 19, Lemma 21 and Lemma 22, which show
that no such triangulation exists on less than 11 vertices, for any value of f sing

0 (∆).

5 3-manifolds

In this section we report some interesting and small balanced triangulations of 3-manifolds
found using our computer program.

5.1 Real projective space

We present a peculiar balanced triangulation ∆RP3

16 of the real projective space on 16
vertices. An interesting feature of this complex is its strong symmetry: it is centrally
symmetric (i.e., there is a free involution acting) and all the vertex links are isomorphic
to the 2-sphere in Figure 5. Since the projective space is homeomorphic to the lens space
L(2,1), a particular case of the following result of Zheng shows that our triangulation is
vertex minimal.

Proposition 24 ([22, Proposition 4.3]). Any balanced triangulation of the lens space
L(p, q), with p > 1, has at least 16 vertices.
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[0,2,3,7] [0,4,6,14] [1,2,5,14] [1,5,10,15] [2,3,7,11] [2,11,12,13] [3,7,9,11] [6,8,9,15]
[0,2,3,12] [0,4,6,15] [1,2,5,15] [1,6,10,13] [2,3,11,12] [3,4,5,8] [3,10,11,12] [6,8,10,15]
[0,2,7,15] [0,4,7,15] [1,2,7,14] [1,6,10,15] [2,5,8,13] [3,4,7,8] [4,5,8,13] [6,9,11,14]
[0,2,12,15] [0,5,10,14] [1,2,7,15] [1,7,9,13] [2,5,8,15] [3,5,8,10] [4,5,11,13] [6,10,11,13]
[0,3,4,5] [0,6,9,14] [1,4,6,13] [1,7,9,14] [2,5,11,13] [3,6,8,9] [4,5,11,14] [7,8,9,13]
[0,3,4,7] [0,6,9,15] [1,4,6,15] [1,9,12,13] [2,5,11,14] [3,6,8,10] [4,6,11,13] [7,9,11,14]
[0,3,5,10] [0,9,12,14] [1,4,7,13] [1,9,12,14] [2,7,11,14] [3,6,9,11] [4,6,11,14] [8,9,12,13]
[0,3,10,12] [0,9,12,15] [1,4,7,15] [1,10,12,13] [2,8,12,13] [3,6,10,11] [4,7,8,13] [8,9,12,15]
[0,4,5,14] [0,10,12,14] [1,5,10,14] [1,10,12,14] [2,8,12,15] [3,7,8,9] [5,8,10,15] [10,11,12,13]

Table 3: The list of facets of ∆RP3

16 .

Figure 5: The (all isomorphic) vertex links of the triangulation ∆RP3

16 .

5.2 Small balanced triangulations of 3-manifolds

In Table 4 we report the smallest known f -vectors of balanced triangulations of several
3-manifolds. We point out that some of these triangulations were previously known,
and they are referenced through this section. For instance Klee and Novik [13] proved
the existence of a d-dimensional simplicial complex on 3d + 3 vertices which provides a
vertex minimal balanced triangulation of Sd−1 × S1 when d is even, and of the twisted
bundle Sd−1 " S1 when d is odd. Moreover they construct balanced triangulations of
both Sd−1 × S1 and Sd−1 " S1 on 3d + 5 vertices. These constructions, combined with
a result of Zheng ([23]), show that the second and third line in Table 4 correspond to
vertex minimal balanced triangulations. As previously discussed, via Proposition 24 we
can conclude that also ∆RP3

16 and a triangulation of the lens space L(3,1) constructed in
[22] are balanced vertex minimal. Most notably the mentioned triangulations of Sd−1×S1

(d even), Sd−1"S1 (d odd) and of L(3,1) are balanced neighborly, that is they do not have
bichromatic missing edges.
In the rest of the table we report the minimal balanced f -vectors achieved for different
3-manifolds, such as several lens spaces L(p, q), connected sums, two additional spherical
3-manifolds called the octahedral space and the cube space, and the Poincaré homology
3-sphere. For a more extensive treatment of this topic we refer to [15]. A classical theorem
in topology by Edwards and Cannon states that the k-fold suspension of any homology
d-sphere is homeomorphic to Sd+k, even though it is not a combinatorial sphere. Since
balancedness is preserved by taking suspension we obtain a family of non-combinatorial
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balanced triangulations of Sd, for d ≥ 5. For d = 5 we report the smallest f -vector known
for a non-combinatorial balanced sphere.

