Collapsibility of simplicial complexes of hypergraphs

Alan Lew[∗]

Department of Mathematics Technion Haifa 32000, Israel

alan@campus.technion.ac.il

Submitted: Dec 5, 2018; Accepted: Aug 19, 2019; Published: Oct 11, 2019 c The author. Released under the CC BY-ND license (International 4.0).

Abstract

Let $\mathcal H$ be an r-uniform hypergraph. We show that the simplicial complex whose simplices are the hypergraphs $\mathcal{F} \subset \mathcal{H}$ with covering number at most p is $\left(\binom{r+p}{r}-1\right)$ collapsible. Similarly, the simplicial complex whose simplices are the pairwise intersecting hypergraphs $\mathcal{F} \subset \mathcal{H}$ is $\frac{1}{2} {2r \choose r}$ $\binom{2r}{r}$ -collapsible.

Mathematics Subject Classifications: 05E45, 05D05

1 Introduction

Let X be a finite simplicial complex. Let η be a simplex of X such that $|\eta| \le d$ and η is contained in a unique maximal face $\tau \in X$. We say that the complex

$$
X' = X \setminus \{ \sigma \in X : \eta \subset \sigma \subset \tau \}
$$

is obtained from X by an *elementary d-collapse*, and we write $X \stackrel{\eta}{\to} X'$.

The complex X is called *d-collapsible* if there exists a sequence of elementary d collapses

$$
X = X_1 \xrightarrow{\eta_1} X_2 \xrightarrow{\eta_2} \cdots \xrightarrow{\eta_{k-1}} X_k = \emptyset
$$

from X to the void complex \emptyset . The *collapsibility* of X is the minimal d such that X is d-collapsible.

A simple consequence of d-collapsibility is the following:

Proposition 1 (Wegner [\[11,](#page-9-0) Lemma 1]). If X is d-collapsible then it is homotopy equivalent to a simplicial complex of dimension smaller than d.

[∗]Supported by ISF grant no. 326/16.

THE ELECTRONIC JOURNAL OF COMBINATORICS $26(4)$ (2019), $\#P4.10$ 1

Let H be a finite hypergraph. We identify H with its edge set. The rank of H is the maximal size of an edge of H.

A set C is a cover of H if $A \cap C \neq \emptyset$ for all $A \in \mathcal{H}$. The covering number of H, denoted by $\tau(\mathcal{H})$, is the minimal size of a cover of \mathcal{H} .

For $p \in \mathbb{N}$, let

$$
Cov_{\mathcal{H},p} = \{ \mathcal{F} \subset \mathcal{H} : \tau(\mathcal{F}) \leqslant p \}.
$$

That is, Cov_{\mathcal{H}, p} is a simplicial complex whose vertices are the edges of \mathcal{H} and whose simplices are the hypergraphs $\mathcal{F} \subset \mathcal{H}$ that can be covered by a set of size at most p. Some topological properties of the complex $Cov_{\binom{[n]}{r},p}$ were studied by Jonsson in [\[6\]](#page-9-1).

The hypergraph H is called *pairwise intersecting* if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{H}$. Let

Int_H = { $\mathcal{F} \subset \mathcal{H}$: $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{F}$ }.

So, Int_H is a simplicial complex whose vertices are the edges of H and whose simplices are the hypergraphs $\mathcal{F} \subset \mathcal{H}$ that are pairwise intersecting.

Our main results are the following:

Theorem 2. Let H be a hypergraph of rank r. Then $Cov_{\mathcal{H},p}$ is $\left(\binom{r+p}{r}-1\right)$ -collapsible.

Theorem 3. Let H be a hypergraph of rank r. Then $\text{Int}_{\mathcal{H}}$ is $\frac{1}{2} {2r \choose r}$ $\binom{2r}{r}$ -collapsible.

The following examples show that these bounds are sharp:

- Let $\mathcal{H} = \begin{pmatrix} [r+p] \\ r \end{pmatrix}$ $r_r^{(p)}$ be the complete *r*-uniform hypergraph on $r + p$ vertices. The covering number of H is $p + 1$, but for any $A \in \mathcal{H}$ the hypergraph $\mathcal{H} \setminus \{A\}$ can be covered by a set of size p, namely by $[r + p] \setminus A$. Therefore the complex Cov_{([r+p]})_{,p} is the boundary of the $\left(\binom{r+p}{r}-1\right)$ -dimensional simplex, so it is homeomorphic to a $\left(\binom{r+p}{r}-2\right)$ -dimensional sphere. Hence, by Proposition [1,](#page-0-0) Cov $\binom{[r+p]}{r},$ is not $\left(\binom{r+p}{r}-2\right)$ -collapsible.
- Let $\mathcal{H} = \binom{[2r]}{r}$ (r_r^{2r}) be the complete r-uniform hypergraph on 2r vertices. Any $A \in \mathcal{H}$ intersects all the edges of $\mathcal H$ except the edge $[2r] \setminus A$. Therefore the complex $\mathrm{Int}_{\binom{[2r]}{r}}$ is the boundary of the $\frac{1}{2} \binom{2r}{r}$ $\binom{2r}{r}$ -dimensional cross-polytope, so it is homeomorphic to a $\left(\frac{1}{2}\right)$ $rac{1}{2}$ $\binom{2r}{r}$ $r(r) - 1$)-dimensional sphere. Hence, by Proposition [1,](#page-0-0) $\text{Int}_{\binom{[2r]}{r}}$ is not $\left(\frac{1}{2}\right)$ $rac{1}{2}$ $\binom{2r}{r}$ $\binom{2r}{r} - 1$ collapsible.

A related problem was studied by Aharoni, Holzman and Jiang in [\[2\]](#page-9-2), where they show that for any r-uniform hypergraph H and $p \in \mathbb{Q}$, the complex of hypergraphs $\mathcal{F} \subset \mathcal{H}$ with fractional matching number (or equivalently, fractional covering number) smaller than p is $(\lceil rp \rceil - 1)$ -collapsible.

Our proofs rely on two main ingredients. The first one is the following theorem:

Theorem 4. Let X be a simplicial complex on vertex set V. Let $S(X)$ be the collection of all sets $\{v_1, \ldots, v_k\} \subset V$ satisfying the following condition:

There exist maximal faces $\sigma_1, \sigma_2, \ldots, \sigma_{k+1}$ of X such that:

- $v_i \notin \sigma_i$ for all $i \in [k]$,
- $v_i \in \sigma_j$ for all $1 \leq i < j \leq k+1$.

Let $d'(X)$ be the maximum size of a set in $S(X)$. Then X is $d'(X)$ -collapsible.

Theorem [4](#page-1-0) is a special case of a more general result, due essentially to Matoušek and Tancer (who stated it in the special case where the complex is the nerve of a family of finite sets, and used it to prove the case $p = 1$ of Theorem [2;](#page-1-1) see [\[9\]](#page-9-3)).

The second ingredient is the following combinatorial lemma, proved independently by Frankl and Kalai.

Lemma 5 (Frankl [\[4\]](#page-9-4), Kalai [\[7\]](#page-9-5)). Let $\{A_1, \ldots, A_k\}$ and $\{B_1, \ldots, B_k\}$ be families of sets such that:

- $|A_i| \leq r$, $|B_i| \leq p$ for all $i \in [k]$,
- $A_i \cap B_i = \emptyset$ for all $i \in [k]$,
- $A_i \cap B_j \neq \emptyset$ for all $1 \leq i \leq j \leq k$.

Then

$$
k \leqslant \binom{r+p}{r}.
$$

The paper is organized as follows. In Section [2](#page-2-0) we present Matousek and Tancer's bound on the collapsibility of a simplicial complex, and we prove Theorem [4.](#page-1-0) In Section [3](#page-5-0) we present some results on the collapsibility of independence complexes of graphs. In Section [4](#page-6-0) we prove our main results on the collapsibility of complexes of hypergraphs. Section [5](#page-7-0) contains some generalizations of Theorems [2](#page-1-1) and [3,](#page-1-2) which are obtained by applying different known variants of Lemma [5.](#page-2-1)

2 A bound on the collapsibility of a complex

Let X be a (non-void) simplicial complex on vertex set V. Fix a linear order \lt on V. Let $\mathcal{A} = (\sigma_1, \ldots, \sigma_m)$ be a sequence of faces of X such that, for any $\sigma \in X$, $\sigma \subset \sigma_i$ for some $i \in [m]$. For example, we may take $\sigma_1, \ldots, \sigma_m$ to be the set of maximal faces of X (ordered in any way).

