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Abstract

Using Reiner’s definition of Stirling numbers of the second kind in types B and
D, we generalize two well-known identities concerning the classical Stirling numbers
of the second kind. The first identity relates them with Eulerian numbers and
the second identity interprets them as entries in a transition matrix between the
elements of two standard bases of the polynomial ring R[x]. Finally, we generalize
these identities to the group of colored permutations Gm,n.

Mathematics Subject Classifications: Primary: 05A18, Secondary: 11B73,
20F55

1 Introduction

The Stirling number of the second kind, denoted S(n, k), is defined as the number of par-
titions of the set [n] := {1, . . . , n} into k non-empty subsets (see [20, page 81]). Stirling
numbers of the second kind arise in a variety of problems in enumerative combinatorics;
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France’s Centre National pour la Recherche Scientifique (CNRS)
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they have many combinatorial interpretations, and have been generalized in various con-
texts and in different ways.

In the geometric theory of Coxeter groups they appear as follows. For any finite
Coxeter group W , there is a corresponding hyperplane arrangement W , whose elements
are the reflecting hyperplanes of W . Associated with W , there is the set of all the
intersections of these hyperplanes, ordered by reverse inclusion, called the intersection
lattice, and denoted L(W) (see e.g. [6, 19]). It is well-known that in the Coxeter group of
type A, L(An) is isomorphic to the lattice of the set partitions of [n]. By this identification,
the subspaces of dimension n−k are counted by S(n, k). In this geometric context, Stirling
numbers of the second kind are usually called Whitney numbers (see [21, 23] for more
details).

For Coxeter groups of types B and D, Zaslavsky [23] gave a description of L(Bn) and
L(Dn) by using the general theory of signed graphs. Then, Reiner [16] gave a different
combinatorial representation of L(Bn) and L(Dn) in terms of new types of set partitions,
called Bn- and Dn-partitions. We call the number of Bn- (resp. Dn-) partitions with k
pairs of nonzero blocks the Stirling number of the second kind of type B (resp. type D).

The posets of Bn- and Dn-partitions, as well as their isomorphic intersection lattices,
have been studied in several papers [4, 5, 6, 10, 11, 21], from algebraic, topological and
combinatorial points of view. However, to our knowledge, two famous identities concerning
the classical Stirling numbers of the second kind (see e.g. Bona [7, Theorems 1.8 and 1.17])
have not been generalized to types B and D in a combinatorial way: the first identity
relates the Stirling numbers to the Eulerian numbers, and the second one formulates a
change of bases in R[x], both will be described below.

The original definition of the Eulerian numbers was given by Euler in an analytic
context [12, §13]. Later, they began to appear in combinatorial problems, as the Eulerian
number A(n, k) counts the number of permutations in the symmetric group Sn having
k − 1 descents, where a descent of σ ∈ Sn is an element of the descent set of σ, defined
by:

Des(σ) := {i ∈ [n− 1] | σ(i) > σ(i+ 1)}. (1)

We denote by des(σ) := |Des(σ)| the descent number.
The first above-mentioned identity relating Stirling numbers of the second kind and

Eulerian numbers is the following one, see e.g. [7, Theorem 1.17]:

Theorem 1.1. For all non-negative integers n > r, we have

S(n, r) =
1

r!

r∑
k=0

A(n, k)

(
n− k
r − k

)
. (2)

The second identity arises when one expresses the standard basis of the polynomial
ring R[x] as a linear combination of the basis consisting of the falling factorials (see e.g.
the survey of Boyadzhiev [8]):

Theorem 1.2. Let x ∈ R and let n ∈ N. Then we have

xn =
n∑
k=0

S(n, k)[x]k, (3)
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where [x]k := x(x− 1) · · · (x− k + 1) is the falling factorial of degree k and [x]0 := 1.

There are some known proofs for the last identity. A combinatorial one, realizing xn

as the number of functions from the set {1, . . . , n} to the set {1, . . . , x} (for a positive
integer x), is presented in [20, Eqn. (1.94d)]. The first geometric proof is due to Knop
[13].

In this paper, we use Stirling numbers of the second kind of types B and D, in order to
generalize the identities stated in Equations (2) and (3). Theorems 4.1 and 4.2 below are
generalizations of the first identity for types B and D: they will be proven by providing
explicit procedures to construct ordered set partitions starting from the elements of the
corresponding Coxeter groups.

Theorems 5.1 and 5.4 generalize the second identity. We present here a geometric
approach, suggested to us by Reiner [17], which is based on some geometric characteriza-
tions of the intersection lattices of types B and D. Moreover, we show how to generalize
these two classical identities to the colored permutations group Gm,n.

The rest of the paper is organized as follows. Sections 2 and 3 present the known
generalizations of the Eulerian numbers and the set partitions, respectively, to the Coxeter
groups of types B and D. In Sections 4 and 5, we state our generalizations of the two
identities and prove them. Finally, in Section 6, we present some possible extensions of
the main results.

2 Eulerian numbers of types B and D

We start with some notations. For n ∈ N, we set [±n] := {±1, . . . ,±n}. For a subset
B ⊆ [±n], we denote by −B the set obtained by negating all the elements of B, and by
±B we denote the unordered pair of sets B,−B.

