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Abstract

Let H be an r-uniform hypergraph. We show that the simplicial complex whose
simplices are the hypergraphs F ⊂ H with covering number at most p is

((
r+p
r

)
− 1

)
-

collapsible. Similarly, the simplicial complex whose simplices are the pairwise inter-
secting hypergraphs F ⊂ H is 1

2

(
2r
r

)
-collapsible.

Mathematics Subject Classifications: 05E45, 05D05

1 Introduction

Let X be a finite simplicial complex. Let η be a simplex of X such that |η| 6 d and η is
contained in a unique maximal face τ ∈ X. We say that the complex

X ′ = X \ {σ ∈ X : η ⊂ σ ⊂ τ}

is obtained from X by an elementary d-collapse, and we write X
η−→ X ′.

The complex X is called d-collapsible if there exists a sequence of elementary d-
collapses

X = X1
η1−→ X2

η2−→ · · · ηk−1−−→ Xk = ∅
from X to the void complex ∅. The collapsibility of X is the minimal d such that X is
d-collapsible.

A simple consequence of d-collapsibility is the following:

Proposition 1 (Wegner [11, Lemma 1]). If X is d-collapsible then it is homotopy equiv-
alent to a simplicial complex of dimension smaller than d.

∗Supported by ISF grant no. 326/16.

the electronic journal of combinatorics 26(4) (2019), #P4.10 1



Let H be a finite hypergraph. We identify H with its edge set. The rank of H is the
maximal size of an edge of H.

A set C is a cover of H if A ∩ C 6= ∅ for all A ∈ H. The covering number of H,
denoted by τ(H), is the minimal size of a cover of H.

For p ∈ N, let
CovH,p = {F ⊂ H : τ(F) 6 p}.

That is, CovH,p is a simplicial complex whose vertices are the edges of H and whose
simplices are the hypergraphs F ⊂ H that can be covered by a set of size at most p.
Some topological properties of the complex Cov([n]

r ),p were studied by Jonsson in [6].

The hypergraph H is called pairwise intersecting if A ∩B 6= ∅ for all A,B ∈ H. Let

IntH = {F ⊂ H : A ∩B 6= ∅ for all A,B ∈ F}.

So, IntH is a simplicial complex whose vertices are the edges of H and whose simplices
are the hypergraphs F ⊂ H that are pairwise intersecting.

Our main results are the following:

Theorem 2. Let H be a hypergraph of rank r. Then CovH,p is
((
r+p
r

)
− 1

)
-collapsible.

Theorem 3. Let H be a hypergraph of rank r. Then IntH is 1
2

(
2r
r

)
-collapsible.

The following examples show that these bounds are sharp:

• Let H =
(
[r+p]
r

)
be the complete r-uniform hypergraph on r + p vertices. The

covering number of H is p + 1, but for any A ∈ H the hypergraph H \ {A}
can be covered by a set of size p, namely by [r + p] \ A. Therefore the complex
Cov([r+p]

r ),p is the boundary of the
((
r+p
r

)
− 1

)
-dimensional simplex, so it is homeo-

morphic to a
((
r+p
r

)
− 2

)
-dimensional sphere. Hence, by Proposition 1, Cov([r+p]

r ),p

is not
((
r+p
r

)
− 2

)
-collapsible.

• Let H =
(
[2r]
r

)
be the complete r-uniform hypergraph on 2r vertices. Any A ∈ H

intersects all the edges of H except the edge [2r]\A. Therefore the complex Int([2r]
r )

is the boundary of the 1
2

(
2r
r

)
-dimensional cross-polytope, so it is homeomorphic to a(

1
2

(
2r
r

)
− 1

)
-dimensional sphere. Hence, by Proposition 1, Int([2r]

r ) is not
(
1
2

(
2r
r

)
− 1

)
-

collapsible.

A related problem was studied by Aharoni, Holzman and Jiang in [2], where they show
that for any r-uniform hypergraph H and p ∈ Q, the complex of hypergraphs F ⊂ H with
fractional matching number (or equivalently, fractional covering number) smaller than p
is (drpe − 1)-collapsible.

