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Abstract

We are concerned with spectral problems of the Goldberg-Coxeter construction
for 3- and 4-valent finite graphs. The Goldberg-Coxeter constructions GCk,l(X) of
a finite 3- or 4-valent graph X are considered as “subdivisions” of X, whose num-
ber of vertices are increasing at order O(k2 + l2), nevertheless which have bounded
girth. It is shown that the first (resp. the last) o(k2) eigenvalues of the combina-
torial Laplacian on GCk,0(X) tend to 0 (resp. tend to 6 or 8 in the 3- or 4-valent
case, respectively) as k goes to infinity. A concrete estimate for the first several
eigenvalues of GCk,l(X) by those of X is also obtained for general k and l. It is also
shown that the specific values always appear as eigenvalues of GC2k,0(X) with large
multiplicities almost independently to the structure of the initial X. In contrast,
some dependency of the graph structure of X on the multiplicity of the specific
values is also studied.

Mathematics Subject Classifications: 05C10, 52B05

1 Introduction

The Goldberg-Coxeter construction is a subdivision of a 3- or 4-valent graph, and it is
defined by Dutour-Deza [5] for a plane graph based on a simplicial subdivision of regular
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polytopes in [1, 15]. In [5], it is pointed out that it often appears in chemistry and
architecture, and its combinatorial and algebraic structures are investigated. Goldberg-
Coxeter constructions of regular polyhedra generate a class of Archimedean polyhedra,
and infinite sequence of polyhedra, which are called Goldberg polyhedra. For example
a Goldberg-Coxeter construction of a dodecahedron generates a truncated-icosahedron,
which is known as a fullerene C60 [17,24]. Goldberg-Coxeter constructions are also applied
to Mackay-like crystals, and explain large scale of spatial fullerenes [21,23]. Mathematical
modeling of self-assembly in nature is also widely studied in [1,18]. Recently, Fujita et al.
have synthesized molecule structures with 4-valent Goldberg polyhedra, and they explain
self-assembly from viewpoints of chemistry and biology [13].

On the other hand, the stability of a molecule is explained by eigenvalues of the finite
graphs which express the molecule structure by Hückel method [2]. Hence, studies for
eigenvalues of Goldberg-Coxeter constructions are worth trying. DeVos, Goddyn, Mohar,
and Šámal considered eigenvalues of (3, 6)-fullerenes (cf. [4]). A (3, 6)-fullerene X is a
3-valent plane graph whose faces are triangles and hexagons. We consider general 3- or
4-valent graphs, and if a graph is (k, 6)-fullerene, then its Goldberg-Coxeter constructions
are also (k, 6)-fullerenes. The Goldberg-Coxeter construction GCk,l(X) of a 3- or 4-valent
graph X has the parameters k and l both of which are integers and they are regarded to
indicate a point in the triangular or square lattices, respectively. Then we are concerned
with behavior of eigenvalues of GCk,l(X) when k and l tend to infinity.

Throughout this paper, unless otherwise indicated, a graph is always assumed to be
connected, finite and simple. For a graph X, let us denote by V (X) the set of vertices
of X, and by E(X) the set of undirected edges of X. For p ∈ V (X), the set of its
neighboring vertices is denoted by NX(p). The combinatorial Laplacian ∆X , simply called
the Laplacian, of a graph X acts on the set CV (X) of functions on V (X) and is defined as

(∆Xf)(p) := deg(p)f(p)−
∑

q∈NX(p)

f(q) for f ∈ CV (X) and p ∈ V (X),

where deg(p) denotes the degree of the vertex p. As is well-known, the eigenvalues of ∆X

for a regular graph X of degree r necessarily lie in the interval [0, 2r].
The definition of the Goldberg-Coxeter constructions extends for general 3- or 4-valent

graph X = (V (X), E(X)) equipped with an orientation at each vertex, in the sense that,
for each p ∈ V (X), the set of edges emanating from p is ordered. As shall be explained
later (cf. Proposition 2.2), if, in particular, X is “appropriately” embedded in an oriented
surface, thenX is endowed with a natural orientation at each vertex and GCk,l(X) remains
to be also embedded in the same surface.

There is a long line of works on upper bounds for the (especially, first nonzero) eigen-
values of general planar or genus g finite graphs (see [19,25] and the references therein).
In [20], it is proved that the i-th eigenvalue of a graph embedded in an oriented surface
of genus g is estimated from above by O((g + 1) log2(g + 1)i/n), where n is the number
of the vertices. The following theorem does not only depend on the genus, but contains
an assertion on the last several eigenvalues of GCk,0(X).
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Theorem 1.1. Let X = (V (X), E(X)) be a connected, finite and simple 3- or 4-valent
graph equipped with an orientation at each vertex, and GCk,0(X) be the Goldberg-Coxeter
construction of X for k > 1. Then, for any number o(k2) satisfying o(k2)/k2 → 0 as
k → ∞, the first (resp. the last) o(k2) eigenvalues of the Laplacian of GCk,0(X) tend to
0 (resp. tend to 6 or 8 in the 3- or 4-valent case, respectively) as k goes to infinity.

Here we note that GCk,0(X) has k2|V (X)| = O(k2) vertices and the above result is
the best in matters of the convergence to 0 or to the natural upper bound. As for the
first and the last |V (X)| eigenvalues, the following concrete estimates are also obtained.

Theorem 1.2. Let X = (V (X), E(X)) be a connected, finite and simple 3- or 4-valent
graph equipped with an orientation at each vertex, X ′ = GCk,l(X) be the Goldberg-Coxeter
construction of X, where k > l > 0 and k 6= 0 and

0 = λ1(X) < λ2(X) 6 · · · 6 λ|V (X)|(X),

0 = λ1(X
′) < λ2(X

′) 6 · · · 6 λ|V (X′)|(X
′)

be the eigenvalues of their Laplacians ∆X , ∆X′, respectively. Then for i = 1, 2, . . . , |V (X)|,

λi(GCk,l(X)) 6


3k

k2 + kl + l2
λi(X), if X is 3-valent,

2k

k2 + l2
λi(X), if X is 4-valent.

(1.1)

If in particular X is a bipartite 3-valent graph, then for i = 1, 2, . . . , |V (X)|,

λ|V (GCk,l(X))|−i+1(GCk,l(X)) > 6− 3k

k2 + kl + l2
λi(X). (1.2)

In the case that l = 0, the last |V (X)| eigenvalues of GCk,0(X) satisfy

λ|V (GCk,0(X))|−i+1(GCk,0(X)) >


3 +

√
5 + 4 cos

2π

k
, if X is 3-valent,

4 + 4 cos
2π

k
, if X is 4-valent and k is even,

4 + 4 cos
π

k
, if X is 4-valent and k is odd,

(1.3)
for i = 1, 2, . . . , |V (X)|.

Moreover we have the following result.

Theorem 1.3. Let X be a 3-valent (resp. 4-valent) graph satisfying the same assumptions
as in Theorem 1.2. For any real number λ ∈ [0, 6] (resp. λ ∈ [0, 8]), there exists a sequence
(λk)k of eigenvalues of GCk,0(X) which converges to λ as k tends to infinity.

As the following theorems show the Goldberg-Coxeter constructions have also steady
eigenvalues.

the electronic journal of combinatorics 26(3) (2019), #P3.7 3



Theorem 1.4. Let X be a connected, finite and simple 3-valent graph equipped with an
orientation at each vertex, and GC2k,0(X) be its Goldberg-Coxeter constructions for k ∈ N.

(1) GC2k,0(X) has eigenvalue 4, whose multiplicity is at least dk/2e.

(2) GC2k,0(X) has eigenvalue 2, whose multiplicity is at least bk/2c.

In Theorem 1.4, dxe (resp. bxc) denotes the smallest integer > x (resp. the largest
integer 6 x).

Theorem 1.5. Let X be a connected, finite and simple 4-valent graph equipped with an
orientation at each vertex, and GC2k,0(X) be its Goldberg-Coxeter constructions for k ∈ N.
Then, for k > 2, GC2k,0 has eigenvalue 4, whose multiplicity is at least d(k − 1)/2e.

On the other hand, the multiplicities of eigenvalues 2 and 4 would depend on the graph
structure of X and the following is obtained.

Theorem 1.6. Let X be a connected, finite and simple 3-valent graph which is embedded
in a plane. Assume that the number of edges surrounding each face is divisible by 3. Then
the following hold.

(1) The multiplicity of eigenvalue 4 of GC2,0(X) is at least 3.

(2) For any k ∈ N, both GCk,0(X) and GCk,k(X) have eigenvalue 4 (resp. 2), whose
multiplicity is at least dk/2e (resp. bk/2c).

The result (1) of Theorem 1.6 is also obtained by observing that the GC2.0(X) is a
covering graph of the K4 graph.

Examples of numerical computations of multiplicities of eigenvalues 2 and 4 are shown
in Tables 1 and 2.

