
On the Sweep Map for ~k-Dyck Paths

Guoce Xin
School of Mathematical Sciences

Capital Normal University
Beijing 100048, PR China

guoce.xin@gmail.com

Yingrui Zhang
School of Mathematical Sciences

Capital Normal University
Beijing 100048, PR China

zyrzuhe@126.com

Submitted: Nov 27, 2018; Accepted: Sep 19, 2019; Published: Sep 27, 2019

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Garsia and Xin gave a linear algorithm for inverting the sweep map for Fuss
rational Dyck paths in Dm,n where m = kn ± 1. They introduced an intermediate
family T kn of certain standard Young tableaux. Then inverting the sweep map is
done by a simple walking algorithm on a T ∈ T kn . We find their idea naturally
extends for k±-Dyck paths, and also for k-Dyck paths (reducing to k-Dyck paths
for the equal parameter case). The intermediate object becomes a similar type
of tableau in Tk of different column lengths. This approach is independent of the
Thomas-Williams algorithm for inverting the general modular sweep map.

Mathematics Subject Classifications: 05A19, 05E99

1 Introduction

The sweep map is a mysterious simple sorting algorithm that is also invertible. The
best way to introduce the sweep map is by using rational Dyck paths, because it already
raises complicated enough problems and it has natural generalizations. We will use three
models, each having its own advantages.

Model 1: Classical path model. For a pair of positive integers (m,n), the so called
rational (m,n)-Dyck paths are paths proceed by North and East unit steps from (0, 0) to
(m,n) remaining always above the main diagonal (of slope n/m). A (kn, n)-Dyck path is
also called a k-Dyck path of length n. Each vertex is assigned a rank as follows. We start
by assigning 0 to (0, 0). This is done we add an m as we go North and subtract an n as
we go East. Figure 1 illustrates an example of an (12, 4)-Dyck path, or a 3-Dyck path of
length 4.

The sweep map is a bijection of the family Dm,n of (m,n)-Dyck paths onto itself. The
construction of the sweep map is deceptively simple. Geometrically in model 1, we sweep
a path D ∈ Dm,n by letting lines of slope n/m+ ε, where ε > 0 is sufficiently small, move

the electronic journal of combinatorics 26(3) (2019), #P3.63 1

D =

0

12

8

8

24 20 16 12

20 16 12

20 16 12 8 4

Figure 1: An example of (12, 4)-Dyck path.

D =

0

4

16

16

12 8

28 24 20

28 24 20 16 12 8 4

Figure 2: The sweep map image of the Dyck path D in Figure 1.

from right to left, and draw a North step when we sweep the South end of a North step of
D and draw an East step when we sweep the West end of an East step of D. The resulting
path will be denoted by D = Φ(D) and can be shown to be in Dm,n. For instance, Figure
2 illustrates the sweep map image of the Dyck path D in our running example.

Model 2: Word model. The SW-word SW(D) = σ1σ2 · · ·σm+n is a natural encoding of
D, where σi is either an S or a W depending on whether the i-th vertex of D is a South
end (of a North step) or a West end (of an East step). The rank is then associated to each
letter of SW(D) by assigning r1 = 0 to the first letter σ1 = S and for 1 6 i 6 m + n− 1,
recursively assigning ri+1 to be either ri+m if the i-th letter σi = S, or ri−n if otherwise

σi = W . We can then form the two line array
(
SW(D)

r(D)

)
. For instance for the path D in

Figure 1 this gives(
SW(D)

r(D)

)
=

(
S S W W W W S W W W S W W W W W
0 12 24 20 16 12 8 20 16 12 8 20 16 12 8 4

)
. (1)

Now sort the columns of (1) according to the second row, and let the right one comes first
for equal ranks. Then the top row is just the SW-word SW(D) of the sweep map image of
D. Our running example gives(

SW(D)

r(D)sorted

)
=

(
S W W S S W W W S W W W W W W W
0 4 8 8 8 12 12 12 12 16 16 16 20 20 20 24

)
. (2)

Model 3: Visual path model. We can rotate and stretch the picture in model 1 so
that the diagonal line becomes the horizontal axis. Then rational (m,n)-Dyck paths are

the electronic journal of combinatorics 26(3) (2019), #P3.63 2

paths from (0, 0) to (m + n, 0), with up steps S = (1,m) and down steps W = (1,−n),
that never go below the horizontal axis. It is clear that the ranks are just the levels
(or y-coordinates). The visualization of the ranks in this model allows us to have better
understanding of many results. See [4, 5]. See [1, 3, 7, 9, 10] for further references and
related results.

The invertibility problem is to reconstruct D from the sole knowledge of SW(D).
The sweep map is an active subject in recent decades. Variations and extensions have

been found, and some classical bijections turn out to be the disguised version of the sweep
map. See [2] for detailed information and references. One major problem in this subject is
the invertibility of the sweep map. The bijectivity has been shown in a variety of special
cases including the Fuss case when m = kn ± 1 which is proved in [10],[8]and[6]. The
invertibility of the sweep map, even for rational Dyck paths, remained open for over ten
years. Surprisingly, a general result proving the invertibility of a class of sweep maps that
were listed in [2], was recently given by Thomas-Williams in [11]. Based on the idea of
Thomas and Williams, Garsia and Xin [5] gave a geometric construction for inverting the
sweep map on (m,n)-rational Dyck paths. These algorithms are nice iteration algorithms,
but are not linear: the number of iterations is measured by the sum of the ranks of D.

By using a completely different approach, Garsia and Xin find a O(m+ n) algorithm
for inverting sweep map on (m,n)-Dyck paths in the Fuss case m = kn ± 1. This raises
the following problem.
Problem: Is there a linear algorithm to invert the sweep map, at least for a more general
class of paths?

We find positive answers for k+, k−, and k-Dyck paths by extending Garsia-Xin’s
idea.

The paper is organized as follows. In this introduction, we have introduced the basic
concepts. Section 2 extends the concept of rational Dyck paths to general Dyck paths, as
well as the sweep map in this general setting. Then we introduce our main constructions,
results, especially Theorems 2.14, which gives a linear inverting algorithm for k-Dyck
paths. Section 3 includes the basic facts of the sweep map and the proof of Theorem
2.14, but leave the proof of Lemma 3.3 in Section 4. Lemma 3.3 says that our walking
algorithm (Algorithm 2.13) produces a permutation σ(D) of the desired length. To prove
this lemma, we give two different approaches in Section 4. In Section 5, we give the proof
for k+-Dyck paths, which is very similar to that in [6]. We include the proof here for
the sake of self completeness according to the referee’s suggestions. Similarly, we give the
proof for k−-Dyck paths in Section 6.

2 Notations and Main Results

2.1 The notation of general Dyck paths

We start by introducing general Dyck paths using model 3.
General Dyck paths are two dimensional lattice paths from (0, 0) to (m + n, 0) that

never go below the horizonal axis. We use vectors u = (u1, . . . , un) and d = (d1, . . . , dm)

the electronic journal of combinatorics 26(3) (2019), #P3.63 3

to specify the up steps and down steps, so that Du,−d is the set of general Dyck paths with
up steps (1, ui), 1 6 i 6 n from left to right, and down steps (1,−dj), 1 6 j 6 m from
left to right. Clearly the total length of up steps |u| = u1 + u2 + · · · + un is equal to the
total length of down steps |d| = d1+d2+ · · ·+dm. It is convenient to use 1m to denote the
m-dimensional vector with each entry 1. Thus d = d1m corresponds to the case di = d for
all i. We use the short hand notation Du = Du,−1|u| . Here we usually restrict ui and dj
to be positive integers, but sometimes allowing rational numbers is convenient, because
of the obvious isomorphism Du,−d ' Dku,−kd for any positive integer k.

A general Dyck path D may be encoded as D = (a1, a2, . . . , am+n) with each entry
either ui or −dj. The rank sequence r(D) = (0 = r1, r2, . . . , rm+n) of D is defined as the
partial sums ri = a1 + a2 + · · ·+ ai−1 > 0, called starting rank (or level) of the i-th step.
Geometrically, ri is just the level or y-coordinate of the starting point of the i-th step.
The SW-word of D is SW(D) = σ1σ2 · · ·σm+n where σi = Sai if ai > 0 and σi = W−ai

if ai < 0 (with W 1 = W). The sweep map D of D is obtained by reading its steps by
their starting levels from bottom to top, and from right to left at the same level. This
corresponds to sweeping the starting points of the steps from bottom to top using a line
of slope ε for sufficiently small ε > 0.

