Collapsibility of simplicial complexes of hypergraphs

Alan Lew*
Department of Mathematics
Technion
Haifa 32000, Israel
alan@campus.technion.ac.il

Submitted: Dec 5, 2018; Accepted: Aug 19, 2019; Published: Oct 11, 2019
© The author. Released under the CC BY-ND license (International 4.0).

Abstract
Let \mathcal{H} be an r-uniform hypergraph. We show that the simplicial complex whose simplices are the hypergraphs $\mathcal{F} \subset \mathcal{H}$ with covering number at most p is $((r+p) - 1)$-collapsible. Similarly, the simplicial complex whose simplices are the pairwise intersecting hypergraphs $\mathcal{F} \subset \mathcal{H}$ is $\frac{1}{2}(2r)$-collapsible.

Mathematics Subject Classifications: 05E45, 05D05

1 Introduction
Let X be a finite simplicial complex. Let η be a simplex of X such that $|\eta| \leq d$ and η is contained in a unique maximal face $\tau \in X$. We say that the complex

$$X' = X \setminus \{\sigma \in X : \eta \subset \sigma \subset \tau\}$$

is obtained from X by an elementary d-collapse, and we write $X \xrightarrow{\eta} X'$.

The complex X is called d-collapsible if there exists a sequence of elementary d-collapses

$$X = X_1 \xrightarrow{m_1} X_2 \xrightarrow{m_2} \cdots \xrightarrow{m_{k-1}} X_k = \emptyset$$

from X to the void complex \emptyset. The collapsibility of X is the minimal d such that X is d-collapsible.

A simple consequence of d-collapsibility is the following:

Proposition 1 (Wegner [11, Lemma 1]). If X is d-collapsible then it is homotopy equivalent to a simplicial complex of dimension smaller than d.

*Supported by ISF grant no. 326/16.
Let \(\mathcal{H} \) be a finite hypergraph. We identify \(\mathcal{H} \) with its edge set. The *rank* of \(\mathcal{H} \) is the maximal size of an edge of \(\mathcal{H} \).

A set \(C \) is a *cover* of \(\mathcal{H} \) if \(A \cap C \neq \emptyset \) for all \(A \in \mathcal{H} \). The *covering number* of \(\mathcal{H} \), denoted by \(\tau(\mathcal{H}) \), is the minimal size of a cover of \(\mathcal{H} \).

For \(p \in \mathbb{N} \), let

\[
\text{Cov}_{\mathcal{H},p} = \{ F \subset \mathcal{H} : \tau(F) \leq p \}.
\]

That is, \(\text{Cov}_{\mathcal{H},p} \) is a simplicial complex whose vertices are the edges of \(\mathcal{H} \) and whose simplices are the hypergraphs \(F \subset \mathcal{H} \) that can be covered by a set of size at most \(p \).

Some topological properties of the complex \(\text{Cov}(n,r)_p \) were studied by Jonsson in [6].

The hypergraph \(\mathcal{H} \) is called *pairwise intersecting* if \(A \cap B \neq \emptyset \) for all \(A, B \in \mathcal{H} \). Let

\[
\text{Int}_\mathcal{H} = \{ F \subset \mathcal{H} : A \cap B \neq \emptyset \text{ for all } A, B \in F \}.
\]

So, \(\text{Int}_\mathcal{H} \) is a simplicial complex whose vertices are the edges of \(\mathcal{H} \) and whose simplices are the hypergraphs \(F \subset \mathcal{H} \) that are pairwise intersecting.

Our main results are the following:

Theorem 2. Let \(\mathcal{H} \) be a hypergraph of rank \(r \). Then \(\text{Cov}_{\mathcal{H},p} \) is \(\left(\binom{r+p}{r} - 1 \right) \)-collapsible.

Theorem 3. Let \(\mathcal{H} \) be a hypergraph of rank \(r \). Then \(\text{Int}_\mathcal{H} \) is \(\frac{1}{2} \left(\binom{2r}{r} \right) \)-collapsible.

