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Abstract

The n-cube is the poset obtained by ordering all subsets of {1,...,n} by inclu-
sion, and it can be partitioned into (Ln% J) chains, which is the minimum possible
number. Two such decompositions of the n-cube are called orthogonal if any two
chains of the decompositions share at most a single element. Shearer and Kleit-
man conjectured in 1979 that the n-cube has |n/2] + 1 pairwise orthogonal de-
compositions into the minimum number of chains, and they constructed two such
decompositions. Spink recently improved this by showing that the n-cube has three
pairwise orthogonal chain decompositions for n > 24. In this paper, we construct
four pairwise orthogonal chain decompositions of the n-cube for n > 60. We also
construct five pairwise edge-disjoint symmetric chain decompositions of the n-cube
for n > 90, where edge-disjointness is a slightly weaker notion than orthogonality,
improving on a recent result by Gregor, Jager, Miitze, Sawada, and Wille.

Mathematics Subject Classifications: 06A07, 05C38

1 Introduction

The n-dimensional cube @),, or n-cube for short, is the poset obtained by taking all
subsets of [n] :== {1,...,n}, and ordering them by inclusion. This poset is sometimes also
called the subset lattice or the Boolean lattice, and it is a fundamental and widely studied
object in combinatorics. For illustration, Figure 1 shows the 4-cube. In this figure and
throughout this paper, we draw posets by their Hasse diagrams.

*An extended abstract of this paper has been published in the Proceedings of EuroComb 2019.
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Figure 1: Hasse diagram of the 4-cube ()4, with three pairwise orthogonal decompositions
into 6 chains, highlighted by thick solid, dashed, and dotted lines.

Clearly, @, is a graded poset with rank function given by the set sizes, and every max-
imal chain has size n+1. We refer to the family of all subsets of a fixed size k € {0,...,n}
as the kth level of @,. It is easy to see that @), has a unique largest level n/2 for even n,
and two largest levels [n/2] and [n/2] for odd n. We refer to these levels as middle levels.
Sperner’s classical theorem [Spe28| asserts that each middle level is in fact a largest an-
tichain of @),, i.e., ), has width a,, := (I_n72 j)' As a consequence, at least a,, many chains
are needed to partition @, and by Dilworth’s theorem [Dil50], a partition into this many
chains indeed exists. De Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk [dBvETK51]
first described an inductive construction of a partition of (),, into a,, many chains that are
all symmetric and saturated, i.e., every chain starts and ends in symmetric levels around
the middle, and no chain skips any intermediate levels. Throughout this paper, we will re-
fer to their decomposition as the standard decomposition. Lewin [LewT72], Aigner [Aig73],
and White and Williamson [WW77] gave alternative descriptions of the standard de-
composition via greedy matching algorithms as well as explicit local rules to follow the
chains in the standard decomposition. The easiest-to-remember local rule using paren-
thesis matching was given by Greene and Kleitman [GK76] (we will describe their rule in
Section 3.1). The standard decomposition of @),, was famously used by Kleitman [Kle65]
to prove the two-dimensional case of the Littlewood-Offord conjecture on signed sums of
vectors [LO38]| (later proved in all dimensions by Kleitman [Kle70]).

Shearer and Kleitman [SK79] were the first to investigate chain decompositions of
the n-cube that are different from the aforementioned standard decomposition. They
proved that, when picking subsets z,y C [n] at random, the probability that z C y
is at least 1/a,, for every probability distribution on @,. Their proof introduces the
notion of orthogonal chain decompositions. Formally, two decompositions of @), into
a, (not necessarily symmetric or saturated) chains are called orthogonal if every two
chains from the two decompositions have at most a single element of (J,, in common. For
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example, Figure 1 shows three pairwise orthogonal chain decompositions into 6 chains
in Q4. Shearer and Kleitman conjectured that @, admits b, := |n/2] + 1 pairwise
orthogonal chain decompositions for all n > 1. As a warm-up exercise, we verified their
conjecture for n < 7 with computer help. It is easy to check that there are at most
b, pairwise orthogonal decompositions (consider the node degrees in the Hasse diagram
around the middle levels).

As a first step towards their conjecture, Shearer and Kleitman established the existence
of two orthogonal chain decompositions for all n > 2. They proved this by showing that
the standard decomposition and its complement, obtained by taking the complements of
all sets with respect to the full set [n], are almost-orthogonal. Formally, we say that two
decompositions of @), into a, symmetric and saturated chains are almost-orthogonal if
every two chains from the two decompositions have at most a single element of (), in
common, with the exception of the two unique chains of size n+ 1, which are only allowed
to intersect in their minimal and maximal elements () and [n]. It is straightforward to
verify that for n > 5, every family of almost-orthogonal decompositions can be modified to
orthogonal decompositions, by moving the empty set () in all but one of the decompositions
from the unique longest chain to a shortest chain, one decomposition at a time (see
[SK79, Spil9] for details).

Recently, Spink [Spil9] made the first progress towards the Shearer-Kleitman conjec-
ture from 1979 by proving that @),, has three pairwise orthogonal chain decompositions
for n > 24. He actually showed that (), has three almost-orthogonal decompositions into
symmetric and saturated chains, from which the result follows as described before.

1.1 Our results

Using Spink’s product construction, we improve on his result as follows.

Theorem 1. For all n > 60, the n-cube has four pairwise almost-orthogonal decompo-
sitions into symmetric and saturated chains, and consequently four pairwise orthogonal
chain decompositions.

A slightly weaker notion than almost-orthogonality was introduced in a recent paper by
Gregor, Jager, Miitze, Sawada, and Wille [GIMT18]. We refer to any cover relation = C y
as an edge (z,y) (y is one level above z), and we say that two decompositions of ), into
a, symmetric and saturated chains are edge-disjoint if the two decompositions do not
share any edges. Equivalently, the two decompositions form edge-disjoint paths in the
cover graph of @),,, which is the graph formed by all cover relations. By this definition,
every pair of almost-orthogonal chain decompositions is edge-disjoint, but not necessarily
vice versa. The main application of edge-disjoint chain decompositions in [GJM™18] was
to construct cycle factors in subgraphs of @), induced by an interval of levels around the
middle, with the goal of generalizing the recent proof of the middle levels conjecture by
Miitze [Mitl6] (see also [GMN18]). It is also easy to check that @, admits at most b,
pairwise edge-disjoint chain decompositions. The authors of [GJIM™*18] conjectured that
this bound can be achieved for all n > 1. They verified this conjecture for n < 7, and
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n 123456 7 8 9 10 1
almost-orthogonal SCDs 1 2 2 2 3 3% 4% 3* 3* 3 4%
edge-disjoint SCDs 12 2 3 3 4 4 4 4 5% |6t
upper bound b, = |n/2] +1 |1 2 2 3 3 4 4 5 5 6 : 6

12 13 14 15 16 17 18 19 20 21 22 23 24 25
3 3% 4% 3 3% 3 4% 3 3 4% 4F 3k 3 4x
4 4 4 4 4 4 4 4 B* 5% 6% 4 4 4
7 7 8 8§ 9 9 10 10 11 11 12 12 13 13

Table 1: Number of almost-orthogonal and edge-disjoint SCDs of @),, we know for n <
25. Entries marked with * are new compared to the earlier results from [Spil9] and
[GIM*18]. For n < 11, the corresponding families of SCDs are provided electronically
on the third authors’ website [www19] and on the arXiv [DJMS19], and for the shaded
entries they are also shown in Figures 8-11. For n > 12, they are obtained via the
product constructions presented in [Spil9] and [GIJM™18]. The entries in the dotted box
are explained in Remark 3.

proved that @), has four pairwise edge-disjoint decompositions for n > 12. We improve
on this result as follows.