Our proofs rely on two main ingredients. The first one is the following theorem:

Theorem 4. Let X be a simplicial complex on vertex set V . Let S(X) be the collection
of all sets {v1, . . . , vk} ⊂ V satisfying the following condition:
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There exist maximal faces σ1, σ2, . . . , σk+1 of X such that:

• vi /∈ σi for all i ∈ [k],

• vi ∈ σj for all 1 6 i < j 6 k + 1.

Let d′(X) be the maximum size of a set in S(X). Then X is d′(X)-collapsible.

Theorem 4 is a special case of a more general result, due essentially to Matoušek and
Tancer (who stated it in the special case where the complex is the nerve of a family of
finite sets, and used it to prove the case p = 1 of Theorem 2; see [9]).

The second ingredient is the following combinatorial lemma, proved independently by
Frankl and Kalai.

Lemma 5 (Frankl [4], Kalai [7]). Let {A1, . . . , Ak} and {B1, . . . , Bk} be families of sets
such that:

• |Ai| 6 r, |Bi| 6 p for all i ∈ [k],

• Ai ∩Bi = ∅ for all i ∈ [k],

• Ai ∩Bj 6= ∅ for all 1 6 i < j 6 k.

Then

k 6

(
r + p

r

)
.

The paper is organized as follows. In Section 2 we present Matoušek and Tancer’s
bound on the collapsibility of a simplicial complex, and we prove Theorem 4. In Section
3 we present some results on the collapsibility of independence complexes of graphs. In
Section 4 we prove our main results on the collapsibility of complexes of hypergraphs.
Section 5 contains some generalizations of Theorems 2 and 3, which are obtained by
applying different known variants of Lemma 5.

2 A bound on the collapsibility of a complex

Let X be a (non-void) simplicial complex on vertex set V . Fix a linear order < on V .
Let A = (σ1, . . . , σm) be a sequence of faces of X such that, for any σ ∈ X, σ ⊂ σi for
some i ∈ [m]. For example, we may take σ1, . . . , σm to be the set of maximal faces of X
(ordered in any way).

For a simplex σ ∈ X, let mX,A,<(σ) = min{i ∈ [m] : σ ⊂ σi}. Let i ∈ [m] and σ ∈ X
such that mX,A,<(σ) = i. We define the minimal exclusion sequence

mesX,A,<(σ) = (v1, . . . , vi−1)

as follows: If i = 1 then mesX,A,<(σ) is the empty sequence. If i > 1 we define the
sequence recursively as follows:
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Since i > 1, we must have σ 6⊂ σ1; hence, there is some v ∈ σ such that v /∈ σ1. Let
v1 be the minimal such vertex (with respect to the order <).

Let 1 < j < i and assume that we already defined v1, . . . , vj−1. Since i > j, we must
have σ 6⊂ σj; hence, there exists some v ∈ σ such that v /∈ σj.

• If there is a vertex vk ∈ {v1, . . . , vj−1} such that vk /∈ σj, let vj be such a vertex of
minimal index k. In this case we call vj old at j.

• If vk ∈ σj for all k < j, let vj be the minimal vertex v ∈ σ (with respect to the order
<) such that v /∈ σj. In this case we call vj new at j.

Let MX,A,<(σ) ⊂ σ be the simplex consisting of all the vertices appearing in the
sequence mesX,A,<(σ). Let

d(X,A, <) = max{|MX,A,<(σ)| : σ ∈ X}.

The following result was stated and proved in [9, Prop. 1.3] in the special case where
X is the nerve of a finite family of sets (in our notation, X = CovH,1 for some hypergraph
H).

Theorem 6. The simplicial complex X is d(X,A, <)-collapsible.

The proof given in [9] can be easily modified to hold in this more general setting. Here
we present a different proof.

Let X be a simplicial complex on vertex set V , and let v ∈ V . Let

X \ v = {σ ∈ X : v /∈ σ}

and
lk(X, v) = {σ ∈ X : v /∈ σ, σ ∪ {v} ∈ X}.