The following examples show that these bounds are sharp:

- Let \(\mathcal{H} = \binom{[r+p]}{r} \) be the complete \(r \)-uniform hypergraph on \(r+p \) vertices. The covering number of \(\mathcal{H} \) is \(p+1 \), but for any \(A \in \mathcal{H} \) the hypergraph \(\mathcal{H} \setminus \{ A \} \) can be covered by a set of size \(p \), namely by \(\binom{[r+p]}{r} \setminus A \). Therefore the complex \(\text{Cov}(\binom{[r+p]}{r})_p \) is the boundary of the \(\left(\binom{r+p}{r} - 1 \right) \)-dimensional simplex, so it is homeomorphic to a \(\left(\binom{r+p}{r} - 2 \right) \)-dimensional sphere. Hence, by Proposition 1, \(\text{Cov}(\binom{[r+p]}{r})_p \) is not \(\left(\binom{r+p}{r} - 2 \right) \)-collapsible.

- Let \(\mathcal{H} = \binom{[2r]}{r} \) be the complete \(r \)-uniform hypergraph on \(2r \) vertices. Any \(A \in \mathcal{H} \) intersects all the edges of \(\mathcal{H} \) except the edge \([2r] \setminus A \). Therefore the complex \(\text{Int}(\binom{[2r]}{r}) \) is the boundary of the \(\frac{1}{2} \left(\binom{2r}{r} \right) \)-dimensional cross-polytope, so it is homeomorphic to a \(\left(\frac{1}{2} \left(\binom{2r}{r} - 1 \right) \right) \)-dimensional sphere. Hence, by Proposition 1, \(\text{Int}(\binom{[2r]}{r}) \) is not \(\left(\frac{1}{2} \left(\binom{2r}{r} - 1 \right) \right) \)-collapsible.

A related problem was studied by Aharoni, Holzman and Jiang in [2], where they show that for any \(r \)-uniform hypergraph \(\mathcal{H} \) and \(p \in \mathbb{Q} \), the complex of hypergraphs \(F \subset \mathcal{H} \) with fractional matching number (or equivalently, fractional covering number) smaller than \(p \) is \(\left(\lceil rp \rceil - 1 \right) \)-collapsible.

Our proofs rely on two main ingredients. The first one is the following theorem:

Theorem 4. Let \(X \) be a simplicial complex on vertex set \(V \). Let \(S(X) \) be the collection of all sets \(\{v_1, \ldots, v_k\} \subset V \) satisfying the following condition:
There exist maximal faces $\sigma_1, \sigma_2, \ldots, \sigma_{k+1}$ of X such that:

- $v_i \notin \sigma_i$ for all $i \in [k]$,
- $v_i \in \sigma_j$ for all $1 \leq i < j \leq k + 1$.

Let $d'(X)$ be the maximum size of a set in $S(X)$. Then X is $d'(X)$-collapsible.

Theorem 4 is a special case of a more general result, due essentially to Matoušek and Tancer (who stated it in the special case where the complex is the nerve of a family of finite sets, and used it to prove the case $p = 1$ of Theorem 2; see [9]).

The second ingredient is the following combinatorial lemma, proved independently by Frankl and Kalai.

Lemma 5 (Frankl [4], Kalai [7]). Let $\{A_1, \ldots, A_k\}$ and $\{B_1, \ldots, B_k\}$ be families of sets such that:

- $|A_i| \leq r$, $|B_i| \leq p$ for all $i \in [k]$,
- $A_i \cap B_i = \emptyset$ for all $i \in [k]$,
- $A_i \cap B_j \neq \emptyset$ for all $1 \leq i < j \leq k$.

Then

$$k \leq \binom{r + p}{r}.$$

The paper is organized as follows. In Section 2 we present Matoušek and Tancer’s bound on the collapsibility of a simplicial complex, and we prove Theorem 4. In Section 3 we present some results on the collapsibility of independence complexes of graphs. In Section 4 we prove our main results on the collapsibility of complexes of hypergraphs. Section 5 contains some generalizations of Theorems 2 and 3, which are obtained by applying different known variants of Lemma 5.

2 A bound on the collapsibility of a complex

Let X be a (non-void) simplicial complex on vertex set V. Fix a linear order $<$ on V. Let $A = (\sigma_1, \ldots, \sigma_m)$ be a sequence of faces of X such that, for any $\sigma \in X$, $\sigma \subset \sigma_i$ for some $i \in [m]$. For example, we may take $\sigma_1, \ldots, \sigma_m$ to be the set of maximal faces of X (ordered in any way).