For a simplex $\sigma \in X$, let $m_{X,A,<}(\sigma) = \min\{i \in [m] : \sigma \subset \sigma_i\}$. Let $i \in [m]$ and $\sigma \in X$ such that $m_{X,A,<}(\sigma) = i$. We define the minimal exclusion sequence

$$
\mathrm{mes}_{X,\mathcal{A},<}(\sigma)=(v_1,\ldots,v_{i-1})
$$

as follows: If $i = 1$ then $\text{mes}_{X,\mathcal{A},\langle}\sigma$ is the empty sequence. If $i > 1$ we define the sequence recursively as follows:

Since $i > 1$, we must have $\sigma \not\subset \sigma_1$; hence, there is some $v \in \sigma$ such that $v \notin \sigma_1$. Let v_1 be the minimal such vertex (with respect to the order \lt).

Let $1 < j < i$ and assume that we already defined v_1, \ldots, v_{j-1} . Since $i > j$, we must have $\sigma \not\subset \sigma_j$; hence, there exists some $v \in \sigma$ such that $v \notin \sigma_j$.

- If there is a vertex $v_k \in \{v_1, \ldots, v_{j-1}\}\$ such that $v_k \notin \sigma_j$, let v_j be such a vertex of minimal index k. In this case we call v_i old at j.
- If $v_k \in \sigma_j$ for all $k < j$, let v_j be the minimal vertex $v \in \sigma$ (with respect to the order $\langle \rangle$ such that $v \notin \sigma_j$. In this case we call v_j new at j.

Let $M_{X,A,<}(\sigma) \subset \sigma$ be the simplex consisting of all the vertices appearing in the sequence mes_{X, $A_{,<}(\sigma)$}. Let

$$
d(X, \mathcal{A}, \langle) = \max\{|M_{X, \mathcal{A}, \langle}(\sigma)| : \sigma \in X\}.
$$

The following result was stated and proved in [\[9,](#page-9-3) Prop. 1.3] in the special case where X is the nerve of a finite family of sets (in our notation, $X = \text{Cov}_{\mathcal{H},1}$ for some hypergraph \mathcal{H}).

Theorem 6. The simplicial complex X is $d(X, \mathcal{A}, \leq)$ -collapsible.

The proof given in [\[9\]](#page-9-3) can be easily modified to hold in this more general setting. Here we present a different proof.

Let X be a simplicial complex on vertex set V, and let $v \in V$. Let

$$
X \setminus v = \{ \sigma \in X : v \notin \sigma \}
$$

and

$$
lk(X,v) = \{\sigma \in X : v \notin \sigma, \sigma \cup \{v\} \in X\}.
$$

We will need the following lemma, proved by Tancer in [\[10\]](#page-9-6):

Lemma 7 (Tancer [\[10,](#page-9-6) Prop. 1.2]). If $X \setminus v$ is d-collapsible and $\text{lk}(X, v)$ is $(d - 1)$ $collapsible$, then X is d-collapsible.

Proof of Theorem [6.](#page-3-0) First, we deal with the case where X is a complete complex (i.e. a simplex). Then X is 0-collapsible; therefore, the claim holds.

For a general complex X , we argue by induction on the number of vertices of X . If $|V| = 0$, then $X = {\emptyset}$. In particular, it is a complete complex; hence, the claim holds.

Let $|V| > 0$, and assume that the claim holds for any complex with less than $|V|$ vertices. If $\sigma_1 = V$, then X is the complete complex on vertex set V, and the claim holds. Otherwise, let v be the minimal vertex (with respect to \langle) in $V \setminus \sigma_1$.

In order to apply Lemma [7,](#page-3-1) we will need the following two claims:

Claim 8. The complex $X \setminus v$ is $d(X, \mathcal{A}, \leq)$ -collapsible.

Proof. For every $i \in [m]$, let $\sigma'_i = \sigma_i \setminus \{v\}$, and let $\mathcal{A}' = (\sigma'_1, \ldots, \sigma'_m)$. Let $\sigma \in X \setminus v$. Since $v \notin \sigma$, then, for any $i \in [m]$, $\sigma \subset \sigma_i$ if and only if $\sigma \subset \sigma'_i$. Hence, every simplex $\sigma \in X \setminus v$ is contained in σ'_i for some $i \in [m]$ (since, by the definition of $\mathcal{A}, \sigma \subset \sigma_i$ for some $i \in [m]$. So, by the induction hypothesis, $X \setminus v$ is $d(X \setminus v, \mathcal{A}', \leq)$ -collapsible.