We will need the following lemma, proved by Tancer in [10]:

Lemma 7 (Tancer [10, Prop. 1.2]). If X \ v is d-collapsible and lk(X, v) is (d − 1)-
collapsible, then X is d-collapsible.

Proof of Theorem 6. First, we deal with the case where X is a complete complex (i.e. a
simplex). Then X is 0-collapsible; therefore, the claim holds.

For a general complex X, we argue by induction on the number of vertices of X. If
|V | = 0, then X = {∅}. In particular, it is a complete complex; hence, the claim holds.

Let |V | > 0, and assume that the claim holds for any complex with less than |V |
vertices. If σ1 = V , then X is the complete complex on vertex set V , and the claim holds.
Otherwise, let v be the minimal vertex (with respect to <) in V \ σ1.

In order to apply Lemma 7, we will need the following two claims:

Claim 8. The complex X \ v is d(X,A, <)-collapsible.
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Proof. For every i ∈ [m], let σ′i = σi \ {v}, and let A′ = (σ′1, . . . , σ
′
m). Let σ ∈ X \ v.

Since v /∈ σ, then, for any i ∈ [m], σ ⊂ σi if and only if σ ⊂ σ′i. Hence, every simplex
σ ∈ X \ v is contained in σ′i for some i ∈ [m] (since, by the definition of A, σ ⊂ σi for
some i ∈ [m]). So, by the induction hypothesis, X \ v is d(X \ v,A′, <)-collapsible.

Let σ ∈ X \v. We will show that mesX,A,<(σ) = mesX\v,A′,<(σ). Since for any i ∈ [m],
σ ⊂ σi if and only if σ ⊂ σ′i, then the two sequences are of the same length. Let

mesX,A,<(σ) = (v1, . . . , vk)

and
mesX\v,A′,<(σ) = (v′1, . . . , v

′
k).

We will show that vi = v′i for all i ∈ [k]. We argue by induction on i. Let i ∈ [k], and
assume that vj = v′j for all j < i. Since v /∈ σ, then σ \ σi = σ \ σ′i. Therefore, for any
j < i, vj ∈ σ \ σi if and only if v′j = vj ∈ σ \ σ′i. Hence, vi is old at i if and only if v′i is old
at i, and if vi and v′i are both old at i, then vi = v′i. Otherwise, both vi and v′i are new at
i. Then, vi is the minimal vertex in σ \ σi, and v′i is the minimal vertex in σ \ σ′i = σ \ σi.
Thus, vi = v′i.

Therefore, |MX\v,A′,<(σ)| = |MX,A,<(σ)| for any σ ∈ X \ v; hence,

d(X \ v,A′, <) 6 d(X,A, <).

So, X \ v is d(X,A, <)-collapsible.

Claim 9. The complex lk(X, v) is (d(X,A, <)− 1)-collapsible.

Proof. Let I = {i ∈ [m] : v ∈ σi}. For every i ∈ I, let σ′′i = σi\{v}. Write I = {i1, . . . , ir},
where i1 < · · · < ir, and let A′′ = (σ′′i1 , . . . , σ

′′
ir).

For any σ ∈ lk(X, v), the simplex σ ∪ {v} belongs to X; hence, there exists some
i ∈ [m] such that σ ∪ {v} ⊂ σi. Since v ∈ σ ∪ {v}, we must have i ∈ I, and therefore σ ⊂
σ′′i = σi \ {v}. So, by the induction hypothesis, lk(X, v) is d(lk(X, v),A′′, <)-collapsible.

Let σ ∈ lk(X, v). We will show that

MX,A,<(σ ∪ {v}) = Mlk(X,v),A′′,<(σ) ∪ {v}.

Let
mesX,A,<(σ ∪ {v}) = (v1, . . . , vn),

and
meslk(X,v),A′′,<(σ) = (u1, . . . , ut).

For any j ∈ [r], σ ⊂ σ′′ij if and only if σ ∪ {v} ⊂ σij . Also, for i /∈ I, σ ∪ {v} 6⊂ σi (since
v /∈ σi). Therefore, n = it+1 − 1.