Table 1: The multiplicities of eigenvalue 4 for GCk,0(X) (k = 1, 2, . . . , 10)
X (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (6, 0) (7, 0) (8, 0) (9, 0) (10, 0)

tetrahedron 3 6 9 12 15 18 21 24 27 30
cube 3 4 3 12 3 20 3 28 3 36
dodecahedron 0 6 0 18 0 30 0 42 0 54
octahedron 3 4 3 12 3 20 3 28 3 36

Problems on eigenvalues of combinatorial Laplacian on regular graphs are extensively
investigated. In particular, an explicit formula of a limit density of eigenvalue distributions
of certain sequences of regular graphs was obtained in [22], and its geometric proof using
a trace formula is given in [16] (see also [3]). One of points in these works is that the
sequence {Xn} of q-regular graphs with number of vertices |Xn| → ∞ as n → ∞ is
assumed to have large girths g(Xn) → ∞ as n → ∞. From this assumption, the graphs
Xn get similar, as n→∞, to a universal covering graph, namely a q-regular tree at least
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Table 2: The multiplicities of eigenvalue 2 for GCk,0(X) (k = 1, 2, . . . , 10)
X (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (6, 0) (7, 0) (8, 0) (9, 0) (10, 0)

tetrahedron 0 3 6 9 12 15 18 21 24 27
cube 3 4 3 12 3 20 3 28 3 36
dodecahedron 5 6 5 18 5 30 5 42 5 54
octahedron 0 0 1 1 0 1 0 1 1 0

locally, and then a trace formula becomes able to apply. The girths of the Goldberg-
Coxeter constructions {GCk,l(X)}k,l with an initial graph X are uniformly bounded with
respect to the parameters k and l, and hence it would not be so straightforward to apply
a trace formula to obtain a limit distribution of the eigenvalue distributions.

This paper is organized as follows. In Section 2, after giving the precise definition of
the Goldberg-Coxeter constructions GCk,l(X), we study their structure which is related
with the spectral problems. In particular, variants of coloring problems necessary for our
purposes are collected in Subsection 2.2. Some of them might be obtained from well-
known results. For example, readers are referred to the interesting papers [7–12] due to
Fisk where one can find a lot of results on various kinds of coloring problems. However,
we think that there are no statements which are precisely the same and the proofs do not
involve so much. Thus we decided to put their proofs here for completeness. In Section 3,
we obtain two kinds of comparisons of the eigenvalues, one is that between the eigenvalues
of X and those of GCk,l(X), and the other is that between the eigenvalues of the (k, 0)-
cluster and those of GCk,0(X). In Section 4, all the eigenvalues of the (k, 0)-cluster are
found and the proofs of Theorems 1.1, 1.2 and 1.3 complete. In Section 5, we first present
proofs of Theorem 1.4 and 1.5. At the end of this paper, we shall give a few criteria for
a 3-valent plane graph X so that some GCk,0(X)’s have eigenvalues 2 or 4, which proves
Theorem 1.6.

2 Goldberg-Coxeter constructions

This section studies the structure of Goldberg-Coxeter constructions, which shall be nec-
essary in the subsequent sections.

The notion of Goldberg-Coxeter constructions is defined, due to Deza-Dutour [5, 6],
for a plane graph. The definition can be extended for a nonplanar graph X; indeed, X
has only to be equipped with an “orientation at each vertex”, and if, in particular, X is
“appropriately” embedded on an oriented surface, then the constructions can be done on
the surface (see Proposition 2.4). Let us give the precise definitions. To make description
clear, we use the ring Z[ω] of Eisenstein integers and the ring Z[i] of Gaussian integers,
where ω = eπi/3 and i =

√
−1. Z[ω] gives the triangular lattice on C having 0, 1 and ω

as its fundamental triangle, while Z[i] gives the square lattice on C having 0, 1, 1 + i and
i as its fundamental square.

Definition 2.1 (cf. Deza-Dutour [5, 6]). Let X be a connected, finite and simple 3- or
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4-valent (abstract) graph equipped with an orientation at each vertex in the sense that,
for each p ∈ V (X), the set of edges emanating from p is ordered. For (k, l) ∈ Z2,
(k, l) 6= (0, 0), the Goldberg-Coxeter construction of X with parameters k and l is defined
through the following steps.

(i) Let us first consider the equilateral triangle 4 = 4(0, z, ωz) in Z[ω] having the
vertices 0, z = k+ lω and ωz (resp. the square � = �(0, z, (1+ i)z, iz) in Z[i] having
the vertices 0, z = k + li, (1 + i)z and iz).

(ii) Let us take all the small triangles in Z[ω] (resp. squares in Z[i]) intersecting with 4
(resp. �) in its interior and join the barycenters of the neighboring small triangles
(resp. squares) to obtain a graph, which is, as an associated (abstract) graph with p
for each p ∈ V (X), denoted by 4(p) = 4k,l(p) (resp. �(p) = �k,l(p)). Let us take
a correspondence between an edge emanating from p and an edge of 4 (resp. �) so
that the given orientation at p coincides with the standard orientation of 4 in Z[ω]
(resp. � in Z[i]). Note that 4(p) (resp. �(p)) has the 2π/3-rotational symmetry
(resp. the π/2-rotational symmetry).

(iii) For each e ∈ E(X) with endpoints p and q, we can glue 4(p) and 4(q) (resp. �(p)
and �(q)) similarly as in the original definitions as follows:

(iii-1) 4(p) (resp. �(p)) is identified, preserving the orientation, with the graph on
4 (resp. �) so that e is corresponding to the edge z, ωz (resp. z, (1 + i)z);

(iii-2) 4(q) (resp. �(q)) is identified, preserving the orientation, with the graph
on 4(z, (1 +ω)z, ωz) (resp. �(z, 2z, (2 + i)z, iz)) so that e is corresponding
to the edge ωz, z (resp. (1 + i)z, z);

(iii-3) then let us glue 4(p) and 4(q) (resp. �(p) and �(q)) by identifying all the
vertices and edges overlapping with each other.

The obtained (abstract) graph is again a 3-valent (resp. 4-valent) graph, which is denoted
by GCk,l(X) = GCz(X), where z = k + lω (resp. z = k + li).

This definition, in general, may be not well-defined according to given orientation at
each vertex of the graph. However, in case of plane graphs or graphs on an oriented
surface, we have Proposition 2.2 below.

Proposition 2.2. Let X be a connected, finite and simple 3- or 4-valent graph which is
embedded in an oriented surface M in such a way that the closure of each face is simply
connected. Then for (k, l) ∈ Z2, (k, l) 6= (0, 0), GCk,l(X) is well-defined and is also
embedded in M .

Proof. The oriented tangent plane to M at p ∈ V (X) defines the orientation at p, and
GCk,l(X) is defined. The notion of faces is also well-defined. Since each face of X is simply
connected, we can take a dual graph DX of X in M , all of whose faces are simply connected
triangles (resp. rectangles) for the 3-valent case (resp. 4-valent case). The dividing step
(ii) and the gluing step (iii) in Definition 2.1 are well done in M via respective appropriate
local charts.
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p

q1

q2

q3

(a) a vertex p and its adjan-
cencies q1, q2, q3

0

z

zω

(b) step (i) 4(0, z, ωz) (c) step (ii) 4k,l(p)

(d) V (4k,l(p)) (e) glue 4k,l(p) and 4k,l(qi) (f) V (4k,l(p)) ∪ V (4k,l(qi))

Figure 1: In case of (k, l) = (3, 2), the Goldberg-Coxeter construction for a 3-valent graph
around a vertex p of the graph. By this procedure, we construct V (4k,l(p)) (see also
Figure 2 and Section 2.1.1).

A Goldberg-Coxeter construction GCk,l(X) for 3-valent (resp. 4-valent) graph X in-
serts some hexagons (resp. squares), according to its parameter k and l, between each
pair of original faces of X. The most famous example is a fullerene C60, called also a
buckminsterfullerene or a buckyball, which is nothing but GC1,1(Dodecahedron). This
construction owes its name to the pioneering work [15] due to M. Goldberg, where a so-
called Goldberg polyhedron (a convex polyhedron whose 1-skeleton is a 3-valent graph,
consisting of hexagons and pentagons with rotational icosahedral symmetry 3-valent graph
as its 1-skeleton) is studied and is proved to be of the form GCk,l(Dodecahedron) for some
k and l. A Goldberg-Coxeter construction for 3- or 4-valent plane graphs occurs in many
other context; see [5] and the references therein. Several examples of Goldberg-Coxeter
constructions for nonplanar 3-valent (infinite or finite quotient) graphs, such as for carbon
nanotubes and Mackay-like crystals, are provided in [21].

The following proposition summarizes few fundamental properties of Goldberg-Coxeter
constructions.
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Proposition 2.3 (Deza-Dutour [5, 6]). Let X = (V (X), E(X)) be a 3-valent (resp. 4-
valent) graph equipped with an orientation at each vertex. Then the following hold.