Let (W,S) be a Coxeter system. As usual, denote by `(w) the length of w ∈ W , which
is the minimal integer k satisfying w = s1 · · · sk with si ∈ S. The (right) descent set of
w ∈ W is defined to be

Des(w) := {s ∈ S | `(ws) < `(w)}.

A combinatorial characterization of Des(w) in type A is given by Equation (1) above.
Now we recall analogous descriptions in types B and D.

We denote by Bn the group of all bijections β of the set [±n] onto itself such that

β(−i) = −β(i)

for all i ∈ [±n], with composition as the group operation. This group is usually known
as the group of signed permutations on [n]. If β ∈ Bn, then we write β = [β(1), . . . , β(n)]
and we call this the window notation of β.

As a set of generators for Bn we take SB :=
{
sB0 , s

B
1 , . . . , s

B
n−1
}

where for i ∈ [n− 1]

sBi := [1, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] and sB0 := [−1, 2, . . . , n].

It is well-known that (Bn, SB) is a Coxeter system of type B (see e.g. [3, §8.1]). The
following characterization of the (right) descent set of β ∈ Bn is well-known [3].
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Proposition 2.1. Let β ∈ Bn. Then

DesB(β) = {i ∈ [0, n− 1] | β(i) > β(i+ 1)},

where β(0) := 0 (we use the usual order on the integers). In particular, 0 ∈ DesB(β) is a
descent if and only if β(1) < 0. We set desB(β) := |DesB(β)|.

For all non-negative integers n > k, we set

AB(n, k) := |{β ∈ Bn | desB(β) = k}|, (4)

and we call them the Eulerian numbers of type B.
Note that in our context AB(n, k) counts permutations in Bn having k descents rather

than k − 1, like in type A, since this produces nicer formulas.
We denote by Dn the subgroup of Bn consisting of all the signed permutations having

an even number of negative entries in their window notation. It is usually called the even-
signed permutation group. As a set of generators for Dn we take SD :=

{
sD0 , s

D
1 , . . . , s

D
n−1
}

where for i ∈ [n− 1]:

sDi := sBi and sD0 := [−2,−1, 3, . . . , n].

It is well-known that (Dn, SD) is a Coxeter system of type D, and there is a direct
combinatorial way to compute the (right) descent set of γ ∈ Dn (see e.g. [3, §8.2]):

Proposition 2.2. Let γ ∈ Dn. Then

DesD(γ) = {i ∈ [0, n− 1] | γ(i) > γ(i+ 1)},

where γ(0) := −γ(2). In particular, 0 ∈ DesD(γ) if and only if γ(1) + γ(2) < 0. We set
desD(γ) := |DesD(γ)|.

For all non-negative integers n > k, we set:

AD(n, k) := |{γ ∈ Dn | desD(γ) = k}|, (5)

and we call them the Eulerian numbers of type D.
For example, if γ = [1,−3, 4,−5,−2,−6], then:

DesD(γ) = {0, 1, 3, 5}, but DesB(γ) = {1, 3, 5}.

3 Set partitions of types B and D

In this section, we introduce the concepts of set partitions of types B and D as defined
by Reiner [16].

As mentioned above, we denote by L(W) the intersection lattice corresponding to the
Coxeter hyperplane arrangement W of a finite Coxeter group W . We will focus only on
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the hyperplane arrangements of types A, B and D. In terms of the coordinate functions
x1, . . . , xn in Rn, they can be defined as follows:

An := { {xi = xj} | 1 6 i < j 6 n},
Bn := { {xi = ±xj} | 1 6 i < j 6 n} ∪ { {xi = 0} | 1 6 i 6 n},
Dn := { {xi = ±xj} | 1 6 i < j 6 n}.

It is well-known that in type A, the intersection lattice L(An) is isomorphic to the
lattice of set partitions of [n].

In type B, let us consider the following element of L(B9):
{x1 = −x3 = x6 = x8 = −x9, x2 = x4 = 0, x5 = −x7}.

It can be easily presented as the following set partition of [±9]:

{{1,−3, 6, 8,−9}, {−1, 3,−6,−8, 9}, {2,−2, 4,−4}, {5,−7}, {−5, 7}}.
This probably was Reiner’s motivation to define the set partitions of type B, as follows:

Definition 3.1. A Bn-partition is a set partition of [±n] into blocks such that the fol-
lowing conditions are satisfied:

• There exists at most one block satisfying −C = C, called the zero-block. It is a
subset of [±n] of the form {±i | i ∈ S} for some S ⊆ [n].

• If C appears as a block in the partition, then −C also appears in that partition.

A similar definition holds for set partitions of type D:

Definition 1. A Dn-partition is a Bn-partition such that the zero-block, if exists, contains
at least two positive elements.

We denote by SB(n, r) (resp. SD(n, r)) the number of Bn- (resp. Dn-) partitions
having exactly r pairs of nonzero blocks. These numbers are called Stirling numbers (of
the second kind) of type B (resp. type D). They correspond, respectively, to the sequences
oeis.org/A039755 and oeis.org/A039760 in the OEIS. Tables 1 and 2 record these numbers
for small values of n and r.

We now define the concept of an ordered set partition:

Definition 3.2. A Bn-partition (or Dn-partition) is ordered if the set of blocks is totally
ordered and the following conditions are satisfied:

• If the zero-block exists, then it appears as the first block.