The vertex v is the minimal vertex in V \ σ1, therefore it is the minimal vertex in
(σ∪{v}) \σ1. Hence, we have v1 = v. Now, let i > 1 such that i /∈ I. Then, v1 = v is the
vertex of minimal index in the sequence (v1, . . . , vi−1) that is contained in (σ ∪ {v}) \ σi.
Therefore, vi = v.
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Finally, we will show that vij = uj for all j ∈ [t]. We argue by induction on j. Let
j ∈ [t], and assume that vi` = u` for all ` < j.

For any k < ij, either vk = v (if k /∈ I) or vk = u` for some ` < j (if k = i` ∈ I). Also,
since v ∈ σij , we have (σ ∪ {v}) \ σij = σ \ σ′′ij . So, for any k < ij, vk ∈ (σ ∪ {v}) \ σij if
and only if k = i` for some ` < j such that u` ∈ σ \ σ′′ij . Therefore, vij is old at ij if and
only if uj is old at j, and if vij and uj are both old, then vij = uj. Otherwise, assume
that vij is new at ij and uj is new at j. Then, vij is the minimal vertex in (σ ∪ {v}) \ σij ,
and uj is the minimal vertex in σ \ σ′′ij = (σ ∪ {v}) \ σij . Thus, vij = uj.

So, for any σ ∈ lk(X, v) we obtain

|Mlk(X,v),A′′,<(σ)| = |MX,A,<(σ ∪ {v})| − 1.

Hence,
d(lk(X, v),A′′, <) 6 d(X,A, <)− 1.

So, lk(X, v) is (d(X,A, <)− 1)-collapsible.

By Claim 8, Claim 9 and Lemma 7, X is d(X,A, <)-collapsible.

Proof of Theorem 4. Let < be some linear order on the vertex set V , and let A =
(σ1, . . . , σm) be the sequence of maximal faces of X (ordered in any way).

Let i ∈ [m] and let σ ∈ X with mX,A,<(σ) = i. Let mesX,A,<(σ) = (v1, . . . , vi−1).
Then MX,A,<(σ) = {vi1 , . . . , vik} for some i1 < · · · < ik ∈ [i − 1] (these are exactly the
indices ij such that vij is new at ij). For each j ∈ [k] we have vij /∈ σij . In addition, since
vij is new at ij, we have vi` ∈ σij for all ` < j. Let ik+1 = i. Since mX,A,<(σ) = i = ik+1,
we have σ ⊂ σik+1

. In particular, vi` ∈ σik+1
for all ` < k + 1.

Therefore, MX,A,<(σ) ∈ S(X). Thus, d(X,A, <) 6 d′(X), and by Theorem 6, X is
d′(X)-collapsible.

3 Collapsibility of independence complexes

Let G = (V,E) be a graph. The independence complex I(G) is the simplicial complex on
vertex set V whose simplices are the independent sets in G.

Definition 10. Let k(G) be the maximal size of a set {v1, . . . , vk} ⊂ V that satisfies:

• {vi, vj} /∈ E for all i 6= j ∈ [k],

• There exist u1, . . . , uk ∈ V such that

– {vi, ui} ∈ E for all i ∈ [k],

– {vi, uj} /∈ E for all 1 6 i < j 6 k.

Proposition 11. k(G) = d′(I(G)).

Proof. Let A = {v1, . . . , vk} ∈ S(I(G)). Then, there exist maximal faces σ1, . . . , σk+1 of
I(G) such that:
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• vi /∈ σi for all i ∈ [k],

• vi ∈ σj for all 1 6 i < j 6 k + 1.

Let i ∈ [k]. Since σi is a maximal independent set in G and vi /∈ σi, there exists some
ui ∈ σi such that {vi, ui} ∈ E.

Let 1 6 i < j 6 k. Since vi and uj are both contained in the independent set σj, we
have {vi, uj} /∈ E. Furthermore, since A ⊂ σk+1, A is an independent set in G. That is,
{vi, vj} /∈ E for all i 6= j ∈ [k]. So, A satisfies the conditions of Definition 10. Hence,
|A| 6 k(G); therefore, d′(I(G)) 6 k(G).