For a simplex $\sigma \in X$, let $m_{X,A,<}(\sigma) = \min\{i \in [m] : \sigma \subset \sigma_i\}$. Let $i \in [m]$ and $\sigma \in X$ such that $m_{X,A,<}(\sigma) = i$. We define the minimal exclusion sequence

$$\text{mes}_{X,A,<}(\sigma) = (v_1, \ldots, v_{i-1})$$

as follows: If $i = 1$ then $\text{mes}_{X,A,<}(\sigma)$ is the empty sequence. If $i > 1$ we define the sequence recursively as follows:
Since \(i > 1 \), we must have \(\sigma \not\subset \sigma_1 \); hence, there is some \(v \in \sigma \) such that \(v \notin \sigma_1 \). Let \(v_1 \) be the minimal such vertex (with respect to the order \(\prec \)).

Let \(1 < j < i \) and assume that we already defined \(v_1, \ldots, v_{j-1} \). Since \(i > j \), we must have \(\sigma \not\subset \sigma_j \); hence, there exists some \(v \in \sigma \) such that \(v \notin \sigma_j \).

- If there is a vertex \(v_k \in \{v_1, \ldots, v_{j-1}\} \) such that \(v_k \notin \sigma_j \), let \(v_j \) be such a vertex of minimal index \(k \). In this case we call \(v_j \) old at \(j \).

- If \(v_k \in \sigma_j \) for all \(k < j \), let \(v_j \) be the minimal vertex \(v \in \sigma \) (with respect to the order \(\prec \)) such that \(v \notin \sigma_j \). In this case we call \(v_j \) new at \(j \).

Let \(M_{X,A,\prec}(\sigma) \subset \sigma \) be the simplex consisting of all the vertices appearing in the sequence \(\text{mes}_{X,A,\prec}(\sigma) \). Let

\[
d(X, A, \prec) = \max\{|M_{X,A,\prec}(\sigma)| : \sigma \in X\}.
\]

The following result was stated and proved in [9, Prop. 1.3] in the special case where \(X \) is the nerve of a finite family of sets (in our notation, \(X = \text{Cov}_{H,1} \) for some hypergraph \(H \)).

Theorem 6. The simplicial complex \(X \) is \(d(X, A, \prec) \)-collapsible.

The proof given in [9] can be easily modified to hold in this more general setting. Here we present a different proof.

Let \(X \) be a simplicial complex on vertex set \(V \), and let \(v \in V \). Let

\[
X \setminus v = \{\sigma \in X : v \notin \sigma\}
\]

and

\[
\text{lk}(X, v) = \{\sigma \in X : v \notin \sigma, \sigma \cup \{v\} \in X\}.
\]

We will need the following lemma, proved by Tancer in [10]:

Lemma 7 (Tancer [10, Prop. 1.2]). If \(X \setminus v \) is \(d \)-collapsible and \(\text{lk}(X, v) \) is \((d-1) \)-collapsible, then \(X \) is \(d \)-collapsible.

Proof of Theorem 6. First, we deal with the case where \(X \) is a complete complex (i.e. a simplex). Then \(X \) is 0-collapsible; therefore, the claim holds.

For a general complex \(X \), we argue by induction on the number of vertices of \(X \). If \(|V| = 0 \), then \(X = \{\emptyset\} \). In particular, it is a complete complex; hence, the claim holds.

Let \(|V| > 0 \), and assume that the claim holds for any complex with less than \(|V| \) vertices. If \(\sigma_1 = V \), then \(X \) is the complete complex on vertex set \(V \), and the claim holds. Otherwise, let \(v \) be the minimal vertex (with respect to \(\prec \)) in \(V \setminus \sigma_1 \).

In order to apply Lemma 7, we will need the following two claims:

Claim 8. The complex \(X \setminus v \) is \(d(X, A, \prec) \)-collapsible.
Proof. For every \(i \in [m] \), let \(\sigma'_i = \sigma_i \setminus \{ v \} \), and let \(\mathcal{A}' = (\sigma'_1, \ldots, \sigma'_m) \). Let \(\sigma \in X \setminus v \). Since \(v \notin \sigma \), then, for any \(i \in [m] \), \(\sigma \subset \sigma_i \) if and only if \(\sigma \subset \sigma'_i \). Hence, every simplex \(\sigma \in X \setminus v \) is contained in \(\sigma'_i \) for some \(i \in [m] \) (since, by the definition of \(\mathcal{A} \), \(\sigma \subset \sigma_i \) for some \(i \in [m] \)). So, by the induction hypothesis, \(X \setminus v \) is \(d(X \setminus v, \mathcal{A}', <) \)-collapsible.