Corollary 25. There exists a balanced non-combinatorial 5-sphere with f -vector (1,30,
288,1132,2106,1848,616). Moreover by taking further suspensions we obtain balanced
non-combinatorial d-spheres on 2d + 20 vertices, for every d ≥ 5.

Remark 26. As it was pointed out in [3] there exists a procedure introduced by Datta to
construct the suspension by increasing the number of vertices only by one. Unfortunately
this one point suspension does not preserve balancedness.

The lists of facets of all the triangulations appearing in Table 4 can be found in [21].

5.3 The connected sum of S2 bundles over S1 and the balanced Walkup class

The lower bound theorem for manifolds (actually true for normal pseudomanifolds, see
[17]) gives a bound for the number of edges of a triangulation ∆ of an F-homology manifold
with a certain number of vertices, depending of β̃1(∆;F). It is an interesting refinement
of the lower bound theorem for homology spheres, obtained from the study of algebraic
invariants of Buchsbaum graded rings. Juhnke-Kubitzke, Murai, Novik and Sawaske
proved a balanced analog of this bound (see [11]), and established a conjecture of Klee
and Novik [13, Conjecture 4.14] for the characterization of the case of equality, when the
dimension is greater or equal to 4. Let ∆ and Γ be pure balanced simplicial complexes of
the same dimension on disjoint vertex sets, let F,G be two facets of ∆ and Γ respectively
and let ϕ ∶ F Ð→ G be a bijection. Then the connected sum ∆#Γ is the simplicial
complex obtained from ∆ ∖ F and Γ ∖ G identifying v and ϕ(v), for every v ∈ F . Let
∆ be a balanced simplicial complex, F,G two facets of ∆ and ϕ ∶ F Ð→ G a bijection
such that lk∆(v) ∩ lk∆(ϕ(v)) = {∅} and κ(v) = κ(ϕ(v)), for all v ∈ F . We say that the
simplicial complex obtained from ∆ removing F and G and identifying v with ϕ(v) is a
balanced handle addition. Note that this operations preserves balancedness, as well as the
property of being an homology manifold. We define the balanced Walkup class BHd as
the set of all balanced simplicial complexes obtained from ∂Cd+1 by successively applying
the operations of connected sums with ∂Cd+1 and balanced handle additions. In particular
the set of balanced spheres on n vertices obtained via connected sums of n

d − 1 copies of
∂Cd+1, called cross-polytopal stacked spheres, is a subset of the balanced Walkup class.

Theorem 27 ([11]). Let ∆ be a connected d-dimensional balanced F-homology manifold,
with d ≥ 3. Then

2f1(∆) − 3df0(∆) ≥ 4(d + 1

2
)(β̃1(∆;F) − 1). (4)

Moreover if d ≥ 4 equality holds if and only if ∆ is in the balanced Walkup class.

Theorem 27 leaves unsolved the case of equality when d = 3, which is still part of Conjec-
ture 4.14 in [13].
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Conjecture 28 ([13]). Let ∆ be a connected 3-dimensional balanced F-homology mani-
fold. Then 2f1(∆)−9f0(∆) = 24(β̃1(∆;F)−1) if and only if ∆ is in the balanced Walkup
class.

Using our computer program we found two balanced triangulation of (S2×S1)#2 and (S2"
S1)#2 respectively with f -vector (1,16,84,136,68). Since β̃1((S2 × S1)#2;F) = β̃1((S2 "
S1)#2;F) = 2, it is easy to see that both triangulations attain equality in (4). In light of
Conjecture 28 it is natural to ask if these two simplicial complexes belong to the balanced
Walkup class. We answer positively by giving an explicit decomposition. In what follows
we denote with ∂C4(v1, v2, v3, v4,w1,w2,w3,w4) the boundary of the cross-polytope on the
vertex set {v1, v2, v3, v4,w1,w2,w3,w4}, such that {vi,wi} is not an edge for any i = 1, . . . ,4.