Now, let k = k(G), and let v1, . . . , vk, u1, . . . , uk ∈ V such that

• {vi, vj} /∈ E for all i 6= j ∈ [k],

• {vi, ui} ∈ E for all i ∈ [k],

• {vi, uj} /∈ E for all 1 6 i < j 6 k.

Let i ∈ [k], and let Vi = {vj : 1 6 j < i}. Note that Vi ∪ {ui} forms an independent
set in G; therefore, it is a simplex in I(G). Let σi be a maximal face of I(G) containing
Vi ∪ {ui}. Since {vi, ui} ∈ E, we have vi /∈ σi.

The set {v1, . . . , vk} is also an independent set in G. Therefore, there is a maximal
face σk+1 ∈ I(G) that contains it.

By the definition of σ1, . . . , σk+1, we have vi ∈ σj for 1 6 i < j 6 k + 1. Therefore,
{v1, . . . , vk} ∈ S(I(G)); so, k(G) = k 6 d′(I(G)). Hence, k(G) = d′(I(G)), as wanted.

As an immediate consequence of Proposition 11 and Theorem 4, we obtain:

Proposition 12. The complex I(G) is k(G)-collapsible.

Note that vertices v1, . . . , vk, u1, . . . , uk ∈ V satisfying the conditions in Definition 10
must all be distinct. As a simple corollary, we obtain

Corollary 13. The independence complex of a graph G = (V,E) on n vertices is
⌊
n
2

⌋
-

collapsible.

4 Complexes of hypergraphs

In this section we prove our main results, Theorems 2 and 3.

Proof of Theorem 2. Let H be a hypergraph of rank r on vertex set [n], and let

{A1, . . . , Ak} ∈ S(CovH,p).

Then, there exist maximal faces F1, . . . ,Fk+1 ∈ CovH,p such that

• Ai /∈ Fi for all i ∈ [k],
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• Ai ∈ Fj for all 1 6 i < j 6 k + 1.

For any i ∈ [k + 1], there is some Ci ⊂ [n] of size at most p that covers Fi. Since Fi is
maximal, then, for any A ∈ H, A ∈ Fi if and only if A ∩ Ci 6= ∅. Therefore, we obtain

• Ai ∩ Ci = ∅ for all i ∈ [k],

• Ai ∩ Cj 6= ∅ for all 1 6 i < j 6 k + 1.

Hence, the pair of families
{A1, . . . Ak, ∅}

and
{C1, . . . , Ck, Ck+1}

satisfies the conditions of Lemma 5; thus, k + 1 6
(
r+p
r

)
. Therefore,

d′(CovH,p) 6

(
r + p

r

)
− 1,

and by Theorem 4, CovH,p is
((
r+p
r

)
− 1

)
-collapsible.

Proof of Theorem 3. Let H be a hypergraph of rank r and let G be the graph on vertex
set H whose edges are the pairs {A,B} ⊂ H such that A ∩B = ∅. Then IntH = I(G).

Let k = k(G) and let {A1, . . . , Ak} ⊂ H that satisfies the conditions of Definition 10.
That is,

• Ai ∩ Aj 6= ∅ for all i 6= j ∈ [k],

• There exist B1, . . . , Bk ∈ H such that

– Ai ∩Bi = ∅ for all i ∈ [k],

– Ai ∩Bj 6= ∅ for all 1 6 i < j 6 k.

Then, the pair of families {A1, . . . , Ak, Bk, . . . , B1} and {B1, . . . , Bk, Ak, . . . , A1} satisfies
the conditions of Lemma 5; therefore, 2k 6

(
2r
r

)
. Thus, by Proposition 12, IntH = I(G)

is 1
2

(
2r
r

)
-collapsible.

5 More complexes of hypergraphs

Let H be a hypergraph. A set C is a t-transversal of H if |A ∩ C| > t for all A ∈ H.
Let τt(H) be the minimal size of a t-transversal of H. The hypergraph H is pairwise
t-intersecting if |A ∩B| > t for all A,B ∈ H. Let

CovtH,p = {F ⊂ H : τt(F) 6 p}

and
InttH = {F ⊂ H : F is pairwise t-intersecting}.