Let \(\sigma \in X \setminus v \). We will show that \(\text{mes}_{X, \mathcal{A}, <}(\sigma) = \text{mes}_{X \setminus v, \mathcal{A}', <}(\sigma) \). Since for any \(i \in [m] \), \(\sigma \subset \sigma_i \) if and only if \(\sigma \subset \sigma'_i \), then the two sequences are of the same length. Let

\[
\text{mes}_{X, \mathcal{A}, <}(\sigma) = (v_1, \ldots, v_k)
\]

and

\[
\text{mes}_{X \setminus v, \mathcal{A}', <}(\sigma) = (v'_1, \ldots, v'_k).
\]

We will show that \(v_i = v'_i \) for all \(i \in [k] \). We argue by induction on \(i \). Let \(i \in [k] \), and assume that \(v_j = v'_j \) for all \(j < i \). Since \(v \notin \sigma \), then \(\sigma \setminus \sigma_i = \sigma \setminus \sigma'_i \). Therefore, for any \(j < i \), \(v_j \in \sigma \setminus \sigma_i \) if and only if \(v'_j = v_j \in \sigma \setminus \sigma'_i \). Hence, \(v_i \) is old at \(i \) if and only if \(v'_i \) is old at \(i \), and if \(v_i \) and \(v'_i \) are both old at \(i \), then \(v_i = v'_i \). Otherwise, both \(v_i \) and \(v'_i \) are new at \(i \). Then, \(v_i \) is the minimal vertex in \(\sigma \setminus \sigma_i \), and \(v'_i \) is the minimal vertex in \(\sigma \setminus \sigma'_i = \sigma \setminus \sigma_i \). Thus, \(v_i = v'_i \).

Therefore, \(|M_{X \setminus v, \mathcal{A}', <}(\sigma)| = |M_{X, \mathcal{A}, <}(\sigma)| \) for any \(\sigma \in X \setminus v \); hence,

\[
d(X \setminus v, \mathcal{A}', <) \leq d(X, \mathcal{A}, <).
\]

So, \(X \setminus v \) is \(d(X, \mathcal{A}, <) \)-collapsible.

\(\square \)

Claim 9. The complex \(\text{lk}(X, v) \) is \((d(X, \mathcal{A}, <) - 1) \)-collapsible.

Proof. Let \(I = \{ i \in [m] : v \in \sigma_i \} \). For every \(i \in I \), let \(\sigma''_i \) \(= \sigma_i \setminus \{ v \} \). Write \(I = \{ i_1, \ldots, i_r \} \), where \(i_1 < \cdots < i_r \), and let \(\mathcal{A}'' = (\sigma''_1, \ldots, \sigma''_r) \).

For any \(\sigma \in \text{lk}(X, v) \), the simplex \(\sigma \cup \{ v \} \) belongs to \(X \); hence, there exists some \(i \in [m] \) such that \(\sigma \cup \{ v \} \subset \sigma_i \). Since \(v \in \sigma \cup \{ v \} \), we must have \(i \in I \), and therefore \(\sigma \subset \sigma''_i = \sigma_i \setminus \{ v \} \). So, by the induction hypothesis, \(\text{lk}(X, v) \) is \(d(\text{lk}(X, v), \mathcal{A}'', <) \)-collapsible.

Let \(\sigma \in \text{lk}(X, v) \). We will show that

\[
M_{X, \mathcal{A}, <}(\sigma \cup \{ v \}) = M_{\text{lk}(X, v), \mathcal{A}'', <}(\sigma) \cup \{ v \}.
\]

Let

\[
\text{mes}_{X, \mathcal{A}, <}(\sigma \cup \{ v \}) = (v_1, \ldots, v_n),
\]

and

\[
\text{mes}_{\text{lk}(X, v), \mathcal{A}'', <}(\sigma) = (u_1, \ldots, u_t).
\]

For any \(j \in [r] \), \(\sigma \subset \sigma''_{i_j} \) if and only if \(\sigma \cup \{ v \} \subset \sigma_{i_j} \). Also, for \(i \notin I \), \(\sigma \cup \{ v \} \notin \sigma_i \) (since \(v \notin \sigma_i \)). Therefore, \(n = i_{t+1} - 1 \).