(1) If X is embedded in an oriented surface in such a way that the closure of each face
is simply connected, and the orientation at each vertex coincides with the one of the
surface, then GCz(GCz′(X)) = GCzz′(X), for any z, z′ ∈ Z[ω] (resp. z, z′ ∈ Z[i]).

(2) For any (k, l) ∈ Z2, (k, l) 6= (0, 0), we have the following graph isomorphisms:

GCk,l(X) ' GC−l,k+l(X) ' GC−k−l,k(X) ' GC−k,−l(X)

' GCl,−k−l(X) ' GCk+l,−k(X),

GCk,l(X) ' GCl,k(X).

So {GCk,l(X) | k > l > 0, k 6= 0} gives a system of representatives of graph
isomorphism classes.

(3) The number of vertices of GCz(X) is given as |V (GCz(X))| = |z|2|V (X)| = (k2 +
kl+l2)|V (X)|, where z = k+lω (resp. |V (GCz(X))| = |z|2|V (X)| = (k2+l2)|V (X)|,
where z = k + li).

Deza-Dutour ( [5, 6]) mentioned these properties only for plane graphs. However,
these come from properties of triangular lattices and hence these also hold for graphs on
oriented surfaces. In consideration of Proposition 2.3 (2), in the rest of this paper, we
assume that k is a positive integer and l is a nonnegative integer satisfying k > l > 0 and
k 6= 0.

2.1 Clusters for Goldberg-Coxeter constructions

A cluster is the central notion in this paper. Its definitions shall be given below in two
different cases: where X is 3-valent and where X is 4-valent.

2.1.1 The case where X is 3-valent

For each p ∈ V (X), let us construct a subgraph 4k,l(p) = (V (4k,l(p)), E(4k,l(p))) of
4k,l(p) ⊆ GCk,l(X), called the (k, l)-cluster, so as to have k2 + kl + l2 vertices and the

2π/3-rotational symmetry of 4k,l(p). For this, we just have to define V (4k,l(p)) by the

set of vertices x of 4k,l(p) (considered as the graph on 4 ⊆ Z[ω]) satisfying one of the
following conditions:

(i) x ∈ 4k,l(p) corresponds to a triangle in Z[ω] whose barycenter lies in the interior of
4 = 4(0, z, ωz), where z = k + lω;

(ii) x ∈ 4k,l(p) corresponds to an upward triangle in Z[ω] whose barycenter lies on an
edge of 4.

the electronic journal of combinatorics 26(3) (2019), #P3.7 8



Here we mean an upward triangle 4(a, b) by the triangle in Z[ω] with vertices a + bω,
a+ 1 + bω and a+ (b+ 1)ω for a, b ∈ Z (see Figure 2). We also denote by 4(a, b), called
downward triangle, the triangle with vertices a+ bω, a+ (b+ 1)ω and a− 1 + (b+ 1)ω.

In the case that l = 0, 4k,0(p) is nothing but 4k,0(p) itself, has k2 vertices and has
the dihedral symmetry D3 (of order 6) (see Figure 2).

In the case that k = l > 0, it is easily seen that there are 3(k2 − k) vertices satisfying
(i) and 3k vertices satisfying (ii). The obtained subgraph 4k,k(p) has 3k2 vertices and has
the 2π/3-rotational symmetry because upward triangles are mapped to upward triangles
by the rotation (see Figure 2).

The following lemma makes clear the cases where there is a barycenter lying on an
edge of 4 among the remaining cases.

Lemma 2.4. Let k > l > 0, m := gcd(k, l), k1 := k/m and l1 := l/m. An edge of the
triangle 4 = 4(0, z, ωz), where z = k+ lω in Z[ω] passes through a barycenter of a small
triangle in Z[ω] if and only if

k1 6≡ 0 (mod 3), k1 ≡ l1 (mod 3). (2.1)

Moreover, in the case above, each edge of 4 passes through exactly 2m = 2 gcd(k, l)
barycenters. Among these 2m vertices, exactly m vertices corresponding to upward tri-
angles have just two adjacent triangles with barycenters lying in 4. The combined 3m
vertices on the three edges of 4 are located in symmetric position with the rotation by
2π/3 of 4.

Lemma 2.4 shows that the subgraph 4k,l(p) has (k − l)2 + 3kl = k2 + kl + l2 vertices
and also has the 2π/3-rotational symmetry in the remaining case that k > l > 0.

(a) (k, l) = (5, 0) (b) (k, l) = (3, 3) (c) (k, l) = (4, 1)

Figure 2: 3-valent (k, l)-clusters; V (4k,l(p)) consists of the barycenters of the gray trian-
gles.

Here we can prove the following proposition, which guarantees that the bipartiteness
is kept after a Goldberg-Coxeter construction.

Proposition 2.5. Let X be a 3-valent bipartite graph equipped with an orientation at
each vertex. Then for any (k, l) ∈ Z2, (k, l) 6= (0, 0), GCk,l(X) is also bipartite. So the
spectrum of GCk,l(X) is symmetric with respect to 3.
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Proof. Let a bipartition of X be given and either black or white be assigned to each vertex
p ∈ V (X). Each vertex x of each 4k,l(p) can be colored according to a rule that if p is
white, then

• paint x black, provided the triangle in Z[ω] corresponding to x is upward;

• paint x white, provided the triangle in Z[ω] corresponding to x is downward;

and if p is black, then exchange black and white above. A white vertex is adjacent only to
black vertices in X, and two adjacent clusters 4k,l(p) and 4k,l(q) are positioned, in Z[ω],
at π-rotation around the midpoint of an edge of 4, which switches upward and downward
triangles. So, the rule above gives a bipartition of GCk,l(X).

2.1.2 The case where X is 4-valent

Similarly as in the 3-valent case, we construct for each p ∈ V (X) an appropriate subgraph
�k,l(p) = (V (�k,l(p)), E(�k,l(p))) of �k,l(p), still called the (k, l)-cluster, so as to have
k2 + l2 vertices. To this end, we need to clarify the cases where a barycenter of a small
square in Z[i] lies on an edge of � = �(0, z, (1 + i)z, iz), where z = k + li.

For a, b ∈ Z, we denote by �(a, b) the small square in Z[i] with vertices a + bi, (a +
1) + bi, (a+ 1) + (b+ 1)i, a+ (b+ 1)i, whose barycenter is given as a+ 1/2 + (b+ 1/2)i.

Lemma 2.6. Let k > l > 0, k 6= 0, m := gcd(k, l), k1 := k/m and l1 := l/m. An edge of
the square � = �(0, z, (1 + i)z, iz), where z = k + li in Z[i] passes through a barycenter
of a small square in Z[i] if and only if

k1 6≡ 0 (mod 2), k1 ≡ l1 (mod 2) (2.2)

Moreover, if this is the case, each edge of � passes through exactly m barycenters.

Unlike the 3-valent case, we cannot choose a cluster �k,l(p) with k2 + l2 vertices to
have the π/2-rotational symmetry in the case where k1 6≡ 0 (mod 2), k1 ≡ l1 (mod 2)
and m 6≡ 0 (mod 2) because no vertex of �k,l(p) is positioned at the barycenter of � and
k2 + l2 = m2((k1 − l1)2 + 2k1l1) is not divided by 4. Even in such cases, �k,l(p) only has
to have the same number of outward edges among the four directions to every adjacent
cluster.

Lemma 2.7 (cf. [14, Corollary IV.6]). Let X be a 4-valent graph equipped with an orien-
tation at each vertex. Then there exists an Euler circuit ε of X which turns either left or
right at every vertex of X.

We note that the Euler circuit mentioned in Lemma 2.7 is an example of A-trails
introduced in [14].

Proof. As is well-known, any 4-valent graph X has an Euler circuit, which is by definition
a closed path in X which visits every edge exactly once. Let us take an Euler circuit ε
of X and suppose that ε goes straight ahead at a vertex p ∈ V (X). The circuit ε comes
back to p again from one of the other directions after it straight ahead at p (because X
is 4-valent). By following the interval in opposite directions, the obtained circuit goes
straight ahead one time fewer than ε. This proves Lemma 2.7.
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The Euler circuit ε obtained in Lemma 2.7 assigns a direction to each edge of X such
that the direction alternates between inward and outward at each vertex of X.

Now we can clearly define V (�k,l(p)) by the set of vertices x of �k,l(p) satisfying one
of the following conditions:

(i) x corresponds to a square in Z[i] whose barycenter lies in the interior of �;

(ii) x corresponds to a barycenter lying on the two edges of � with opposite sides
which correspond to the outward edges of X with respect to the Euler circuit ε in
Lemma 2.7.

(a) (k, l) = (5, 0) (b) (k, l) = (3, 3) (c) (k, l) = (5, 1)

Figure 3: 4-valent (k, l)-clusters; V (�k,l(p)) consists of the barycenters of the gray squares.