• (S2 " S1)#2:

– As it was pointed out in the first paragraph of Section 5.3 there is a bal-
anced simplicial complex ∆S2

"S1

12 on 12 vertices which triangulates S2 " S1.
It can be obtained from three copies of ∂C4, namely ∂C4(x1, . . . , x4, y′1, . . . , y

′

4),
∂C4(y1, . . . , y4, z′1, . . . , z

′

4) and ∂C4(z1, . . . , z4, x′1, . . . , x
′

4), via two connected sums
and one handle addition, identifying the vertices vi and v′i (see [13]). Clearly
it belongs to in BH3.

– For any facet F = {r1, r2, r3, r4} of ∆S2
"S1

12 we can take the connected sum
with ∂C4(s1, . . . , s4, r′1, . . . , r

′

4) and ∂C4(t1, . . . , t4, s′1, . . . , s′4), again identifying
ri, with r′i and si with s′i.

– Finally we can choose any other facet G = {u1, u2, u3, u4} of ∆S2
"S1

12 such that
F ∩G = ∅ and such that the distance from F and G (measured on the dual
graph) is even, and perform balanced handle addition identifying the vertices
ti with ui. Since the vertices in the link of ti are a subset of {s1, s2, s3, s4}
and F ∩G = ∅, we conclude that the links of ti and ui do not intersect, and
hence the handle addition is well defined. Note that the last choice can produce
non-isomorphic triangulations of (S2 " S1)#2, all of which sit inside BH3.

• (S2 × S1)#2:

– With a similar construction as in the previous case we can triangulate the ori-
entable bundle S2×S1 with four copies of ∂C4, namely ∂C4(x1, . . . , x4, y′1, . . . , y

′

4),
∂C4(y1, . . . , y4, z1, . . . , z4), ∂C4(w1, . . . ,w4, x′′1 , y

′′

2 , y
′′

3 , y
′′

4 ) and ∂C4(w′

1, . . . ,w
′

4, y
′′

1 ,
z2, z3, z4). Here we perform three connected sums and a balanced handle ad-
dition identifying vertices vi, v′i and v′′i . We denote this simplicial complex
on 16 vertices with ∆S2

×S1

16 (note that it is not the vertex minimal balanced
triangulation of S2 × S1).

– We now pick the facets F = {x1, x2, x3, x4} and G = {w1, z2, z3, z4} of ∆S2
×S1

16 ,
and we observe that the link of any vertex in F (respectively G) does not
contain any vertex in G (respectively F ). Moreover F and G have an even
distance (with respect to the dual graph of ∆S2

×S1

16 ).
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– Finally we perform a connected sum and subsequent handle addition using
∂C4(x′′′1 , . . . , x

′′′

4 ,w
′′′

1 , z
′′′

2 , z
′′′

3 , z
′′′

4 ), where the identifications are between vi and
v′′′i .

Remark 29. The description of the construction for (S2 " S1)#2 mostly relies on the
simplicial complex ∆S2

"S1

12 . Since in [13] the authors showed that the analog construction
in dimension d provides a triangulation on 3d vertices of Sd−1 " S1 if d is even and of
Sd−1 × S1 if d is odd, the extra handle that we add provides triangulations on 4d vertices
of (Sd−1 " S1)#2 if d is odd and of (Sd−1 × S1)#2 if d is even.

∣∆∣ Min f(∆) f(Bd(∆)) Min. Bal. f known Notes
S3 (1,5,10,10,5) (1,30,150,240,120) (1,8,24,32,16)∗ ∂C4

S2 × S1 (1,10,42,64,32) (1,148,916,1536,768) (1,14,64,100,50)∗ see [13]
S2 " S1 (1,9,36,54,27) (1,126,774,1296,648) (1,12,54,84,42)∗ see [13]