The vertex \(v \) is the minimal vertex in \(V \setminus \sigma_1 \), therefore it is the minimal vertex in \((\sigma \cup \{ v \}) \setminus \sigma_1 \). Hence, we have \(v_1 = v \). Now, let \(i > 1 \) such that \(i \notin I \). Then, \(v_i = v \) is the vertex of minimal index in the sequence \((v_1, \ldots, v_{i-1}) \) that is contained in \((\sigma \cup \{ v \}) \setminus \sigma_i \). Therefore, \(v_i = v \).
Finally, we will show that $v_{ij} = u_j$ for all $j \in [t]$. We argue by induction on j. Let $j \in [t]$, and assume that $v_{ij} = u_{i}$ for all $\ell < j$.

For any $k < i_j$, either $v_k = v$ (if $k \notin I$) or $v_k = u_{i}$ for some $\ell < j$ (if $k = i_{\ell} \in I$). Also, since $v \in \sigma_{i_j}$, we have $(\sigma \cup \{v\}) \setminus \sigma_{i_j} = \sigma \setminus \sigma''_{i_j}$. So, for any $k < i_j$, $v_k \in (\sigma \cup \{v\}) \setminus \sigma_{i_j}$ if and only if $k = i_{\ell}$ for some $\ell < j$ such that $u_{i} \in \sigma \setminus \sigma''_{i_j}$. Therefore, v_{i_j} is old at i_j if and only if u_{i_j} is old at j, and if v_{i_j} and u_{i_j} are both old, then $v_{i_j} = u_{i_j}$. Otherwise, assume that v_{i_j} is new at i_j and u_{i_j} is new at j. Then, v_{i_j} is the minimal vertex in $(\sigma \cup \{v\}) \setminus \sigma_{i_j}$, and u_{i_j} is the minimal vertex in $\sigma \setminus \sigma''_{i_j}$. Thus, $v_{i_j} = u_{i_j}$.

So, for any $\sigma \in \text{lk}(X, v)$ we obtain

$$|\text{M}_{\text{lk}(X, v), \mathcal{A}''}(\sigma)| = |\text{M}_{X, \mathcal{A}}(\sigma \cup \{v\})| - 1.$$

Hence,

$$d(\text{lk}(X, v), \mathcal{A}''_v, <) \leq d(X, \mathcal{A}, <) - 1.$$

So, $\text{lk}(X, v)$ is $(d(X, \mathcal{A}, <) - 1)$-collapsible. □

By Claim 8, Claim 9 and Lemma 7, X is $d(X, \mathcal{A}, <)$-collapsible. □

Proof of Theorem 4. Let \prec be some linear order on the vertex set V, and let $\mathcal{A} = (\sigma_1, \ldots, \sigma_m)$ be the sequence of maximal faces of X (ordered in any way).

Let $i \in [m]$ and let $\sigma \in X$ with $m_{X, \mathcal{A}}(\sigma) = i$. Let $\text{mes}_{X, \mathcal{A}}(\sigma) = (v_1, \ldots, v_{i-1})$. Then $M_{X, \mathcal{A}}(\sigma) = \{v_1, \ldots, v_k\}$ for some $i_1 < \cdots < i_k \in [i-1]$ (these are exactly the indices i_j such that v_{i_j} is new at i_j). For each $j \in [k]$ we have $v_{i_j} \notin \sigma_{i_j}$. In addition, since v_{i_j} is new at i_j, we have $v_{i_{\ell}} \in \sigma_{i_j}$ for all $\ell < j$. Let $i_{k+1} = i$. Since $m_{X, \mathcal{A}}(\sigma) = i = i_{k+1}$, we have $\sigma \subset \sigma_{i_{k+1}}$. In particular, $v_{i_{\ell}} \in \sigma_{i_{k+1}}$ for all $\ell < k + 1$.

Therefore, $M_{X, \mathcal{A}}(\sigma) \in S(X)$. Thus, $d(X, \mathcal{A}, <) \leq d'(X)$, and by Theorem 6, X is $d'(X)$-collapsible. □

3 Collapsibility of independence complexes

Let $G = (V, E)$ be a graph. The independence complex $I(G)$ is the simplicial complex on vertex set V whose simplices are the independent sets in G.