The following generalization of Lemma 5 was proved by Füredi in [5].
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Lemma 14 (Füredi [5]). Let {A1, . . . , Ak} and {B1, . . . , Bk} be families of sets such that:

• |Ai| 6 r, |Bi| 6 p for all i ∈ [k],

• |Ai ∩Bi| 6 t for all i ∈ [k],

• |Ai ∩Bj| > t for all 1 6 i < j 6 k.

Then

k 6

(
r + p− 2t

r − t

)
.

We obtain the following:

Theorem 15. Let H be a hypergraph of rank r and let t 6 min{r, p} − 1. Then Covt+1
H,p

is
((
r+p−2t
r−t

)
− 1

)
-collapsible.

Theorem 16. Let H be a hypergraph of rank r and let t 6 r−1. Then Intt+1
H is 1

2

(
2(r−t)
r−t

)
-

collapsible.

Note that by setting t = 0 we recover Theorems 2 and 3. The proofs are essentially
the same as the proofs of Theorems 2 and 3, except for the use of Lemma 14 instead of
Lemma 5. The extremal examples are also similar: Let

H1 =

{
A ∪ [t] : A ∈

(
[r + p− t] \ [t]

r − t

)}
and

H2 =

{
A ∪ [t] : A ∈

(
[2r − t] \ [t]

r − t

)}
.

The complex Covt+1
H1

is the boundary of the
((
r+p−2t
r−t

)
− 1

)
-dimensional simplex, hence it

is not
((
r+p−2t
r−t

)
− 2

)
-collapsible, and the complex Intt+1

H2
is the boundary of the 1

2

(
2(r−t)
r−t

)
-

dimensional cross-polytope, hence it is not
(

1
2

(
2(r−t)
r−t

)
− 1

)
-collapsible.

Restricting ourselves to special classes of hypergraphs we may obtain better bounds
on the collapsibility of their associated complexes. For example, we may look at r-partite
r-uniform hypergraphs (that is, hypergraphs H on vertex set V = V1 ·∪ V2 ·∪ · · · ·∪ Vr such
that |A ∩ Vi| = 1 for all A ∈ H and i ∈ [r]). In this case we have the following result:

Theorem 17. Let H be an r-partite r-uniform hypergraph. Then IntH is 2r−1-collapsible.

The next example shows that the bound on the collapsibility of IntH in Theorem 17
is tight: Let H be the complete r-partite r-uniform hypergraph with all sides of size 2. It
has 2r edges, and any edge A ∈ H intersects all the edges of H except its complement.
Therefore the complex IntH is the boundary of the 2r−1-dimensional cross-polytope, so it
is homeomorphic to a (2r−1−1)-dimensional sphere. Hence, by Proposition 1, IntH is not
(2r−1 − 1)-collapsible.

For the proof we need the following Lemma, due to Lovász, Nešetřil and Pultr.

the electronic journal of combinatorics 26(4) (2019), #P4.10 9



Lemma 18 (Lovász, Nešetřil, Pultr [8, Prop. 5.3]). Let {A1, . . . , Ak} and {B1, . . . , Bk}
be families of subsets of V = V1 ·∪ V2 ·∪ · · · ·∪ Vr such that:

• |Ai ∩ Vj| = 1, |Bi ∩ Vj| = 1 for all i ∈ [k] and j ∈ [r],

• Ai ∩Bi = ∅ for all i ∈ [k],

• Ai ∩Bj 6= ∅ for all 1 6 i < j 6 k.

Then k 6 2r.

A common generalization of Lemma 5 and Lemma 18 was proved by Alon in [3].
The proof of Theorem 17 is the same as the proof of Theorem 3, except that we replace

Lemma 5 by Lemma 18. A similar argument was also used by Aharoni and Berger ([1,
Theorem 5.1]) in order to prove a related result about rainbow matchings in r-partite
r-uniform hypergraphs.
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