RP3 (1,11,51,80,40) (1,182,1142,1920,960) (1,16,88,144,72)∗ ∆RP3

16

L(3,1) (1,12,66,108,54) (1,240,1536,2592,1296) (1,16,96,160,80)∗ see [22]
L(4,1) (1,14,84,140,70) (1,308,1988,3360,1680) (1,20,132,224,112)
L(5,1) (1,15,97,164,82) (1,358,2326,3936,1968) (1,22,152,260,130)
L(5,2) (1,14,86,144,72) (1,316,2044,3456,1728) (1,20,132,224,112)
L(6,1) (1,16,110,188,94) (1,408,2664,4512,2256) (1,24,176,304,152)
(S2 × S1)#2 (1,12,58,92,46) (1,208,1312,2208,1104) (1,16,84,136,68) see Section 5.3
(S2 " S1)#2 (1,12,58,92,46) (1,208,1312,2208,1104) (1,16,84,136,68) see Section 5.3
(S2 × S1)#RP3 (1,14,73,118,59) (1,264,1680,2832,1416) (1,20,118,196,98)
(RP3)#2 (1,15,86,142,71) (1,314,2018,3408,1704) (1,21,137,232,116)
(S2 × S1)#3 (1,13,72,118,59) (1,262,1678,2832,1416) (1,20,118,196,98)
(S2 " S1)#3 (1,13,72,118,59) (1,262,1678,2832,1416) (1,19,111,184,92)
S1 × S1 × S1 (1,15,105,180,90) (1,390,2550,4320,2160) (1,24,168,288,144)
Oct. space (1,15,102,174,87) (1,378,2466,4176,2088) (1,24,168,288,144)
Cube space (1,15,90,150,75) (1,330,2130,3600,1800) (1,23,157,268,134)
Poincaré (1,16,106,180,90) (1,392,2552,4320,2160) (1,26,180,308,154)
RP2 × S1 (1,14,84,140,70) (1,308,1988,3360,1680) (1,24,156,264,132)
Triple-trefoil (1,18,143,250,125) (1,536,3536,6000,3000) (1,28,204,352,176) ∆3T

28

Double-trefoil (1,16,108,184,92) (1,400,2608,4416,2208) (1,22,136,228,114) ∆2T
22

Table 4: A table reporting some small f -vectors of balanced 3-manifolds. The symbol
”*” indicates that the corresponding value of f0 is the minimum number of vertices of a
balanced triangulation of ∣∆∣.

5.4 Non-vertex decomposable and non-shellable balanced 3-spheres.

In this paragraph we exhibit two interesting balanced triangulations of the 3-sphere,
namely one that is shellable but not vertex decomposable and a second one which is not
constructible, and hence not shellable. We start with some definitions.

Definition 30. A pure d-dimensional simplicial complex ∆ is vertex decomposable if it is
the d-simplex or there exists a vertex v such that lk∆(v) and ∆ ∖ v ∶= {F ∈ ∆ ∶ v ∉ F} are
vertex decomposable.

the electronic journal of combinatorics 26(3) (2019), #P3.61 19



Definition 31. A pure d-dimensional simplicial complex is shellable if there exists an
ordering F1, . . . , Fm of its facets such that the complex ⟨F1, . . . , Fi−1⟩ ∩ ⟨Fi⟩ is pure and
(d − 1)-dimensional for every 1 ≤ i ≤m. Such an ordering is called shelling order.

Definition 32. A pure d-dimensional simplicial complex ∆ is constructible if ∆ ≅ 2[d+1]

or ∆ = ∆1 ∪∆2, where ∆1, ∆2 and ∆1 ∩∆2 are constructible.

It is well known (see e.g. [2]) that these three families of simplicial complexes are related
by the following hierarchy:

{vertex decomposable} ⊆ {shellable} ⊆ {constructible} .
In particular while there exist shellable 3-spheres which are not vertex decomposable, the
existence of constructible, but not shellable 3-spheres is still open. In order to obtain
interesting, possibly small balanced triangulations we again start from the barycentric
subdivision of two distinct triangulations of the 3-sphere with a sufficiently complicated
knot embedded in their skeleton (i.e., the subcomplex of all faces of dimension at most
1). For instance we turn our attention to the connected sum of 2 or 3 trefoil knots,
called a double-trefoil and a triple-trefoil. The reason for this choice is that in general
the barycentric subdivision might turn non-shellable simplicial complexes into shellable
ones, while complicated knots are obstructions to shellability even after the subdivision.
We employ the following rephrasing of results by Ehrenborg and Hachimori ([7]), and
Hachimori and Ziegler ([8]).

Theorem 33. Let ∆ be a triangulation of a 3-sphere.

• ([8]) If the skeleton of ∆ contains a double-trefoil knot on 6 edges then ∆ is not
vertex decomposable.

• ([7]) If the skeleton of ∆ contains a triple-trefoil knot on 6 edges then ∆ is not
constructible (hence not shellable).