Theorem 2. For all n > 90, the n-cube has five pairwise edge-disjoint decompositions
into symmetric and saturated chains.

Unless stated otherwise, all chains we consider in the following are symmetric and
saturated, and we will from now on omit those qualifications. Moreover, we refer to any
decomposition of (), into symmetric and saturated chains as an SCD. Also, when referring
to a family of pairwise almost-orthogonal or pairwise edge-disjoint SCDs, we will from
now on omit the qualification ‘pairwise’.

1.2 Small dimensions

Table 1 summarizes what is known for small values of n. Specifically, the table shows
the maximum numbers of almost-orthogonal and edge-disjoint SCDs of @),, that we know
for n < 25, together with the upper bound b,,. As indicated in the table, we actually found
six edge-disjoint SCDs of @11, which, using the product construction from [GIJM™18],
yields six edge-disjoint SCDs for all dimensions n = 11k, k£ € N. To extend this result to
all but finitely many dimensions, thus improving Theorem 2, we would only need to find
six edge-disjoint SCDs of @),, for some dimension n not of this form. It is also interesting to
note that there are no three almost-orthogonal SCDs of Q4 (see [Spil9)), i.e., in this case
the trivial upper bound b,, cannot be achieved. Nevertheless, there are three orthogonal
decompositions using non-symmetric chains in (Q;—see Figure 1-—so this shows that not
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every family of orthogonal chain decompositions can be obtained from almost-orthogonal
SCDs.

As the table shows, we can also slightly improve Spink’s aforementioned result [Spil9]
that @,, has three almost-orthogonal SCDs for n > 24. His proof left only the dimensions
n=6,8,9,11,13, 16, 18,23 as possible exceptions [Spil9, Theorem 3.3] (for n > 5). Using
the SCDs shown in our table for n < 11 and Spink’s product construction [Spil9, The-
orem 3.5], we can close all those gaps, and obtain that @),, has three almost-orthogonal
SCDs for all n > 5, and three orthogonal chain decompositions for all n > 4, providing
some more evidence for the Shearer-Kleitman conjecture. We also see that (), has four
edge-disjoint SCDs for all n > 6, ruling out the two possible exceptions n = 9,11 left by
Gregor et al. [GIMT18].

Remark 3. Our lower bounds for edge-disjoint SCDs differ from the upper bound b,, by 1
exactly for the dimensions n = 8,9, 10; see the values in the dotted box in Table 1. In
fact, it can be shown that our approach for finding edge-disjoint SCDs via the necklace
poset N, yields at most b, — 1 edge-disjoint SCDs of @, for all even n and for n =9 (see
Lemma 11 below), so our methods cannot yield better lower bounds for those cases.

1.3 Proof ideas

We now outline the main ideas for proving Theorems 1 and 2.

Product constructions We compute families of s = 4 almost-orthogonal and s =
5 edge-disjoint SCDs, for two cubes ), and ), of small coprime dimensions a and b.
Specifically, these dimensions will be (a,b) = (7,11) and (a,b) = (10, 11), respectively;
see the shaded entries in Table 1. Using the product constructions presented in [Spil9]
and [GJIM™*18], we then obtain s SCDs of the corresponding type for all dimensions n
for which n is a non-negative integer combination of a and b, in particular for all n >
(a —1)(b—1). This evaluates to n > 60 and n > 90 for the aforementioned pairs (a, b),
respectively.

Problem reduction via the necklace poset To find families of SCDs in cubes of
small fixed dimension (n = 7, 10, and 11) that satisfy the desired constraints, we reduce
the search space to a much smaller poset, the so-called necklace poset N, ; see Figure 2.
It is obtained from @, by identifying all subsets that differ only in cyclically renaming
the elements of the ground set 1 — 2 — --- — n — 1. The necklace poset N,, inherits
the level structure from @,,, and notions such as symmetric chains and SCDs translate to
it in a natural way. Moreover, N, is by a factor of n(1 — o(1)) smaller than @,, which
turns out to be crucial for our computer searches for SCDs. We refer to the process of
translating an SCD computed in N, to @, as unrolling. Unrolling essentially creates n
copies of each chain in V,,, and these copies are obtained by cyclic renaming as explained
before. This strategy works particularly well when n is a prime number, and with some
adjustments it can also be made to work for composite n. We also introduce a suitable
notion of edge multiplicities for the necklace poset (as indicated in Figure 2), which
allows us to find multiple edge-disjoint SCDs in N,, simultaneously, and to unroll them
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to multiple edge-disjoint SCDs in @),. Specifically, we prove that the two constructions
of SCDs in N, found by Griggs, Killian, and Savage [GKS04] and by Jordan [Jor10] can
be unrolled to almost-orthogonal SCDs in @),,. The key steps here are Lemmas 13 and 14
and Proposition 15 below.

Using SAT solvers To search multiple edge-disjoint SCDs in the necklace poset N,
for some small fixed dimension n, we formulate the problem as a propositional formula
in conjunctive normal form (CNF), and compute solutions using the SAT solvers Glu-
cose [ALS13] and MiniSat [ES03]. In our CNF formula, we use Boolean variables that
indicate whether certain nodes and edges belong to a particular SCD, and we introduce
clauses ensuring that a satisfying variable assignment indeed corresponds to an unrol-
lable SCD, and that multiple SCDs are edge-disjoint. Once a valid variable assignment
is found, we use incremental CNF augmentation to enforce the remaining properties, in
particular almost-orthogonality of the unrolled SCDs in @),,. Specifically, if we encounter
a violation, we add an additional clause that prevents this particular configuration. We
solve the augmented CNF using an incremental SAT solver, until we either find a feasible
solution or obtain a formula with no satisfying assignment. This approach keeps the size
of the generated CNF's and of the computation time small, as the solvers can reuse struc-
tural information of the CNF's, rather than recomputing a solution from scratch. The size
of the formulas can be reduced further by prescribing some particularly nice SCDs.

1.4 Related work

Other chain decompositions There is a large amount of literature on partitioning
the n-cube using possibly non-symmetric and/or non-saturated chains. One of the most
interesting open problems in this direction is a well-known conjecture of Fiiredi [Fiir85]
(cf. [Gri88]), which asserts that (), can be decomposed into a,, (not necessarily symmetric
or saturated) chains whose sizes differ by at most 1, so their size is 2" /a,, rounded up
or down, which is approximately \/7n(1 + o(1)). Tomon [Tom15] recently made some
progress towards this conjecture, by showing that for large enough n, the n-cube can be
decomposed into a,, chains whose size is between 0.8y/n and 13y/n. Another remarkable
result, recently shown by Gruslys, Leader, and Tomon [GLT19], is that for large enough n,
the n-cube can be partitioned into copies of any fixed poset P, provided that the number
of elements of P is a power of 2 and that P has a unique minimal and maximal element.