2.2 Specific conditions on 3-valent plane graphs

In this subsection a graph X is assumed to be 3-valent and embedded in a plane, and
we study some structure of Goldberg-Coxeter constructions of X. Let us consider the
following four conditions on X, which is, as shall be seen in Section 5.3, related to the
multiplicities of certain eigenvalues of Goldberg-Coxeter constructions.

(F) The number of edges surrounding each face is divisible by 3.

(CN) For each vertex p ∈ V (X), the numbers 1, 2 and 3 are assigned in this order, with
respect to the positive orientation, to the three edges of X with p as the common
endpoint.

(N) There exists a vertex numbering V (GC2,0(X))→ {1, 2, 3} with the following prop-
erties:

(N-i) The number 0 is assigned to the center of each V (42,0(p)) (p ∈ X);

(N-ii) the number assigned to x ∈ V (GC2,0(X)) is different from those of the
adjacent vertices in GC2,0(X) of x.
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(C) V (X) can be colored by two colors, say black and white, with the following proper-
ties:

(C-i) A black vertex is adjacent to three white vertices;

(C-ii) a white vertex is adjacent to exactly one black vertex, so the other two
adjacent vertices are white;

(C-iii) for any pair of black vertices x, y ∈ V (X) which are three vertices away
from each other, there is a path from x to y either turning left twice or
turning right twice.

Remark 2.8. We remark that

(1) the condition (N) determines a special 3-edge-coloring of GC2,0(X), but a graph
with 3-edge-coloring does not necessarily satisfy (N),

(2) a 3-valent plane graph which satisfies the condition (F) is known to be a covering
graph of the K4 graph. (This fact is proved also from Proposition 2.9 below. )

The coherent edge numbering (CN) implies the condition (N); indeed, let p ∈ V (X) and
let e1, e2 and e3 be three edges of X emanating from p. We assign 0 to p regarded as a
vertex of GC2,0(X), and, for i = 1, 2 and 3, assign i to the vertex of GC2,0(X) positioned
at the “opposite-side” to ei. The resulting numbering of vertices of GC2,0(X) satisfies
(N-i) and (N-ii) (see Figure 4). Moreover, as is easily proved, (N) implies the condition
(F). So the following proposition shows that (F), (CN) and (N) are mutually equivalent.

Figure 4: The gray (resp. black) segments represent edges of X (resp. GC2,0(X)).

Proposition 2.9. Let X be a 3-valent plane graph satisfying (F). Then X has a coherent
edge numbering E(X)→ {1, 2, 3} satisfying (CN).

Proof. For a sequence e1, e2, . . . , ek ∈ E(X) of adjacent edges in X (namely ei 6= ei+1

and they have a common endpoint), we denote by (e1, e2, . . . , ek) the path along the
edges starting from m(e1), the midpoint of e1, and ending with m(ek). To get a desired
numbering ν : E(X) → {1, 2, 3}, we fix an edge e0 ∈ E(X), and assign 3 to e0. For
adjacent edges e, e′ ∈ E(X) with the common endpoint p, let us define τ(e, e′) as

τ(e, e′) :=

{
+ 1, if the path (e, e′) turns right at p,

− 1, if the path (e, e′) turns left at p,
(2.3)
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Note that τ(e, e′) = −τ(e′, e). We then define ν : E(X)→ {1, 2, 3} for e ∈ E(X) as

ν(e) :=
n∑
i=1

τ(ei−1, ei) (mod 3) (2.4)

by choosing a path γ = (e0, e1, . . . , en−1, en = e) from e0 to e. What we have to prove
is that ν(e) is independent of the choice of γ. To this end, let P(X, e0) be the set of
sequences of adjacent edges in X beginning with e0 and let ϕ : P(X, e0)→ {1, 2, 3} be a
map defined as

ϕ(γ) :=
n∑
i=1

τ(ei−1, ei) (mod 3), for γ = (e0, e1, . . . , en) ∈ P(X, e0).

Note that for any γ = (e0, e1, . . . , en), γ′ = (e0, e
′
1, . . . , e

′
m−1, en) ∈ P(X, e0), the joined

(closed) path γ′−1 · γ = (e0, e1, . . . , en, e
′
m−1, . . . , e

′
1, e0) satisfies

ϕ(γ′−1 · γ) ≡ ϕ(γ)− ϕ(γ′) (mod 3).

Thus to prove that the map ν defined by (2.4) is well-defined, it suffices to see that
ϕ(γ) = 3 for any closed path γ = (e0, e1, . . . , en = e0). Notice that ϕ has the same image
after removing a “back-tracking” part, that is, if γ = (e0, . . . , ei−1, ei, ei+1, . . . , e0) contains
a triplet of mutually adjacent edges ei−1, ei and ei+1, then

ϕ(γ) ≡ ϕ(e0, . . . , ei−2, ei+2, . . . , e0) (mod 3),

and if γ = (e0, . . . , ei−1, ei, ei+1, . . . , e0) satisfies ei−1 = ei+1, then

ϕ(γ) ≡ ϕ(e0, . . . , ei−1, ei+2, . . . , e0) (mod 3).

Therefore the restriction ϕ : CP(X, e0) → {1, 2, 3} of ϕ to CP(X, e0), the set of closed
paths with base edge e0, descends to a homomorphism

ϕ : π1(X,m(e0))→ {1, 2, 3},

where π1(X,m(e0)) is the fundamental group of X with base point m(e0). Since {1, 2, 3} =
Z/3Z is an abelian group, ϕ further descends to a homomorphism

ϕ̃ : H1(X,Z)→ {1, 2, 3},

where H1(X,Z) is the 1-dimensional homology group of X. Now any γ ∈ H1(X,Z) can
be written as γ =

∑
f : face of X af∂f , where af ∈ Z and ∂f is the cycle consisting of edges

around f . Our assumption implies that ϕ̃(∂f) = 3 for any face f of X. Hence we conclude
that ϕ̃ ≡ 3, which implies that ϕ ≡ 3 on CP(X, e0).

A relation between (F) and (C) is stated as follows.
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Proposition 2.10. Let X be a 3-valent plane graph satisfying (F). Then X has a vertex
coherent coloring satisfying (C-i), (C-ii) and (C-iii).

Proof. Let p0 ∈ V (X) be an arbitrary fixed vertex and color it black. Every vertex which
is accessible by either turning left twice or turning right twice from a black vertex is,
one after another, colored in black until no more vertices can be colored in black. The
remaining vertices are colored in white. Now we have to check that (C-i) and (C-ii) are
satisfied (while (C-iii) is necessarily satisfied). It is easily seen that a white vertex is
adjacent to at least one black vertex; otherwise, all vertices of X must be white. It is also
easily checked that if a white vertex is adjacent to two or more black vertices, then two
other black vertices are necessarily adjacent somewhere else. So, it suffices to show that
any pair of black vertices cannot be adjacent. Suppose that there is a pair of adjacent

Figure 5: A Part of γ where γ turns left twice (left) and a part of γ where γ turns right
twice (right). The gray regions are bounded ones surrounded by γ.

black vertices, say p, q ∈ V (X). From our way of the coloring, there is a path γ from p
to q which is a sequence of either twice turning left or twice turning right between black
vertices. Then γ ∪ (q, p) is a closed path, which surrounds a finitely many faces, say
f1, f2, . . . , fn, after removing back-trackings. Now if n = 1, then γ consists of a circuit
on the boundary ∂f1 of a face f1 and of some back-trackings with black base points on
∂f1, which is a contradiction because the total of τ defined by (2.3) is 0 (mod 3) after
the crossing just prior to a lap of γ ∪ (q, p). So assume that n > 2. There are just two
possibilities of paths along the boundary of

⋃n
i=1 fi connecting a pair of black vertices with

distance 3, as indicated in Figure 5. In either case, we can replace γ ∪ (q, p) by a closed
path which does not surround a face fi (by ignoring back-trackings), and is still a sequence
of either twice turning left or twice turning right between black vertices. Therefore the
conclusion for the case where n > 2 can be deduced from the discussion given for the case
n = 1.

Examples 2.11.

(1) The tetrahedron and any of its Goldberg-Coxeter constructions satisfy all the con-
ditions above.

(2) GC2,0(X) for any 3-valent plane graph X always satisfies (C-i), (C-ii) and (C-iii);
indeed, we just have to color only the “center” of each (2, 0)-cluster black, and the
others white.

the electronic journal of combinatorics 26(3) (2019), #P3.7 14



Figure 6: Left coloring satisfies (C-i), (C-ii) and (C-iii). Right coloring on the cube
satisfies (C-i) and (C-ii) but does not satisfy (C-iii).

(3) GC1,1(X) for any 3-valent plane graph X also always satisfies (C-i), (C-ii) and (C-
iii); indeed, we just have to color in accordance with the rule shown in Figure 7.