For an introduction to knot theory and a rigorous definition of complicatedness of knots we
defer to a work of Benedetti and Lutz ([4]), where triangulations of the 3-sphere containing
the double and triple-trefoil knot on 3 edges were constructed: the first has 16 vertices
(see S16,92 in [4]), while the second has 18 vertices (S18,125). Using our computer program
we take the barycentric subdivision of these two complexes and we reduce them only
applying cross-flips preserving the subdivision of the knots, which consist of 6 vertices.
More precisely we only allow flips of the form ∆z→ χΦ(∆), where the interior of Φ does
not contain any of the 6 edges of the knot. Theorem 33 guarantees that in this way the
obstructions for vertex decomposability and shellability are preserved, which yields the
following result.

Proposition 34. There exist balanced triangulations ∆2T
22 and ∆3T

28 of the 3-sphere that
are:

• Shellable but not vertex decomposable (∆2T
22 ), and f(∆2T

22 ) = (1,22,136,228,114).

• Non constructible, hence not shellable (∆3T
28 ),and f(∆3T

28 ) = (1,28,204,352,176).

In Table 5 and Table 6 we report the list of facets of these two simplicial complexes.
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[6,19, v3, v12] [14,19,21, v23] [6,16, v3, v12] [14,19, v3, v12] [10,11,19, v2] [14,19, v1, v23] [7,9,14, v1] [7,8,13, v23]
[6,19, v3, v13] [15,19, v2, v13] [6,16, v3, v13] [6,9,13,17] [10,15,19, v2] [14,20, v1, v23] [7,9,14, v3] [7,8,13, v13]
[6,19,21, v12] [17,18,21, v12] [11,16, v3, v13] [10,16,18, v2] [9,11,13,17] [12,15, v1, v23] [7,14, v3, v12] [12,14, v2, v12]
[14,19,21, v12] [16,18,21, v12] [11,16, v3, v12] [10,17,18, v2] [9,11,17, v1] [8,12, v1, v23] [7,15, v3, v12] [12,15, v2, v12]
[6,17,21, v12] [6,16, v1, v12] [11,16, v2, v13] [17,18, v2, v23] [9,11,12,13] [8,20, v1, v23] [7,15, v3, v23] [7,15, v2, v12]
[6,17, v1, v12] [6,10,16, v1] [6,16, v2, v13] [16,18, v2, v23] [11,12,13, v12] [8,13,20, v23] [7,13,15, v23] [7,14, v2, v12]
[17,18, v1, v12] [14,16,21, v12] [6,10,16, v2] [11,16, v2, v23] [12,13,14, v12] [8,9,12, v3] [7,13,15, v13] [7,14, v2, v13]
[16,18, v1, v12] [6,19,21, v23] [6,10,12, v2] [11,17, v2, v23] [11,12, v3, v12] [7,8,9, v3] [7,15, v2, v13] [7,14, v1, v13]
[6,9,17, v1] [7,8,9, v1] [6,12, v2, v13] [11,13,17, v23] [9,11,12, v3] [8,12, v3, v23] [12,13,14, v13] [7,8, v1, v13]
[6,9,12, v1] [10,16,18, v1] [6,12,13, v13] [11,13,16, v23] [9,11,19, v3] [12,15, v3, v23] [13,14,20, v13]
[6,10,12, v1] [10,17,18, v1] [6,13,19, v13] [13,14,16, v23] [9,14,19, v3] [12,15, v3, v12] [7,8, v3, v23]
[8,9,12, v1] [14,16,21, v23] [13,15,19, v13] [11,13,16, v12] [10,12,15, v2] [10,11,17, v1] [8,13,20, v13]
[6,9,12,13] [16,18,21, v23] [6,13,19, v23] [10,11,17, v2] [10,12,15, v1] [10,11,19, v1] [14,20, v1, v13]
[11,19, v3, v13] [17,18,21, v23] [13,15,19, v23] [13,14,20, v23] [10,15,19, v1] [9,11,19, v1] [8,20, v1, v13]
[11,19, v2, v13] [6,17,21, v23] [6,13,17, v23] [13,14,16, v12] [15,19, v1, v23] [9,14,19, v1] [12,14, v2, v13]

Table 5: The list of facets of ∆2T
22 . The order given by the columns (top to bottom and

left to right) is a shelling order. The 6 vertices of the double-trefoil knot are labeled vF ,
according to the face F they correspond to in the barycentric subdivision.

5.5 Normal 3-pseudomanifolds

We conclude this section with a broader class of triangulations, which includes combina-
torial manifolds.