Pikurkho [Pik99] showed that all edges of the n-cube can be partitioned into symmetric
chains, but it is not clear whether some of those chains can be selected to form one or
more SCDs. In a slightly different direction, Streib and Trotter [ST14] presented the
construction of an SCD of the n-cube that can be extended to a Hamiltonian cycle through
the entire cover graph.

The existence and construction of SCDs has also been investigated for many graded
posets different from @,. The paper [dBvETK51]| proves that divisor lattices, which
are products of chains, are symmetric chain orders, and Griggs [Gri77]| gave a sufficient
condition for a general graded poset to admit an SCD.
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Griggs, Killian, and Savage first constructed an explicit SCD of the necklace poset N,
[GKS04] when the dimension 7 is a prime number, with the goal of constructing rotation-
symmetric Venn diagrams for n curves in the plane (see [RSWO06]). Their result for N,
with n prime was later generalized by Jordan [Jorl0] to all n € N, and to even more
general quotients of @,, by Duffus, McKibben-Sanders, and Thayer [DMST12]. All these
constructions in the necklace poset proceed by taking suitable subchains from the standard
SCD of @),,. Further generalizations of these results can be found in [Dhal2, HS13, DT15].

SAT solvers in combinatorics We conclude this section by listing some recent results
where SAT solvers were used to tackle difficult problems in (extremal) combinatorics,
either by using them to find a solution, or to prove that no solution exists. Fujita [Fuj12]
established a new lower bound R(4,8) > 58 for the classical Ramsey numbers. Similarly,
Dransfield, Liu, Marek, and Truszczyriski [DLMT04] derived improved bounds for van
der Waerden numbers (see also [HHvLvMO7] and [KPO08]). Another recent result that
received considerable attention is described in the paper by Konev and Lisitsa [KL14]
on the Erdos discrepancy conjecture. SAT solvers have also been used in the context of
geometry, specifically for tackling Erdos-Szekeres type questions, see the papers by Balko
and Valtr [BV17] and by Scheucher [Sch19]. Moreover, with their help researchers were
able to find new coil-in-the-box Gray codes [ZKCO08| and to compute pairs of orthogonal
diagonal Latin squares [ZKS16].

1.5 Outline of this paper

In Section 2 we present the proofs of our two main theorems. The proofs of two crucial
lemmas, which settle the base cases for our construction, are deferred to Section 5 at the
end of the paper. In Section 3 we explain our reduction technique to produce SCDs of @),
by working in the much smaller necklace poset N,,, and in Section 4 we describe how to
exploit this reduction using a SAT solver.

2 Product constructions implying Theorems 1 and 2

As already mentioned in the introduction, both of our theorems are proved by applying
product constructions established in [Spil9] and [GIM*18], respectively, which allow us
to obtain s almost-orthogonal or edge-disjoint SCDs of ()., given s such SCDs in the
smaller cubes @), and ),. In the following we will repeatedly use the basic number-
theoretic fact that, if @ and b are coprime integers, then every integer n > (a — 1)(b— 1)
is a non-negative integer combination of a and b.

2.1 Proof of Theorem 1

The product construction for almost-orthogonal SCDs requires an additional property
that we now define: A family of almost-orthogonal SCDs of the n-cube for some odd n is
called good if the union of edges given by all chains of size 2 from all the decompositions
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forms a unicyclic graph, i.e., a graph all of whose components contain at most a single
cycle. The following crucial statement was proved in [Spil9].

Lemma 4 ([Spil9, Theorem 3.5]). Let s > 3 and r > 2 be integers, and let nq,...,n, >3
be a sequence of odd integers. If each Qn,, 1 < i < r, has a good family of s almost-
orthogonal SCDs, then Qn,+...4n, has s almost-orthogonal SCDs.

The base case for applying Lemma 4 is the following result, which will be proved in
Section 5.

Lemma 5. The cubes Q7 and Q11 each have four good almost-orthogonal SCDs.

Proof of Theorem 1. As every integer n > (7 — 1)(11 — 1) = 60 is a non-negative integer
combination of 10 and 11, we can apply Lemmas 4 and 5 to obtain the desired SCDs. [

Spink [Spil9, Theorem 3.6] also proved that the goodness requirement in Lemma 4
can be omitted if the additional condition » > 6 is added. As every integer n > 60 is a
non-negative integer combination of 7 and 11 with coefficients that sum up to at least 6,
we would not need the families of SCDs of ()7 and ()11 to be good to prove Theorem 1.
However, since proving this modified version of Lemma 4 is considerably harder, partially
deferred to another paper [DST18], and since goodness is not hard to achieve on top of
almost-orthogonality, we prefer to stick with Lemma 4 in its stated form. Moreover, in
this form the lemma also yields four almost-orthogonal SCDs for all non-negative integer
combinations of 7 and 11 that are smaller than 60.

2.2 Proof of Theorem 2

The following product lemma for edge-disjoint SCDs was proved in [GJMT18].

Lemma 6 ([GJIMT18, Theorem 5]). If Q, and Qy each have s edge-disjoint SCDs, then
Qusp has s edge-disjoint SCDs.

The base case for applying Lemma 6 is the following result, which will be proved in
Section 5.

Lemma 7. The cubes Q19 and Q11 each have five edge-disjoint SCDs.

Proof of Theorem 2. As every integer n > (10 — 1)(11 — 1) = 90 is a non-negative integer
combination of 10 and 11, we can apply Lemmas 6 and 7 to obtain the desired SCDs. [J

To complete the proofs of our main theorems, it remains to prove Lemma 5 and
Lemma 7. The corresponding SCDs are provided in Section 5 below.
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3 Unrolling the necklace poset

Given a subset x C [n], we write o(x) for the subset obtained from x by cyclically
renaming elements 1 — 2 — --- — n — 1. Moreover, we write (x) for the family of all
subsets obtained by repeatedly applying o to x, and we refer to (x) as a necklace, and
to any element of (z) as a necklace representative. We say that the necklace (z) is full
if [(x)| = n, and deficient if |(x)| < n. For example, for n = 4 the necklace ({1,3,4}) =
{{1,3,4},{2,4,1},{3,1,2},{4,2,3}} is full, and the necklace ({1,3}) = {{1,3},{2,4}} is
deficient. Note that the cardinality of any necklace divides n. Consequently, if n is a
prime number, then ((}) and ([n]) are the only deficient necklaces, and all other necklaces
are full. On the other hand, if n is composite, then there are more than these two deficient
necklaces.

The necklace poset N, is the set of all necklaces (x), x C [n], and its cover relations
are all pairs ({x), (y)) for which x C y form a cover relation in the n-cube; see the left
hand side of Figure 2. Similarly to the n-cube, we also refer to the cover relations in N,
as edges. As o preserves the set size, N,, inherits the level structure from @),,, and notions
such as symmetric chains and SCDs translate to N,, in the natural way.