D = =⇒ D =

Figure 3: An example of a k-Dyck path and its sweep map image.

Figure 3 illustrates an example of k-Dyck path D given by

D = (2,−1,−1, 4,−1, 5,−1,−1,−1,−1, 3,−1,−1,−1,−1,−1,−1,−1),

where k = (2, 4, 5, 3). The SW-word of D and the rank sequence are given by(
SW(D)

r(D)

)
=

(
S2 W W S4 W S5 W W W W S3 W W W W W W W
0 2 1 0 4 3 8 7 6 5 4 7 6 5 4 3 2 1

)
.

The sweep map image is

D = (4, 2,−1,−1,−1,−1,−1, 5,−1, 3,−1,−1,−1,−1,−1,−1,−1,−1),

with SW-word SW(D) = S4S2WWWWWS5WS3WWWWWWWW .

Example 2.1.

1. D1n is the set of classical Dyck paths in the n× n square (rotated version).

the electronic journal of combinatorics 26(3) (2019), #P3.63 4

2. Dm1n,−n1m is just Dm,n, the set of rational (m,n)-Dyck paths.

3. Dk1n is just Dkn,n, the set of k-Dyck paths of length n. (Their rank sequences differed
by a factor n).

In what follows, k = ~k = (k1, k2, . . . , kn) is always a vector of n = `(k) positive
integers. We will focus on k-Dyck paths in Dk, i.e., general Dyck paths whose up steps
are of lengths k1, . . . , kn from left to right, and whose down steps are all of length 1. We
will also consider k+-Dyck paths in Dk+ and k−-Dyck paths in Dk− , where k± = k± 1

n
1n.

Note that Dk± ' Dnk±1n,−n1|k|±1
. These are natural extensions of the Fuss case rational

Dyck paths: k-Dyck paths are just k1n-Dyck paths; Fuss case (kn± 1, n)-Dyck paths are
easily seen to be equivalent to (k1n)±-Dyck paths.

Remark 2.2. The sweep map of k+-Dyck paths can be fluctuated in the following sense:
Let ε = (ε1, . . . , εn) with εi > 0 for all i and |ε| = ε1 + ε2 + · · · + εn = 1. Then it is
easy to see that the sweep map for (k + ε)-Dyck paths is the same as for k+-Dyck paths.
Similarly, k−-Dyck paths can fluctuate as (k− ε)-Dyck paths.

The sweep map of a k-Dyck path is usually a k′-Dyck path where k′ is obtained from
k by permuting its entries. Denote by K the set of all such k′ and by DK the union of
Dk′ for all such k′. We also use the similar notation for K± and DK± .

Theorem 2.3. The sweep maps define bijections from DK+, DK−, and DK to themselves.

It is known but nontrivial that the sweep map takes a Dyck path to another Dyck
path (see, e.g., [2], [5], [7] for a proof), so the proof of the theorem boils down to construct
the inverse image D from a given Dyck path D.

The three sets DK, DK+ , and DK− are closely related as follows. For D ∈ DK, let
SW(D+) be obtained from SW(D) by adding a W at the end and changing every Sa to

Sa+
1
n . Similarly let SW(D−) be obtained from SW(D) by removing the final letter W and

changing every Sa to Sa−
1
n . It is clear that the map D 7→ D+ gives a bijection from DK

to DK+ . However, the map D 7→ D− is a little different: it is a bijection from D◦K to DK− ,
where D◦K consists of paths D ∈ DK whose rank sequence r(D) has only one 0 at r1.

The bottom rectangle in Figure 4 illustrates the idea: Though the paths D+ ∈ DK+

and D ∈ DK have almost identical pictures, their sweep map inverse images D+ ∈ DK+

and D ∈ DK may be very different, due to the different sweep order. Therefore, their
inverting algorithms are also very different. For instance, below is an example when
k = [2, 1, 3, 1]:

D = (1, 1, −1, 2, 3, −1, −1, −1, −1, −1, −1)
D+ = (1+, 1+, −1, 2+, 3+, −1, −1, −1, −1, −1, −1, −1)
D = (1, −1, 1, 3, −1, −1, −1, 2, −1, −1, −1)

D+ = (1+, 2+, −1, −1, 3+, −1, −1, −1, −1, 1+, −1, −1)

the electronic journal of combinatorics 26(3) (2019), #P3.63 5

2.2 The Filling algorithm and the ~k tableaux

In the Fuss case when m = kn + 1, a linear algorithm to invert the sweep map was
discovered by Garsia and Xin in [6]. The algorithm relies on an intermediate family T kn
of standard Young tableaux. The family T kn consists of n × (k + 1) arrays with entries
1, 2, . . . , kn + n, column increasing from top to bottom and row increasing from left to
right, with the additional property that for any pair of entries a < d with d directly below
a, the entries between a and d form a horizontal strip. That is, any pair of entries b, c
with a < b < c < d never appear in the same column. The standard Young tableau T (D)
constructed from the SW word of a path D encodes so much information about D. This
allows us to invert the sweep map in the simplest possible way.

We find Garsia-Xin’s construction naturally extends for k+-Dyck paths. The interme-
diate family T kn becomes the family Tk, where the only difference is that tableau T ∈ Tk
has ki + 1 entries in the i-th column. Let k′ be obtained from k by permuting its entries.
Denote by K the set of all such k′ and by TK the union of Tk′ for all such k′.

trivial proof

Figure 4: The idea for inverting the sweep map: Solid curve means easy, and dotted curve
means difficult. So to obtain D, we need the help of T .

The Filling Algorithm [6] is adapted in our case as follows, where the major change is
the definition of active.

Algorithm 2.4 (Filling Algorithm). Input: The SW-sequence SW(D) of a k-Dyck path
D ∈ Dk.
Output: A tableau T = T (D) ∈ Tk.

1. Start by placing a 1 in the top row and the first column.

2. If the second letter in SW(D) is an S∗ we put a 2 on the top of the second column.

3. If the second letter in SW(D) is a W we place 2 below the 1.

4. At any stage the entry at the bottom of the i-th column but not in row ki + 1 will be
called active.

5. Having placed 1, 2, · · · , i− 1, we place i immediately below the smallest active entry
if the ith letter in SW(D) is a W , otherwise we place i at the top of the first empty
column.

the electronic journal of combinatorics 26(3) (2019), #P3.63 6

6. We carry this out recursively until 1, 2, . . . , n+ |k| have all been placed.

We will denote by t(T) = (t1, . . . , tn) the top row entries of T from left to right,
and similarly by b(T) = (b1, . . . , bn) the bottom entries. Note that the former is always
increasing, but the latter is not. We denote by bη = min(b(T)), i.e., the smallest bottom
entry appears in the η-th column. It will be convenient to denote by c1, c2, · · · , ckη+1 the
entries of the column η of T from top to bottom. See Figure 5 for an example.

T =

SW (D) = S4S2WWWWWS5WS3WWWWWWWW
k = (4, 2, 5, 3)
t(T) = (1, 2, 8, 10)
b(T) = (9, 6, 18, 16)
b2 = min(b(T))
c1 = 2, c2 = 4, c3 = 6

Figure 5: The path D in Figure 3 and its filling tableau by the Filling Algorithm.

It is clear that the top row entries t(T) uniquely determines T . Moreover, SW(D) can
be recovered from T (D) by placing letters Ski on the positions ti of T (D) and letters W
in all the remaining |k| positions. Indeed, we have the following characterization.

Lemma 2.5. An increasing sequence (t1, . . . , tn) is the top row entries t(T) for some
T ∈ Tk if and only if ti 6 k1 + · · ·+ ki−1 + i holds for all i > 2 and t1 = 1.

Proof. By Filling Algorithm 2.4, we always insert 1 at row 1 column 1. For i > 2, we can
insert ti in row 1 column i if and only if the first i− 1 columns have not been over filled,
which is equivalent to ti 6 k1 + · · ·+ ki−1 + i.

Theorem 2.6. The Filling Algorithm defines a bijection from Dk to Tk.