Let $\sigma \in X \setminus v$. We will show that $\text{mes}_{X,\mathcal{A},<}(\sigma) = \text{mes}_{X \setminus v,\mathcal{A}',<}(\sigma)$. Since for any $i \in [m],$ $\sigma \subset \sigma_i$ if and only if $\sigma \subset \sigma_i'$, then the two sequences are of the same length. Let

$$
\mathrm{mes}_{X,\mathcal{A},<}(\sigma)=(v_1,\ldots,v_k)
$$

and

$$
\mathrm{mes}_{X\setminus v,\mathcal{A}',<}(\sigma)=(v'_1,\ldots,v'_k).
$$

We will show that $v_i = v'_i$ for all $i \in [k]$. We argue by induction on i. Let $i \in [k]$, and assume that $v_j = v'_j$ for all $j < i$. Since $v \notin \sigma$, then $\sigma \setminus \sigma_i = \sigma \setminus \sigma'_i$. Therefore, for any $j < i, v_j \in \sigma \setminus \sigma_i$ if and only if $v'_j = v_j \in \sigma \setminus \sigma'_i$. Hence, v_i is old at i if and only if v'_i is old at *i*, and if v_i and v'_i are both old at *i*, then $v_i = v'_i$. Otherwise, both v_i and v'_i are new at *i*. Then, v_i is the minimal vertex in $\sigma \setminus \sigma_i$, and v'_i is the minimal vertex in $\sigma \setminus \sigma'_i = \sigma \setminus \sigma_i$. Thus, $v_i = v'_i$.

Therefore, $|M_{X\setminus v,\mathcal{A}',<}(\sigma)| = |M_{X,\mathcal{A},<}(\sigma)|$ for any $\sigma \in X \setminus v$; hence,

$$
d(X \setminus v, \mathcal{A}', <) \leq d(X, \mathcal{A}, <).
$$

So, $X \setminus v$ is $d(X, \mathcal{A}, \leq)$ -collapsible.

Claim 9. The complex $lk(X, v)$ is $(d(X, \mathcal{A}, <) - 1)$ -collapsible.

Proof. Let $I = \{i \in [m] : v \in \sigma_i\}$. For every $i \in I$, let $\sigma''_i = \sigma_i \setminus \{v\}$. Write $I = \{i_1, \ldots, i_r\}$, where $i_1 < \cdots < i_r$, and let $\mathcal{A}'' = (\sigma''_{i_1}, \ldots, \sigma''_{i_r}).$

For any $\sigma \in \text{lk}(X, v)$, the simplex $\sigma \cup \{v\}$ belongs to X; hence, there exists some $i \in [m]$ such that $\sigma \cup \{v\} \subset \sigma_i$. Since $v \in \sigma \cup \{v\}$, we must have $i \in I$, and therefore $\sigma \subset$ $\sigma''_i = \sigma_i \setminus \{v\}$. So, by the induction hypothesis, $\text{lk}(X, v)$ is $d(\text{lk}(X, v), \mathcal{A}'', <)$ -collapsible. Let $\sigma \in \text{lk}(X, v)$. We will show that

$$
M_{X,\mathcal{A},<}(\sigma\cup\{v\})=M_{\mathrm{lk}(X,v),\mathcal{A}'',<}(\sigma)\cup\{v\}.
$$

Let

$$
\operatorname{mes}_{X,\mathcal{A},<}(\sigma\cup\{v\})=(v_1,\ldots,v_n),
$$

and

 $\text{mes}_{\mathbb{R}(X,v),A''<}(\sigma)=(u_1,\ldots,u_t).$

For any $j \in [r]$, $\sigma \subset \sigma''_{i_j}$ if and only if $\sigma \cup \{v\} \subset \sigma_{i_j}$. Also, for $i \notin I$, $\sigma \cup \{v\} \not\subset \sigma_i$ (since $v \notin \sigma_i$). Therefore, $n = i_{t+1} - 1$.

The vertex v is the minimal vertex in $V \setminus \sigma_1$, therefore it is the minimal vertex in $(\sigma \cup \{v\}) \setminus \sigma_1$. Hence, we have $v_1 = v$. Now, let $i > 1$ such that $i \notin I$. Then, $v_1 = v$ is the vertex of minimal index in the sequence (v_1, \ldots, v_{i-1}) that is contained in $(\sigma \cup \{v\}) \setminus \sigma_i$. Therefore, $v_i = v$.

 \Box

THE ELECTRONIC JOURNAL OF COMBINATORICS $26(4)$ (2019), $\#P4.10$ 5

Finally, we will show that $v_{i_j} = u_j$ for all $j \in [t]$. We argue by induction on j. Let $j \in [t]$, and assume that $v_{i_\ell} = u_\ell$ for all $\ell < j$.

