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Abstract

Let ‘H be an r-uniform hypergraph. We show that the simplicial complex whose
simplices are the hypergraphs 7 C ‘H with covering number at most p is ((rjp ) — 1)—
collapsible. Similarly, the simplicial complex whose simplices are the pairwise inter-
secting hypergraphs F C H is %(2:) -collapsible.

Mathematics Subject Classifications: 05E45, 05D05

1 Introduction

Let X be a finite simplicial complex. Let n be a simplex of X such that |n| < d and 7 is
contained in a unique maximal face 7 € X. We say that the complex

X' =X\{ceX:ncocCr}

is obtained from X by an elementary d-collapse, and we write X - X'.
The complex X is called d-collapsible if there exists a sequence of elementary d-
collapses

X=X X B X

from X to the void complex . The collapsibility of X is the minimal d such that X is
d-collapsible.
A simple consequence of d-collapsibility is the following:

Proposition 1 (Wegner [11, Lemma 1]). If X is d-collapsible then it is homotopy equiv-
alent to a simplicial complex of dimension smaller than d.
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Let H be a finite hypergraph. We identify H with its edge set. The rank of H is the
maximal size of an edge of H.
A set Cis a cover of H if ANC # () for all A € H. The covering number of H,
denoted by 7(#), is the minimal size of a cover of H.
For p € N, let
Covyyp ={F CH: 7(F) < p}.

That is, Covy, is a simplicial complex whose vertices are the edges of H and whose
simplices are the hypergraphs F C H that can be covered by a set of size at most p.
Some topological properties of the complex Cov([n]) , were studied by Jonsson in [6].

The hypergraph H is called pairwise intersecting if AN B # () for all A, B € H. Let
Inty ={FCH: ANB#0 for all A,B € F}.

So, Inty is a simplicial complex whose vertices are the edges of H and whose simplices
are the hypergraphs F C H that are pairwise intersecting.
Our main results are the following:

Theorem 2. Let H be a hypergraph of rank r. Then Covy,) is ((T:fp) — 1)—collap3ible.

Theorem 3. Let H be a hypergraph of rank r. Then Inty is %(2:) -collapsible.

The following examples show that these bounds are sharp:

e Let H = ([TJT“”}) be the complete r-uniform hypergraph on r + p vertices. The
covering number of H is p + 1, but for any A € H the hypergraph H \ {A}
can be covered by a set of size p, namely by [r + p| \ A. Therefore the complex

Cov([rm) L 1 the boundary of the ((’”;p ) — 1)—dimensional simplex, so it is homeo-

morphic to a ((ijp) — 2)—dimensional sphere. Hence, by Proposition 1, COV([TH,])
is not ((ijp) — 2)—collapsible.

g

o Let H = ([27"]) be the complete r-uniform hypergraph on 2r vertices. Any A € H

intersects all the edges of H except the edge [2r]\ A. Therefore the complex Int([zr])
is the boundary of the %(%f)—dimensional cross-polytope, so it is homeomorphic to a
(3(*) — 1)-dimensional sphere. Hence, by Proposition 1, Int (&) is not (3 (*) — 1)-
collapsible.

A related problem was studied by Aharoni, Holzman and Jiang in [2], where they show
that for any r-uniform hypergraph H and p € Q, the complex of hypergraphs F C H with
fractional matching number (or equivalently, fractional covering number) smaller than p
is ([rp] — 1)-collapsible.

Our proofs rely on two main ingredients. The first one is the following theorem:

Theorem 4. Let X be a simplicial complex on vertex set V.. Let S(X) be the collection
of all sets {vy,..., v} CV satisfying the following condition:
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There exist maximal faces 01,09, ...,0k11 of X such that:

o v; & o; for alli € [k],
e v,cojforalll <i<j<k+1.

Let d'(X) be the mazimum size of a set in S(X). Then X is d'(X)-collapsible.

Theorem 4 is a special case of a more general result, due essentially to Matousek and
Tancer (who stated it in the special case where the complex is the nerve of a family of
finite sets, and used it to prove the case p = 1 of Theorem 2; see [9]).

The second ingredient is the following combinatorial lemma, proved independently by
Frankl and Kalai.