Proof. Suppose D = (a1, a2, . . . , an+|k|), where aj = ki if j = ti and aj = −1 if j 6= ti.
Then D ∈ Dk if and only if all the partial sums a1+ · · ·+aj > 0. This is clearly equivalent
to t1 = 1 and a1 + · · · + aj > 0 for j = ti − 1, i = 2, . . . , n. The theorem then follows by
Lemma 2.5 and the fact that

0 6 a1 + · · ·+ aj = k1 + · · ·+ ki−1 − (ti − 1− (i− 1)) = k1 + · · ·+ ki−1 + i− ti

holds true for all i > 2.

2.3 Walking algorithm for ~k±-Dyck paths

The walking algorithm for inverting the sweep map on Dkn±1,n naturally extends to that
of k±-Dyck paths. To state our results, we need to modify some notations. For T ∈ Tk,

the electronic journal of combinatorics 26(3) (2019), #P3.63 7

let T+ be obtained from T by adding n+ |k|+ 1 below the entry n+ |k|. Let T +
k = {T+ :

T ∈ Tk}. The bottom entry of the i-th column of T+ refers to the (ki + 1)-st entry for all
i, i.e., b(T+) = b(T).

Algorithm 2.7 (Walking Algorithm+). Input: A tableau T+ = T (D+) ∈ T +
k with bη =

min(b(T+)).
Output: A permutation σ(D+) through walk on T+.

1. Write in bold all the entries in T+ that are by 1 more than a bottom row entry.

2. Go to row 1 column η and write the entry c1.

3. If you are in row 1 go down the column to the bottom. If the entry there is r, then
go to r + 1 and write r + 1.

4. If you are not in the first row go up the column one row. If the entry there is r and
is not bold write r.

5. If the entry there is r and bold go to r− 1 and continue until you run into a normal
entry, then write it.

6. Suppose the closed walk is ω(T+) = w1 → w2 → · · · → w|k|+n+1 with w1 = c1,
w|k|+n+1 = c2 and ws = 1, then σ(D+) = wsws+1 · · ·w|k|+n+1w1 · · ·ws−1.

See Figure 6 for an example.

T+ = T ∗+ =

σ(D+) = 1 10 17 15 13 11 8 19 18 16 14 12 9 6 4 2 7 5 3

σ(D∗+) = 1 10 17 15 13 11 8 19 18 16 14 12 9 7 5 3

Figure 6: Walking Algorithm+ applies to T+ to give σ(D+), and applies to T ∗+ to give
σ(D∗+), where T ∗+ is obtained from T+ by removing column η = 2.

Once the permutation σ(D+) is obtained, the SW-word SW
(
D+
)

of the inverse image

D+ is easy to construct: we write one letter at a time by placing above each entry of σ(D+)

an Sk
+
i if that entry is ti and a W if that entry is not in row 1. This done we can simply

draw D+ by reading the sequence of letters of SW
(
D+
)
. Note that we will also use this

construction for σ(D−) and σ(D) in a similar way.

the electronic journal of combinatorics 26(3) (2019), #P3.63 8

Theorem 2.8. For a Dyck path D+ ∈ Dk+, the permutation σ(D+) that rearranges the
letters of SW(D+) in the order that gives the SW word of D+, is obtained by the Walking
Algorithm+ (Algorithm 2.7).

The situation for Dk− is similar. Recall that D− ∈ Dk− only when D ∈ D◦k, i.e.,
the rank sequence r(D) has only one 0 at r1 = 0. It is not hard to see that the Filling
Algorithm takes such D to

T −k = {T ∈ Tk : ti < k1 + · · ·+ ki−1 + i for i > 2},
where ti denotes the top entry in the i-th column of T . The bottom entry of the i-th
column of T− ∈ T −k refers to the (ki + 1)-st entry for all i, i.e., b(T−) = b(T).

Theorem 2.9. The Filling Algorithm defines a bijection from Dk− to T −k .

Proof. Suppose D− = (a1, a2, . . . , an+|k|−1), where aj = k−i if j = ti and aj = −1 if j 6= ti.
Then D− ∈ Dk− if and only if all the partial sums a1+· · ·+aj > 0 for all j and the equality
holds only when j = n+ |k| − 1. This is clearly equivalent to t1 = 1 and a1 + · · ·+ aj > 0
for j = ti−1, i = 2, . . . , n. The theorem then follows by the following direct computation:

0 < a1+ · · ·+aj = k1+ · · ·+ki−1−
i− 1

n
−(ti−1−(i−1)) = k1+ · · ·+ki−1+ i− i− 1

n
− ti,

which is equivalent to

ti < k1 + · · ·+ ki−1 + i, for all i > 2.

Algorithm 2.10 (Walking Algorithm−). Input: A tableau T− = T (D−) ∈ T −k with
bη = min(b(T−)).
Output: A permutation σ(D−) through walking on T−.

1. Write in bold all the entries in T− that are by 1 less than a bottom row entry.

2. Go to row 1 column η and write the entry c1.

3. If you are in row 1 go down the column to the bottom. If the entry there is r go to
r − 1 and write r − 1.

4. If you are not in the first row go up the column one row. If the entry there is r and
is not bold write r.

5. If the entry there is r and bold go to r+ 1 and continue until you run into a normal
entry, then write it.

6. Suppose the closed walk is ω(T−) = w1w2 · · ·w|k|+n−1 with w1 = c1, w|k|+n−1 = c2
and ws = 1, then σ(D−) = wsws+1 · · ·w|k|+n−1w1 · · ·ws−1.

See Figure 7 for an example.

Theorem 2.11. For a Dyck path D− ∈ Dk−, the permutation σ(D−) that rearranges the
letters of SW(D−) in the order that gives the SW word of D−, is obtained by the Walking
Algorithm−.

the electronic journal of combinatorics 26(3) (2019), #P3.63 9

T− =

1 2 6 13

3 4 9 15

5 7 12 17

8 10 14

11 16

18

T ∗− =

1 6 13

3 9 15

5 12 17

8 14

11 16

18

σ(D−) = 1 10 7 4 2 9 6 17 15 13 16 14 12 11 8 5 3

σ(D∗−) = 1 9 6 17 15 13 16 14 12 11 8 5 3

Figure 7: Walking Algorithm− applies to T− to give σ(D−), and applies to T ∗− to give
σ(D∗−), where T ∗− is obtained from T− by removing column η = 2.

2.4 The walking algorithm for ~k-Dyck paths

After extending Garsia-Xin’s idea for k±-Dyck paths, one might think the inverting algo-
rithm will be similar for k-Dyck paths. It turns out that the situation is quite different.

The new walking algorithm not only relies on the intermediate tableau T = T (D) ∈ Tk,
but also on the rank tableau R(D) constructed from T .

It is convenient to call numbers in T indices. We will use a ranking algorithm to
construct the rank tableau R(D) of T . For clarity, we start with the empty tableau of
the shape of T , and successively assign each index a rank. By assigning index A a rank
r, we mean to fill r into the box in R(D) corresponding to index A in T .

Algorithm 2.12 (Ranking Algorithm). Input: A tableau T = T (D) ∈ Tk.
Output: A rank tableau R(D) of the same shape with T .

1. Successively assign 0, 1, 2, . . . , k1 to the first column indices of T from top to bottom;

2. For i from 2 to n, if the top index of the i-th column is A+ 1, and the rank of index
A is a, then assign the index A+ 1 rank a. Moreover, the ranks in the i-th column
are successively a, a+ 1, . . . , a+ ki from top to bottom.

See Figure 8 for an example of the Ranking Algorithm.
Observe that the indices are distinct, but the ranks are not. The largest (cell of) rank

r (entry) is the rank r with the largest index. For instance in Figure 8, the rank 2 entries
have indices 5, 6, so the largest rank 2 entry is the rank 2 with index 6, whose box is
located in row 3 column 2. Similarly, the smallest rank 2 entry is the rank 2 with index
5, whose box is located in row 3 column 1.

We find a way to obtain the permutation σ(D) directly from T (D) and R(D) as
follows.

the electronic journal of combinatorics 26(3) (2019), #P3.63 10

T (D) = =⇒ R(D) =

Figure 8: The tableau T (D) in Figure 5 and its rank tableau.