For any $k < i_j$, either $v_k = v$ (if $k \notin I$) or $v_k = u_\ell$ for some $\ell < j$ (if $k = i_\ell \in I$). Also, since $v \in \sigma_{i_j}$, we have $(\sigma \cup \{v\}) \setminus \sigma_{i_j} = \sigma \setminus \sigma''_{i_j}$. So, for any $k < i_j, v_k \in (\sigma \cup \{v\}) \setminus \sigma_{i_j}$ if and only if $k = i_\ell$ for some $\ell < j$ such that $u_\ell \in \sigma \setminus \sigma''_{i_j}$. Therefore, v_{i_j} is old at i_j if and only if u_j is old at j, and if v_{i_j} and u_j are both old, then $v_{i_j} = u_j$. Otherwise, assume that v_{i_j} is new at i_j and u_j is new at j. Then, v_{i_j} is the minimal vertex in $(\sigma \cup \{v\}) \setminus \sigma_{i_j}$, and u_j is the minimal vertex in $\sigma \setminus \sigma''_{i_j} = (\sigma \cup \{v\}) \setminus \sigma_{i_j}$. Thus, $v_{i_j} = u_j$.

So, for any $\sigma \in \text{lk}(X, v)$ we obtain

$$
|M_{\mathrm{lk}(X,v),\mathcal{A}'',<}(\sigma)| = |M_{X,\mathcal{A},<}(\sigma \cup \{v\})| - 1.
$$

Hence,

$$
d(\text{lk}(X,v), \mathcal{A}'', <) \leq d(X, \mathcal{A}, <) - 1.
$$

So, lk (X, v) is $(d(X, \mathcal{A}, <) - 1)$ -collapsible.

By Claim [8,](#page-3-2) Claim [9](#page-4-0) and Lemma [7,](#page-3-1) X is $d(X, \mathcal{A}, \leq)$ -collapsible.

Proof of Theorem [4.](#page-1-0) Let \lt be some linear order on the vertex set V, and let $\mathcal{A} =$ $(\sigma_1, \ldots, \sigma_m)$ be the sequence of maximal faces of X (ordered in any way).

Let $i \in [m]$ and let $\sigma \in X$ with $m_{X,\mathcal{A},<}(\sigma) = i$. Let $\text{mes}_{X,\mathcal{A},<}(\sigma) = (v_1, \ldots, v_{i-1})$. Then $M_{X,A,<}(\sigma) = \{v_{i_1}, \ldots, v_{i_k}\}\$ for some $i_1 < \cdots < i_k \in [i-1]$ (these are exactly the indices i_j such that v_{i_j} is new at i_j). For each $j \in [k]$ we have $v_{i_j} \notin \sigma_{i_j}$. In addition, since v_{i_j} is new at i_j , we have $v_{i_\ell} \in \sigma_{i_j}$ for all $\ell < j$. Let $i_{k+1} = i$. Since $m_{X,A,<}(\sigma) = i = i_{k+1}$, we have $\sigma \subset \sigma_{i_{k+1}}$. In particular, $v_{i_\ell} \in \sigma_{i_{k+1}}$ for all $\ell < k + 1$.

Therefore, $M_{X,A,<}(\sigma) \in S(X)$. Thus, $d(X,A,<) \leq d'(X)$, and by Theorem [6,](#page-3-0) X is $d'(X)$ -collapsible. \Box

3 Collapsibility of independence complexes

Let $G = (V, E)$ be a graph. The independence complex $I(G)$ is the simplicial complex on vertex set V whose simplices are the independent sets in G .

Definition 10. Let $k(G)$ be the maximal size of a set $\{v_1, \ldots, v_k\} \subset V$ that satisfies:

- $\{v_i, v_j\} \notin E$ for all $i \neq j \in [k],$
- There exist $u_1, \ldots, u_k \in V$ such that
	- $\{v_i, u_i\} \in E$ for all $i \in [k],$ $- \{v_i, u_j\} \notin E$ for all $1 \leq i < j \leq k$.

Proposition 11. $k(G) = d'(I(G)).$

Proof. Let $A = \{v_1, \ldots, v_k\} \in S(I(G))$. Then, there exist maximal faces $\sigma_1, \ldots, \sigma_{k+1}$ of $I(G)$ such that:

 \Box

 \Box

- $v_i \notin \sigma_i$ for all $i \in [k],$
- $v_i \in \sigma_j$ for all $1 \leq i \leq j \leq k+1$.