• For each block C which is not the zero-block, the blocks C and −C are adjacent.

Example 3.3. The following partitions

P1 = {{±3},±{−2, 1},±{−4, 5}},
P2 = {±{1},±{2},±{−4, 3}},
P3 = [{±1,±3}, {−2}, {2}, {−4, 5}, {−5, 4}] ,

are respectively, a B5-partition which is not a D5-partition, a D4-partition with no zero-
block, and an ordered D5-partition having a zero-block.

the electronic journal of combinatorics 26(3) (2019), #P3.9 5



n/r 0 1 2 3 4 5 6

0 1
1 1 1
2 1 4 1
3 1 13 9 1
4 1 40 58 16 1
5 1 121 330 170 25 1
6 1 364 1771 1520 395 36 1

Table 1: Stirling numbers SB(n, r) of the second kind of type B.

n/r 0 1 2 3 4 5 6

0 1
1 0 1
2 1 2 1
3 1 7 6 1
4 1 24 34 12 1
5 1 81 190 110 20 1
6 1 268 1051 920 275 30 1

Table 2: Stirling numbers SD(n, r) of the second kind of type D.

4 Connections between Stirling and Eulerian numbers of types
B and D

In this section, we present two generalizations of Theorem 1.1 for Coxeter groups of types
B and D.

Theorem 4.1. For all non-negative integers n > r, we have:

SB(n, r) =
1

2rr!

r∑
k=0

AB(n, k)

(
n− k
r − k

)
.

Theorem 4.2. For all non-negative integers n > r, with n 6= 1, we have:

SD(n, r) =
1

2rr!

[
r∑

k=0

AD(n, k)

(
n− k
r − k

)
+ n · 2n−1(r − 1)! · S(n− 1, r − 1)

]
,

where S(n− 1, r − 1) is the usual Stirling number of the second kind.

Now, by inverting these formulas, similarly to the known equality in type A, mentioned
in [7, Corollary 1.18]:

A(n, k) =
k∑
r=1

(−1)k−r · r! · S(n, r) ·
(
n− r
k − r

)
, (6)
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we get the following expressions for the Eulerian numbers of type B (resp. type D) in
terms of the Stirling numbers of type B (resp. type D):

Corollary 4.3. For all non-negative integers n > k, we have:

AB(n, k) =
k∑
r=0

(−1)k−r · 2rr! · SB(n, r) ·
(
n− r
k − r

)
.

Corollary 4.4. For all non-negative integers n > k, with n 6= 1, we have:

AD(n, k) =

[
k∑
r=0

(−1)k−r · 2rr! · SD(n, r) ·
(
n− r

k − r

)]
− n · 2n−1 ·A(n− 1, k − 1).

A different equality for AD(n, k) can be found in Brenti [9, Thm. 4.13].

4.1 Proof for type B

The proofs in this and in the next subsections use arguments similar to Bona’s proof for
the corresponding identity for type A, see [7, Theorem 1.17].

Proof of Theorem 4.1. We have to prove the following equality:

2rr!SB(n, r) =
r∑

k=0

AB(n, k)

(
n− k
r − k

)
.

The number 2rr!SB(n, r) in the left-hand side is the number of ordered Bn-partitions
having r pairs of nonzero blocks. Now, let us show that the right-hand side counts the
same set of partitions in a different way.

Let β ∈ Bn be a signed permutation with desB(β) = k, written in its window notation.
We start by adding a separator after each descent of β and after β(n). If 0 ∈ DesB(β),
this means that a separator is added before β(1). If r > k, we add extra r − k artificial
separators in some of the n − k empty spots, where by a spot we mean a gap between
two consecutive entries of β or the gap before the first entry β(1). This splits β into a
set of r blocks, where the block Ci is defined as the set of entries between the ith and the
(i+ 1)th separators for 1 6 i 6 r. Now, this set of blocks is transformed into the ordered
Bn-partition with r pairs of nonzero blocks:

[C0, C1,−C1, . . . , Cr,−Cr],

where the (optional) zero-block C0 equals to {±β(1), . . . ,±β(j)} if the first separator is
after β(j), for some j > 1, and it does not exist if the first separator is before β(1).

For example, if β = [−2, 3, 5, 1,−4] ∈ B5, then after adding the separators induced
by descents, we get the sequence [ | − 2, 3, 5 | 1 | − 4 | ], which is transformed
into the ordered partition [{−2, 3, 5}, {2,−3,−5}, {1}, {−1}, {−4}, {4}]. On the other
hand, if β′ = [2, 3, 5,−1,−4] ∈ B5, then after adding the separators induced by the de-
scents, we have β′ = [ 2, 3, 5 | − 1 | − 4 | ], which gives rise to the ordered partition
[{±2,±3,±5}, {−1}, {1}, {−4}, {4}], with a zero-block, and two nonzero blocks.
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There are exactly
(
n−k
r−k

)
ordered Bn-partitions obtained from β in this way. From

now on, we refer to this process of creating Bn-partitions starting from a single signed
permutation β, as the B-procedure.