As almost all necklaces of N, are full, we have that N, is by a factor of n(1 — o(1))
smaller than @),, which is vital for our computer searches for SCDs. We now collect a
few simple observations about transferring SCDs from N,, to ),,. These observations are
illustrated in Figure 2. Recall that all chains we consider are symmetric and saturated.

Observation 8. Let y = (y1,...,yx) be a chain of full necklaces in N,. Then there
are necklace representatives x = (x1,...,x) with x; € y; for 1 < i < k, such that
ol(x) = (o'(x1),...,0%(xy)) fori =0,...,n—1is a family of n disjoint chains in Q,, that
visit exactly all elements from yyi, ..., Y.

The easiest way to pick necklace representatives satisfying those conditions is to move
up the chain y from its minimal element y; to its maximal element y,, starting with
an arbitrary representative x; € y;, and then arbitrarily picking x;41 € y;41 for j =
1,...,k—1such that (z;,x;41) is an edge in @,.

We refer to the process of translating a chain from /N, to a family of n chains
in (), as described by Observation 8 as unrolling. As an example, consider the chain
(y1,---,ya) = (({1}), ({1,2}), ({1,2,3}), ({1,2,3,4})) in N5. The necklace representa-
tives x = (z1,...,24) = ({1},{1,2},{1,2,3},{1,2,3,4}) form a chain in Q5, and o'(x),
1 = 0,...,4, is a family of five disjoint chains in ()5 that visit exactly all 5-4 = 20
elements from y,...,ys. It is crucial here to observe that the choice of necklace repre-
sentatives in Observation 8 is not unique. In the previous example, we could also choose
x = (x1,...,24) = ({1},{1,5},{1,4,5},{1,2,4,5}) as representatives, yielding a different
family of five disjoint chains in Q5.

The notion of unrolling can be extended straightforwardly from a chain of full necklaces
to a chain that has one deficient necklace at each of its ends, as captured by the following
observation. The crucial insight here is that if a necklace (x) is deficient and of size d < n,
then (z) = {o%(x) |1 =0,...,d — 1}.
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Figure 2: Unrolling an SCD of the necklace poset N5 (left) to an SCD of the 5-cube (right).
The SCD is highlighted by dotted lines, full necklaces are indicated by filled bullets, and
deficient necklaces are indicated by empty bullets. Complementing the resulting SCD
of @5 yields another SCD (dashed lines), which is edge-disjoint from the first one. The
capacities of the edges of N,, are visualized by multiple parallel edges.

Observation 9. Let (yo, ..., Yr+1) be a chain of necklaces in N,, such that yy, ...,y are
full and yo and yr.1 are deficient and of the same size d < n. Then there are necklace
representatives (To, . .., Tpy1) with x; € y; for 0 <i < k+1, such that o' (xy, ..., xp41) for
i=0,....,d—1, and o*(z1,..., ) fori =d,...,n—1, is a family of n disjoint chains
in Q, that visit exactly all elements from yo, ..., Ypi1-

As an example, consider the chain y = (yo,...,ys) = (({1,5}), ({1,2,5}), ({1,2,3,5}),
({1,2,3,5,6}), ({1,2,3,5,6,7})) in Ns. It has one deficient necklace of size d = 4 at each of its
ends, and all inner necklaces are full. Taking = = (zo,...,z4) = ({1,5},{1,2,5},{1,2,3,5},
{1,2,3 5,6}, {1,2,3 5,6,7}) as necklace representatives, unrolhng yields four chains of size 5,
namely o%(xq, ..., z4) for i = 0,1,2,3, and four chains of size 3, namely o'(zy,...,x3) for
i=4,5,6,7.

We say that a chain in N, is unimodal if its minimal and maximal element are necklaces
of the same size (possibly deficient), and all other elements are full necklaces. Moreover,
we say that an SCD of N, is unimodal if all of its chains are unimodal. Combining

Observations 8 and 9 yields the following fact, which allows us to translate an entire SCD
from N, to Q,.

Observation 10. Given a unimodal SCD of N,,, n > 1, unrolling each of its chains yields
an SCD of Q,.

This observation is illustrated in Figure 2. We refer to the process of unrolling all
chains of an SCD of N, to an SCD of @), as unrolling the SCD. Recall that in this
unrolling process there may be several choices for picking necklace representatives for
each chain.
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We now want to simultaneously unroll multiple SCDs from N,, to edge-disjoint SCDs
of @,,. This motivates the following definitions: For any edge e = ({x), (y)) of N,, where (x)
is on level k& < (n — 1)/2, we define the capacity c(e) as the number of distinct elements
from [n] that can be added to x to reach an element in (y). For any edge e = ({y), (x))
of N, where (x) is on level k > (n + 1)/2, we define the capacity c(e) symmetrically as
the number of distinct elements from [n] that can be removed from z to reach an element
in (y). We can think of the cover graph of N,, with those capacities on its edges e as a
multigraph with edge multiplicities c(e); see the left hand side of Figure 2. It is easy to
see that the sum of capacities of all edges e = ((x), (y)) for fixed (z) on level k < (n—1)/2
is n — k, which is equal to the number of neighbors of = in level k£ + 1 of the cover graph
of @,,. We say that a family of unimodal SCDs of N, is edge-disjoint if for every edge e
in IV, there are at most ¢(e) chains in those SCDs containing this edge.

For even n > 4, the middle level of N,, contains the deficient necklace ({1,3,5,...,
n — 1}). Consequently, any unimodal chain containing this necklace has size 1. It follows
that the edges incident to this necklace cannot be used by any chain, so that the upper
bound b,, for the maximum number of edge-disjoint SCDs given in the introduction (for
@,) can be improved by 1, yielding the following lemma (see [Will8] for a formal proof).

Lemma 11. For even n > 4, there are at most b, — 1 = n/2 unimodal SCDs of N, that
are edge-disjoint.

Lemma 11 shows that our approach via the necklace poset N, yields at most four
edge-disjoint SCDs of Ng and at most five edge-disjoint SCDs of Njg; recall Remark 3. By
considering the deficient necklace ({1,4,7}) and its complement in Ny, one can similarly
show that Ny has at most by — 1 = 4 edge-disjoint SCDs (see [Will§]).

The following lemma was stated and proved in [GIMT18] in slightly different form.

Lemma 12 ([GIM*18, Lemma 7]). Let n > 2 be a prime number. Every family of s < b,
unimodal SCDs of N,, that are edge-disjoint can be unrolled to s edge-disjoint SCDs of Q),,.

In Section 5 we will apply Lemma 12 to prove the case n = 11 of Lemma 7.

