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Abstract

In this paper we prove an abelian analog of the famous Nivat’s conjecture
linking complexity and periodicity for two-dimensional words: We show that if
a two-dimensional recurrent word contains at most two abelian factors for each
pair (n,m) of integers, then it has a periodicity vector. Moreover, we show that
a two-dimensional aperiodic recurrent word must have more than two abelian fac-
tors infinitely often. On the other hand, there exist aperiodic recurrent words with
abelian complexity bounded by 3, as well as aperiodic words having abelian com-
plexity 1 for some pairs (m,n).

Mathematics Subject Classifications: 68R15, 37B50

1 Introduction

Nivat’s conjecture, introduced at ICALP 1997, is a two-dimensional analog of a classi-
cal one-dimensional theorem of Morse and Hedlund. In their seminal paper Symbolic
Dynamics (1938), besides giving formal foundations to a new mathematical field, they
introduced the notion of complexity of an infinite word as a function p(n) which counts,
for each integer n, the number of its distinct factors (i.e., blocks of consecutive letters) of
length n. The factor complexity provides a useful measure of randomness of an infinite
word and more generally of the subshift it generates. They further proved that an infinite
word is periodic if and only if its complexity function satisfies p(n) 6 n for each n. The
latter result is referred to as Morse-Hedlund theorem.

Nivat’s conjecture is a generalization of Morse-Hedlund theorem to two dimensions.
A two-dimensional word w (or a configuration) is an element of ΣZ2

, where Σ is a finite
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set called an alphabet. In other words, this is a mapping w assigning a symbol from the
alphabet Σ to every vertex of the lattice Z2. A word w is called periodic if there exists a
vector v ∈ Z2 such that for every point x ∈ Z2 we have w(x+v) = w(x). A complexity in
two dimensions is a function pw(m,n) counting for each m,n ∈ N the number of distinct
rectangular m× n blocks.

Conjecture 1. (Nivat’s conjecture [20]) Let w be a two-dimensional word, n, m two
numbers such that the complexity pw satisfies pw(n,m) 6 nm. Then w has a periodicity
vector.

Weak forms of the conjecture for pw(n,m) 6 nm
c

for different constants c > 0 were
proved by Epifanio, Koskas, Mignosi [12], by Quas, Zamboni [24], by Cyr, Kra [5], and in
asymptotic form by Kari, Szabados [7]; minimal complexity of aperiodic two-dimensional
words was explored by Berthé and Vuillon [3]. Remarkably, the conjecture does not
hold in higher dimensions [10]. About Nivat’s conjecture with an alternative notion for
periodicity, see [6].

The problem to be studied concerns abelian complexity of multidimentional words and
in particular an abelian analog of Nivat’s conjecture under recurrence condition. Various
abelian properties of (one-dimensional) words, including abelian complexity, have been
widely studied recently, see, e.g. [1, 16, 21, 22, 25]. A closely related paper studies balance
in two-dimensional words [2]. It is worth noting that, contrary to the one-dimensional
case, in two dimensions balance is not equivalent to bounded abelian complexity.

The paper is organized as follows. In Section 2, we provide some background and give
some definitions and notation. In Section 3 we provide our main results. In Subsection
3.1 we show that, contrary to the one-dimensional case, there exist aperiodic words with
abelian complexity 1 for some block sizes. In Subsection 3.2, we show that for recurrent
words abelian complexity cannot be bounded by 2. After providing some observations
about small abelian complexity of one-dimensional words in Subsection 3.3, we show in
Subsection 3.4 that for aperiodic recurrent two-dimensional words abelian complexity at
least 3 must be achieved for infinitely many block sizes.

2 Preliminaries

2.1 One-dimensional words

Let Σ be a finite non-empty set. For each infinite word w = w0w1w2 · · · ∈ ΣN, the complex-
ity or factor complexity pw(n) counts the number of distinct blocks wiwi+1 · · ·wi+n−1 ∈ Σn

of length n occurring in w. In a similar way the complexity function can be defined for
a biinfinite word w ∈ ΣZ. First introduced by Hedlund and Morse in their seminal 1938
paper [18] under the name of block growth, the factor complexity provides a useful measure
of the extent of randomness of x and more generally of the subshift it generates. A cel-
ebrated theorem of Morse and Hedlund in [18] states that every aperiodic word contains
at least n+ 1 distinct factors of each length n.