Algorithm 2.13 (Walking Algorithm). Input: The index-rank tableau (T,R) with T =
T (D) ∈ Tk and R = R(D).
Output: A permutation σ(D) through walking on (T,R).

1. In R(D), go to the largest rank 0 entry. Mark this rank and write down its index;

2. Repeat the following steps until no unmarked rank can be selected.

(a) If we are in row 1, then go to the bottom row in the same column. If the rank
there is r then go to the largest unmarked rank r. Mark this rank and write
down its index;

(b) If we are not in row 1, then go up one box. If the rank there is r then go to the
largest unmarked rank r. Mark this rank and write down its index.

Theorem 2.14. For a Dyck path D ∈ Dk, the permutation σ(D) that rearranges the
letters of SW(D) in the order that gives the SW word of D, is obtained by the Walking
Algorithm.

Let us apply the Walking Algorithm (Algorithm 2.13) to the index-rank tableau (T,R)
in Figure 8. The permutation σ(D) is given on the top row. From it, one easily produces
the middle SW(D), whose rank sequence is given in the third row for comparison. Now we
clearly see that the ranks of D are exactly the ranks in R(D). σ(D)

SW(D)
r(D)

 =

 2 6 4 1 11 8 181715 13 10 161412 9 7 5 3
S2WWS4WS5WWWW S3WWWWW W W
0 2 1 0 4 3 8 7 6 5 4 7 6 5 4 3 2 1

 .

D = (T,R) =

the electronic journal of combinatorics 26(3) (2019), #P3.63 11

3 Some basic auxiliary facts about the sweep map

There are a number of auxiliary properties of the sweep map for k-Dyck paths that need
to be established to prove our basic results.

Lemma 3.1. The Ranking Algorithm 2.12 assigns every index a rank.

Proof. Assume to the contrary that i with 2 6 i 6 n is the smallest such that the top
index of the i-th column, say A > 1, can not be assigned a rank. This only happens when
the index A− 1 is not assigned a rank yet. But then A− 1 must not belong to the first
i− 1 columns, contradicting the Filling Algorithm.

Lemma 3.2. Let D ∈ Dk be a k-Dyck path with rank tableau R(D). Then the ranks are
weakly increasing according to their indices in T (D). In other words, if indices 1, 2, . . . , n+
|k| are assigned ranks r1, r2, r3, . . . , rn+|k|, then 0 = r1 6 r2 6 r3 6 . . . 6 r|k|+n. More
precisely, ri − ri−1 is either 0 or 1 for each 2 6 i 6 |k|+ n.

Proof. We prove by induction on i.
For the base case i = 2, we need to consider the following two cases by using the

Filling Algorithm 2.4.

1. Index 2 is in row 1 column 2. Then r2 is assigned 0, so r2 − r1 = 0− 0 = 0.

2. Index 2 is placed under index 1. Then r2 is assigned 1, so r2 − r1 = 1− 0 = 1.

Now assume by induction that 0 = r1 6 r2 6 r3 6 . . . 6 ri and that 0 6 ri − ri−1 6 1
for 2 6 i < |k|+ n. We need to show that 0 6 ri+1 − ri 6 1.

There are three cases as follows.
Case 1: If index i+ 1 is in row 1, then ri+1 = ri;
Case 2: If index i+ 1 is placed under index i, then ri+1 = ri + 1;
Case 3: Otherwise, the index i + 1 is not in row 1 and is not placed under index i.

We use the fact that if the index j with j > 2 is in row 1, then rj = rj−1. Let i′ be
the smallest index with rank ri. Then ri′ = ri′+1 = . . . = ri and we need to consider the
following two cases.

(i) If i′ > 2 then it cannot be in the top row, for otherwise ri′−1 = ri′ contradicting our
choice of i′. Assume the index above i′ is p, and the index above i + 1 is q. Then
p < q < i′ < i + 1 by Filling Algorithm, and we have ri′ = rp + 1, ri+1 = rq + 1
by Ranking Algorithm. Thus rq 6 ri′ by the induction hypothesis and we obtain
ri+1 − ri 6 ri+1 − rq = 1. On the other hand, ri+1 − ri = rq − rp, which is greater
than or equal to 0 (again) by the induction hypothesis.

(ii) If i′ = 1 then 0 = r1 = r2 = · · · = ri. It follows that indices 1, 2, . . . , i are all in row
1 and hence i+ 1 is placed under 1, which implies 0 = ri < ri+1 = 1.

Lemma 3.3. The permutation σ(D) produced by Algorithm 2.13 has length n+ |k|.

the electronic journal of combinatorics 26(3) (2019), #P3.63 12

We will give two proofs of this lemma in the next section. The first one only considers
the equal parameter case T ∈ T kn . One will see that the idea extends but the notation
becomes awkward for T ∈ Tk. The second one uses standard terminology from graph
theory.

Proof of Theorem 2.14. By Lemma 3.3, we may write σ(D) = a1a2 · · · a|k|+n. Assume the
corresponding ranks are r1, r2, . . . , r|k|+n. Define D to be the SW-sequence obtained from
σ(D) by replacing each top row index ti with an Ski and every other index by a W . We
need to show that Φ(D) = D. This follows from the following two facts.

Fact 1: The rank sequence of D is exactly (r1, r2, . . . , r|k|+n). This is consistent with
the rule rj+1 = rj + k if aj is equal to ti and rj+1 = rj − 1 if aj is below row 1.

Fact 2: The sweep order is from right to left when two ranks are equal. This cor-
responds to that for equal rank entries, their corresponding indices are increasing
from right to left in σ(D).

4 Proof of Lemma 3.3

4.1 First proof

We only consider the equal parameter case T ∈ T kn . We need the following notation. One
will see that the notation becomes awkward for T ∈ Tk.

Let D be a Dyck path in Dkn,n with index-rank tableau (T (D), R(D)). For any
integer r, we denote by n(r) the number of r’s appearing in R(D), so n(r) = 0 if r < 0.
We also denote by n−(r) and n∧(r) the number of r’s in the top row and the number of
r’s below the top row respectively. Similarly, we denote by n−(r) and n∨(r) the number
of r’s in the bottom row and the number of r’s above the bottom row respectively. Then
the following three equalities are clear.

n(r) = n−(r) + n∨(r), n−(r) = n−(r − k), n∨(r) = n∧(r + 1). (3)

Lemma 4.1. Let D ∈ Dm,n be a Dyck path, where m = kn. Then we have the following
basic properties.

1. The ranks of D have the common divisor n.

2. For a word ω ∈ SnWm and 1 6 i 6 m + n denote by ai(ω) and bi(ω), the numbers
of “W” and “S” respectively that occur in the first i letters of ω. It is important to
notice that we will have ω = SW(D) for some D ∈ Dm,n if and only if

bi(ω)m− ai(ω)n > 0 for all 1 6 i 6 m+ n.

3. If a rank r appears in R(D), it will appear at most n times and

n(r) = n−(r − k) + n∧(r + 1).

In particular, we have
n(0) = n∧(1).

the electronic journal of combinatorics 26(3) (2019), #P3.63 13

Proof. 1. Because we start with assigning 0 to the south end of the first North step,
this done we add an m = kn as we go North and subtract an n as we go East, all
the ranks are divisible by n.

2. In fact after ai(ω) letters W and bi(ω) letters S, the corresponding path has reached
a lattice point of coordinates

(
ai(ω), bi(ω)

)
, this point is above the diagonal (0, 0)→

(m,n) if and only if
bi(ω)

ai(ω)
>

n

m
.

3. Since every column of R(D) is strictly increasing, any rank r may appear at most
n times. The equality n(r) = n−(r − k) + n∧(r + 1) follows from equation (3).

Lemma 4.2. In the equal parameter case, Algorithm 2.13 terminates only after we mark
the smallest rank 1 entry and write down its index.

Proof. Suppose the algorithm terminates after we mark a rank r entry and write down
its index a.

If a is in row 1, then all rank r + k entries have been marked. But to mark a rank
r + k entry, we can either go from a rank r whose index is in row 1, or go from a rank
r+ k+ 1 entry whose index is not in row 1. Thus the number of marked rank r+ k entry
is at most n−(r) + n∧(r + k + 1) − 1, which is equal to n(r + k) − 1 by the equality in
Lemma 4.1(3). This is a contradiction.