Note that the conclusion of Lemma 12 does not hold if the dimension n is not prime,
but composite. The example in Figure 3 shows that even two chains between two deficient
necklaces in N,, cannot always be unrolled so that the resulting sets of chains are edge-
disjoint in @,,. Consequently, in general it may not be possible to unroll two edge-disjoint
SCDs of N,, to two edge-disjoint SCDs of @),,. Nevertheless, the next two lemmas show
that unrolling is possible for two known constructions of SCDs of N, yielding not only
two edge-disjoint SCDs, but even two almost-orthogonal SCDs of (),,. Specifically, these
constructions are due to Griggs, Killian, and Savage [GKS04] for prime n, and due to
Jordan [Jorl0] for all n, and they will be explained in the next section. It is worth to
mention that both constructions in general yield different SCDs for prime n; see Figure 5.

Lemma 13. For every prime n > 2, the unimodal SCD of N,, constructed as in [GKS04]
and its complement can be unrolled to two almost-orthogonal SCDs of Q,,.
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Figure 3: Given the two unimodal chains in Ny (left; the chains are dashed and dotted),
it is impossible to unroll them so that the resulting sets of chains are edge-disjoint in Qg
(right). In each of the four blocks on the right, extending one of the two dashed chains
to include the two extreme elements prevents both dotted chains to be extended.

Lemma 14. For every n > 1, the unimodal SCD of N,, constructed as in [Jor10] and its
complement can be unrolled to two almost-orthogonal SCDs of Q.

In Section 5 we will apply Lemma 13 to prove the cases n = 7 and n = 11 in Lemma 5
and we apply Lemma 14 to settle the case n = 10 in Lemma 7. Of course, we could simply
check by computer whether these concrete small instances can be unrolled, but we still
think that the preceding two lemmas are interesting general facts that have not appeared
in the literature before.

The proof of Lemmas 13 and 14 is rather long and technical, and will be given in the
next section. It is followed by Section 4, where we describe our computer search for SCDs
of the necklace poset using a SAT solver. The reader may want to skip these parts for
the moment, and continue in Section 5 with the proofs of Lemmas 5 and 7.

3.1 Proofs of Lemmas 13 and 14

In the remainder of this section we represent subsets of [n] by their characteristic {0, 1}-
strings of length n. The ith entry of a bitstring x is denoted by z;. For instance, the
set * = {1,3,5,6} C [6] is represented by the bitstring = x; ... 16 = 101011 € {0, 1}°.
The operation o(x) on the set = translates to a cyclic right-rotation of the bitstring x.
Moreover, we write |x| for the number of 1s in x, which is the same as the level of  in @,,.
Also, for any bitstring x and any integer r > 0, we write 2" for the concatenation of r
copies of x.

We begin by recapitulating the SCD constructions in the n-cube and the necklace
poset described in the three papers [GK76, GKS04, Jor10]. The first construction by
Greene and Kleitman is used as an auxiliary construction for the other two constructions,
which we need for proving Lemmas 13 and 14. For the reader’s convenience, the Greene-
Kleitman construction is illustrated in Figure 4 for one particular chain, and the other
two constructions are illustrated in Figure 5 for n = 7.
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Figure 4: The parenthesis matching approach for constructing the symmetric chain con-
taining a bitstring x € Q9.

The Greene-Kleitman construction in @Q,, Greene and Kleitman [GK76] proposed
the following explicit construction of an SCD of (),,. Given any bitstring x of length n, we
think of every 0-bit as an opening parenthesis, and every 1-bit as a closing parenthesis,
and we match closest pairs of opening and closing parentheses in the natural way; see
Figure 4. We let M (x) be the set of all index pairs corresponding to matched parentheses
in z, and we let Up(x) and U;(x) be the index sets of unmatched opening and closing
parentheses, respectively. The length of x clearly satisfies n = 2| M (x)|+ |Uy(z)|+|Ur ()]
For any x with Up(x) # (), we let 7(x) be the bitstring obtained from x by flipping

the leftmost unmatched 0 to a 1. The union of all chains (z,7(z),...,7%(x)), where
x € {0,1}" with U(z) = () and k = |Up(z)|, forms an SCD of the n-cube for all n > 1.
This follows easily from the observation that we have M(z) = M(7(z)) = --- = M(7*(z))

and Up(7¥(x)) = 0 along each such chain, so the chain is uniquely determined by its
matched pairs of parentheses. We denote this SCD by D,,. This is exactly the standard
SCD of the n-cube mentioned in the introduction.

The Griggs-Killian-Savage construction in N,, for prime n  To construct an SCD
of N, for prime n, Griggs, Killian, and Savage [GKS04] use the standard SCD D,, in @,
as a starting point and select subchains of D,,, such that exactly one representative of
each necklace is contained in one of the subchains.

For this purpose we define, for any x € {0,1}", the block code B(x) as follows: If x
has the form z = 1%10%1920% ... 190" with r > 1 and a;,b; > 1 for all i = 1,...,r, then
B(x) := (a1 + by, ag + ba, ..., a, + b,). Otherwise we define 5(z) := (00). If B(x) # (00),
then we say that the block code of z is finite. Note that the block code is finite if
and only if x starts with 1 and ends with 0. Observe also that for all chains from the
standard SCD D,,, the block code of all chain endpoints is (c0), whereas along the inner
bitstrings of each chain, we see the same finite block code along the chain; see Figure 5.
For prime n, we let RCXS C {0,1}" be the set of all necklace representatives whose block
code is lexicographically minimal in their necklace. As n is prime, this gives exactly
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Figure 5: Illustration of the Griggs-Killian-Savage construction (top) and the Jordan
construction (bottom) of an SCD of N, for n = 7, by trimming the Greene-Kleitman
SCD of @),,. The figure shows only the chains from the standard SCD D,, that contain
a bitstring with finite block code, all other chains from D, are omitted as they do not
contribute to either construction (see Lemmas 17 and 19). The block codes of the inner
bitstrings of each chain are shown at the very top; the block codes of all chain endpoints
are (00). Top: We select the bitstrings with lexicographically minimal block code in their
necklace (marked by squares) as representatives RS¥S. Bottom: We select all bitstrings
with the maximum number of unmatched 1s in their necklace (marked by squares) as
representatives RJ. Representatives of the same necklace with the same number of un-
matched 1s are highlighted by double arrows. If this occurs on two chains of the same
length, then the trimming procedure applied in the Jordan construction is not unique.
By the trimming (struck through bitstrings), some chains disappear entirely. Note that
the SCDs of N, resulting from the two constructions (bold edges) are distinct.

one representative per necklace.! It was shown in [GKS04] that the representatives RSKS
induce symmetric and saturated subchains of D,,, and we denote these subchains by DSXS,
Clearly, the corresponding chains in the necklace poset form an SCD of N,,.