Lemma 5 (Frankl [4], Kalai [7]). Let {Ay,..., Ax} and {By,..., By} be families of sets
such that:

o |A)| <, |Bi| <p foralliclk],
o A,NB; =10 forallie k],

e AiNB;j#0 foralll <i<j<k.

k< (THJ).
T

The paper is organized as follows. In Section 2 we present Matousek and Tancer’s
bound on the collapsibility of a simplicial complex, and we prove Theorem 4. In Section
3 we present some results on the collapsibility of independence complexes of graphs. In
Section 4 we prove our main results on the collapsibility of complexes of hypergraphs.
Section 5 contains some generalizations of Theorems 2 and 3, which are obtained by
applying different known variants of Lemma 5.

Then

2 A bound on the collapsibility of a complex

Let X be a (non-void) simplicial complex on vertex set V. Fix a linear order < on V.
Let A = (01,...,0m,) be a sequence of faces of X such that, for any o € X, o C o; for
some i € [m]. For example, we may take o1, ..., 0, to be the set of maximal faces of X
(ordered in any way).

For a simplex 0 € X, let mx 4 <(0) =min{i € [m|: 0 C 0;}. Let i € [m] and 0 € X
such that mx 4 (o) = i. We define the minimal exclusion sequence

meSX,A,<(‘7> = (Ub . ,Uz‘—1)

as follows: If i = 1 then mesx 4 (o) is the empty sequence. If i > 1 we define the
sequence recursively as follows:
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Since i > 1, we must have o ¢ oy; hence, there is some v € ¢ such that v ¢ o;. Let
v; be the minimal such vertex (with respect to the order <).

Let 1 < j < i and assume that we already defined vy,...,v;_1. Since i > j, we must
have o ¢ o;; hence, there exists some v € o such that v ¢ o;.

o If there is a vertex vy € {vy,...,v;_1} such that v, ¢ o;, let v; be such a vertex of
minimal index k. In this case we call v; old at j.

o If v, € g, for all k < j, let v; be the minimal vertex v € ¢ (with respect to the order
<) such that v ¢ ;. In this case we call v; new at j.

Let Mx 4<(0c) C o be the simplex consisting of all the vertices appearing in the
sequence mesx 4 <(0). Let

d(X, A, <) =max{|Mx a<(0)]: 0 € X}.

The following result was stated and proved in [9, Prop. 1.3] in the special case where
X is the nerve of a finite family of sets (in our notation, X = Covy,; for some hypergraph

Theorem 6. The simplicial complex X is d(X, A, <)-collapsible.

The proof given in [9] can be easily modified to hold in this more general setting. Here
we present a different proof.
Let X be a simplicial complex on vertex set V', and let v € V. Let

X\v={ceX:v¢o}

and
k(X,v)={ceX:vd¢o oU{v}e X}

We will need the following lemma, proved by Tancer in [10]:

Lemma 7 (Tancer [10, Prop. 1.2]). If X \ v is d-collapsible and 1k(X,v) is (d — 1)-
collapsible, then X 1s d-collapsible.

Proof of Theorem 6. First, we deal with the case where X is a complete complex (i.e. a
simplex). Then X is 0-collapsible; therefore, the claim holds.

For a general complex X, we argue by induction on the number of vertices of X. If
|V| =0, then X = {(}. In particular, it is a complete complex; hence, the claim holds.

Let |V| > 0, and assume that the claim holds for any complex with less than |V/|
vertices. If o1 =V, then X is the complete complex on vertex set V', and the claim holds.
Otherwise, let v be the minimal vertex (with respect to <) in V'\ 0.

In order to apply Lemma 7, we will need the following two claims:

Claim 8. The complex X \ v is d(X, A, <)-collapsible.
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Proof. For every i € [m], let o) = o; \ {v}, and let A" = (07,...,0.,). Let 0 € X \ v.
Since v ¢ o, then, for any ¢ € [m], 0 C o; if and only if ¢ C o}. Hence, every simplex
o € X \ v is contained in o} for some i € [m| (since, by the definition of A, o C o; for
some i € [m]). So, by the induction hypothesis, X \ v is d(X \ v, A, <)-collapsible.