An infinite word w is called recurrent if each of its factors occurs in it infinitely many
times. An infinite word w is called uniformly recurrent if for each integer n there exists an
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integer N such that each of factors of w of length N contains all factors of w of length n.
In other words, a word is uniformly recurrent if each its factor occurs in it with bounded
gap. An infinite word w is called eventually periodic if there exist integers N and T such
that wn+T = wn for each n > N . An infinite word w is called purely periodic if wn+T = wn
for each n > 0. A word is aperiodic if it is not ultimately periodic. A biinfinite word w is
periodic if wn+T = wn for each integer n and aperiodic otherwise. For more on periodicity
we refer to [26].

For a finite word v and a letter a, we let |v|a denote the number of occurrences of

a in v. The frequency of a in v is Freqa(v) = |v|a
|v| . A (bi-)infinite word w has uniform

frequency of a letter a if the ratio |wk···wk+n−1|
n

has a limit Freqa(w) when n→∞, uniformly
in k. An infinite word is called balanced if each its two factors u and v of the same length
satisfy ||u|a − |v|a| 6 1 for each letter a ∈ Σ.

Theorem 2 (Morse and Hedlund, 1938). Let w be a one-dimensional word. If there exists
n such that pw(n) 6 n, then w is eventually periodic.

Words satisfying px(n) = n + 1 for each n > 0 are called Sturmian words, and hence
are regarded as the simplest aperiodic words. Sturmian words admit various types of
characterizations of geometric and combinatorial nature, e.g., they can be defined via
balance, complexity, morphisms, etc. (see Chapter 2 in [15]).

In this paper we are interested in extending the result of Morse and Hedlund to
the abelian setting. Two finite words u and v are abelian equivalent if for each let-
ter a, the number of occurrences of a in u (denoted |u|a) is equal to |v|a. In other
words, u and v are permutations of one another. It is straightforward that abelian equiv-
alence is indeed an equivalence relation on the set of finite words. For each infinite
word w = w0w1w2 · · · ∈ ΣN, the abelian complexity aw(n) counts the number of distinct
abelian classes of blocks wiwi+1 · · ·wi+n−1 ∈ Σn of length n occurring in w. Ordering
the alphabet Σ = {a1, . . . , ak}, we define Parikh vector of a finite word v over Σ as
PV (v) = (|v|a1 , . . . , |v|ak). The set of Parikh vectors of factors of length n of an infinite
word w is then denoted by PVw(n) (the index w is omitted when no ambiguity arises).

Lemma 3. Let w be a one-dimensional word. If there exists n such that aw(n) = 1, then
w is purely periodic.

On the other hand, Sturmian words are aperiodic and have abelian complexity 2 for
each n, and moreover this is a characterization:

Theorem 4 ([19]). Sturmian words are aperiodic one-dimensional words with abelian
complexity aw(n) = 2 for each integer n.

Therefore, Sturmian words are aperiodic words of minimal abelian complexity as well.
We remark that the above results and definitions extend to biinfinite words.
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2.2 Two-dimensional words

A two-dimensional word w is called periodic if there exists a pair of integers (m,n) such
that w(x, y) = w(x + m, y + n) for each pair (x, y) of integers. A two-dimensional word
w is called fully periodic if there exist two integer vectors (m1, n1), (m2, n2) linearly
independent over Q, such that w(x, y) = w(x+mi, y + ni) for each pair (x, y) of integers
and i = 1, 2. By an m × n factor (or block) of a two-dimensional word w we mean a
rectangular fragment of w of the form

wx,y+n−1 · · · wx+m−1,y+n−1
...

...
wx,y · · · wx+m−1,y

for some integers x, y. We say that the block occurs at position (x, y) and we let Bm,n(x, y)
denote such a block.