It is easy to see that the B-procedure applied to different signed permutations produces
disjoint sets of ordered Bn-partitions; therefore, one can create in this way

r∑
k=0

AB(n, k)

(
n− k
r − k

)
distinct ordered Bn-partitions with r pairs of nonzero blocks.

Let us show that any ordered Bn-partition λ = [C0, C1,−C1, . . . , Cr,−Cr], can be
obtained through the B-procedure. If λ contains a zero-block C0, then put the positive
elements of C0 in increasing order at the beginning of a sequence S, and add a separator
after them. Then, order increasingly the elements in each of the blocks C1, . . . , Cr, and
write them sequentially in S (after the first separator if exists), by adding a separator
after the last entry coming from each block. Reading the formed sequence S from the left
to the right, one obtains the window notation of a signed permutation β. Note that the
number of descents in β is smaller than or equal to r, since the elements in each block are
ordered increasingly. Now, it is clear that λ can be obtained by applying the B-procedure
to β, where the artificial separators are easily recovered.

Example 4.5. The signed permutation

β = [ 1, 4 | −5,−3, 2 | ] ∈ B5

has 2 as a descent. It produces the following ordered B5-partition with one pair of nonzero
blocks

[{±1,±4}, {−5,−3, 2}, {5, 3,−2}],

and exactly
(
4
1

)
ordered B5-partitions with two pairs of nonzero blocks, namely:

[{1, 4}, {−1,−4}, {−5,−3, 2}, {5, 3,−2}],
[{±1}, {4}, {−4}, {−5,−3, 2}, {5, 3,−2}],
[{±1,±4}, {−5}, {5}, {−3, 2}, {3,−2}],
[{±1,±4}, {−5,−3}, {5, 3}, {2}, {−2}],

obtained by placing one artificial separator before entries 1, 2, 4 and 5, respectively. The
other ordered partitions coming from β with more blocks are obtained similarly.

Conversely, let
λ = [{±1,±4}, {5}, {−5}, {−3, 2}, {3,−2}]

be an ordered B5-partition. The corresponding signed permutation with the added sepa-
rators is β = [ 1, 4 ‖ 5 | − 3, 2 | ] ∈ B5. Note that although C1 = {5} is a separate block,
there is no descent between 4 and 5, meaning that λ is obtained by adding an artificial
separator in the spot between these two entries, denoted ‖.
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4.2 Proof for type D

The proof of Theorem 4.2 is a bit more tricky. The basic idea is the same as before:
obtaining the whole set of ordered Dn-partitions with r pairs of nonzero blocks from
elements in Dn with at most r descents. We will use the B-procedure presented in the
previous subsection, with the addition of an extra step, to take care of the special structure
of the Dn-partitions. First of all, we recall that we might have DesD(γ) 6= DesB(γ) for
γ ∈ Dn, see an example at the end of Section 2.

Let γ ∈ Dn be such that desD(γ) = k. We start by adding the separators after the
D-descents of γ and the artificial ones in case that k < r. Using the B-procedure, we
transform γ, equipped with the set of separators, into a Bn-partition. The result is also a
Dn-partition, except in the case when there is a separator (either induced by a D-descent
or by an artificial addition) between γ(1) and γ(2), but not before γ(1). In fact, in this
case, we obtain an ordered Bn-partition with a zero-block containing exactly one pair of
elements, which is not a Dn-partition.

Hence, only in this case, we slightly modify the procedure as follows. First we toggle
the sign of γ(1) and move the separator from after γ(1) to before it. We call this action
the switch operation. Then, we transform this new sequence of entries and separators into
a Dn-partition by applying the B-procedure. We refer to this process of associating a
permutation γ ∈ Dn with the obtained set of ordered Dn-partitions, as the D-procedure.

Before proving that this procedure indeed creates ordered Dn-partitions, we give an
example of an element γ ∈ Dn, for which the application of the switch operation is
required.

Example 4.6. Let γ = [ −1 ‖ 3, 4 | −2 | −6,−5 | ] ∈ D6 be a permutation equipped with
the separators induced by the D-descents and one artificial separator added after position
1. The B-procedure, applied to γ, results in an illegal ordered D6-partition, since the
zero-block B0 = {±1} consists of only one pair. Toggling the sign of γ(1), and moving
the artificial separator before position 1, we obtain:

γ′ = [ ‖ 1, 3, 4 | −2 | −6,−5 | ] ∈ B6 \D6,

that is transformed into the ordered D6-partition:

[{1, 3, 4}, {−1,−3,−4}, {−2}, {2}, {−6,−5}, {6, 5}].

As in type B, it is easy to see that by applying the D-procedure to all the permutations
in Dn, we obtain disjoint sets of ordered Dn-partitions, though, in this case we do not
obtain all of them. The next lemma specifies exactly which Dn-partitions are not reached,
but first we need to define the notions of odd and even partitions:

Definition 2. An ordered Dn-partition λ = [C0, C1,−C1, . . . , Ck,−Ck] is called odd if the
number of negative elements in C1 ∪ C2 ∪ · · · ∪ Ck is odd, and otherwise it will be called
even.

Then, we have the following:
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Lemma 4.7. The ordered Dn-partitions with r pairs of nonzero blocks, which cannot be
obtained by the D-procedure are exactly the odd Dn-partitions of of the form

λ = [C1 = {∗},−C1 = −{∗}, C2,−C2, . . . , Cr,−Cr], (7)

where ∗ stands for a single element of [±n].