Definition 35. Let ∆ be a pure d-dimensional pseudomanifold. ∆ is a normal d-
pseudomanifold if the link of each face of dimension at most (d − 2) is connected.

For d = 2 this class of simplicial complexes coincides with that of triangulated sur-
faces. Moreover, since the vertex links of a normal d-pseudomanifold are normal (d − 1)-
pseudomanifolds, it follows that for a balanced normal 3-pseudomanifold the vertex links
are balanced triangulated surfaces. In this section we report small balanced normal 3-
pseudomanifolds which are not combinatorial 3-manifolds, obtained applying cross-flips
to the barycentric subdivision of the complexes on 9 vertices enumerated by Akhmejanov
[1] modifying a computer program by Sulanke. It is very important to observe that since
Theorem 5 holds only for combinatorial manifolds there is no connectivity result for the set
of balanced normal 3-pseudomanifolds and hence it might be the case that the barycentric
subdivision we start from and the balanced vertex-minimal triangulation lie in a different
connected component (of the cross-flip graph). In Table 7 (as well as in [21]) we simply
exhibit the f -vector of the complex with minimum number of vertices among those that
our program returned after a fixed number of iterations. Still cross-flips clearly preserve
the homeomorphism type, so the complexes whose f -vectors appear in Table 7 are in-
deed balanced triangulations of the spaces in [1]. The first column of Table 7 reports the
number of vertices whose link is homeomorphic to S2, RP2, S1 × S1 and RP2#RP2 re-
spectively, since those are the only homeomorphism types that can appear as vertex links
of (non-balanced) normal 3-pseudomanifolds with up to 9 vertices. Note that, except for
the case (3,4,0,2), this determines the homeomorphism type. From this numbers one
can easily infer the singularity type of the corresponding balanced triangulation, since the
number of vertex links not homeomorphic to S2 does not change in the reduction process.
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[0,2,6, v13] [0,10,21, v3] [5,11,12, v23] [8,17,20, v12] [0,8,17, v12] [3,7,11, v1] [0,10,21, v1] [14,18,19, v13]
[1,11,19, v1] [10,20, v3, v13] [1,14,18,19] [5,16, v2, v13] [11,19,21, v1] [2,4, v2, v13] [5,12,16, v13] [5,6,14, v12]
[8,16,19,21] [2,4, v1, v13] [5,17,18, v23] [0,17, v2, v13] [3,7,16, v1] [11,13, v1, v23] [0,1,8,17] [0,11,21, v3]
[6,14,19, v13] [1,8,17,20] [1,10,18,20] [4,16, v1, v23] [2,5,6, v23] [5,11,18, v23] [5,14, v1, v12] [11,12,13, v23]
[1,13,17, v2] [6,17,19, v13] [5,6,10, v23] [13,17,21, v2] [5,17, v3, v23] [1,14,19, v1] [0,16, v1, v23] [2,6,20, v13]
[14,19,21, v1] [10,18,20, v13] [0,15,17, v3] [7,15,16, v3] [6,14,19,21] [0,6,10,15] [2,18,19, v12] [1,10,18,19]
[3,7,11, v3] [17,19, v3, v23] [5,14,21, v1] [6,14,20, v13] [5,6,16,21] [9,15,16, v1] [10,20,21, v2] [5,16,21, v2]
[0,1,8,16] [0,2, v2, v13] [9,12,15,16] [7,11,18, v13] [1,14,20, v1] [10,12,13, v12] [4,16, v1, v13] [5,10,12, v23]
[8,11,20,21] [17,18,19, v13] [9,16, v1, v13] [2,12,20, v12] [10,18,19, v12] [0,6,10, v23] [2,4, v2, v23] [6,14,20, v12]
[11,20, v3, v13] [5,6,10,15] [3,7,16, v3] [11,12,13, v12] [0,10,15, v3] [0,2, v2, v23] [11,19, v2, v12] [13,17,21, v1]
[5,12,15,16] [10,13,21, v1] [0,6,15,17] [8,16,20,21] [0,1,17, v2] [1,8,16,20] [5,11,12, v13] [2,6,20, v12]
[0,2,6, v23] [14,20, v1, v12] [2,19, v3, v12] [0,3,11, v1] [1,10,20, v2] [5,10,12,15] [5,17, v2, v13] [2,7,12,15]
[1,11,13, v1] [5,11,18, v13] [2,7,18, v23] [0,8,16, v12] [1,11,19, v2] [8,11,19, v12] [4,16, v2, v13] [5,17, v1, v12]
[5,17,21, v2] [7,10,18, v13] [1,10,19, v2] [2,5, v3, v12] [0,3,16, v3] [7,10,12, v12] [0,17, v3, v12] [0,16, v3, v12]
[7,11, v3, v13] [17,18,19, v23] [11,13, v2, v12] [2,7,15, v1] [2,5,6, v12] [2,7, v1, v23] [8,16,19, v12] [4,16, v2, v23]
[8,11,19,21] [10,20,21, v3] [8,11,20, v12] [5,6,15,16] [2,7,12, v12] [6,16,19,21] [15,16,19, v3] [1,14,18,20]
[1,17,20, v1] [2,9,15, v1] [2,12,20, v13] [10,19, v2, v12] [16,20,21, v2] [0,1,16, v2] [1,16,20, v2] [0,11,21, v1]
[5,17,21, v1] [2,19, v3, v23] [7,11, v1, v23] [10,12,13, v23] [10,13,21, v2] [15,17,19, v3] [0,10, v1, v23] [1,13,17, v1]
[0,16, v2, v23] [2,4, v1, v23] [14,18,20, v13] [7,15,16, v1] [17,20, v1, v12] [9,12,16, v13] [7,11,18, v23] [11,12,20, v12]
[5,17, v3, v12] [11,20,21, v3] [2,18,19, v23] [7,10,15, v3] [7,10,12,15] [5,6,14,21] [11,12,20, v13] [0,3,16, v1]
[2,9,12,15] [1,11,13, v2] [2,9,12, v13] [7,10,18, v12] [2,9, v1, v13] [6,15,16,19] [2,5, v3, v23] [5,17,18, v13]
[0,3,11, v3] [10,13, v2, v12] [7,10, v3, v13] [0,6,17, v13] [2,7,18, v12] [10,13, v1, v23] [16,19, v3, v12] [6,15,17,19]