Definition 10. Let $k(G)$ be the maximal size of a set $\{v_1, \ldots, v_k\} \subset V$ that satisfies:

- $\{v_i, v_j\} \notin E$ for all $i \neq j \in [k]$,
- There exist $u_1, \ldots, u_k \in V$ such that
 - $\{v_i, u_i\} \in E$ for all $i \in [k]$,
 - $\{v_i, u_j\} \notin E$ for all $1 \leq i < j \leq k$.

Proposition 11. $k(G) = d'(I(G))$.

Proof. Let $A = \{v_1, \ldots, v_k\} \in S(I(G))$. Then, there exist maximal faces $\sigma_1, \ldots, \sigma_{k+1}$ of $I(G)$ such that:
• $v_i \notin \sigma_i$ for all $i \in [k]$,
• $v_i \in \sigma_j$ for all $1 \leq i < j \leq k + 1$.

Let $i \in [k]$. Since σ_i is a maximal independent set in G and $v_i \notin \sigma_i$, there exists some $u_i \in \sigma_i$ such that $\{v_i, u_i\} \in E$.

Let $1 \leq i < j \leq k$. Since v_i and u_j are both contained in the independent set σ_j, we have $\{v_i, u_j\} \notin E$. Furthermore, since $A \subset \sigma_{k+1}$, A is an independent set in G. That is, $\{v_i, v_j\} \notin E$ for all $i \neq j \in [k]$. So, A satisfies the conditions of Definition 10. Hence, $|A| \leq k(G)$; therefore, $d'(I(G)) \leq k(G)$.

Now, let $k = k(G)$, and let $v_1, \ldots, v_k, u_1, \ldots, u_k \in V$ such that

• $\{v_i, v_j\} \notin E$ for all $i \neq j \in [k]$,
• $\{v_i, u_i\} \in E$ for all $i \in [k]$,
• $\{v_i, u_j\} \notin E$ for all $1 \leq i < j \leq k$.

Let $i \in [k]$, and let $V_i = \{v_j : 1 \leq j < i\}$. Note that $V_i \cup \{u_i\}$ forms an independent set in G; therefore, it is a simplex in $I(G)$. Let σ_i be a maximal face of $I(G)$ containing $V_i \cup \{u_i\}$. Since $\{v_i, u_i\} \in E$, we have $v_i \notin \sigma_i$.

The set $\{v_1, \ldots, v_k\}$ is also an independent set in G. Therefore, there is a maximal face $\sigma_{k+1} \in I(G)$ that contains it.

By the definition of $\sigma_1, \ldots, \sigma_{k+1}$, we have $v_i \in \sigma_j$ for $1 \leq i < j \leq k + 1$. Therefore, $\{v_1, \ldots, v_k\} \in S(I(G))$; so, $k(G) = k \leq d'(I(G))$. Hence, $k(G) = d'(I(G))$, as wanted. \qed

As an immediate consequence of Proposition 11 and Theorem 4, we obtain:

Proposition 12. The complex $I(G)$ is $k(G)$-collapsible.

Note that vertices $v_1, \ldots, v_k, u_1, \ldots, u_k \in V$ satisfying the conditions in Definition 10 must all be distinct. As a simple corollary, we obtain

Corollary 13. The independence complex of a graph $G = (V, E)$ on n vertices is $\left\lfloor \frac{n}{2} \right\rfloor$-collapsible.

4 Complexes of hypergraphs

In this section we prove our main results, Theorems 2 and 3.

Proof of Theorem 2. Let \mathcal{H} be a hypergraph of rank r on vertex set $[n]$, and let

$\{A_1, \ldots, A_k\} \in S(\text{Cov}_{\mathcal{H}, p})$.