Let $i \in [k]$. Since σ_i is a maximal independent set in G and $v_i \notin \sigma_i$, there exists some $u_i \in \sigma_i$ such that $\{v_i, u_i\} \in E$.

Let $1 \leq i \leq j \leq k$. Since v_i and u_j are both contained in the independent set σ_j , we have $\{v_i, u_j\} \notin E$. Furthermore, since $A \subset \sigma_{k+1}$, A is an independent set in G. That is, $\{v_i, v_j\} \notin E$ for all $i \neq j \in [k]$. So, A satisfies the conditions of Definition [10.](#page-5-1) Hence, $|A| \leq k(G)$; therefore, $d'(I(G)) \leq k(G)$.

Now, let $k = k(G)$, and let $v_1, \ldots, v_k, u_1, \ldots, u_k \in V$ such that

- $\{v_i, v_j\} \notin E$ for all $i \neq j \in [k],$
- $\{v_i, u_i\} \in E$ for all $i \in [k]$,
- $\{v_i, u_j\} \notin E$ for all $1 \leq i < j \leq k$.

Let $i \in [k]$, and let $V_i = \{v_j : 1 \leq j \leq i\}$. Note that $V_i \cup \{u_i\}$ forms an independent set in G; therefore, it is a simplex in $I(G)$. Let σ_i be a maximal face of $I(G)$ containing $V_i \cup \{u_i\}$. Since $\{v_i, u_i\} \in E$, we have $v_i \notin \sigma_i$.

The set $\{v_1, \ldots, v_k\}$ is also an independent set in G. Therefore, there is a maximal face $\sigma_{k+1} \in I(G)$ that contains it.

By the definition of $\sigma_1, \ldots, \sigma_{k+1}$, we have $v_i \in \sigma_j$ for $1 \leq i \leq j \leq k+1$. Therefore, $\{v_1, \ldots, v_k\} \in S(I(G))$; so, $k(G) = k \le d'(I(G))$. Hence, $k(G) = d'(I(G))$, as wanted.

As an immediate consequence of Proposition [11](#page-5-2) and Theorem [4,](#page-1-0) we obtain:

Proposition 12. The complex $I(G)$ is $k(G)$ -collapsible.

Note that vertices $v_1, \ldots, v_k, u_1, \ldots, u_k \in V$ satisfying the conditions in Definition [10](#page-5-1) must all be distinct. As a simple corollary, we obtain

Corollary 13. The independence complex of a graph $G = (V, E)$ on n vertices is $\frac{1}{2}$ $\frac{n}{2}$. collapsible.

4 Complexes of hypergraphs

In this section we prove our main results, Theorems [2](#page-1-1) and [3.](#page-1-2)

Proof of Theorem [2.](#page-1-1) Let \mathcal{H} be a hypergraph of rank r on vertex set [n], and let

$$
\{A_1, \ldots, A_k\} \in S(\text{Cov}_{\mathcal{H},p}).
$$

Then, there exist maximal faces $\mathcal{F}_1, \ldots, \mathcal{F}_{k+1} \in \text{Cov}_{\mathcal{H},p}$ such that

• $A_i \notin \mathcal{F}_i$ for all $i \in [k],$

• $A_i \in \mathcal{F}_j$ for all $1 \leq i < j \leq k+1$.

For any $i \in [k+1]$, there is some $C_i \subset [n]$ of size at most p that covers \mathcal{F}_i . Since \mathcal{F}_i is maximal, then, for any $A \in \mathcal{H}$, $A \in \mathcal{F}_i$ if and only if $A \cap C_i \neq \emptyset$. Therefore, we obtain

- $A_i \cap C_i = \emptyset$ for all $i \in [k]$,
- $A_i \cap C_j \neq \emptyset$ for all $1 \leq i < j \leq k + 1$.

Hence, the pair of families

$$
\{A_1,\ldots A_k,\emptyset\}
$$

and

$$
\{C_1,\ldots,C_k,C_{k+1}\}
$$

satisfies the conditions of Lemma [5;](#page-2-1) thus, $k+1 \leq \binom{r+p}{r}$ r^{+p}). Therefore,

$$
d'(\mathrm{Cov}_{\mathcal{H},p}) \leqslant {r+p \choose r}-1,
$$

and by Theorem [4,](#page-1-0) $Cov_{\mathcal{H},p}$ is $\left(\binom{r+p}{r}-1\right)$ -collapsible.