Similarly to the one-dimensional case, the abelian complexity aw(m,n) of a two-
dimensional word w is defined as the number of abelian classes of m × n blocks. A
two-dimensional word is balanced if for each pair (m,n) of integers, each letter a and
any two m × n-factors u and v of the words it holds ||u|a − |v|a| 6 1. Sometimes C-
balance is defined if the equality ||u|a − |v|a| 6 C holds. We remark that although in
the one-dimensional case bounded abelian complexity is equivalent to C-balance for some
constant C, in two dimensions it is not true: Consider, for example, a word with alter-
nating horizontal lines of 1’s and of 0’s. This word has bounded abelian complexity but
is not balanced.

A two-dimensional word w is called recurrent if each its factor occurs in it infinitely
many times. An infinite word w is called uniformly recurrent if for each integer n there
exists an integer N such that each square N × N factor of w contains all square factors
of w of size n× n. For different versions of recurrence in 2D-words, we refer to [4].

We now need a few technical definitions. We call an (m,n)-lattice rooted in (x, y) ∈ Z2

the set {(x, y) + (mi, nj)|i, j ∈ Z}. We remark that we can assume that 0 6 x < m, 0 6
y < n, and that this way Z2 is split into mn many (m,n)-lattices.

A two-dimensional infinite word w has uniform frequency of a letter a if the ratio
|Bm,m(x,y)|a

m2 has a limit Freqa(w) when m → ∞, uniformly in (x, y). We will also use
the notation PVw(m,n) for the set of Parikh vectors of m × n-blocks of a word w (the
index w is omitted when no ambiguity arises). The abelian complexity then satisfies
aw(m,n) = ]PVw(m,n).

3 Small abelian complexity of two-dimensional words

In this section we provide our main results. In the first subsection we consider the case
of abelian complexity equal to 1 for some blocks. In particular, we study the structure
of such words and show that, contrary to the one-dimensional case, there exist aperiodic
words with abelian complexity 1 for some block sizes. In the second subsection we show
that for recurrent two-dimensional words abelian complexity cannot be bounded by 2, but
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there exist aperiodic recurrent two-dimensional words with abelian complexity bounded
by 3. In the third subsection, we give some observations about small abelian complexity
of one-dimensional words. Finally, in the last subsection we show that for aperiodic
recurrent two-dimensional words abelian complexity at least 3 must be achieved for an
infinite number of block sizes.

3.1 Abelian complexity 1 from some block size

First we describe the structure of two-dimensional words having abelian complexity 1 for
some block size:

Theorem 5. Let w be a two-dimensional word, and let aw(m,n) = 1 for some integers
m and n. Then in each (m,n)-lattice w is either (0, n)-periodic or (m, 0)-periodic, i.e.,
we have either w(x, y) = w(x + m, y) for each point (x, y) from the lattice, or w(x, y) =
w(x, y + n) for each point (x, y) from the lattice.

Proof. Consider an (m,n)-lattice and any point (x, y) ∈ Z2 from the lattice. Considering
Parikh vectors of four m×n rectangles Bm,n(x, y), Bm,n(x+1, y), Bm,n(x, y+1), Bm,n(x+
1, y+1), we will now prove that we get that either w(x, y) = w(x+m, y) and w(x, y+n) =
w(x+m, y + n) or w(x, y) = w(x, y + n) and w(x+m, y) = w(x+m, y + n).

For brevity, we denote PV (B1,n−1(x, y + 1)) = A, PV (B1,n−1(x + m, y + 1)) = B;
w(x, y) = a, w(x+m, y) = b, w(x, y + n) = c and w(x+m, y + n) = d:

c d

A B

a b

For a letter a, we let va denote the Parikh vector of a single element a. Since aw(m,n) =
1, the Parikh vectors of all m× n blocks are the same. Now

Bm,n(x, y) = Bm,n(x+ 1, y) ⇒ va + A = vb +B, (1)

Bm,n(x+ 1, y) = Bm,n(x+ 1, y + 1) ⇒ vc + A = vd +B, (2)

(1) and (2) imply that va+vd = vb+vc, which means that either a = b and c = d or a = c
and d = b, as required.