Proof. First of all, we remark that after the D-procedure is applied to a permutation
(equipped with separators) with the use of the switch operation, only Dn-partitions of
the form [C1,−C1, . . . , Cr,−Cr] without a zero-block and |C1| > 2 can be obtained.

Now, we move to permutations in Dn which the D-procedure is applied without the
use of the switch operation. We have one of the following possibilities with regard to the
separators before and after position 1:

• There are no separators before and after position 1: this means that |C0| > 2.

• There is a separator before position 1 but not after it: this means that |C1| > 2 and
C0 = ∅.

• There are two separators before and after position 1: this means that |C1| = 1
and C0 = ∅. Note that in this case, by the D-procedure, we get an ordered Dn-
partition [C1,−C1, . . . , Cr,−Cr] with an even number of negative entries in the
union C1 ∪ C2 ∪ · · · ∪ Cr.

From all the above, it follows that the partitions in the formulation of the lemma
cannot be reached.

Conversely, let us show that all other ordered Dn-partitions can be obtained using the
D-procedure.

Let λ = [C0, C1,−C1, . . . , Cr,−Cr] be an ordered Dn-partition with C0 6= ∅, and so C0

consists of at least two pairs of elements. We look for the preimage γ ∈ Dn of λ. Since the
switch operation on a permutation γ ∈ Dn produces Dn-partitions without a zero-block,
in our case the switch operation has not been applied to γ.

We start by defining a sequence S as follows: we first put the positive entries of C0

in their natural increasing order as the first elements of S, followed by a separator. If
λ is odd, we change the sign of the first entry of S to be negative. Now, as described
in the proof of Theorem 4.1, we complete S by concatenating the r sequences created
by the elements of the blocks C1, . . . , Cr, where in each block the elements are ordered
increasingly and followed by a separator. We now consider the obtained sequence S as
a permutation γ ∈ Dn. Note that 0 /∈ DesD(γ), since by construction |γ(1)| < γ(2) and
so γ(1) + γ(2) > 0. Moreover, it is clear that applying the D-procedure to γ yields the
Dn-partition λ (see e.g. Example 4.8(a)).

Now assume that λ = [C1,−C1, . . . , Cr,−Cr] is an ordered Dn-partition with no zero-
block.

If λ is even, it is easy to see that the above construction without the initial step of
reordering the zero-block C0 produces γ ∈ Dn which is the preimage of λ.
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Finally, if λ = [C1,−C1, . . . , Cr,−Cr] is odd and is not listed in Equation (7), it means
that |C1| > 2. As before, we define a sequence S by reordering increasingly all the blocks
Ci. Since |C1| > 2, we have by the construction that S(1) < S(2). Since the partition is
odd with no zero-block, we have applied a switch operation on its preimage. Now consider
S as a permutation γ ∈ Dn. It is easy to see that the obtained permutation γ ∈ Dn is
indeed the preimage of λ (see e.g. Example 4.8(b)).

We give now two examples of the reverse procedure: both examples are ordered odd
D5-partitions, but one has a zero-block, while the other has no zero-block, so the latter
requires the switch operation.

Example 4.8. (a) Let

λ1 = [C0 = {±1,±4}, {3}, {−3}, {−5, 2}, {5,−2}]

be an odd ordered D5-partition with a zero-block C0 which is odd since we have one
negative sign in {3} ∪ {−5, 2}. For recovering its preimage γ1 ∈ D5, we choose the
negative sign for the smallest positive entry in the zero-block, which is 1. After inserting
the other positive entry of C0 and a separator, we insert the other blocks, where each
block is ordered increasingly followed by a separator, to obtain the permutation:

γ1 = [ −1, 4 | 3 | − 5, 2 | ] ∈ D5,

which is the preimage of the partition λ1 using the D-procedure.
(b) Let

λ2 = [{2, 3}, {−2,−3}, {−1}, {1}]

be an ordered odd D3-partition without a zero-block. Hence, it is created by the switch
operation. First, by the standard reverse procedure, we get the element:

γ′2 = [ | 2, 3 | − 1 | ] ∈ B3 \D3.

Then, after performing the toggling of the sign of the first digit induced by the switch,
we obtain:

γ2 = [ −2 ‖ 3 | 1 ] ∈ D3,

that is the permutation from which the partition λ2 is obtained.

We can now complete the proof of Theorem 4.2.

Proof of Theorem 4.2. The equation in the statement of the theorem is equivalent to the
following:

2rr!SD(n, r) =
r∑

k=0

AD(n, k)

(
n− k
r − k

)
+ n · 2n−1(r − 1)! · S(n− 1, r − 1).

The left-hand side of the above equation counts the number of ordered Dn-partitions
with r pairs of nonzero blocks. The right-hand side counts the same set of partitions
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divided in two categories: those coming from the D-procedure, that are induced by per-
mutations counted in AD(n, k), and those that are not, which are listed in Lemma 4.7.
It is easy to see that the latter can be enumerated in the following way: first choose the
absolute value of the unique element in C1 = {∗}, which can be done in n ways. Then,
choose and order the r−1 remaining blocks, which can be done in (r−1)! ·S(n−1, r−1)
ways. Finally, choose the sign of each entry in the blocks C1, C2, . . . , Cr, in such a way
that an odd number of entries will be signed, and this can be done in 2n−1 ways. This
completes the proof.