Proof of Theorem [3.](#page-1-2) Let H be a hypergraph of rank r and let G be the graph on vertex set H whose edges are the pairs $\{A, B\} \subset \mathcal{H}$ such that $A \cap B = \emptyset$. Then $\text{Int}_{\mathcal{H}} = I(G)$.

Let $k = k(G)$ and let $\{A_1, \ldots, A_k\} \subset \mathcal{H}$ that satisfies the conditions of Definition [10.](#page-5-1) That is,

- $A_i \cap A_j \neq \emptyset$ for all $i \neq j \in [k],$
- There exist $B_1, \ldots, B_k \in \mathcal{H}$ such that

$$
- A_i \cap B_i = \emptyset \text{ for all } i \in [k],
$$

$$
- A_i \cap B_j \neq \emptyset \text{ for all } 1 \leq i < j \leq k.
$$

Then, the pair of families $\{A_1, \ldots, A_k, B_k, \ldots, B_1\}$ and $\{B_1, \ldots, B_k, A_k, \ldots, A_1\}$ satisfies the conditions of Lemma [5;](#page-2-1) therefore, $2k \leq \binom{2r}{r}$ r_r^{2r} . Thus, by Proposition [12,](#page-6-1) Int $\mathcal{H} = I(G)$ is $\frac{1}{2} \binom{2r}{r}$ $\binom{2r}{r}$ -collapsible. \Box

5 More complexes of hypergraphs

Let H be a hypergraph. A set C is a t-transversal of H if $|A \cap C| \geq t$ for all $A \in H$. Let $\tau_t(\mathcal{H})$ be the minimal size of a *t*-transversal of H. The hypergraph H is pairwise t-intersecting if $|A \cap B| \geq t$ for all $A, B \in \mathcal{H}$. Let

$$
Cov_{\mathcal{H},p}^t = \{ \mathcal{F} \subset \mathcal{H} : \tau_t(\mathcal{F}) \leqslant p \}
$$

and

 $\text{Int}_{\mathcal{H}}^t = \{ \mathcal{F} \subset \mathcal{H} : \mathcal{F} \text{ is pairwise } t\text{-intersecting} \}.$

The following generalization of Lemma [5](#page-2-1) was proved by Füredi in [\[5\]](#page-9-7).

 \Box

THE ELECTRONIC JOURNAL OF COMBINATORICS $26(4)$ (2019), $\#P4.10$ 8

Lemma 14 (Füredi [\[5\]](#page-9-7)). Let $\{A_1, \ldots, A_k\}$ and $\{B_1, \ldots, B_k\}$ be families of sets such that:

- $|A_i| \leq r$, $|B_i| \leq p$ for all $i \in [k]$,
- $|A_i \cap B_i| \leq t$ for all $i \in [k]$,
- $|A_i \cap B_j| > t$ for all $1 \leq i < j \leq k$.

Then

$$
k \leqslant {r+p-2t \choose r-t}.
$$

We obtain the following:

Theorem 15. Let H be a hypergraph of rank r and let $t \leqslant \min\{r, p\} - 1$. Then $Cov_{\mathcal{H},p}^{t+1}$ is $\left(\binom{r+p-2t}{r-t} - 1\right)$ -collapsible.

Theorem 16. Let H be a hypergraph of rank r and let $t \leq r-1$. Then $\text{Int}_{\mathcal{H}}^{t+1}$ is $\frac{1}{2} {2(r-t) \choose r-t}$ $\binom{(r-t)}{r-t}$ – collapsible.

Note that by setting $t = 0$ we recover Theorems [2](#page-1-1) and [3.](#page-1-2) The proofs are essentially the same as the proofs of Theorems [2](#page-1-1) and [3,](#page-1-2) except for the use of Lemma [14](#page-8-0) instead of Lemma [5.](#page-2-1) The extremal examples are also similar: Let

$$
\mathcal{H}_1 = \left\{ A \cup [t] : A \in \binom{[r+p-t]}{r-t} \right\}
$$

and

$$
\mathcal{H}_2 = \left\{ A \cup [t] : A \in \binom{[2r-t] \setminus [t]}{r-t} \right\}.
$$

The complex $Cov_{\mathcal{H}_1}^{t+1}$ is the boundary of the $\left(\binom{r+p-2t}{r-t}-1\right)$ -dimensional simplex, hence it is not $\left(\binom{r+p-2t}{r-t}-2\right)$ -collapsible, and the complex $\mathrm{Int}_{\mathcal{H}_2}^{t+1}$ is the boundary of the $\frac{1}{2}\binom{2(r-t)}{r-t}$ $\binom{(r-t)}{r-t}$ – dimensional cross-polytope, hence it is not $\left(\frac{1}{2}\right)$ $\frac{1}{2} \binom{2(r-t)}{r-t}$ $\binom{(r-t)}{r-t} - 1$ -collapsible.