If a is not in row 1, then r > 1 and there is no unmarked rank r − 1 for the Walking
Algorithm to terminate. We have the following two cases.

1. If r > 1, then we show the contradiction that there is at least one unmarked rank
r − 1 entry so that the algorithm will not terminate. Or equivalently the number
of marked r − 1 is at most n(r − 1) − 1. According to the Walking Algorithm, to
mark a rank r − 1 entry, we can either go from a rank r − 1 − k whose index is in
the top row or go from a rank r entry whose index is not in the top row. Thus the
number of marked rank r − 1 entry is at most n−(r − 1− k) + n∧(r)− 1, which is
equal to n(r − 1)− 1 by the equality in Lemma 4.1(3).

2. If r = 1 and we stopped at the non-smallest rank 1 entry, then we show the con-
tradiction that there is at least one unmarked rank 0 entry so that the algorithm
will not terminate. Or equivalently the number of marked ranks 0 entries is at
most n(0) − 1. The reason is similar. According to the Walking Algorithm, to
mark a rank 0 entry, we can either mark the largest rank 0 entry at the first step
or go from a rank 1 entry whose index is not in the top row. Since we stopped
at the non-smallest rank 1 entry, the number of marked ranks 0 entry is at most
1 + n∧(1) − 2 = n∧(1) − 1, which is equal to n(0) − 1 by the equality in Lemma
4.1(3).

the electronic journal of combinatorics 26(3) (2019), #P3.63 14

First Proof of Lemma 3.3. Now we are ready to show that Algorithm 2.13 terminates
after we write down all of the m+ n indices. Assume to the contrary that the algorithm
terminates after we write down only p < m + n indices. Denote the resulting σ(D) by
ai1 , ai2 , ai3 , . . . , aip , with corresponding ranks ri1 , ri2 , ri3 , . . . , rip . Then ri1 = 0, ri2 = k,
and rip = 1 is the smallest rank 1 by Lemma 4.2. Note that all rank 0 indices have been
written. In particularly, index 1 is written. Moreover, for each j with 1 6 j < p either
rij + k = rij+1

or rij − 1 = rij+1
.

Arrange the unwritten indices in increasing order as 1 < aip+1 < aip+2 < · · · < aim+n ,
and denote their corresponding ranks by rip+1 6 rip+2 6 rip+3 6 . . . 6 rim+n . By our choice
aip+1 − 1 is a written index, so assume aij = aip+1 − 1 for some j 6 p. Now we have two
cases, both leading to contradictions.

1. If rip+1 = rij , then the Walking Algorithm would have preferred to writing index
aip+1 than aij when visiting rank rij .

2. If rij < rip+1 , then aip+1 is not in row 1. By definition of aip+1 and the increasing
ranks of the indices in Lemma 3.2, all rank α = rij entries have been marked. But
to mark a rank α entry, we can either go from a rank α − k in top row, or from a
rank α+ 1 below top row (including the index aip+1 with rip+1). These implies that
there are at most n(α − k) + n(α + 1) − 1 = n(α) − 1 (by 4.1(3)) rank α entries
have been marked, a contradiction.

4.2 Second proof

Our second proof assumes basic knowledge of graph theory.
Firstly we construct a digraph GR from the rank tableau R = R(D) as follows. The

vertices of GR are the ranks appearing in R. Each directed edge of G is associated with
an index of T : i) if the index is ti and has rank a, then the directed edge is a → a + ki;
ii) if the box is not in row 1 and has rank b, then the directed edge is b→ b− 1.

Each rank a of GR is associated with a set S(a) consisting of all indices with rank a.
Denote by F (T) = {t1, . . . , tn} the set of first row indices of T arranged increasingly.

Lemma 4.3. The digraph GR of a rank tableau R = R(D) is balanced. That is, each
rank a of G has in-degree equal to out-degree, and equal to |S(a)|.

Proof. Let Ci be the digraph obtained by restricting G to the i-th column of R. Then Ci
is clearly a directed cycle r → r + ki → · · · → r + 2→ r + 1→ r, where r is the rank in
row 1. The in-degree and out-degree of a rank a are both 1 if a appears in Ci and are 0
if otherwise. The lemma then follows since G is the union of Ci for i = 1, 2, . . . , n.

The Walking Algorithm can be restated as a modified Eulerian tour as follows.

Algorithm 4.4 (Walking Algorithm G). Input: The digraph GR together with S(a) as-
sociated to every vertex a, and F (T) as above.
Output: A permutation σ(D) through walking on GR.

the electronic journal of combinatorics 26(3) (2019), #P3.63 15

1. In GR, go to rank 0, mark the largest index in S(0) and write down it;

2. Repeat the following steps.

(a) Suppose we are at rank r and has just marked ti in F (T). If there is no
unmarked index in S(r + ki), then terminates. Otherwise, go to rank r + ki,
mark the largest unmarked index in S(r + ki) and write down it;

(b) Suppose we are at rank r and has just marked an index not in F (T). If there is
no unmarked index in S(r − 1), then terminates. Otherwise, go to rank r − 1,
mark the largest unmarked index in S(r − 1) and write down it.

Second Proof of Lemma 3.3. Assume to the contrary that the algorithm terminates after
we write down σ(D) = a1a2 · · · ap for p < |k|+ n. Then r(a1) = 0.

Firstly we claim that r(ap) = 1, and the algorithm terminates when we are trying
to go to rank 0. This is simply due to the following observations: i) the in-degree and
out-degree of rank r is |S(r)|; ii) every time when marking an index in S(r), we used
one in-degree and one out-degree (including the attempt to go out); iii) the assumption
that every index of S(r) has been marked implies that all the in-degree and out-degree
has been used, and hence there are no more edges in GR directed to rank r. The only
exceptional case is when r = 0, because we starting by marking the largest rank 0 index
without using its in-degree.

Now C = r(a1) → r(a2) → · · · r(ap) → r(a1) is a directed cycle contained in GR as a
subgraph. Let b be the smallest unwritten index. Then b − 1 = ai > 1 for some i 6 p,
since all rank 0 indices have been written. By Lemma 3.2 r(b)−r(ai) is either 0 or 1. Both
cases lead to contradictions. i) If r(b) = r(ai), then the Walking Algorithm would have
preferred to writing index b than ai when visiting rank r(b). ii) If r(b) = r(ai) + 1, then
b is not in row 1 by Ranking Algorithm, and hence will be associated to a directed edge
e = r(b) → r(b) − 1 in GR. Now observe that S(r(b) − 1) are all contained σ(D). This
implies that the directed cycle C contains all directed edges into r(b) − 1, in particular
the edge e. Then the Walking Algorithm must have written b already, which contradicts
the choice of b.

5 Proof of Theorem 2.8

For a vector k = (k1, k2, · · · , kn) (`(k) = n) and T+ = T (D+) ∈ T +
k , let ω(T+) be the

closed walk in the entries of T+ yielded by Algorithm 2.7.
It is convenient to make the following convention in this section. We fix the positive

integer η with bη=min(b(T+)). Let c1, c2, · · · , ckη+1 be the entries of the column η of T+.
Denote by k∗ the vector obtained by removing the kη from k and denote by T ∗+ the
tableau obtained by removing from T+ the η-th column. By the induction hypothesis,
if we apply Algorithm 2.7 with respect to T ∗+, as if its letters are contiguous, then we
obtain a closed walk ω(T ∗+) on the entries of T ∗+.

The closed walk ω(T+) and ω(T ∗+) are closely related.

the electronic journal of combinatorics 26(3) (2019), #P3.63 16

Lemma 5.1. Let D+ ∈ Dk+ be a Dyck path, T+ = T (D+) be its tableau, bη=min(b(T+))
and let T ∗+ be obtained from T by removing the η-th column. Then the following properties
hold true.

1. As a closed walk ω(T+) contains the column η segment ckη+1 → ckη → · · · → c1.

2. Omitting the column η segment from ω(T+) gives ω(T ∗+). More precisely, if ω(T+)
contains the segment c′ → ckη+1 → ckη → · · · → c1 → ckη+1 + 1, then replacing this
segment by c′ → ckη+1 + 1 gives ω(T ∗+).