Figure 7: Colorings for the (1, 1)-cluster around a black (gray in this figure) vertex of X
(left) and a white one of X (right). (The gray graphs represent for X, while black ones
for GC1,1(X). )

(4) The cube satisfies (C-i) and (C-ii) but does not satisfy (C-iii) (see Figure 6), nor, of
course, (F).

(5) The dodecahedron satisfies none of the conditions above.

3 Two comparisons of the eigenvalues

In this section we give two kinds of comparisons of the eigenvalues, one is that between
the eigenvalues of X and those of GCk,l(X), and the other is that between the eigenvalues
of the (k, 0)-cluster and those of GCk,0(X). The former comparison provides the proof
of Theorems 1.2, and the latter is used in the proof of Theorem 1.1. Throughout this
section, let k and l be integers satisfying k > l > 0 and k 6= 0 in consideration of
Proposition 2.3 (2).
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3.1 The case where X is 3-valent

Proof of (1.1) and (1.2) in Theorem 1.2. Let us denote by V (p) := V (4k,l(p)) for a fixed
pair (k, l). Let p ∈ V (X), q ∈ NX(p) and set

V0(p) := {x ∈ V (p) | NX′(x) ⊆ V (p)} ,
V q
i (p) := {x ∈ V (p) | |NX′(x) ∩ V (q)| = i} (i = 1, 2).

(3.1)

Note that, for any x ∈ V (p) and q ∈ NX(p), there are at most two edges emanating from
x to V (q). Since there is nothing to discuss when (k, l) = (1, 0), we only consider the other
cases. Let c = 1/

√
|V (p)| = 1/

√
k2 + kl + l2 and define a linear map Q : CV (X) → CV (X′)

for f ∈ CV (X) and for x ∈ V (p) by

(Qf)(x) := cf(p). (3.2)

The transpose tQ : CV (X′) → CV (X) of Q is then written as

(tQg)(p) = c
∑
x∈V (p)

g(x)

for g ∈ CV (X′) and p ∈ V (X). It then follows that for any f ∈ CV (X) and for any
p ∈ V (X),

(tQQf)(p) = c
∑
x∈V (p)

(Qf)(x) = c2
∑
x∈V (p)

f(p) = f(p),

that is tQQ = idCV (X) . Also, for arbitrary f ∈ CV (X),

(tQ∆X′Qf)(p) = c
∑
x∈V (p)

(∆X′Qf)(x)

= c
∑
x∈V (p)

3(Qf)(x)−
∑

y∈NX′ (x)

(Qf)(y)


= 3c2|V (p)|f(p)− c

∑
x∈V0(p)

∑
y∈NX′ (x)

(Qf)(y)− c
∑

x∈V (p)\V0(p)

∑
y∈NX′ (x)

(Qf)(y).

The second term equals −3c2|V0(p)|f(p) and the third term is computed as

c
∑

x∈V (p)\V0(p)

∑
y∈NX′ (x)

(Qf)(y) = c
∑

q∈NX(p)

∑
x∈V q

1 (p)

∑
y∈NX′ (x)

(Qf)(y)

+ c
∑

q∈NX(p)

∑
x∈V q

2 (p)

∑
y∈NX′ (x)

(Qf)(y)

= c2
∑

q∈NX(p)

|V q
1 (p)| (2f(p) + f(q))

+ c2
∑

q∈NX(p)

|V q
2 (p)| (f(p) + 2f(q))

= 3c2(2|V q
1 (p)|+ |V q

2 (p)|)f(p) + c2(|V q
1 (p)|+ 2|V q

2 (p)|)
∑

q∈NX(p)

f(q),

the electronic journal of combinatorics 26(3) (2019), #P3.7 16



where the last equality follows from the symmetry of 4k,l(p). Therefore we obtain

(tQ∆X′Qf)(p) = c2(|V q
1 (p)|+ 2|V q

2 (p)|)(∆Xf)(p)

=
µ(k, l)

k2 + kl + l2
(∆Xf)(p),

where µ(k, l) is the number of edges in X ′ connecting two clusters and depends only on
k and l. It is easily proved that µ(k, 0) = k and µ(k, k) = 3k. To estimate µ(k, l) when
k > l > 0, let us estimate the number of edges crossing the edge E = 0z. Notice first that
there is at most one crossing edge emanating from an upward triangle 4(a, b), and that
there are at most two crossing edge emanating from a downward triangle 4(a, b). For
c ∈ Z, “the zigzag path” which is obtained by joining the barycenters of 4(a, b), 4(a, b)
and 4(a + 1, b − 1) for all a, b ∈ Z with a + b = c crosses the edge E = 0z exactly once
provided 0 6 c 6 k+ l− 1 and does not cross E otherwise. Also, the line passing through
a ∈ Z with slant 1+ω crosses E exactly once provided 0 6 a 6 k− l and does not cross E
otherwise. Therefore the number of edges crossing E is at most k+ l+(k− l−2) = 2k−2
(see Figure 8 for an example).

(1.1) of Theorem 1.2 now immediately follows from the following.

Theorem 3.1 (Interlacing property, see for example [2]). Let Q be a real n ×m matrix
satisfying tQQ = Im and A be a real symmetric n×n matrix. If the eigenvalues of A and
tQAQ are

ν1(A) 6 ν2(A) 6 . . . 6 νn(A), ν1(
tQAQ) 6 ν2(

tQAQ) 6 . . . 6 νm(tQAQ),

respectively, then

νj(A) 6 νj(
tQAQ) 6 νn−m+j(A) (j = 1, 2, . . . ,m).

Figure 8: (k, l) = (9, 3). 15 edges cross the edge E = 0z, (z = 9 + 3ω).

(1.2) is an immediate consequence from (1.1) and Proposition 2.5.

The eigenvalues of GCk,0(X) are estimated, independently of the graph structure of
X, also by those of the (k, 0)-cluster as follows.
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Theorem 3.2. Let X be a 3-valent graph satisfying the same assumptions as in Theo-
rem 1.2, and ν1(k) 6 ν2(k) 6 · · · 6 νk2(k) (resp. 0 = λ1(k) 6 λ2(k) 6 · · · 6 λk2(k)) be the
eigenvalues of the adjacency matrix (resp. of the Laplacian) of the 3-valent (k, 0)-cluster.
Then for j = 1, 2, . . . , k2,

λj(GCk,0(X)) 6 3− νk2−j+1(k), (3.3)

λ|V (GCk,0(X))|−j+1(GCk,0(X)) > 3− νj(k). (3.4)

Moreover, we have

λi(GCk,0(X)) 6 λt(k) + δk2−t+i(k), for 1 6 i 6 t 6 k2, (3.5)

λ|V (GCk,0(X))|−j+1(GCk,0(X)) > λk2−s+1(k) + δ1+s−j(k), for 1 6 j 6 s 6 k2, (3.6)

where δj(k) is given as

δj(k) =


0, for j = 1, 2, . . . , k2 − 3k + 3,

1, for j = k2 − 3k + 4, . . . , k2 − 3,

2, for j = k2 − 2, k2 − 1, k2

Proof. Let p ∈ V (X) be fixed and let 4(k) = 4(p) be the (k, 0)-cluster, which is consid-
ered as a subgraph of Xk = GCk,0(X). Let us define a linear map Q : CV (Xk) → CV (4(k))

by

(Qf)(x) :=

{
f(x), if x ∈ V (4(k)),

0, if x 6∈ V (4(k))

for f ∈ CV (Xk) and x ∈ V (Xk). Then a simple computation shows tQQ = idCV (Xk)

and tQAXk
Q = A4(k), where A’s denote the adjacency matrices. By noting that Xk =

GCk,0(X) is a 3-regular graph, the interlacing property (Theorem 3.1) proves (3.3) and
(3.4). Since

tQ∆Xk
Q = ∆4(k) + (3 idCV (4(k)) −Dk),

where Dk : CV (4(k)) → CV (4(k)) is defined as (Df)(x) := deg(x) for f ∈ CV (4(k)) and
x ∈ V (4(k)), Combining the Courant-Weyl inequality (cf. [2, Theorem 1.3.15]) and the
interlacing property proves (3.5) and (3.6).

3.2 The case where X is 4-valent

The proof of (1.1) for the 4-valent case is almost same as that for 3-valent case, and let us
omit it. The comparison between the eigenvalues of a (k, 0)-cluster and those of GCk,0(X)
for the 4-valent case is stated as follows.