Then, there exist maximal faces $\mathcal{F}_1, \ldots, \mathcal{F}_{k+1} \in \text{Cov}_{\mathcal{H}, p}$ such that

• $A_i \notin \mathcal{F}_i$ for all $i \in [k]$,
\begin{itemize}
 \item $A_i \in \mathcal{F}_j$ for all $1 \leq i < j \leq k + 1$.
\end{itemize}

For any $i \in [k + 1]$, there is some $C_i \subset [n]$ of size at most p that covers \mathcal{F}_i. Since \mathcal{F}_i is maximal, then, for any $A \in \mathcal{H}$, $A \in \mathcal{F}_i$ if and only if $A \cap C_i \neq \emptyset$. Therefore, we obtain
\begin{itemize}
 \item $A_i \cap C_i = \emptyset$ for all $i \in [k]$,
 \item $A_i \cap C_j \neq \emptyset$ for all $1 \leq i < j \leq k + 1$.
\end{itemize}

Hence, the pair of families
\[
\{A_1, \ldots, A_k, \emptyset\}
\]
and
\[
\{C_1, \ldots, C_k, C_{k+1}\}
\]
satisfies the conditions of Lemma 5; thus, $k + 1 \leq \binom{r + p}{r}$. Therefore,
\[
d'(\text{Cov}_{\mathcal{H},p}) \leq \binom{r + p}{r} - 1,
\]
and by Theorem 4, $\text{Cov}_{\mathcal{H},p}$ is $\left(\binom{r + p}{r} - 1\right)$-collapsible.

Proof of Theorem 3. Let \mathcal{H} be a hypergraph of rank r and let G be the graph on vertex set \mathcal{H} whose edges are the pairs $\{A, B\} \subset \mathcal{H}$ such that $A \cap B = \emptyset$. Then $\text{Int}_{\mathcal{H}} = I(G)$.

Let $k = k(G)$ and let $\{A_1, \ldots, A_k\} \subset \mathcal{H}$ that satisfies the conditions of Definition 10. That is,
\begin{itemize}
 \item $A_i \cap A_j \neq \emptyset$ for all $i \neq j \in [k]$,
 \item There exist $B_1, \ldots, B_k \in \mathcal{H}$ such that
 \begin{itemize}
 \item $A_i \cap B_i = \emptyset$ for all $i \in [k]$,
 \item $A_i \cap B_j \neq \emptyset$ for all $1 \leq i < j \leq k$.
 \end{itemize}
\end{itemize}

Then, the pair of families $\{A_1, \ldots, A_k, B_k, \ldots, B_1\}$ and $\{B_1, \ldots, B_k, A_k, \ldots, A_1\}$ satisfies the conditions of Lemma 5; therefore, $2k \leq \binom{2r}{r}$. Thus, by Proposition 12, $\text{Int}_{\mathcal{H}} = I(G)$ is $\frac{1}{2}(\binom{2r}{r})$-collapsible.

5 More complexes of hypergraphs

Let \mathcal{H} be a hypergraph. A set C is a t-transversal of \mathcal{H} if $|A \cap C| \geq t$ for all $A \in \mathcal{H}$. Let $\tau_t(\mathcal{H})$ be the minimal size of a t-transversal of \mathcal{H}. The hypergraph \mathcal{H} is pairwise t-intersecting if $|A \cap B| \geq t$ for all $A, B \in \mathcal{H}$. Let
\[
\text{Cov}^t_{\mathcal{H},p} = \{\mathcal{F} \subset \mathcal{H} : \tau_t(\mathcal{F}) \leq p\}
\]
and
\[
\text{Int}^t_{\mathcal{H}} = \{\mathcal{F} \subset \mathcal{H} : \mathcal{F} \text{ is pairwise } t\text{-intersecting}\}.
\]

The following generalization of Lemma 5 was proved by Füredi in [5].
Lemma 14 (Füredi [5]). Let \(\{A_1, \ldots, A_k\} \) and \(\{B_1, \ldots, B_k\} \) be families of sets such that:

- \(|A_i| \leq r, |B_i| \leq p \) for all \(i \in [k] \),
- \(|A_i \cap B_i| \leq t \) for all \(i \in [k] \),
- \(|A_i \cap B_j| > t \) for all \(1 \leq i < j \leq k \).

Then

\[
 k \leq \left(\frac{r + p - 2t}{r - t} \right).
\]

We obtain the following:

Theorem 15. Let \(\mathcal{H} \) be a hypergraph of rank \(r \) and let \(t \leq \min\{r, p\} - 1 \). Then \(\text{Cov}_{\mathcal{H}, p}^{t+1} \) is \((\left(\frac{r+p-2t}{r-t} \right) - 1)\)-collapsible.