Table 6: The list of facets of ∆3T
28 . The 6 vertices of the double-trefoil knot are labeled

vF , according to the face F they correspond to in the barycentric subdivision.

Remark 36. Observe that reducing the barycentric subdivisions of the normal pseudoman-
ifolds of type (7,2,0,0), (7,0,2,0) and (7,0,0,2) the program returned the suspension of
∆RP2

9 , of the balanced vertex-minimal triangulation of S1 × S1 and of a balanced vertex-
minimal triangulation of RP2#RP2 respectively.
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triangulation of the Poincaré homology 3-sphere. Experiment. Math., 9(2):275–289,
2000.

[4] B. Benedetti and F. H. Lutz. Knots in collapsible and non-collapsible balls. Electron.
J. Combin., 20(3):#P31, 2013.

the electronic journal of combinatorics 26(3) (2019), #P3.61 22

https://pi.math.cornell.edu/~takhmejanov/pseudoManifolds.html
https://pi.math.cornell.edu/~takhmejanov/pseudoManifolds.html


Hom. type Min f(∆) Hom. type Min f(∆)
8,0,1,0 (1,12,51,80,40) 2,4,1,2 (1,24,155,272,136)
8,0,0,1 (1,14,61,96,48) 2,2,2,3 (1,24,155,272,136)
7,2,0,0 (1,11,42,64,32) 2,2,1,4 (1,28,194,344,172)
7,0,2,0 (1,11,45,72,36) 2,2,0,5 (1,27,181,320,160)
7,0,0,2 (1,13,55,88,44) 1,8,0,0 (1,25,155,268,134)
6,2,0,1 (1,15,69,112,56) 1,6,1,1 (1,28,193,340,170)
6,0,3,0 (1,15,72,120,60) 1,4,4,0 (1,28,190,336,168)
6,0,1,2 (1,15,76,128,64) 1,4,2,2 (1,28,188,332,166)
6,0,0,3 (1,16,83,140,70) 1,4,1,3 (1,29,193,340,170)
5,4,0,0 (1,16,78,128,64) 1,4,0,4 (1,28,194,344,172)
5,2,1,1 (1,17,94,160,80) 1,2,4,2 (1,31,214,380,190)
5,2,0,2 (1,18,91,152,76) 1,2,3,3 (1,30,205,364,182)
5,0,2,2 (1,19,109,188,94) 1,2,2,4 (1,30,207,368,184)
5,0,0,4 (1,18,110,192,96) 1,2,0,6 (1,31,218,388,194)
4,4,1,0 (1,19,104,176,88) 1,0,8,0 (1,30,214,384,192)
4,4,0,1 (1,19,104,176,88) 1,0,4,4 (1,33,235,420,210)
4,2,2,1 (1,20,120,208,104) 0,8,1,0 (1,31,196,340,170)
4,2,1,2 (1,20,120,208,104) 0,6,0,3 (1,32,214,376,188)
4,2,0,3 (1,20,122,212,106) 0,4,4,1 (1,32,217,384,192)
4,0,5,0 (1,22,139,244,122) 0,4,3,2 (1,31,210,372,186)
4,0,1,4 (1,23,144,252,126) 0,4,0,5 (1,33,240,428,214)
3,6,0,0 (1,21,114,192,96) 0,2,4,3 (1,38,290,520,260)
3,4,2,0 (1,22,128,220,110) 0,2,3,4 (1,32,244,440,220)
3,4,0,2a (1,22,134,232,116) 0,2,2,5 (1,37,263,468,234)
3,4,0,2b (1,22,138,240,120) 0,0,9,0 (1,41,296,528,264)
3,2,2,2 (1,24,159,280,140) 0,0,5,4 (1,36,281,508,254)
3,2,1,3 (1,23,144,252,126) 0,0,3,6 (1,33,260,472,236)