Theorem 3.3. Let X be a 4-valent graph satisfying the same assumptions as in Theo-
rem 1.2, and ν1(k) 6 ν2(k) 6 · · · 6 νk2(k) (resp. 0 = λ1(k) 6 λ2(k) 6 · · · 6 λk2(k)) be the
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eigenvalues of the adjacency matrix (resp. of the Laplacian) of the 4-valent (k, 0)-cluster.
Then for j = 1, 2, . . . , k2,

λj(GCk,0(X)) 6 4− νk2−j+1(k),

λ|V (GCk,0(X))|−j+1(GCk,0(X)) > 4− νj(k),

Moreover, we have

λi(GCk,0(X)) 6 λt(k) + δk2−t+i(k), for 1 6 i 6 t 6 k2,

λ|V (GCk,0(X))|−j+1(GCk,0(X)) > λk2−s+1(k) + δ1+s−j(k), for 1 6 j 6 s 6 k2,

where δj(k) is given as

δj(k) =


0, for j = 1, 2, . . . , k2 − 4k + 4,

1, for j = k2 − 4k + 5, . . . , k2 − 4,

2, for j = k2 − 3, k2 − 2, k2 − 1, k2.

Since the proof of this theorem is again almost same as that for the 3-valent case, let
us omit it.

4 Eigenvalues of the (k, 0)-cluster

In this section we shall find all the eigenvalues of a (k, 0)-cluster to prove Theorem 1.1.
Since the (k, 0)-clusters are, as abstract graphs, isomorphic to each other, fixing a vertex
p ∈ V (X), we may denote it by 4(k) := 4k,0(p) = 4k,0(p) or �(k) := �k,0(p) = �k,0(p).

4.1 The case where X is 3-valent

Definition 4.1. λ > 0 is called a D3-invariant eigenvalue (resp. D3-alternating eigen-
value) for a (k, 0)-cluster 4(k) if there exists a non-zero function u : V (4(k)) → C,
called a D3-invariant eigenfunction (resp. D3-alternating eigenfunction), with the follow-
ing properties.

(i) u solves (∆4(k)u)(x) = λu(x) for x ∈ V (4(k))

(ii) u(σx) = u(x) (resp. u(σx) = sgn(σ)u(x)) for x ∈ V (4(k)), where σ : 4(k)→4(k)
is an element of the dihedral group D3 and sgn(σ) denotes its signature.

Remarks 4.2. (1) The following remark shall be repeatedly used in the sequel: by assigning
the same function u to the other clusters, we have a global function u : GCk,0(X) → C,
which is an eigenfunction of ∆GCk,0(X) with eigenvalue λ; indeed, (i) ∆4(k)u = λu is
equivalent to a Neumann problem:{

(∆GCk,0(X)u)(x) = λu(x), for x ∈ V (p),

u(y)− u(x) = 0, for x ∈ V (p) \ V0(p) and y ∈ NGCk,0(X)(x) \ V (p)
(4.1)

the electronic journal of combinatorics 26(3) (2019), #P3.7 19



for some/any p ∈ V (X).
(2) There is no eigenfunction on a (k, 0)-cluster which is both D3-invariant and D3-

alternating.

Our first task is to find all the D3-invariant eigenspaces, which proves Theorem 1.3 as
well as (1.3) in Theorem 1.2. To this end, let us first construct all the eigenfunctions on
a hexagonal lattice with toroidal boundary condition. If we set m := (1 + ω)/3, where
ω = eπi/3, then the discrete set

{a+ bω | a, b ∈ Z} ∪ {m + a+ bω | a, b ∈ Z} (4.2)

is naturally regarded as a hexagonal lattice. For a fixed k ∈ N, let us consider the
equations

3v(a+ bω)− v(m + a+ bω)− v(m + a− 1 + bω)− v(m + a+ (b− 1)ω) = λv(a+ bω),

3v(m + a+ bω)− v(a+ bω)− v(a+ 1 + bω)− v(a+ (b+ 1)ω) = λv(m + a+ bω)
(4.3)

for a function v on the parallelogram

P (k) := {a+ bω | 0 6 a, b 6 k − 1} ∪ {m + a+ bω | 0 6 a, b 6 k − 1} ,

where a and b in (4.3) are considered modulo k, such as

3v(0)− v(m)− v(m + k − 1)− v(m + (k − 1)ω) = λv(0)

for the former equation of (4.3) with a = b = 0. So if v solves (4.3), then it gives
an eigenfunction with eigenvalue λ on the finite 3-valent graph T (k) with 2k2 vertices
obtained by adding edges between a and m+a+(k−1)ω, and between bω and m+k−1+bω
for each a, b = 0, 1, . . . , k − 1.

A simple computation shows that an eigenvalue is of the form

λ±s,t = λ±s,t(k) = 3±
√

3 + 2 cos
2πs

k
+ 2 cos

2πt

k
+ 2 cos

2π(s− t)
k

, (4.4)

whose corresponding eigenfunction is given as
v±s,t(a+ bω) = e2πi(sa+tb)/k,

v±s,t(m + a+ bω) =
1

3− λ±s,t
v±s,t(a+ bω)

(
1 + e2πis/k + e2πit/k

)
(a + bω,m + a + bω ∈ P (k)) for s, t = 0, 1, . . . , k − 1, unless λ±s,t = 3. If λ±s,t = 3, which
is possible only if k ≡ 0 (mod 3) and either (s, t) = (k/3, 2k/3) or (2k/3, k/3) among the
range 0 6 s, t 6 k − 1, then{

vk/3,2k/3(a+ bω) = αe2πi(a+2b)/3,

vk/3,2k/3(m + a+ bω) = α′e2πi(a+2b)/3,

{
v2k/3,k/3(a+ bω) = βe2πi(2a+b)/3,

v2k/3,k/3(m + a+ bω) = β′e2πi(2a+b)/3,

where α, α′, β, β′ ∈ C are arbitrary, both define eigenfunctions for the eigenvalue 3.
We now consider the following three maps defined on the hexagonal lattice:
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• the rotation around (k − 1)(1 + ω)/3 by 2π/3:{
a+ bω 7→ k − a− b− 1 + aω,

m + a+ bω 7→ m + k − a− b− 2 + aω,

• the reflection along the long diagonal line of P (k):{
a+ bω 7→ b+ aω,

m + a+ bω 7→ m + b+ aω,

• and the reflection along the short one:{
a+ bω 7→ m + k − b− 1 + (k − a− 1)ω,

m + a+ bω 7→ k − b− 1 + (k − a− 1)ω.

These maps define, by considering a and b modulo k, automorphisms on T (k), and gen-
erate the dihedral group D6 of order 12. As is easily confirmed, taking the average∑

σ∈D6
σf (resp.

∑
σ∈D6

sgn(σ)σf) for f ∈ CP (k) defines a projection onto the D3-invariant
eigenspaces (resp. D3-alternating eigenspaces) for the (k, 0)-cluster, where sgn(σ) is the
number modulo 2 of the reflections along the long diagonal line of P (k) in an expression
of σ. Now we set, for s, t = 0, 1, . . . , k − 1,

u±s,t :=
∑
σ∈D6

σv±s,t and w±s,t :=
∑
σ∈D6

sgn(σ)σv±s,t, (4.5)

which respectively give a D3-invariant eigenfunction and a D3-alternating eigenfunction
on 4(k) unless they identically vanish on 4(k). Note that these functions respectively
generate the space of D3-invariant eigenfunctions and the one of D3-alternating eigen-
functions because they define functions also on T (k). The following Lemma 4.3 explicitly
tells us when u±s,t and w±s,t vanish.

Lemma 4.3. Let 0 6 s, t 6 k − 1. u±s,t ≡ 0 if and only if u±s,t is one of the following:

• u+s,k−s or u+k−s,s for 1 6 s < k/3;

• u−s,k−s for k/3 < s < 2k/3;

• u+s,2s or u+2s,s for 0 6 s < k/3;

• u−s,2s or u−2s,s for k/3 < s < k/2;

• u−s,2s−k or u−2s−k,s for k/2 6 s < 2k/3;

• u+s,2s−k or u+2s−k,s for 2k/3 < s 6 k − 1.

On the other hand, w±s,t ≡ 0 if and only if w±s,t is one of the following:

• w±s,0 or w±0,t for 0 6 s, t 6 k − 1;
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• w±s,s for 0 6 s 6 k − 1;

• w+
s,k−s or w+

k−s,s for 1 6 s < k/3

• w−s,k−s for k/3 < s < 2k/3;

• w+
s,2s or w+

2s,s for 0 6 s < k/3;

• w−s,2s or w−2s,s for k/3 < s < k/2;

• w−s,2s−k or w−2s−k,s for k/2 6 s < 2k/3;

• w+
s,2s−k or w+

2s−k,s for 2k/3 < s 6 k − 1.

In particular the associated eigenvalues λ±s,t other than the above lists give D3-invariant
or D3-alternating eigenvalues, respectively.