Let o0 € X'\ v. We will show that mesx _4.<(0) = mesx\, a4,<(c). Since for any i € [m],
o C o; if and only if o C o/, then the two sequences are of the same length. Let

meSX,A,<(U) - (Ula S 7Uk)

and
mes x\p, 4/, <(0) = (Vy,...,0).

We will show that v; = v/ for all i € [k]. We argue by induction on i. Let ¢ € [k], and
assume that v; = v} for all j < i. Since v ¢ o, then o\ 0; = 0 \ 0;. Therefore, for any
J <i,v; €0\ o;if and only if v; = v; € o\ 0;. Hence, v; is old at i if and only if v; is old
at ¢, and if v; and v] are both old at i, then v; = v.. Otherwise, both v; and v} are new at
i. Then, v; is the minimal vertex in o \ 0;, and v} is the minimal vertex in ¢ \ o, = o \ 0;.
Thus, v; = ..

Therefore, |Mx\ya,<(0)] = [Mx 4,<(0)| for any o € X \ v; hence,

d(X \v, A, <) <d(X, A, <).
So, X \ v is d(X, A, <)-collapsible. ]
Claim 9. The complez 1k(X,v) is (d(X, A, <) — 1)-collapsible.

Proof. Let I = {i € [m]: v € 0;}. Foreveryi € I, let o/ = o;\{v}. Write I = {i1,...,4,},
where i; < --- <i,, and let A" = (o7 ,...,0}).
For any ¢ € lk(X,v), the simplex o U {v} belongs to X; hence, there exists some
i € [m] such that o U {v} C ;. Since v € 0 U{v}, we must have ¢ € I, and therefore o C
o! =0; \ {v}. So, by the induction hypothesis, lk(X,v) is d(lk(X,v), A", <)-collapsible.
Let o € 1k(X,v). We will show that

MX,A,<(U U {U}) = Mlk(X,v),A",<(<7> U {U}

Let
mesx 4 <(cU{v}) = (v1,...,0,),

and
mesik(x,v),A",<(0) = (U1, ..., u).

For any j € [r], o C o] if and only if o U {v} C 0y, Also, for i ¢ I, o U{v} ¢ o; (since
v ¢ ;). Therefore, n = i;11 — 1.

The vertex v is the minimal vertex in V' \ oy, therefore it is the minimal vertex in
(o U{v})\ o1. Hence, we have v; = v. Now, let ¢ > 1 such that ¢ ¢ I. Then, v; = v is the
vertex of minimal index in the sequence (vy,...,v;_1) that is contained in (o U {v}) \ ;.
Therefore, v; = v.
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Finally, we will show that v;, = u; for all j € [{]. We argue by induction on j. Let
J € [t], and assume that v;, = u, for all £ < j.

For any k < i;, either v, = v (if k ¢ I) or vy = uy for some ¢ < j (if k =i, € ). Also,
since v € 0y;, we have (0 U{v}) \ o;; = 0\ 7. So, for any k < ij, vy € (0 U{v}) \ oy, if
and only if k& = i, for some ¢ < j such that u, € o\ 02’-;. Therefore, v;; is old at i; if and
only if u; is old at j, and if v;; and u; are both old, then v;; = u;. Otherwise, assume
that v, is new at 7; and u; is new at j. Then, v;; is the minimal vertex in (o U {v}) \ 0y},
and u; is the minimal vertex in o \ 07, = (6 U {v}) \ 03;. Thus, v;; = u;.

So, for any o € 1k(X,v) we obtain

| Mi(x,0),47,<(0)] = |Mx .a,<(c U{v})| - 1L

Hence,

d(lk(X,v), A", <) <d(X, A, <) — 1.

So, Ik(X,v) is (d(X, A, <) — 1)-collapsible. O
By Claim 8, Claim 9 and Lemma 7, X is d(X, A, <)-collapsible. a
Proof of Theorem 4. Let < be some linear order on the vertex set V, and let A =
(01,...,0m) be the sequence of maximal faces of X (ordered in any way).
Let i € [m] and let 0 € X with mx 4 <(0) = i. Let mesx a<(0) = (v1,...,0;—1).
Then Mx a4 <(0) = {vi,,...,v; } for some i; < --- < iy € [i — 1] (these are exactly the

indices i; such that v;; is new at i;). For each j € [k] we have v;; ¢ ;. In addition, since
v;; is new at 7;, we have v;, € oy, for all £ < j. Let ipy1 = 7. Since mx 4.<(0) =i = ip41,
we have o C oy, ,,. In particular, v;, € 0y, , for all £ <k + 1.