2,6,0,1 (1,23,139,240,120) 0,0,1,8 (1,36,265,476,238)
2,4,2,1 (1,26,179,316,158) 0,0,0,9 (1,36,265,476,238)

Table 7: A table reporting the minimal f -vector found of a balanced triangulation of some
normal 3-pseudomanifolds with singularities.

[5] B. Benedetti and F. H. Lutz. Random discrete Morse theory and a new library of
triangulations. Exp. Math., 23(1):66–94, 2014.

[6] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism
algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(10):1367–1372, Oct 2004.

[7] R. Ehrenborg and M. Hachimori. Non-constructible complexes and the bridge index.
European J. Combin., 22(4):475–489, 2001.

[8] M. Hachimori and G. M. Ziegler. Decompositons of simplicial balls and spheres with

the electronic journal of combinatorics 26(3) (2019), #P3.61 23



knots consisting of few edges. Math. Z., 235(1):159–171, 2000.

[9] I. Izmestiev, S. Klee, and I. Novik. Simplicial moves on balanced complexes. Adv.
Math., 320:82–114, 2017.

[10] M. Juhnke-Kubitzke and S. Murai. Balanced generalized lower bound inequality for
simplicial polytopes. Selecta Math. (N.S.), 24(2):1677–1689, 2018.

[11] M. Juhnke-Kubitzke, S. Murai, I. Novik, and C. Sawaske. A generalized lower bound
theorem for balanced manifolds. Math. Z., 289(3-4):921–942, 2018.

[12] M. Juhnke-Kubitzke and L. Venturello. Balanced shellings and moves on balanced
manifolds. arXiv:1804.06270, April 2018.

[13] S. Klee and I. Novik. Lower bound theorems and a generalized lower bound conjecture
for balanced simplicial complexes. Mathematika, 62(2):441–477, 2016.

[14] F. H. Lutz. The Manifold Page. http://page.math.tu-berlin.de/~lutz/

stellar/.

[15] F. H. Lutz. Triangulated manifolds with few vertices and vertex-transitive group
actions. Berichte aus der Mathematik. [Reports from Mathematics]. Verlag Shaker,
Aachen, 1999. Dissertation, Technischen Universität Berlin, Berlin, 1999.

[16] S. Murai and Y. Suzuki. Balanced subdivisions and flips on surfaces. Proc. Amer.
Math. Soc., 146(3):939–951, 2018.

[17] S. Murai. Tight combinatorial manifolds and graded Betti numbers. Collect. Math.,
66(3):367–386, 2015.

[18] R. P. Stanley. Balanced Cohen-Macaulay complexes. Trans. Amer. Math. Soc.,
249(1):139–157, 1979.

[19] R. P. Stanley. Combinatorics and commutative algebra, volume 41 of Progress in
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