Proof. The proof uses explicit expression of u±s,t and w±s,t via the coordinate (4.2).
A direct computation shows that

u±s,t(0)
(
1 + e4πis/k + e4πit/k

) (
1 + e−2πis/k + e−2πit/k

)
± u±s,t(m)

(
1 + e2πis/k + e2πit/k

) ∣∣(1 + e2πis/k + e2πit/k
)∣∣

= − 32i sin
π(s+ t)

k
sin

π(2s− t)
k

sin
π(s− 2t)

k
,

from which the above list for u±s,t is obtained.
A direct computation shows that

w±s,t(1)
(
1 + e2πis/k + e2πit/k + e2πi(s+t)/k + e2πi(s−t)/k + e2πi(t−s)/k

)
± w±s,t(m + 1)

(
1 + e2πis/k + e2πit/k

)
= 64 sin

πs

k
sin

πt

k
sin

π(s− t)
k

sin
π(s+ t)

k
sin

π(2s− t)
k

sin
π(s− 2t)

k
,

from which the above list for w±s,t is obtained.

Proof of (1.3) in Theorem 1.2. Let us prove that if λ > 0 is a D3-invariant eigenvalue for
the (k, 0)-cluster, then

λ 6 λ|V (GCk,0(X))|−i+1(GCk,0(X)) (4.6)

holds for i = 1, 2, . . . , |V (X)|.
Let u : GCk,0(X) → C be an eigenfunction for the eigenvalue λ which is obtained,

as was explained in (1) of Remarks 4.2, from a D3-invariant eigenfunction on the (k, 0)-
cluster. We may assume that

∑
x∈V (p) u(x)2 = 1, so that tQQ = idCV (X) . Replacing c in

(3.2) by u, after a straightforward computation using (i) and (ii) in Definition 4.1 for u,
we can obtain the following equality:

(tQ∆GCk,0(X)Qf)(p) =

 ∑
x∈V q

1 (p)

u(x)2 + 2
∑

x∈V q
2 (p)

u(x)2

 (∆Xf)(p) + λf(p) (4.7)

the electronic journal of combinatorics 26(3) (2019), #P3.7 22



for any f ∈ CV (X) and any p ∈ V (X), where q ∈ NX(p) is an adjacent vertex to p. (4.6)
is proved again from the interlacing property (Theorem 3.1).

(1.3) is an immediate consequence of Lemma 4.3, which claims that

λ = λ+1,0 = λ+0,1 = 3 +

√
5 + 4 cos

2π

k

is the largest D3-invariant eigenvalue for the (k, 0)-cluster.

Proof of Theorem 1.3. It follows from the consequence of Lemma 4.3 that

• λ−j,k−j = 3−
√

3 + 4 cos 2πj
k

+ 2 cos 4πj
k

for 0 6 j 6 dk/3e − 1;

• λ+bk/3c+j,k−bk/3c−j = 3 +
√

3 + 4 cos 2π(bk/3c+j)
k

+ 2 cos 4π(bk/3c+j)
k

for 1 6 j 6 d2k/3e −
bk/3c − 1;

• λ+s,0 = 3 +
√

5 + 4 cos 2πs
k

for 1 6 s 6 k − 1

are all D3-invariant eigenvalues for the (k, 0)-cluster. In the expression of λ+s,0, set x =

s/k ∈ [0, 1), then the function 3 +
√

5 + 4 cos(2πx) takes value [4, 6]. Taking large k, we
may approximate any number x ∈ [0, 1) by s/k (0 6 s 6 k − 1), and an arbitrary real
number in [4, 6] is approximated by λ+s,0. Similary an arbitrary real number in [0, 3] and
[3, 4] is approximated by λ−j,k−j and λ+bk/3c+j,k−bk/3c−j, respectively. Hence an arbitrary real

number in [0, 6] is approximated by these values as k tends to infinity.

In order to prove Theorem 1.1 using Theorem 3.2, it suffices to find all the eigenvalues
of a (k, 0)-cluster. To achieve this, we notice that the set of all the eigenvalues of a (k, 0)-
cluster contains the set of all the D3-invariant and all the D3-alternating eigenvalues of
the (3k, 0)-cluster; indeed, we have a well-defined injection

ι : C4(k) → U3k ⊕W3k

which is defined by the foldings like shown in Figure 9, where U3k (resp.W3k) denotes the
space of D3-invariant (resp. D3-alternating) eigenfunctions on the (3k, 0)-cluster.

Lemma 4.4. u±s,t ∈ U3k (resp. w±s,t ∈ W3k) lies in the image of ι if and only if s + t is
divisible by 3. Moreover, if both s and t are divisible by 3, then u±s,t|4(k) (resp. w±s,t|4(k))
is also a D3-invariant (resp. D3-alternating) eigenfunction.

Outline of the Proof. The proof again uses explicit expression of u±s,t and w±s,t. Note first
that f = u±s,t or w±s,t lies in the image of ι iff.

f±s,t(a+ bω) = f±s,t(m + k − b− 1 + (k − a− 1)ω),

f±s,t(a+ bω) = f±s,t(m + 2k − b− 1 + (2k − a− 1)ω)
(4.8)

for any a, b.
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Figure 9: 4(3k) is tiled by the foldings of 4(k); if the function on 4(k) is symmetric
(resp. antisymmetric) w.r.t. the line a = b, then the obtained function lies in U3k (resp.
W3k).

A direct computation similar to that in the proof of Lemma 4.3 shows that (4.8) for
f±s,t = u±s,t with a = b = 0 implies(

1− e−2πi(s+t)/3
)

sin
π(s+ t)

3k
sin

π(2s− t)
3k

sin
π(s− 2t)

3k
= 0,

which is valid only if s+ t is divisible by 3.
A direct computation shows that (4.8) for f±s,t = w±s,t with (a, b) = (1, 0) implies(

1− e−2πi(s+t)/3
)

sin2 πs

3k
sin2 πt

3k
sin2 π(s− t)

3k
sin

π(s+ t)

3k
sin

π(2s− t)
3k

sin
π(s− 2t)

3k
= 0,

which is valid only if either s = 0, t = 0, s = t or s+ t ≡ 0 (mod 3). The cases for s = 0,
t = 0 and s = t are excluded because then w±s,t ≡ 0.

Proof of Theorem 1.1. As is easily confirmed, f±s,t = u±s,t or w±s,t satisfies

f±s,t = f±t,s = f±t−s,t = f±t,t−s = f±3k−s,3k−t = f±3k−t,3k−s

= f±3k−t+s,3k−t = f±3k−t,3k−t+s = f±3k−s,t−s = f±t−s,3k−s = f±s,3k−t+s = f±3k−t+s,s

and therefore, by Lemmas 4.3 and 4.4, the image of ι is contained in the vector space, say
V , spanned by u±s,t’s for

{(±, s, t) | s+ t is divisible by 3, 0 < s < 2k, max{0, 2s− 3k} < t < s/2}
∪ {(−, 2s, s) | 0 6 s < 2k}
∪ {(+, s, 2s− 3k) | 3k/2 6 s < 2k}
∪ {(±, s, 0) | s is divisible by 3, 0 < s < 3k/2}

(4.9)

and w±s,t’s for

{(±, s, t) | s+ t is divisible by 3, 0 < s < 2k, max{0, 2s− 3k} < t < s/2}
∪ {(−, 2s, s) | 0 6 s < 2k}
∪ {(+, s, 2s− 3k) | 3k/2 6 s < 2k} .

(4.10)
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Since the number of elements of (4.9) is given as

9

2
j2 +

15

2
j + 3, if k = 3j + 2,

9

2
j2 +

21

2
j + 6, if k = 3j + 3,

9

2
j2 +

27

2
j + 10, if k = 3j + 4,

and that of (4.10) is given as

9

2
j2 +

9

2
j + 1, if k = 3j + 2,

9

2
j2 +

15

2
j + 3, if k = 3j + 3,

9

2
j2 +

21

2
j + 6, if k = 3j + 4

(j > 0), total of which is k2 in either case, the image of ι must coincide with V . In
particular the set of λ±s,t’s for (4.9) and (4.10) is the set of all the eigenvalues of the
(k, 0)-cluster.

The function P (3k) 3 (s, t) 7→ λ∓s,t ∈ [0, 6] takes value near 0 (resp. 6) only near the
four corners of P (3k). The number of vertices among (4.9) (resp. (4.10)) within distance
o(k) from the corner is o(k2), which are arbitrarily close to 0 (resp. 6) when k is sufficiently
large.

4.2 The case where X is 4-valent

The dihedral group D4 of order 8 acts in a natural way on C�(k) and the notions of D4-
invariant eigenvalue and D4-alternating eigenvalue are also defined exactly in the same
way as in 3-valent case. Similarly as in the 3-valent case, we have a well-defined injection

ι : C�(k) → U2k ⊕W2k

which is defined like shown in Figure 10, where U2k (resp. W2k) denotes the space of
D4-invariant (resp. D4-alternating w.r.t. the diagonal line of �(2k)) eigenfunctions on the
(2k, 0)-cluster. We shall find all the eigenfunctions on �(k) by completely determining
the image of ι.