'If n is composite, the method fails, as there may be several necklace representatives with the same
block code, e.g., z = 100110 and y = 110100 with 8(z) = B(y) = (3, 3).
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The Jordan construction in N, for arbitrary n Jordan’s construction [Jorl0]
of an SCD of N, for arbitrary n also uses the standard SCD D, in @), as a starting
point, but selects subchains in a different fashion. We let R} be the set of all necklace
representatives that have the maximum number of unmatched 1s in their necklace. (It is
easy to see that those also have finite block code—see Lemma 19—but this is irrelevant for
the moment.) Note that R} may contain several representatives from the same necklace;
see Figure 5. It was shown in [Jor10] that these representatives R) induce symmetric
and saturated subchains of D,,. We now search for pairs of chains that contain two
representatives of the same necklace. Jordan showed in her paper that these duplicates
always lie symmetrically at the ends of both chains, so we may trim the shorter of the two
chains symmetrically at both ends. If both chains have the same size, then we trim any
of the two, yielding different resulting subchains. We repeat this trimming process until
each necklace has only a single representative left, and we denote the remaining subchains
of D, by D]. Clearly, the corresponding chains in the necklace poset form an SCD of N,,.
We emphasize again that the outcome of the trimming procedure is not unique, but could
be made unique by some lexicographic tie-breaking rule.

Proof of Lemmas 13 and 14 The following statements are the main steps for proving
Lemmas 13 and 14. The proofs of these statements are deferred to the next subsection.

Our first proposition will be used to show that the cyclic rotations of the complement
of any subchain of a chain in the standard decomposition D,, are almost-orthogonal to all
other chains in D,,, and it can thus be seen as a generalization of the results of Shearer
and Kleitman [SKT79].

Proposition 15. Consider two distinct bitstrings x and y with finite block code that lie
on the same chain of D,. Then for every k > 0, the bitstrings o*(z) and o*(3) do not lie
on the same chain of D,,.

The next two lemmas capture crucial properties of the subchains DSXS of D,, obtained
from the Griggs-Killian-Savage construction.

Lemma 16. For every prime n > 2 and every chain from DS¥S the corresponding
necklaces form a unimodal chain in N,.

GKS
Rn

Lemma 17. For every prime n > 2, all necklace representatives in except O™ and

1™ have finite block code.

The next two lemmas are the analogous statements for the subchains D] obtained
from the Jordan construction.

Lemma 18. For everyn > 1 and every chain from D], the corresponding necklaces form
a unimodal chain in N,,.

Lemma 19. For every n > 1, all necklace representatives in R} except 0" and 1" have
finite block code.

With these lemmas in hand, the proof of Lemmas 13 and 14 is straightforward.
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Proof of Lemma 13. We first consider the SCD of N,, for prime n > 2 obtained via the
Griggs-Killian-Savage construction described before, specified by the chains of necklace
representatives DSXS. We let U,, be the SCD of Q,, obtained by unrolling each chain from
this SCD. Furthermore, we let U,, be the SCD of (), obtained by unrolling each chain from
the complement of this SCD, or equivalently, by taking the complement of U,. In both
cases, unrolling is possible because of Lemma 16 (recall Observations 8 and 9), where we
also use that complementation preserves unimodality.

It remains to show that U,, and U, are almost-orthogonal SCDs of ,,. For this consider
two distinct bitstrings 2’ and ' on the same chain in U,, that are neither 0™ nor 1. There
is a unique k > 0, such that 2’ = o*(z) and y' = o*(y) for two bitstrings x and y on the
same chain in DSXS. Consider the following chain of implications:

2’ and g/ lie on the same chain in U,,.

2/ and 3/ lie on the same chain in U,.

There is a unique ¢ > 0, so that o‘(2’) and o*(y/) lie on the same chain in DSXS,
o"4(Z) and o*(7) lie on the same chain in DSKS,

From Lemma 17 we know that x and y have finite block code. Clearly, if two elements
lie on the same chain in DSXS| then they also lie on the same chain in D,,. Consequently,
applying Proposition 15 falsifies the last of the above statements, so the first one is also
false, i.e., we obtain that 2’ and y’ do not lie on the same chain in U,. To complete
the proof that U, and U, are almost-orthogonal, we can verify directly that the unique
longest chains in U, and U,, namely (07,1107 12072, ... 1"=202 1710}, 1") and its
complement, intersect only in 0™ and 1. O

Proof of Lemma 1. This proof proceeds in an analogous fashion as the proof of Lemma 13
presented before, using Lemmas 18 and 19 instead of Lemmas 16 and 17. O

It remains to prove Proposition 15 and Lemmas 16-19, which will be done in the next
three subsections.

Proof of Proposition 15 For the proof we will need the following auxiliary lemma.

Lemma 20. Let z,y € {0,1}", and leti and j be two distinct indices such that x;x;,1 = 01
and y;yir1 # 01, and x;x;11 # 01 and y;y;41 = 01. Then the sets M (c*(z)) and M(c*(y))
are distinct for all k > 0.

Proof. Clearly, for any bitstring z we have that (¢,¢+1) € M(z) if and only if 2,2, = 01.
In the following we consider all indices in  and y modulo n, with 1,...,n as represen-
tatives. As a consequence of our first observation, if k& # —i, then (k + i,k + i + 1)
is in M (co%(z)) but not in M(c*(y)). Similarly, if k¥ # —j, then (k + j,k + j + 1) is
in M(c*(y)) but not in M (c*(x)). As i # j, the two sets are distinct in any case. O

Proof of Proposition 15. We assume without loss of generality that |z| < |y, i.e., y is
obtained from x by repeatedly applying 7. Furthermore, let ¢ and j be the indices of
the leftmost unmatched 0 in 2 and the rightmost unmatched 1 in y, respectively. More
formally, we have i = minUp(z) and j = maxU;(y). As « and y have finite block code,
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we have ;1 = y; = 1 and x,, = y, = 0. In particular, these positions are unmatched, so
1> 1and j < n are well-defined. Moreover, we clearly have ¢ < j. Note that z;_1 is either
matched or an unmatched 1. However, as every block of matched parentheses ends with 1,
we have x;_1 = y;-1 = 1 in any case. A similar argument shows that y;11 = x;11 = 0.
Summarizing, the situation looks as follows:

1 ? J n 1 { J n
y=1xxx11*kxx10*%xx0 Y=0xxx00%xx01**xx1
T =1%xx10*xxx00*%x*x0 T=0%xx01#xx11xxx1

From these observations it follows that z;—1z; = 01 and 7;—1y; = 00, and similarly Z;7;71 =
11 and y;5;71 = 01. Applying Lemma 20 to the indices ¢ — 1 and j in  and y hence shows
that M (c*(z)) and M (c* (%)) are distinct for all £ > 0. As each chain of D,, is uniquely
described by its matched pairs of parentheses, we obtain that o*(Z) and ¢*(¥) do not lie
on the same chain, proving the proposition. O]

Proofs of Lemmas 16 and 17

Proof of Lemma 16. This is trivial, as there are only two deficient necklaces for prime n,
namely (0") and (1"). O

Proof of Lemma 17. Each bitstring x other than 0™ and 1™ has two consecutive bits
r;x;41 = 01. Consequently, the rotated bitstring o~*(z) starts with 1 and ends with 0
and therefore has finite block code. O

Proofs of Lemmas 18 and 19

Proof of Lemma 18. This proof was suggested in Wille’s thesis [Will8] on edge-disjoint
SCDs in the n-cube, and is reproduced here with her permission.

Consider a chain from D; with a bitstring = such that () is deficient and of size d < n.
We will show that x is an endpoint of this chain and that the other endpoint y corresponds
to a deficient necklace (y) of the same size d.