Restricting ourselves to special classes of hypergraphs we may obtain better bounds on the collapsibility of their associated complexes. For example, we may look at r-partite r-uniform hypergraphs (that is, hypergraphs H on vertex set $V = V_1 \cup V_2 \cup \cdots \cup V_r$ such that $|A \cap V_i| = 1$ for all $A \in \mathcal{H}$ and $i \in [r]$. In this case we have the following result:

Theorem 17. Let H be an r-partite r-uniform hypergraph. Then $\text{Int}_{\mathcal{H}}$ is 2^{r-1} -collapsible.

The next example shows that the bound on the collapsibility of $Int_{\mathcal{H}}$ in Theorem [17](#page-8-1) is tight: Let $\mathcal H$ be the complete r-partite r-uniform hypergraph with all sides of size 2. It has 2^r edges, and any edge $A \in \mathcal{H}$ intersects all the edges of \mathcal{H} except its complement. Therefore the complex Int_H is the boundary of the 2^{r-1} -dimensional cross-polytope, so it is homeomorphic to a $(2^{r-1}-1)$ -dimensional sphere. Hence, by Proposition [1,](#page-0-0) Int_H is not $(2^{r-1} - 1)$ -collapsible.

For the proof we need the following Lemma, due to Lovász, Nešetřil and Pultr.

Lemma 18 (Lovász, Nešetřil, Pultr [\[8,](#page-9-8) Prop. 5.3]). Let $\{A_1, \ldots, A_k\}$ and $\{B_1, \ldots, B_k\}$ be families of subsets of $V = V_1 \cup V_2 \cup \cdots \cup V_r$ such that:

- $|A_i \cap V_j| = 1, |B_i \cap V_j| = 1$ for all $i \in [k]$ and $j \in [r]$,
- $A_i \cap B_i = \emptyset$ for all $i \in [k]$,
- $A_i \cap B_j \neq \emptyset$ for all $1 \leq i < j \leq k$.

Then $k \leqslant 2^r$.

A common generalization of Lemma [5](#page-2-1) and Lemma [18](#page-9-9) was proved by Alon in [\[3\]](#page-9-10).

The proof of Theorem [17](#page-8-1) is the same as the proof of Theorem [3,](#page-1-2) except that we replace Lemma [5](#page-2-1) by Lemma [18.](#page-9-9) A similar argument was also used by Aharoni and Berger ([\[1,](#page-9-11) Theorem 5.1]) in order to prove a related result about rainbow matchings in r-partite r-uniform hypergraphs.

Acknowledgements

I thank Professor Roy Meshulam for his guidance and help. I thank the anonymous referee for some helpful suggestions.

References

- [1] R. Aharoni and E. Berger. Rainbow matchings in r-partite r-graphs. Electronic J. Combinatorics, 16(1):119, 2009.
- [2] R. Aharoni, R. Holzman, and Z. Jiang. Rainbow fractional matchings. Preprint, [arxiv: 1805.09732,](https://arxiv.org/abs/1805.09732) 2018.
- [3] N. Alon. An extremal problem for sets with applications to graph theory. J. Comb. Theory (A) , 40(1):82–89, 1985.
- [4] P. Frankl. An extremal problem for two families of sets. Eur. J. Comb., 3(2):125–127, 1982.
- [5] Z. Füredi. Geometrical solution of an intersection problem for two hypergraphs. Eur. J. Comb., 5(2):133–136, 1984.
- [6] J. Jonsson. Simplicial complexes of graphs. Lecture Notes in Math. 1928, Springer, Heidelberg, 2008.
- [7] G. Kalai. Intersection patterns of convex sets. Israel J. Math., 48(2-3):161–174, 1984.
- [8] L. Lovász, J. Nešetřil, and A. Pultr. On a product dimension of graphs. *J. Comb.* Theory (B) , 29(1):47–67, 1980.
- [9] J. Matoušek and M. Tancer. Dimension gaps between representability and collapsibility. Discrete Comput. Geom., 42(4):631–639, 2009.
- [10] M. Tancer. Strong d-collapsibility. Contributions to Discrete Mathematics, 6(2):32– 35, 2011.
- [11] G. Wegner. d-collapsing and nerves of families of convex sets. Arch. Math., 26(1):317– 321, 1975.