5 Falling factorials for Coxeter groups of types B and D

In this section, we present generalizations of Theorem 1.2 for Coxeter groups of types B
and D and provide combinatorial proofs for them.

5.1 Type B

The following theorem is a natural generalization of Theorem 1.2 for the Stirling numbers
of type B, and it is a particular case of an identity appearing in Remmel and Wachs [18]
(specifically, this is S0,2

n,k(1, 1) in their notation) and Bala [2] (specifically, this is S(2,0,1)

in his notation):

Theorem 5.1. Let x ∈ R and let n ∈ N. Then we have

xn =
n∑
k=0

SB(n, k)[x]Bk , (8)

where [x]Bk := (x− 1)(x− 3) · · · (x− 2k + 1) and [x]B0 := 1.

A proof for this equality, using the combinatorial interpretation of SB(n, k) by the
model of k-attacking rooks, is given by Remmel and Wachs [18]. More information on the
rook interpretation of this and other factorization theorems can be found in Miceli and
Remmel [14].

Bala [2] uses generating functions techniques for proving this identity.
Here we provide a kind of a geometric proof, suggested to us by Reiner, which is related

to a method used by Blass and Sagan [6] to compute the characteristic polynomial of the
poset L(Bn).

Proof. Being a polynomial identity, it is sufficient to prove it only for odd integers x =
2m+ 1 where m ∈ N.

The left-hand side of Equation (8) counts the number of lattice points in the n-
dimensional cube {−m,−m+ 1, . . . ,−1, 0, 1, . . . ,m}n. We show that the right-hand side
of Equation (8) counts the same set of points using the maximal intersection subsets of
hyperplanes the points lay on.

More precisely, let λ = {C0,±C1, . . . ,±Ck} be a Bn-partition with k pairs of nonzero
blocks, with 0 6 k 6 n. We associate to this partition the set of lattice points of the
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form (x1, . . . , xn), where xj = 0 for all j ∈ C0, and xj1 = xj2 6= 0 (resp. xj1 = −xj2 6= 0)
whenever j1, j2 (resp. j1,−j2) belong to the same block Ci (resp. −Ci).

For the first pair of nonzero blocks ±C1 of the set partition λ, if j1 ∈ C1 ∪ −C1 then
there are x − 1 possibilities (excluding the value 0) to choose the value of xj1 . For the
second pair of blocks ±C2 of the partition λ, we have x − 3 possibilities (excluding the
value 0 and the value xj1 chosen for ±C1 and its negative). We continue in this way until
we get x− (2k − 3) possibilities for the last pair of blocks ±Ck.

In particular, for k = 0, λ consists of only the zero-block {±1, . . . ,±n}, and is asso-
ciated with the single lattice point (0, . . . , 0); for k = n, the only Bn-partition having n
pairs of nonzero blocks is

{±{1}, . . . ,±{n}}

which corresponds to the lattice points (x1, . . . , xn) such that xi 6= ±xj 6= 0 for all i 6= j.
Note that these are the (x− 1)(x− 3) · · · (x− (2n− 1)) lattice points that do not lie on
any hyperplane.

Example 5.2. Let n = 2 and m = 3, so we have that x = 2m + 1 = 7. The lattice
([−3, 3]× [−3, 3]) ∩ Z2 is presented in Figure 1.

2 3

1

2

3

−1

−2

−3

1−2 −1−3 0

Figure 1: Lattice points for type B

For k = 0, we have exactly one B2-partition λ0 consisting only of the zero-block:
λ0 = {{±1,±2}}. The corresponding subspace is {x1 = x2 = 0}, which counts only the
lattice point (0, 0).

For k = 1, we have four B2-partitions, two of them contain a zero-block:

λ1 = {{±1},±{2}}; λ2 = {{±2},±{1}},

and two of them do not:

λ3 = {±{1, 2}}; λ4 = {±{1,−2}}.

The partitions λ1 and λ2 correspond to the axes x1 = 0 and x2 = 0, respectively. The
second pair λ3 and λ4 corresponds to the diagonals x1 = x2 and x1 = −x2 respectively.
Each of these hyperplanes contains 6 lattice points (since the origin is excluded).
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For k = 2, the single B2-partition:

λ5 = {±{1},±{2}}

corresponds to the set of lattice points (x1, x2) with x1 6= ±x2 6= 0, which are those not
lying on any hyperplane.

Remark 5.3. Note that Blass and Sagan [6, Theorem 2.1] show that, when x is an odd
number, the cardinality of the set of lattice points not lying on any hyperplane is counted
by the characteristic polynomial χ(Bn, x) of the lattice L(Bn).

5.2 Type D

The falling factorial in type D is defined as follows: (see [6])

[x]Dk :=


1, k = 0;
(x− 1)(x− 3) · · · (x− (2k − 1)), 1 6 k < n;
(x− 1)(x− 3) · · · (x− (2n− 3))(x− (n− 1)), k = n.

We have found no generalization of Equation (3) for type D in the literature, so we
supply one here.