The following argument is illustrated in Figure 6. Define r := n/d and let v € {0,1}¢
be such that z = v". We assume without loss of generality that |x| < n/2, implying that
lv| < d/2. As every matched pair of parentheses involves exactly one 0 and one 1, it
follows that |Up(v)| = |Uy(v)|. This ensures that we can match every unmatched 1 in the
ith copy of v in z with an unmatched 0 in the (i — 1)th copy of v for all ¢ = 2,... r,
implying that Uy (z) = Uy (v).

We proceed to show that z is the starting point of its chain in D}, If U;(z) = (), then x
is the starting point of its chain in D,, by definition, and consequently also the starting
point of its chain in D]. Otherwise U;(z) # (), and we show that then z := 77(z) ¢ R).
By our observation from before, all unmatched 1s of x lie in the first copy of v, so we
have z = 771(z) = 77! (v)v" . Together with the fact that |U; (771 (v))| = |U1(v)| — 1, we
obtain Uy (2) = Uy(x) — 1 and U,(07%(2)) = Uy (x). This implies U;(z) < U;(c74(2)), i.e.,
z does not have the maximum number of unmatched 1s among the representatives of its
necklace, so indeed z ¢ R).
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Figure 6: Mlustration of the proof of Lemma 18 for z = v" with v = 110000010110 and
r = 3. The brackets show matched pairs of parentheses, where solid brackets are matches
within each copy of v in x, and dotted brackets are matches across different copies of v.

We now show that y := 7"~ 2%/(z) has the form y = w" for some w € {0,1}¢. This
implies |(y)| < d, which is sufficient to prove that actually |(y)| = d, as otherwise we could
reverse the roles of z and y in the proof, yielding a contradiction. For ¢ = 1,...,r — 1,
the number of Os in the ith copy of v in z that are unmatched in z is |Uy(v)| — |U;(v)| =
d—2[v| = (n—2|x|)/r. Consequently, by applying 7"~2* to x, we arrive at 7"~ 2*/(z) = w"
with w = 7472Pl(¢). O

Proof of Lemma 19. Let x € R} \ {0", 1"}, i.e., x has the maximum number of un-
matched 1s among the representatives of its necklace. Note that x; = 1, as otherwise
we could rotate x to the left until the first 1-bit reaches the first position, which would
strictly increase the number of unmatched 1s. A similar argument shows that x,, = 0,
as otherwise we could rotate x to the right until the last 0-bit reaches the last position,
which would strictly increase the number of unmatched 1s. These two observations imply
that = has finite block code. O

4 SAT based computer search

In this section we describe our computer search for SCDs in cubes of small dimension
using a SAT solver.

4.1 The reduced necklace graph

We let N, denote the multigraph obtained as follows: We consider the cover graph of N,,,
where the edge multiplicities are given by the capacities (as defined before Lemma 11),
and we remove all edges between a full necklace and a deficient necklace, whenever the
deficient necklace is closer to the middle level(s); see Figure 7. Note here that even
though NV, is a (multi)graph, it inherits the level structure from the poset N, so all the
poset notions (chain, SCD, etc.) from before translate to N, in the natural way. The
aforementioned edge removals enforce that a chain containing a deficient necklace must
either start or end at this necklace. Informally speaking, removing those edges does not
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Figure 7: The multigraph Ny . As before, full necklaces are indicated by filled bullets,
and deficient necklaces are indicated by empty bullets.

harm us when searching for unimodal chains and SCDs, as they must not be contained
in any unimodal chain anyway.

4.2 SAT formula for edge-disjoint SCDs of N,

In this section we describe a propositional formula ®(n,s) in conjunctive normal form
(CNF), whose solutions correspond to s edge-disjoint unimodal SCDs of N, . In the
later sections we show how to modify those solutions, so that they can be unrolled to
s edge-disjoint (and good almost-orthogonal) SCDs of @,,. Throughout this section, the
integers n > 1 and s > 2 are fixed.

We first compute the level sizes of N, and, based on this, the number ¢, of chains and
the chain sizes that an SCD must have. Different SCDs will be indexed by ¢+ = 1,..., s,
and different chains in the ith SCD will be indexed by j =1,...,¢,. We also assume that
the chains of the ith SCD are indexed in decreasing order of their size, so chain j = 1 is
the unique longest chain, and chain j = ¢,, is a shortest chain.

We use Boolean variables X; ;. to indicate that edge e of N, is contained in chain j
of decomposition i. Moreover, Boolean variables Y; ;,, are used to indicate that node u
of N, is contained in chain j of decomposition ¢. Clearly, we introduce these variables
only for pairs (j,e) and (j,u) in the relevant levels. For instance, the node u = (f}) can
only be contained in the longest chain 1, so we only have a single variable Y] ;,, for fixed 4
and u, namely Y; 1 ,,.

In the following we describe the clauses of our CNF formula ®(n, s) in verbal form.

Link edge to node variables: If some edge variable Xj ;. is satisfied and the edge e
connects nodes u and v, then both corresponding node variables Y; ;,, and Y; ;, must
be satisfied. Moreover, if some node variable Y; ;, is satisfied and chain j extends
above the level of u, then at least one edge variable X ;. for an edge e incident with u
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and a node from a level above must be satisfied. Similarly, if chain j extends below
the level of u, then at least one edge variable X ;. for an edge e incident with u and
a node from a level below must be satisfied. At a deficient necklace u, one or both of
these edge sets are empty, and consequently a chain extending beyond the level of u
in the corresponding direction will never be mapped to wu.

Force chains to be present: For any chain j and a level k£ visited by this chain, at
least one of the node variables Y] ;,, where u runs over all nodes on level k£, must be
satisfied.

Node-disjoint chains: For any node u on a level visited by two chains j and j’ in the
same SCD ¢, at most one of the two node variables Y; ;,, or Y j;, must be satisfied.

Enforce unimodality: For any deficient necklace u on some level k < (n — 1)/2, if one
of the node variables V] ;,, is satisfied, then one of the corresponding variables Y; ; .,
where v is on level n — k and satisfies |u| = |v|, has to be satisfied. Note that there
may be deficient necklaces of different sizes on the same level.

Edge-disjoint SCDs: For any two SCDs i and ¢/, any two chains j and j' from those
SCDs, and any edge e between two consecutive levels that are intersected by both
chains, at most one of the two edge variables X; ;. and Xy ; . must be satisfied.

A useful trick to reduce the size of the resulting CNF formula dramatically is to fix
some SCDs to be particular standard decompositions, for instance the ones mentioned in
Lemmas 13 and 14, so that the corresponding edge and node variables are not free, but
fixed constants. Similarly, we may also couple certain pairs of SCDs to be complements
of each other, so only one set of variables is free, and the other is forced.