Theorem 16. Let \(\mathcal{H} \) be a hypergraph of rank \(r \) and let \(t \leq r - 1 \). Then \(\text{Int}_{\mathcal{H}}^{t+1} \) is \(\frac{1}{2} \left(\frac{2(r-t)}{r-t} \right) \)-collapsible.

Note that by setting \(t = 0 \) we recover Theorems 2 and 3. The proofs are essentially the same as the proofs of Theorems 2 and 3, except for the use of Lemma 14 instead of Lemma 5. The extremal examples are also similar: Let

\[
 \mathcal{H}_1 = \left\{ A \cup [t] : A \in \left(\left[\frac{r + p - t}{r - t} \right] \right) \right\}
\]

and

\[
 \mathcal{H}_2 = \left\{ A \cup [t] : A \in \left(\left[\frac{2r - t}{r - t} \right] \right) \right\}.
\]

The complex \(\text{Cov}_{\mathcal{H}_1}^{t+1} \) is the boundary of the \((\left(\frac{r+p-2t}{r-t} \right) - 1)\)-dimensional simplex, hence it is not \((\left(\frac{r+p-2t}{r-t} \right) - 2)\)-collapsible, and the complex \(\text{Int}_{\mathcal{H}_2}^{t+1} \) is the boundary of the \(\frac{1}{2} \left(\frac{2(r-t)}{r-t} \right) \)-dimensional cross-polytope, hence it is not \((\frac{1}{2} \left(\frac{2(r-t)}{r-t} \right) - 1)\)-collapsible.

Restricting ourselves to special classes of hypergraphs we may obtain better bounds on the collapsibility of their associated complexes. For example, we may look at \(r \)-partite \(r \)-uniform hypergraphs (that is, hypergraphs \(\mathcal{H} \) on vertex set \(V = V_1 \cup V_2 \cup \cdots \cup V_r \) such that \(|A \cap V_i| = 1 \) for all \(A \in \mathcal{H} \) and \(i \in [r] \)). In this case we have the following result:

Theorem 17. Let \(\mathcal{H} \) be an \(r \)-partite \(r \)-uniform hypergraph. Then \(\text{Int}_{\mathcal{H}} \) is \(2^{r-1} \)-collapsible.

The next example shows that the bound on the collapsibility of \(\text{Int}_{\mathcal{H}} \) in Theorem 17 is tight: Let \(\mathcal{H} \) be the complete \(r \)-partite \(r \)-uniform hypergraph with all sides of size 2. It has \(2^r \) edges, and any edge \(A \in \mathcal{H} \) intersects all the edges of \(\mathcal{H} \) except its complement. Therefore the complex \(\text{Int}_{\mathcal{H}} \) is the boundary of the \(2^{r-1} \)-dimensional cross-polytope, so it is homeomorphic to a \((2^{r-1} - 1)\)-dimensional sphere. Hence, by Proposition 1, \(\text{Int}_{\mathcal{H}} \) is not \((2^{r-1} - 1)\)-collapsible.

For the proof we need the following Lemma, due to Lovász, Nešetřil and Pultr.
Lemma 18 (Lovász, Nešetřil, Pultr [8, Prop. 5.3]). Let \(\{A_1, \ldots, A_k\} \) and \(\{B_1, \ldots, B_k\} \) be families of subsets of \(V = V_1 \cup V_2 \cup \cdots \cup V_r \) such that:

- \(|A_i \cap V_j| = 1, |B_i \cap V_j| = 1 \) for all \(i \in [k] \) and \(j \in [r] \),
- \(A_i \cap B_i = \emptyset \) for all \(i \in [k] \),
- \(A_i \cap B_j \neq \emptyset \) for all \(1 \leq i < j \leq k \).

Then \(k \leq 2^r \).

A common generalization of Lemma 5 and Lemma 18 was proved by Alon in [3].

The proof of Theorem 17 is the same as the proof of Theorem 3, except that we replace Lemma 5 by Lemma 18. A similar argument was also used by Aharoni and Berger ([1, Theorem 5.1]) in order to prove a related result about rainbow matchings in \(r \)-partite \(r \)-uniform hypergraphs.

Acknowledgements

I thank Professor Roy Meshulam for his guidance and help. I thank the anonymous referee for some helpful suggestions.

References