Therefore, Mx 4 (o) € S(X). Thus, d(X, A, <) < d(X), and by Theorem 6, X is
d'(X)-collapsible. O

3 Collapsibility of independence complexes

Let G = (V, E) be a graph. The independence complex I(G) is the simplicial complex on
vertex set V' whose simplices are the independent sets in G.

Definition 10. Let k(G) be the maximal size of a set {vy,...,vx} C V that satisfies:
o {v,v;} ¢ E foralli+#je k],
e There exist uy,...,ur € V such that

— {vi,u;} € E for all i € [k],
— {vi,u;} ¢ Eforall 1 <i<j<k.

Proposition 11. k(G) = d'(I(G)).

Proof. Let A = {vy,...,v} € S(I(G)). Then, there exist maximal faces oy,..., 041 of
I(G) such that:
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e v; ¢ o; for all i € [k],
ey cojforalll<i<j<k+1

Let ¢ € [k]. Since o; is a maximal independent set in G and v; ¢ o, there exists some
u; € o; such that {v;,u;} € E.

Let 1 <4 < j < k. Since v; and u; are both contained in the independent set o;, we
have {v;,u;} ¢ E. Furthermore, since A C 0441, A is an independent set in G. That is,
{vi,v;} ¢ E for all i # j € [k]. So, A satisfies the conditions of Definition 10. Hence,
|A| < k(G); therefore, d'(1(G)) < k(G).

Now, let k = k(G), and let vy, ..., v, ui, ..., ux € V such that

o {v,,v;} ¢ E forall i #j € [k],
o {v;,u;} € E for all i € [k],
o {v,uj} ¢ Eforall1 <i<j<k.

Let ¢ € [k], and let V; = {v; : 1 < j < i}. Note that V; U {u;} forms an independent
set in G; therefore, it is a simplex in I(G). Let 0; be a maximal face of I(G) containing
Vi U{w;}. Since {v;,u;} € E, we have v; ¢ o;.

The set {vq,...,vx} is also an independent set in G. Therefore, there is a maximal
face op11 € I(G) that contains it.

By the definition of oy, ..., 0541, we have v; € 0; for 1 < i < j < k + 1. Therefore,
{v1,..., 0} € S(I(Q)); s0, k(G) = k < d'(I(G)). Hence, k(G) = d'(I(G)), as wanted. [

As an immediate consequence of Proposition 11 and Theorem 4, we obtain:
Proposition 12. The complex I(G) is k(G)-collapsible.

Note that vertices vy, ..., vk, u1,...,ux € V satisfying the conditions in Definition 10
must all be distinct. As a simple corollary, we obtain

Corollary 13. The independence complex of a graph G = (V, E) on n vertices is LgJ-
collapsible.

4 Complexes of hypergraphs

In this section we prove our main results, Theorems 2 and 3.

Proof of Theorem 2. Let H be a hypergraph of rank r on vertex set [n], and let
{Al, . ,Ak} € S(COVHJ,).
Then, there exist maximal faces Fi,..., Fr11 € Covy, such that

o A; ¢ F; for all i € [K],
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e Aje Fiforalll<i<j<k+1

For any i € [k + 1], there is some C; C [n] of size at most p that covers F;. Since F; is
maximal, then, for any A € H, A € F; if and only if AN C; # (). Therefore, we obtain

e A,NC; =10 for all i € [K],
e AiNCj#Pforalll <i<j<k+1

Hence, the pair of families

(A, A, 0}

and
{Cy,...,Ck, Crir}
satisfies the conditions of Lemma 5; thus, k£ + 1 < (T:fp ) Therefore,
d/(COV}Lp) < <r +p) - 17

r
and by Theorem 4, Covy,,, is ((ijp) — 1)—collapsible. ]

Proof of Theorem 3. Let H be a hypergraph of rank r and let G be the graph on vertex
set H whose edges are the pairs {4, B} C H such that AN B = (). Then Inty = I(G).