4.3 Unrolling by incremental CNF augmentation

Any solution of the CNF formula ®(n, s) described before corresponds to s edge-disjoint
unimodal SCDs of N, (and N,,). However, as the example in Figure 3 shows, these SCDs
cannot always be unrolled to s edge-disjoint SCDs of (),,. Unfortunately, we have no
systematic way to avoid this problem, so we resolve it in an ad-hoc fashion: We compute
a satisfying assignment of ®(n,s) using a SAT solver, and we test whether the current
solution can be unrolled. If not, then we take the first pair of chains from two SCDs that
cannot be unrolled simultaneously, and we add an additional clause that prevents this
particular pair of chains to appear in a solution, yielding an augmented CNF formula
®’(n,s). The advantage of this approach is that an incremental SAT solver has the
ability to reuse information about the structure of ®(n,s) when solving the augmented
instance ®’(n, s). We repeat this iterative process until we either find a solution that can
be unrolled to s edge-disjoint SCDs of ),,, or the resulting CNF formula has no satisfying
assignment. In practice, this last case usually cannot be detected, as the solvers take too
long to certify non-satisfiability.
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n s SCDs #variables  #clauses | solver time memory
7 4 almost-orthogonal 1.152 1.484 | Glucose 0.048 s 11 MB
11 4 almost-orthogonal 132.432  1.437.326 | MiniSat 23 min 972 MB
10 5 edge-disjoint 49.900 381.880 | Glucose 2:29 h 501 MB
11 6 edge-disjoint 198.648 14.258.688 | Glucose 3:51h 1.6 GB

Table 2: Size of SAT instances and required computing resources. The number of variables
and clauses are recorded at the end of the CNF augmentation and take into account
internal simplifications carried out by the solver.

4.4 Good almost-orthogonal SCDs

We take a similar incremental approach to compute good families of almost-orthogonal
SCDs. Again we start with the CNF formula ®(n, s), and keep adding constraints that
prevent certain pairs of chains to appear. Specifically, we forbid a pair of chains if it cannot
be unrolled or if the unrolled chains intersect in more than one node (or in more than
two if these are the longest chains). It turns out that adding the following clauses right
in the beginning speeds up the incremental search process considerably, as it immediately
excludes many local violations of almost-orthogonality.

Forbid diamonds: Consider four edges e = (x,v), f = (v,y), g = (z,w), and h = (w, y)
that form a ‘diamond’, i.e., x is on some level k, the elements v and w are on level k+1,
and y is on level £ + 2 of N, such that for any necklace representative of x, flipping
the two bits corresponding to e and f leads to the same representative of y as flipping
the two bits corresponding to g and h. For any two SCDs ¢ and i’ and any two
chains j and j’ from those SCDs that intersect all levels k to k + 2, not all four edge
variables X, ; ., X; ¢, Xi j 4, Xirjo, must be satisfied.

The goodness property could be enforced in a similar incremental way, but coincidentally,
the solutions we obtained all satisfied this property right away. In hindsight, this might
not be so surprising, given that the graph formed by the 2-element chains is relatively
sparse: Every SCD contributes a matching that satisfies only a ©(1/n)-fraction of all
nodes on average.

4.5 Implementation details

We used the incremental SAT solvers Glucose [ALS13] and MiniSat [ES03]. The unrolling
tests and incremental CNF augmentation that drive the SAT solver were implemented in
C++. Table 2 shows the sizes of the generated SAT instances, running times, and memory
requirements for the four families of SCDs that we computed for proving Lemmas 5 and
7 (shown in Figures 8-11).
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Figure 8: Two SCDs V7 and W7 in the necklace poset N7 that together with their com-
plements V7 and W; can be unrolled to four good almost orthgonal SCDs in Q7.

5 Proofs of Lemmas 5 and 7

To prove Lemmas 5 and 7, we describe families of four good almost-orthogonal SCDs
and five edge-disjoint SCDs of the n-cube for n = 7,11 or n = 10, 11, respectively. We
specify those SCDs in Figures 8-11 in compact form, by unimodal SCDs of the necklace
poset N,,, from which the SCDs in the n-cube can be recovered by unrolling as described in
Section 3 and by taking complements of some of the resulting SCDs. We specify each chain
in one of these SCDs uniquely by a particular choice of necklace representatives (recall
Observations 8 and 9 and the remarks between them). The representatives are described
by specifying the minimal and maximal elements of each chain, and the elements from [n]
that are added/removed from the sets when moving along the chains. The resulting
full SCDs of @,, are provided in files that can be downloaded from the third authors’
website [www19] and on the arXiv [DJMS19], together with a simple Python program for
verification. In those files, subsets of [n] are encoded by their characteristic bitstrings of
length n (as in Section 3.1).

5.1 Proof of Lemma 5

We now describe four good almost-orthogonal SCDs of ()7 and @)1;. The SCDs V7 and Vi,
defined below are constructed as in [GKS04] (recall Section 3.1), and are then unrolled
together with their complements as described in Lemma 13.

Figure 8 shows two SCDs V7 and W7 in N7, each consisting of 5 chains, that together
with their complements V7 and W5 can be unrolled to four good almost-orthogonal SCDs
of Q7; see the file Q7_4 ortho.txt. Specifically, the union of all 4 - 14 = 56 edges given
by all chains of size 2 of those SCDs forms one cycle of length 14 and 14 paths on 3 edges
each. These are indeed all unicyclic components.

Figure 9 shows two SCDs V;; and Wiy in Nyq, each consisting of 42 chains, that together
with their complements V;; and Wi, can be unrolled to four good almost-orthogonal SCDs
of Q11; see the file Q11 4 ortho.txt. Specifically, the union of all 4 - 132 = 528 edges
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(figure continues on next page)
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given by all chains of size 2 of those SCDs forms 66 isolated edges, 22 paths on 2, 3, or 7
edges each, 22 trees on 5 edges (the trees have one degree 3 node with paths of lengths
1, 1, and 3 attached to it), and 2 cycles of length 22 with an additional dangling edge
attached to each node. These are all unicyclic components.

5.2 Proof of Lemma 7

We now describe five edge-disjoint SCDs of )19 and six edge-disjoint SCDs of ()1;. The
SCD X defined below is constructed as in [Jor10] (recall Section 3.1), and is then unrolled
together with its complement as described in Lemma 14. The SCDs of ()1; were computed
with the help of Lemma 12.

Figure 10 shows three SCDs Xjg, Y19, and Z1g in Npg, each consisting of 26 chains,
that together with the complements X;q and Yjo can be unrolled to five edge-disjoint
SCDs of Q1; see the file Q10_5_edge. txt.

Figure 11 shows three SCDs X1, Y31, and Z;; in Nyq, each consisting of 42 chains, that
together with their complements X1, Y31, and Z1; can be unrolled to six edge-disjoint

SCDs of (Q11; see the file Q11 _6_edge. txt.
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(figure continues on next page)
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Figure 10: ThreeEDs Xm_, Y10, and Zig in the necklace poset Nig that together with
the complements X;y and Yo can be unrolled to five edge-disjoint SCDs in Q19.
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(figure continues on next page)
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Figure 11: Three SCDs Xy1, Y11, and Z1; in the necklace poset Ni; that together with
their complements X1, Y11, and Z;; can be unrolled to six edge-disjoint SCDs in Q1.
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