For s, t = 0, 1, . . . , 2k − 1,

vs,t(a+ bi) = eπi(sa+tb)/k, for a+ bi ∈ S(2k) := {a+ bi | 0 6 a, b 6 2k − 1}, (4.11)

give all the eigenfunctions of the torus which is obtained by adding edges between a
and a + (2k − 1)i, and between bi and 2k − 1 + bi for each a, b = 0, 1, . . . , 2k − 1. The
corresponding eigenvalues are given as

λs,t = λs,t(2k) = 4− 2 cos
πs

k
− 2 cos

πt

k
. (4.12)
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Figure 10: �(2k) is tiled by the foldings of �(k).

Let
us,t :=

∑
σ∈D4

σvs,t and ws,t :=
∑
σ∈D4

sgn(σ)σvs,t

be the projections of vs,t to U2k and W2k respectively. Note here that, unlike the 3-valent
case, us,t and ws,t always lie in the image of ι. Similar computations as in the proof of
Lemma 4.3 show that us,t ≡ 0 if and only if us,t is either

• us,k for 0 6 s 6 2k − 1; or

• uk,t for 0 6 t 6 2k − 1,

and that ws,t ≡ 0 if and only if ws,t is one of the following:

• ws,k for 0 6 s 6 2k − 1;

• wk,t for 0 6 t 6 2k − 1;

• ws,s for 0 6 s 6 2k − 1;

• ws,2k−s for 0 6 s 6 2k − 1.

Moreover a simple computation shows that if both s and t are divisible by 2, then us,t|�(k)
is also a D4-invariant eigenfunction.

Since fs,t = us,t or ws,t satisfies

fs,t = ft,s = e−πis/kf2k−s,t = e−πis/kft,2k−s

= e−πit/kf2k−t,s = e−πit/kfs,2k−t = e−πi(s+t)/kf2k−s,2k−t = e−πi(s+t)/kf2k−t,2k−s

and therefore

{us,t | t 6 s 6 k − 1, 0 6 t 6 k − 1} ∪ {ws,t | t+ 1 6 s 6 k − 1, 0 6 t 6 k − 1} (4.13)

gives a complete list of the eigenfunctions of �(k) because its total number is computed
as (k2/2 + k/2) + (k2/2− k/2) = k2.
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Theorem 1.1 is now proved similarly as in the 3-valent case only by noting that the
function S(2k) 3 (s, t) 7→ λs,t ∈ [0, 8] takes value near 0 (resp. 8) only near the four
corners (resp. the center) of S(2k).

Proofs of (1.3) in Theorem 1.2 and Theorem 1.3. The same computation as above shows
that the projection us,t ∈ Uk of vs,t defined on S(k) vanishes if and only if k is even and
either

• us,k/2 for 0 6 s 6 k − 1; or

• uk/2,t for 0 6 t 6 k − 1.

Therefore

λs,s(k) = 4− 4 cos
2πs

k
for 0 6 s 6 k − 1 and s 6= k/2

are all D4-invariant eigenvalues for the (k, 0)-cluster, and an arbitrary real number in [0, 8]
is approximated by these values as k tends to infinity, which proves Theorem 1.3.

(4.6) is valid also for a 4-valent graph, and the inequality (1.3) is obtained by choosing
λ = λ(k−2)/2,(k−2)/2(k) = 4 + 4 cos(2π/k) if k is even and λ = λ(k−1)/2,(k−1)/2(k) = 4 +
4 cos(π/k) if k is odd.

5 On the eigenvalues 2 and 4 for Goldberg-Coxeter construc-
tions

This section provides proofs of the theorems on multiplicities of eigenvalues 2 and 4 stated
in Section 1. In the first two subsections, we shall prove Theorems 1.4 and 1.5. As is
seen below, a reason for large multiplicities of eigenvalues 2 and 4 of GC2k,0(X) is that
the (2k, 0)-clusters also have large multiplicities of eigenvalues 2 and 4. On the other
hand, it is considered that the structure of an initial graph X would affect the eigenvalue
distribution of its Goldberg-Coxeter constructions. A few remarkable examples shall be
provided in Section 5.3, where a proof of Theorem 1.6 is also included.

5.1 The case where X is 3-valent

From what was mentioned in (1) of Remark 4.2, Theorem 1.4 is an immediate consequence
of the following lemma.

Lemma 5.1. For k > 1 (resp. k > 2), the 3-valent (2k, 0)-cluster 4(2k) has a D3-
invariant eigenvalue 4 (resp. 2), whose multiplicity is at least dk/2e (resp. bk/2c).

Proof. For 0 6 s, t < 6k, as is easily proved from a direct computation using (4.4), λ+s,t(6k)
(resp. λ−s,t(6k)) takes the value 4 (resp. 2) if and only if s and t satisfy either s = 3k or
t = 3k or s − t = 3k or s − t = −3k. Among (4.9) with k replaced with 2k, λ+s,t = 4
for, and only for, s = 3k and t = 3j (0 6 j < k/2), and λ−s,t = 2 for, and only for,
s = 3k and t = 3j (0 < j 6 k/2). All of them are D3-invariant by Lemma 4.4. The
corresponding u±s,t’s are linearly independent from the consequence obtained in the proof
of Theorem 1.1.
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(a) with eigenvalue 4 (b) with eigenvalue 2

Figure 11: D3-invariant eigenfunctions

5.2 The case where X is 4-valent

Similarly as in the 3-valent case, Theorem 1.5 is a consequence of the following.

Lemma 5.2. For k > 2, the 4-valent (2k, 0)-cluster �(2k) has a D4-invariant eigenvalue
4, whose multiplicity is at least d(k − 1)/2e.

Proof. It is easily confirmed that λs,t(4k) = 4 if and only if s and t satisfy either s+t = 2k
or s + t = 6k or s− t = 2k or s− t = −2k. The number of us,t’s out of (4.13) satisfying
λs,t(4k) = 4 is therefore computed as d(k − 1)/2e.

5.3 Dependence on the structure of X (only for 3-valent case)

This subsection provides the proofs of Theorem 1.6, which describes relations between
the conditions (F), (CN), (N) and (C) in Section 2.2, and eigenvalues 2 and 4 of some
GCk,0(X)’s.

Proof of (1) of Theorem 1.6. Let us take a vertex numbering V (GC2,0(X)) → {1, 2, 3}
satisfying (N), whose existence is guaranteed by Proposition 2.9. Let α0, α1, α2 and α3 be
complex numbers satisfying α0 +α1 +α2 +α3 = 0. Then it is easy to see that the function
v : V (GC2,0(X)) → C which maps a vertex with number i to αi is an eigenfunction of
∆GC2,0(X) with eigenvalue 4. By above reasons, we can find two more eigenfunctions which
are linearly independent with u = uα which was obtained in Theorem 1.4 (1); in fact, set
(α0, α1, α2, α3) = (0, 1,−1, 0), (0, 1, 1,−2) for example.

Let us next consider the condition (C). Our assertions are summarized as follows.

Proposition 5.3. Let X be a 3-valent plane graph.

(1) If X has a vertex coloring satisfying (C-i) and (C-ii), then for any s ∈ N, GC2s−1,0(X)
has eigenvalue 4.
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(2) If X has a vertex coloring satisfying (C-i), (C-ii) and (C-iii), then for any k ∈ N,
both GCk,0(X) and GCk,k(X) have eigenvalue 4 (resp. 2), whose multiplicity is at
least dk/2e (resp. bk/2c).

Proof. (1) The function u : V (X)→ C which maps a black vertex to −3 and a white one
to 1 is an eigenfunction of ∆X with eigenvalue 4, which proves (1) for s = 1.

For s > 2, a quadruplet {4(p),4(q1),4(q2),4(q3)} of (2s− 1, 0)-clusters, where p is
black and NX(p) = {q1, q2, q3} are all white, can be glued with each other to be identified
with a (4s − 2, 0)-cluster. On the other hand, it follows from a direct computation that
u+3(2s−1),0 ∈ U3(4s−2) of (4.5) gives a D3-invariant eigenfunction on 4(4s − 2) with the
eigenvalue 4 with the constant boundary value 4. Therefore u defines an eigenfunction on
GC2s−1,0(X) with eigenvalue 4, proving (1).

(2) In the argument above to prove the existence u on 4(4s − 2), if (C-iii) is fur-
ther satisfied, then any D3-invariant eigenfunction on 4(4s− 2) with eigenvalue 4 (resp.
eigenvalue 2) gives an eigenfunction on GC2s−1,0(X) with eigenvalue 4 (resp. eigenvalue
2). For exactly the same reason, any D3-invariant eigenfunction on 4(4s) with eigenvalue
4 (resp. eigenvalue 2) gives an eigenfunction GC2s,0(X) with eigenvalue 4 (resp. eigenvalue
2). This and (3) in Examples 2.11 now prove (2).

Proof of (2) of Theorem 1.6. The assertion is an immediate consequence of Proposition 5.3
and Proposition 2.10.
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