3. `(ω(T+)) = `(ω(T ∗+)) + kη + 1

4. ω(T+) is a closed walk of length |k|+ n+ 1.

Proof.

1. Since ω(T+) is a closed walk containing c1, it must return to c1. Now cj has indegree
1 from cj+1 for j = 1, 2, · · · , kη. It follows that ω(T+) must contain the segment
ckη+1 → ckη → · · · → c1.

2. The directed edges of ω(T+) and ω(T ∗+) are the same if both ends do not involve
column η entries. The directed edges in ω(T+) that involve column η entries are
cj+1 → cj for 1 6 j 6 kη, and c1 → ckη+1 + 1, together with c′ → ckη+1 for some
entry c′ ∈ T ∗+. We claim that the only directed edge in ω(T ∗+) that involves an
entry of column η is c′ → ckη+1 + 1. This is because in T+ we will go from c′ to
ckη+1 + 1, a bold faced letter, and then to ckη+1. While in T ∗+, ckη+1 + 1 is not bold
faced, so in ω(T ∗+) we have the directed edge c′ → ckη+1 + 1. This is equivalent
to replacing the segment c′ → ckη+1 → ckη → · · · → c1 → ckη+1 + 1 in ω(T+) by
c′ → ckη+1 + 1 to obtain ω(T ∗+).

3. This is a direct consequence of (2).

4. Follows by induction on n and part (3).

Now we are ready to prove Theorem 2.8, which is restated as follows.

Theorem 5.2. On the side of each edge p→ q of ω(T+) let us place an Sk
+
j if p is in row

1 column j of T+ and a W otherwise. This done, the SW sequence of the path Φ−1(D+)
is simply obtained by reading all these edge labels starting from p = 1 and following the
directed edges of ω(T+).

Proof. Let D+ be the path which results from this SW sequence. The path D+ will go
from (0, 0) to (|k|+n+ 1, 0). Let us compute the sequence of ranks starting by assigning
0 to p = 1 then inductively (following ω(T+)) for each edge p→ q set rank(q)=rank(p) +

kj + 1
n

or rank(q)=rank(p) − 1 according as the label of p → q is an Sk
+
j (when p = tj)

or a W (when p 6= tj for all j). To show that D+ is a Dyck path we must prove that all
these ranks are non-negative. We will do this by showing that

rank(j + 1)− rank(j) > 0 (for all 1 6 j 6 |k|+ n). (4)

the electronic journal of combinatorics 26(3) (2019), #P3.63 17

In fact, this not only yields that D+ is a Dyck path but we will also obtain that SW (D+)
is a rearrangement of the steps of D+ by increasing ranks of their starting entries, proving
that D+ = Φ−1(D+).

We need the following fact: Suppose the path
∏

p99Kq from p to q contains edge labels

Sk
+
jm (m = 1, 2, · · · , bp,q) and ap,q edge labels W . Then we have the identity

rank(q)− rank(p) = kj1 + kj2 + · · ·+ kjbp,q +
bp,q
n
− ap,q.

Thus to prove (4) we need only to show that kj1 + kj2 + · · ·+ kjbp,p+1
+ bp,p+1

n
− ap,p+1 > 0

for all 1 6 p 6 |k|+ n.
We will prove the theorem by induction on n = `(k). The case n = 1 is trivial, so we

assume the theorem holds for n− 1, which is the length of k∗. To prove the theorem for
n, we will reduce paths in ω(T+) to that in ω(T ∗+) by omitting column η segment. The
induction hypothesis implies that if p < q in T ∗+, then

rank∗(q)− rank∗(p) = kj1 + kj2 + · · ·+ kjb∗p,q +
b∗p,q
n− 1

− a∗p,q > 0,

where the notation should be adapted to T ∗+.
Claim: if p < q in T+, and p, q 6= cu for u 6 kη, then rank(q)− rank(p) > 0.
This is because in the assumed cases, the path

∏
p99Kq in ω(T+) is reduced to a path∏∗

p′99Kq′ in ω(T ∗+), where p′ = p+χ(p = ckη+1) and q′ = q+χ(q = ckη+1). Clearly p′ 6 q′.
Now the path

∏
p99Kq contains either all or none of the column η segment:

i) if
∏

p99Kq does not contain column η segment, then it is also in ω(T ∗+). We have
b∗p′,q′ = bp,q, a

∗
p′,q′ = ap,q, and

rank∗(q′)− rank∗(p′) = kj1 + kj2 + · · ·+ kjb∗
p′,q′

+
b∗p′,q′

n− 1
− a∗p′,q′ > 0

⇒ rank(q)− rank(p) = kj1 + kj2 + · · ·+ kjbp,q +
bp,q
n
− ap,q > 0,

because all kjm , ap,q, bp,q are integers and b∗p′,q′ = bp,q 6 n− 1;
ii) if

∏
p99Kq contains the whole column η segment, then the path reduces to

∏∗
p′99Kq′ .

We have

rank∗(q′)− rank∗(p′) = kj1 + kj2 + · · ·+ kjb∗
p′,q′

+
b∗p′,q′

n− 1
− a∗p′,q′ > 0

for b∗p′,q′ 6 n− 1 and the equality holds only when p = ckη+1, q = ckη+1 + 1. This situation
leads to b∗p′,q′ = a∗p′,q′ = 0. Then

rank(q)− rank(p) = kj1 + kj2 + · · ·+ kjb∗
p′,q′

+ kη +
b∗p′,q′ + 1

n
− (a∗p′,q′ + kη) > 0,

for the same reason as in case i). This completes the proof of the claim.
Now we prove (4) by dealing with three cases (not necessarily mutually exclusive):

the electronic journal of combinatorics 26(3) (2019), #P3.63 18

• Case 1: p, p+ 1 6= cu for u 6 kη. By the claim, rank(p+ 1) > rank(p).

• Case 2: Both p and p + 1 are in column η. In this case we will have p = cu and
p + 1 = cu+1 for some 1 6 u 6 kη. Since in ω(T+) we have the directed edge
cu+1 → cu, it follows that rank(p+ 1)− rank(p) = 1.

• Case 3: If exactly one of p and p + 1 equals cu for u 6 kη, then we will transform
the path from p to p+ 1 to another path q to q′ > q by adding and removing a same
number of down steps (i.e., (1,−1)), so that the Claim applies and we deduce that

rank(p+ 1)− rank(p) = rank(q′)− rank(q) > 0.

We divide into two subcases as follows.

1. if p = cu and p + 1 is not in column η. Assume p + 1 is in column j with
entries d1, d2, · · · , dkj+1. Since dkj+1 > ckη+1 = min(b(T+)), we may assume
p + 1 = dv for some v < kj + 1. Now after cu = p and dv = p + 1 are
inserted into T+, cu and dv are both active, the next entries inserted into the
two columns must be subsequently cu+1 and then dv+1, cu+2, and so on. It
follows that cu < dv < cu+1 < dv+1 < · · · < dv+kη−u < ckη+1 < dv+kη+1−u.
Now we transform

∏
p99Kp+1 to

∏
q99Kq′ , where q = ckη+1 and q′ = dv+kη+1−u > q

so that the Claim applies. It remains to show that this transform does not
change the total weight of the path. Observe that ω(T+) contains the segment
dv+kη+1−u → dv+kη−u → · · · → dv. This is due to the fact that ckη+1 + 1 is the
smallest bold faced number and that ckη+1 > dv+kη−u. By Lemma 5.1 ω(T+)
is a full cycle containing the segment ckη+1 → ckη → · · · → cu. Thus the path∏

p99Kp+1 looks like p = cu → cu−1 → · · · → dv+kη+1−u → dv+kη−u → · · · →
dv = p + 1. By adding kη + 1 − u down steps at the beginning and removing
kη + 1 − u down steps at the end, we do not change the total weight of the
path and obtain q = ckη+1 → ckη → · · · → dv+kη+1−u = q′, the path

∏
q99Kq′ in

ω(T+), as desired.