Let k = k(G) and let {A;,..., Ay} C H that satisfies the conditions of Definition 10.
That is,

o A;NA;#0 foralli#j € [k],

e There exist By, ..., By € H such that
— AN B; =0 for all i € [k],
—AnNBj#Dforall1 <i<j<k.

Then, the pair of families {A;,..., Ay, Bg,...,B1} and {By, ..., By, Ay, ..., A1} satisfies
the conditions of Lemma 5; therefore, 2k < (2:). Thus, by Proposition 12, Inty, = I(G)

is % (QTT)—CoHapsible. O

5 More complexes of hypergraphs

Let H be a hypergraph. A set C is a t-transversal of H if |[ANC| >t for all A € H.
Let 73(H) be the minimal size of a t-transversal of H. The hypergraph H is pairwise
t-intersecting if |[AN B| >t for all A, B € ‘H. Let

Covgi,p ={FCH:n(F)<p}

and
Int), = {F C H : F is pairwise t-intersecting}.

The following generalization of Lemma 5 was proved by Fiiredi in [5].
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Lemma 14 (Fiiredi [5]). Let {Ay,..., Ax} and {By,..., By} be families of sets such that:
o |A| <, |Bi| <p forallielk],
o |A;NB;| <t forallie [k],

o |[ANDBj|>tforalll <i<j<k.
k< (r+p—2t)‘
r—t

Theorem 15. Let ‘H be a hypergraph of rank r and let t < min{r,p} — 1. Then Covfg’;
is ((Tﬂ’_%) — 1)—collapsible.

r—t

Then

We obtain the following:

Theorem 16. Let H be a hypergraph of rank r and lett < r—1. Then Intgjl 18 %(2(::5)) -
collapsible.

Note that by setting ¢ = 0 we recover Theorems 2 and 3. The proofs are essentially
the same as the proofs of Theorems 2 and 3, except for the use of Lemma 14 instead of
Lemma 5. The extremal examples are also similar: Let

’le{Au[ﬂ;Ae ([TJFP—t]\[t])}

r—t

Hy — {AU 1 Ac ([27“ ;_ﬂt\ [t]) }

The complex Covgjll is the boundary of the ((T’t’i _tZt) — 1)—dimensional simplex, hence it

is not ((T+p _Qt) — 2)—collapsible, and the complex Intgj; is the boundary of the %(Q(T_t))—

r—t r—t

and

dimensional cross-polytope, hence it is not (% (2(:__;)) — 1>—collapsible.

Restricting ourselves to special classes of hypergraphs we may obtain better bounds
on the collapsibility of their associated complexes. For example, we may look at r-partite
r-uniform hypergraphs (that is, hypergraphs H on vertex set V =V, UV, J--- WV, such

that |ANV;| =1 for all A€ H and i € [r]). In this case we have the following result:
Theorem 17. Let H be an r-partite r-uniform hypergraph. Then Inty is 2" -collapsible.

The next example shows that the bound on the collapsibility of Inty; in Theorem 17
is tight: Let H be the complete r-partite r-uniform hypergraph with all sides of size 2. It
has 2" edges, and any edge A € H intersects all the edges of H except its complement.
Therefore the complex Inty is the boundary of the 2"~ !-dimensional cross-polytope, so it
is homeomorphic to a (2! — 1)-dimensional sphere. Hence, by Proposition 1, Inty is not
(27=1 — 1)-collapsible.

For the proof we need the following Lemma, due to Lovasz, Nesettil and Pultr.
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Lemma 18 (Lovész, Nesettil, Pultr [8, Prop. 5.3]). Let {Ay,..., Ax} and {By,..., By}
be families of subsets of V.=V, U VoW --- UV, such that:

o ANV =1, |B,NV;| =1 foralliel[k] and j € [r],
o A,NB; =0 foralli € [k],

e AinNB;j#0 foralll1 <i<j<k.
Then k < 2.

A common generalization of Lemma 5 and Lemma 18 was proved by Alon in [3].

The proof of Theorem 17 is the same as the proof of Theorem 3, except that we replace
Lemma 5 by Lemma 18. A similar argument was also used by Aharoni and Berger ([1,
Theorem 5.1]) in order to prove a related result about rainbow matchings in r-partite
r-uniform hypergraphs.
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