Theorem 5.4. For all n ∈ N and x ∈ R:

xn =
n∑
k=0

SD(n, k)[x]Dk + n
(
(x− 1)n−1 − [x]Dn−1

)
. (9)

Proof. For Dn-partitions having 0 6 k < n pairs of nonzero blocks the proof goes verbatim
as in type B, so let k = n.

In this case, we have only one possible Dn-partition having n pairs of nonzero blocks:
{±{1}, . . . ,±{n}}. We associate this Dn-partition with the lattice points of the form
(x1, . . . , xn) such that xi 6= ±xj for i 6= j, having at most one appearance of the value
0. Note that the points with exactly one appearance of 0 cannot be obtained by any
Dn-partition having k < n blocks, since the zero-block cannot consist of exactly one pair.
If 0 does appear, then we have to place it in one of the n coordinates and then we are left
with (x − 1)(x − 3) · · · (x − (2n − 3)) possibilities for the rest, while if 0 does not exist,
then we have (x− 1)(x− 3) · · · (x− (2n− 1)) possibilities. These two values sum up to a
total of

[x]Dn = (x− 1)(x− 3) · · · (x− (2n− 3))(x− (n− 1)).

As in type B, this number is equal to the evaluation of the characteristic polynomial
χ(Dn, x) of L(Dn), where x is odd.

Note that during the above process of collecting lattice points of the n-dimensional
cube, the points containing exactly one appearance of 0 and at least two nonzero coordi-
nates are assigned the same absolute value are not counted, since the zero-block (if exists)
must contain at least two elements. This phenomenon happens when n > 2, and the
number of such points is n((x− 1)n−1 − [x]Dn−1). This concludes the proof.
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2 3

1

2

3

−1

−2

−3

1−2 −1−3 0

Figure 2: Lattice points for type D

Example 5.5. As in the previous example, let n = 2 and m = 3, so we have: x =
2m+ 1 = 7. The lattice ([−3, 3]× [−3, 3]) ∩ Z2 is presented in Figure 2.

For k = 0, as in type B we have exactly one D2-partition λ0 = {{±1,±2}} which
counts only the lattice point (0, 0). For k = 1, we have only two D2-partitions: {±{1, 2}}
and {±{1,−2}}, which correspond, as in the previous example, to the diagonals x1 = x2
and x1 = −x2 (without the origin), respectively

For k = 2, as before, there is a single Dn-partition with two pairs of nonzero blocks:
λ = {±{1},±{2}}. The lattice points corresponding to this set partition are those with
different values in their coordinates, i.e. x1 6= x2, but in the case of type D (in contrast to
type B) the value 0 can also appear. In the figure, these are all the lattice points which
do not lie on the diagonals.

Note that in the case n = 2 the second term in Equation (9) is 0 and hence does
not count any missing lattice points, since we have already counted all the points. The
missing points start to appear from n = 3, as presented in the next example.

Example 5.6. Let n = m = 3, so that x = 2m+ 1 = 7. The lattice points which are not
counted have the form (x1, x2, x3), such that exactly one of their coordinates is 0 and the
other two share the same absolute value, e.g. the lattice points (0, 2, 2) and (0, 2,−2) are
not counted. In this case, the number of such missing lattice points (which is the second
summand in the right-hand side of Equation (9)) is: 3 · 62 − 3 · 6 · 4 = 36.

6 Some generalizations

In this section, we present some generalizations and variants related to our main results in
some different directions. In Section 6.1, we start with a short introduction to the colored
permutations group and we generalize Theorems 4.1 and 5.1 to this case. In Section 6.2,
we provide a version of Theorem 4.1 for the flag descent parameter in type B.
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6.1 The colored permutations group

Definition 6.1. Let m and n be positive integers. The group of colored permutations of
n digits with m colors is the wreath product

Gm,n = Zm o Sn = Znm o Sn,

consisting of all the pairs (~z, τ), where ~z is an n-tuple of integers between 0 and m − 1
and τ ∈ Sn.

A convenient way to look at Gm,n is to consider the alphabet

Σ :=
{

1, . . . , n, 1[1], . . . , n[1], . . . , 1[m−1], . . . , n[m−1]} ,
as the set [n] colored by the colors 0, . . . ,m− 1. Then, an element of Gm,n is a bijection
π : Σ→ Σ satisfying the following condition:

if π(i[α]) = j[β], then π(i[α+1]) = j[β+1],

where the exponent [·] is computed modulo m. The elements of Gm,n are usually called
colored permutations.

In particular, G1,n = Sn is the symmetric group, while G2,n = Bn is the group of
signed permutations.

Definition 6.2. The color order on Σ is defined to be (see [1, §3]) :

1[m−1] ≺ · · · ≺ n[m−1] ≺ · · · ≺ 1[1] ≺ 2[1] ≺ · · · ≺ n[1] ≺ 1 ≺ · · · ≺ n.

Definition 6.3. Let π ∈ Gm,n. Assume that π(1) = a
[z1]
1 . We define

desG(π) := desA(π) + ε(π),

where
desA(π) := |{i ∈ [n− 1] | π(i) � π(i+ 1)}|, (10)

where ‘�’ refers to the color order, and

ε(π) :=

{
1, if z1 6≡ 0 mod m;
0, if z1 ≡ 0 mod m.