2. if p + 1 = cu and p is not in column η. The situation is similar to (1). We
will include the details here for convenience. Assume p is in column j with
entries d1, d2, · · · , dkj+1. Since dkj+1 > ckη+1 = min(b(T+)), we may assume
p + 1 = dv for some v < kj + 1. Now after dv = p and cu = p + 1 are
inserted into T+, dv and cu are both active, the next entries inserted into
the two columns must be subsequently dv+1 and then cu+1, dv+2, and so on.
It follows that dv < cu < dv+1 < cu+1 < · · · < dv+kη+1−u < ckη+1. Now
we transform

∏
p99Kp+1 to

∏
q99Kq′ , where q = dv+kη+1−u and q′ = ckη+1 > q

so that the Claim applies. It remains to show that this transform does not
change the total weight of the path. Observe that ω(T+) contains the segment
dv+kη+1−u → dv+kη−u → · · · → dv. This is due to the fact that ckη+1 + 1 is
the smallest bold faced number and that ckη+1 > dv+kη−u. By Lemma 5.1
ω(T+) is a full cycle containing the segment ckη+1 → ckη → · · · → cu. Thus

the electronic journal of combinatorics 26(3) (2019), #P3.63 19

the path
∏

p99Kp+1 looks like p = dv → · · · → ckη+1 → · · · → cu = p + 1. By
adding kη + 1− u down steps at the beginning and removing kη + 1− u down
steps at the end, we do not change the total weight of the path and obtain
q = dv+kη+1−u → · · · → dv → · · · → ckη+1 = q′, the path

∏
q99Kq′ in ω(T+), as

desired.

6 Proof of Theorem 2.11

For a vector k = (k1, k2, · · · , kn) of length `(k) = n and T− = T (D−) ∈ T −k , let ω(T−)
be the closed walk in the entries of T− yielded by Algorithm 2.10.

It is convenient to make the following convention in this section. We fix the positive
integer η with bη=min(b(T−)). Let c1, c2, · · · , ckη+1 be the entries of the column η of T−.
Denote by k∗ the vector obtained by removing the kη from k and denote by T ∗− the
tableau obtained by removing from T− the η-th column. By the induction hypothesis,
if we apply Algorithm 2.10 with respect to T ∗−, as if its letters are contiguous, then we
obtain a closed walk ω(T ∗−) on the entries of T ∗−.

Unlike the case for T +
k , we need the following lemma.

Lemma 6.1. Let T− = T (D−) ∈ T −k be a given tableau. Suppose bη = min(b(T−)) (note
that in T kn , this η is always 1). Then there is at most one bold faced entry in column η
of T−. Moreover, if `(k) > 2, then column η can only have the bottom entry bη as the
possible bold faced entry.

Proof. i): The case `(k) = 1 is trivial.
ii): By definition, bη− 1 is the smallest bold faced entry and bη can only be bold faced

when bη = bj − 1 for some j. Thus it is sufficient to show that bη− 1 is not in column η of
T−. Suppose to the contrary that bη − 1 is in this column. We may assume that column
η has s, s + 1, . . . , bη for s 6 bη − 1 but not has s − 1. Now s − 1 is not a bottom entry
by the fact bη = min(b(T−)). i) if s > 1 then s − 1 is in another column, and by Filling
Algorithm 2.4, s+ 1 would have been placed under s−1, a contradiction; ii) if s = 1 then
column η has entries 1, 2, . . . , bη, then η = 1, b1 = k1 + 1, which forces t2 = k1 + 2. This
contradicts the definition of T−.

The closed walk ω(T−) and ω(T ∗−) are closely related.

Lemma 6.2. Let D− ∈ Dk− be a Dyck path (`(k) = n > 2), T− = T (D−) be its tableau,
bη=min(b(T−)) and let T ∗− be obtained from T by removing the η-th column. Then the
following properties hold true.

1. As a closed walk ω(T−) contains the column η segment ckη+1 → ckη → · · · → c1.

2. Omitting the column η segment from ω(T−) gives ω(T ∗−). More precisely, if ω(T−)
contains the segment c′ → ckη+1 → ckη → · · · → c1 → ckη+1 − 1, then replacing this
segment by c′ → ckη+1 − 1 gives ω(T ∗−).

the electronic journal of combinatorics 26(3) (2019), #P3.63 20

3. `(ω(T−)) = `(ω(T ∗−)) + kη + 1.

4. ω(T−) is a closed walk of length |k|+ n− 1.

Proof.

1. Since ω(T−) is a closed walk containing c1, it must return to c1. Now cj has indegree
1 from cj+1 for j = 1, 2, · · · , kη by Algorithm 2.10 and Lemma 6.1. It follows that
ω(T−) must contain the segment ckη+1 → ckη → · · · → c1. (When n = 1, ω(T−)
only contains the segment ck1 → ck1−1 → · · · → c1.)

2. The directed edges of ω(T−) and ω(T ∗−) are the same if both ends do not involve
column η entries. The directed edges in ω(T−) that involve column η entries are
cj+1 → cj for 1 6 j 6 kη, and c1 → ckη+1 − 1, together with c′ → ckη+1 for some
entry c′ ∈ T ∗−. We claim that the only directed edge in ω(T ∗−) that involves an
entry of column η is c′ → ckη+1 − 1. This is because in T− we will go from c′ to
ckη+1− 1, a bold faced letter, and then to ckη+1. While in T ∗−, ckη+1− 1 is not bold
faced, so in ω(T ∗−) we have the directed edge c′ → ckη+1 − 1. This is equivalent
to replacing the segment c′ → ckη+1 → ckη → · · · → c1 → ckη+1 − 1 in ω(T−) by
c′ → ckη+1 − 1 to obtain ω(T ∗−).

3. This is a direct consequence of (2).

4. Follows by induction on n and part (3).

Now we are ready to prove Theorem 2.11, which is restated as follows.

Theorem 6.3. On the side of each edge p→ q of ω(T−) let us place an Sk
−
j if p is in row

1 column j of T− and a W otherwise. This done, the SW sequence of the path Φ−1(D−)
is simply obtained by reading all these edge labels starting from p = 1 and following the
directed edges of ω(T−).

Proof. Let D− be the path which results from this SW sequence. The path D− will go
from (0, 0) to (|k|+n− 1, 0). Let us compute the sequence of ranks starting by assigning
0 to p = 1 then inductively (following ω(T−)) for each edge p→ q set rank(q)=rank(p) +

kj− 1
n

or rank(q)=rank(p)−1 according as the label of p→ q is an Sk
−
j or a W . To show

that D− is a Dyck path we must prove that all these ranks are non-negative. We will do
this by showing that

rank(j + 1)− rank(j) > 0 (for all 1 6 j 6 |k|+ n− 2). (5)

In fact, this not only yields that D− is a Dyck path but we will also obtain that SW (D−)
is a rearrangement of the steps of D− by increasing ranks of their starting entries, proving
that D− = Φ−1(D−).

We need the following fact: Suppose the path
∏

p99Kq from p to q contains edge labels

Sk
−
jm (m = 1, 2, · · · , bp,q) and ap,q edge labels W . Then we have the identity

rank(q)− rank(p) = kj1 + kj2 + · · ·+ kjbp,q −
bp,q
n
− ap,q.

the electronic journal of combinatorics 26(3) (2019), #P3.63 21

Thus to prove (5) we need only to show that kj1 + kj2 + · · ·+ kjbp,p+1
− bp,p+1

n
− ap,p+1 > 0

for all 1 6 p 6 |k|+ n− 2.
We will prove the theorem by induction on n = `(k). The case n = 1 is trivial, so we

assume the theorem holds for n− 1, which is the length of k∗. To prove the theorem for
n, we will reduce paths in ω(T−) to that in ω(T ∗−) by omitting column η segment. The
induction hypothesis implies that if p < q in T ∗−, then

rank∗(q)− rank∗(p) = kj1 + kj2 + · · ·+ kjb∗p,q −
b∗p,q
n− 1

− a∗p,q > 0,

where the notation should be adapted to T ∗−.
Claim: if p < q in T−, and p, q 6= cu for u 6 kη, then rank(q)− rank(p) > 0.
This is because in the assumed cases, the path

∏
p99Kq in ω(T−) is reduced to a path∏∗

p′99Kq′ in ω(T ∗−), where p′ = p−χ(p = ckη+1) and q′ = q−χ(q = ckη+1). Clearly p′ 6 q′.
Now the path

∏
p99Kq contains either all or none of the column η segment:

i) if
∏

p99Kq does not contain column η segment, then we need to consider the following
two sub-cases:

Case a): If p′ < q′, then the path reduces to
∏∗

p′99Kq′ with b∗p′,q′ = bp,q and a∗p′,q′ = ap,q,
we have

rank∗(q′)− rank∗(p′) = kj1 + kj2 + · · ·+ kjb∗
p′,q′
−

b∗p′,q′

n− 1
− a∗p′,q′ > 0

⇒ rank(q)− rank(p) = kj1 + kj2 + · · ·+ kjbp,q −
bp,q
n
− ap,q > 0;

Case b): If p′ = q′, then this situation happens when p = ckη+1 − 1, q = ckη+1

⇒ rank(q)− rank(p) = −(kη −
1

n
) + kη =

1

n
> 0.

ii) if
∏

p99Kq contains the whole column η segment, then the path reduces to
∏∗

p′99Kq′ ,
we have

rank∗(q′)− rank∗(p′) = kj1 + kj2 + · · ·+ kjb∗
p′,q′
−

b∗p′,q′

n− 1
− a∗p′,q′ > 0

⇒ rank(q)− rank(p) = kj1 + kj2 + · · ·+ kjb∗
p′,q′

+ kη −
b∗p′,q′ + 1

n
− (a∗p′,q′ + kη) > 0,

because all kjm , a
∗
p′,q′ , b

∗
p′,q′ are integers and b∗p′,q′ 6 n − 1. This completes the proof of

the claim.
Now we prove (5) by dealing with three cases (not necessarily mutually exclusive):

• Case 1: p, p+ 1 6= cu for u 6 kη. By the claim, rank(p+ 1) > rank(p).

• Case 2: Both p and p + 1 are in column η. In this case we will have p = cu and
p + 1 = cu+1 for some 1 6 u 6 kη. Since in ω(T−) we have the directed edge
cu+1 → cu, it follows that rank(p+ 1)− rank(p) = 1.

the electronic journal of combinatorics 26(3) (2019), #P3.63 22

• Case 3: If exactly one of p and p + 1 equals cu for u 6 kη, then we will transform
the path from p to p+ 1 to another path q to q′ > q by adding and removing a same
number of down steps, so that the Claim applies and we deduce that

rank(p+ 1)− rank(p) = rank(q′)− rank(q) > 0.

We divide into two subcases as follows.

1. if p = cu and p + 1 is not in column η. Unlike the case for k+-Dyck paths,
we need to consider one extra situation. Assume p + 1 is in column j with
entries d1, d2, · · · , dkj , dkj+1. Since dkj+1 > ckη+1 = min(b(T−)), we may assume
p+1 = dv for some v < kj+1. Now after cu = p and dv = p+1 are inserted into
T−, cu and dv are both active, the next entries inserted into the two columns
must be subsequently cu+1 and then dv+1, cu+2, and so on. It follows that
cu < dv < cu+1 < dv+1 < · · · < ckη < dv+kη−u < ckη+1 < dv+kη+1−u. Now recall
that ckη+1−1 is the smallest bold faced number. This forces us to consider the
extra situation that if dv+kη−u is bold faced or not: i) if ckη+1 − 1 > dv+kη−u,
then we transform

∏
p99Kp+1 to

∏
q99Kq′ , where q = ckη+1 and q′ = dv+kη+1−u >

q so that the Claim applies. It remains to show that this transform does
not change the total weight of the path. Observe that ω(T−) contains the
segment dv+kη+1−u → dv+kη−u → · · · → dv. By Lemma 6.2 ω(T−) is a full
cycle containing the segment ckη+1 → ckη → · · · → cu. Thus the path

∏
p99Kp+1

looks like p = cu → cu−1 → · · · → dv+kη+1−u → dv+kη−u → · · · → dv = p + 1.
By adding kη + 1 − u down steps at the beginning and removing kη + 1 − u
down steps at the end, we do not change the total weight of the path and
obtain q = ckη+1 → ckη → · · · → dv+kη+1−u = q′, the path

∏
q99Kq′ in ω(T−),

as desired; ii) if ckη+1 − 1 = dv+kη−u, i.e, dv+kη−u is the smallest bold faced
number, then observe that ω(T−) contains the segment dv+kη+1−u → ckη+1 →
ckη → · · · → cu → · · · → c1︸ ︷︷ ︸→ dv+kη−u → · · · → dv︸ ︷︷ ︸. We have

rank(p+ 1)− rank(p) = −(u− 1) + kη −
1

n
− (kη − u) = 1− 1

n
> 0.

2. if p + 1 = cu and p is not in column η. The situation is similar to (1). We
will include the details here for convenience. Assume p is in column j with
entries d1, d2, · · · , dkj+1. Since dkj+1 > ckη+1 = min(b(T−)), we may assume
p + 1 = dv for some v < kj + 1. Now after dv = p and cu = p + 1 are
inserted into T−, dv and cu are both active, the next entries inserted into
the two columns must be subsequently dv+1 and then cu+1, dv+2, and so on.
It follows that dv < cu < dv+1 < cu+1 < · · · < dv+kη+1−u < ckη+1. Now
we transform

∏
p99Kp+1 to

∏
q99Kq′ , where q = dv+kη+1−u and q′ = ckη+1 > q

so that the Claim applies. It remains to show that this transform does not
change the total weight of the path. Observe that ω(T−) contains the segment
dv+kη+1−u → dv+kη−u → · · · → dv. This is due to the fact that ckη+1 − 1 is the

the electronic journal of combinatorics 26(3) (2019), #P3.63 23

smallest bold faced number and that ckη+1 > dv+kη+1−u > dv+kη−u. By Lemma
6.2 ω(T−) is a full cycle containing the segment ckη+1 → ckη → · · · → cu. Thus
the path

∏
p99Kp+1 looks like p = dv → · · · → ckη+1 → · · · → cu = p + 1. By

adding kη + 1− u down steps at the beginning and removing kη + 1− u down
steps at the end, we do not change the total weight of the path and obtain
q = dv+kη+1−u → dv → · · · → ckη+1 = q′, the path

∏
q99Kq′ in ω(T−), as desired.

References

[1] Drew Armstrong, Nicholas A. Loehr, and Gregory S. Warrington, Rational parking
functions and Catalan numbers, Annals Combin., 20(1):21–58, 2016.

[2] D. Armstrong, N. A. Loehr, and G. S. Warrington, Sweep maps: A continuous family
of sorting algorithms,Adv. Math., 284:159–185, 2015,.

[3] A. Garsia and M. Haiman, A remarkable q, t-Catalan sequence and q-Lagrange
inversion, J. Algebraic Combinatorics, 5:191–244, 1996,.

[4] A. Garsia and G. Xin, Dinv and Area, Electron. J. Combin., 24(1):#P1.64, 2017.

[5] A. Garsia and Guoce Xin, Inverting the rational sweep map, J. of Combin., 9:659–
679, 2018.

[6] Adriano M. Garsia and G. Xin, On the sweep map for fuss rational Dyck paths,
arXiv:1807.07458, 2018.

[7] E. Gorsky and M. Mazin, Compactified Jacobians and q, t-Catalan Numbers, J.
Combin. Theory Ser. A, 120:49–63, 2013.

[8] E. Gorsky and M. Mazin, Compactified Jacobians and q, t-Catalan Numbers II, J.
Algebraic Combin., 39:153–186, 2014.

[9] J. Haglund, The q, t-Catalan Numbers and the Space of Diagonal Harmonics, with an
Appendix on the Combinatorics of Macdonald Polynomials, AMS University Lecture
Series, 2008.

[10] Nicholas A. Loehr, Conjectured statistics for the higher q, t-Catalan sequences, Elec-
tron. J. Combin., 12 (2005) #R9.

[11] H. Thomas and N. Williams, Sweepping up zeta, Sel. Math. New Ser., 24:2003–2034,
2018.

the electronic journal of combinatorics 26(3) (2019), #P3.63 24

http://arxiv.org/abs/1807.07458

	Introduction
	Notations and Main Results
	The notation of general Dyck paths
	The Filling algorithm and the tableaux
	Walking algorithm for -Dyck paths
	The walking algorithm for -Dyck paths

	Some basic auxiliary facts about the sweep map
	Proof of Lemma 3.3
	First proof
	Second proof

	Proof of Theorem 2.8
	Proof of Theorem 2.11