(11)

For example, if π =
[
3, 1̄, ¯̄2

]
∈ G3,3, we have desG(π) = 2 + 0 = 2. Note that for m = 1,

desG = des and for m = 2, desG = desB.
Moreover, we define the Eulerian number of type Gm,n to be:

Am(n, k) := |{π ∈ Gm,n | desG(π) = k}|.

Let C ⊆ Σ. Denote C [t] = {x[i+t] | x[i] ∈ C}.
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Definition 6.4. A Gm,n-partition is a set partition of Σ into blocks such that the following
conditions are satisfied:

• There exists at most one block satisfying C [1] = C. This block will be called the
zero-block.

• If C appears as a block in the partition, then C [1] also appears in that partition.

Two blocks C1 and C2 will be called equivalent if there is a natural number t ∈ N such
that C1 = C

[t]
2 .

The number of Gm,n-partitions with r non-equivalent nonzero blocks is denoted by
Sm(n, r).

For example, the following is a G3,4− partition:{{
1, 1̄, ¯̄1, 2, 2̄, ¯̄2

}
, {3, 4̄} ,

{
3̄, ¯̄4
}
,
{¯̄3, 4

}}
,

with a zero-block:
{

1, 1̄, ¯̄1, 2, 2̄, ¯̄2
}

.
We define now the concept of an ordered Gm,n-partition:

Definition 6.5. A Gm,n-partition is ordered if the set of blocks is totally ordered and the
following conditions are satisfied:

• If the zero-block exists, then it appears as the first block.

• For each nonzero block C, the blocks C [i] for 1 6 i 6 m − 1 appear consecutively
right after C, i.e. C,C [1], C [2], . . . , C [m−1].

The generalization of Theorem 1.1 in this setting is as follows.

Theorem 6.6. For all positive integers n,m and r, we have:

Sm(n, r) =
1

mrr!

r∑
k=0

Am(n, k)

(
n− k
r − k

)
.

The proof is similar to that of Theorem 4.1, so it is omitted.
In order to generalize Theorem 1.2, we define the falling factorial of type Gm,n as

follows: (see Equation 15 in [2])

[x]mk :=

{
1, k = 0;
(x− 1)(x− 1−m) · · · (x− 1− (k − 1)m), 1 6 k 6 n.

We have:

Theorem 6.7. Let x ∈ R and n ∈ N. Then we have:

xn =
n∑
k=0

Sm(n, k)[x]mk .
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We present here the idea of the proof.

Sketch of the proof. Divide the unit circle S1 in the plane into m parts according to the
mth roots of unity: 1, ρm, ρ

2
m, . . . , ρ

m−1
m , see Figure 3, where m = 3 and the roots are

represented by small bullets. This divides the circle into m arcs. Now, in each arc, locate
t points in equal distances from each other (see Figure 3 where t = 5 and the points are
represented by small lines). Including the point (1, 0), we get x = mt + 1 points on the
unit circle.

Consider now the n-dimensional torus (S1)n = S1×· · ·×S1 with xn lattice points on it.
The same arguments we presented in the proof of Theorem 5.1 will apply now to Theorem
6.7, when we interpret the Gm,n-partitions as intersections of subsets of hyperplanes in
Gm,n, where by Gm,n we mean the following generalized hyperplane arrangement for the
colored permutations group:

Gm,n := { {xi = ρkmxj} | 1 6 i < j 6 n, 0 6 k < m}
∪ { {xi = 0} | 1 6 i 6 n},

See e.g. [15, p. 244].

ρ03 = 1

1

2

3

45

ρ13

ρ13 · 1

ρ13 · 2

ρ13 · 3

ρ13 · 4

ρ13 · 5

ρ23

ρ23 · 1 ρ23 · 2
ρ23 · 3

ρ23 · 4

ρ23 · 5

Figure 3: The 16 lattice points on S1, representing the first coordinate for m = 3 and
t = 5.

6.2 The flag descent parameter for the Coxeter group of type B

Another possibility to generalize these results is to consider the flag descent statistics
defined on group of signed permutations. Such parameters produce, in this context,
similar expressions of those presented in the previous sections, but less elegant. As an
example, we show here only one of these possible extensions.

This is a different generalization of Theorem 4.1 by using the flag-descent number
fdes, that is defined in [1] for a signed permutation β ∈ Bn:

fdes(β) := 2 · desA(β) + ε(β).
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where desA(β) is defined as in Equation (10), and ε(β) as in Equation (11).

We denote by A∗B(n, k) the number of permutations β ∈ Bn satisfying fdes(β) = k−1,
and by S∗B(n, r) the number of Bn-partitions having exactly r blocks. Here, differently
from SB(n, r), every block counts: the zero-block is counted once, and any pair ±Ci is
counted twice.

These two new parameters satisfy the identity stated below:

Theorem 6.8. For all nonnegative integers n, r where n > r, we have:

2b
r
2c
⌊r

2

⌋
! S∗B(n, r) =

r∑
k=1

A∗B(n, k)

(
n−

⌈
k
2

⌉⌊
r−k
2

⌋ ).
The proof uses arguments similar to those in the proof of Theorem 4.1, and is therefore

omitted.
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