If the (m,n)-lattice is not filled with a single letter, we have at some point (x, y)
from the lattice w(x, y) 6= w(x, y + n) or w(x, y) 6= w(x + m, y). Consider the first case
(the second one is symmetric). From what we proved above, in the first case we have
w(x, y) = w(x + m, y) and w(x, y + n) = w(x + m, y + n) (the second option is not
possible due to the conditions of the case). By a similar reasoning as in the previous
paragraph applied to the point (x + m, y), we get that w(x + m, y) = w(x + 2m, y) and
w(x + m, y + n) = w(x + 2m, y + n), and extending this line of reasoning we obtain
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w(x, y) = w(x + im, y) and w(x, y + n) = w(x + im, y + n) for any integer i. Now
applying the same considerations to the point (x + im, y + n), we get that either w(x +
im, y + n) = w(x+ (i+ 1)m, y + n) and w(x+ im, y + 2n) = w(x+ (i+ 1)m, y + 2n) or
w(x+ im, y+n) = w(x+ im, y+2n) and w(x+(i+1)m, y+n) = w(x+(i+1)m, y+2n).
Since we proved that w(x + im, y + n) = w(x + (i + 1)m, y + n), in any case we have
w(x + im, y + 2n) = w(x + (i + 1)m, y + 2n). Extending this line of reasoning, we get
(m, 0)-periodicity in each of the horizontal lines of the lattice and hence in the whole
lattice. In the second case in a symmetric way we get (0, n)-periodicity in the lattice.
Theorem is proved.

The following proposition shows that, contrary to one-dimensional case (Lemma 3),
there exist aperiodic two-dimensional words that have abelian complexity 1 for some
values m and n.

Proposition 6. There exists an aperiodic two-dimensional word w with abelian complexity
aw(m,n) = 1 for infinitely many pairs (m,n).

Proof. We construct such a word of 2×2 blocks each of them being either
0 1
1 0

or
1 0
0 1

,

in a way that in (4, 2)-lattices rooted in (x, y) ∈ {0, 1}2 the word is (4, 0)-periodic, and
in (4, 2)-lattices rooted in (x, y) ∈ {2, 3} × {0, 1} it is (0, 2)-periodic. Now we fill in the
blocks {0, 1}×{2i, 2i+1}, i ∈ Z choosing one of the two blocks for any i in arbitrary way,
and continue by (4, 0)-periodicity to fill into the blocks {4j, 4j+ 1}×{2i, 2i+ 1}, i, j ∈ Z.
In the similar way we fill in the remaining blocks: we can fill in the blocks {2j + 2, 2j +
3}× {0, 1}, j ∈ Z choosing one of the two blocks for any j in arbitrary way, and continue
by (0, 2)-periodicity to fill into the blocks {4j + 2, 4j + 3} × {2i, 2i+ 1}, i, j ∈ Z. Here is
an fragment of such a word, with letters from the (4, 2)-lattices rooted in (x, y) ∈ {0, 1}2

marked by bold:

0 1 0 1 0 1 1 0 0 1 1 0
1 0 1 0 1 0 0 1 1 0 0 1
1 0 0 1 1 0 1 0 1 0 1 0
0 1 1 0 0 1 0 1 0 1 0 1
0 1 0 1 0 1 1 0 0 1 1 0
1 0 1 0 1 0 0 1 1 0 0 1
0 1 0 1 0 1 1 0 0 1 1 0
1 0 1 0 1 0 0 1 1 0 0 1

It is not hard to see that any 4 × 2 rectangle has four occurrences of 0 and four
occurrences of 1. Clearly, this holds true for blocks with even coordinates, since it contains

two blocks of the form
0 1
1 0

or
1 0
0 1

. Its shifts by (0, 1), (1, 0) or (1, 1) have the same

Parikh vector due to (4, 0) or (0, 2)-periodicity in corresponding lattices and the block
structure.
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We remark that this word has abelian complexity 1 for infinitely many values (m,n),
for example for values of the form (4m′, 2n′), where m′ and n′ are any integers. It is not
hard to show that its abelian complexity is at most 3. One can show that considering
position of an (m,n)-block relatively to initial block and consider its shifts by one of the
8 vectors in {0, 1, 2, 3} × {0, 1}. Proposition is proved.

3.2 Abelian complexity bounded by 2

We start this section with an obvious example:

Example. There exists an aperiodic two-dimensional word w with abelian complexity
aw(m,n) = 2 for all pairs (m,n). Just take w(0, 0) = 1 and w(i, j) = 0 if (i, j) 6= (0, 0).

Clearly, the word from the example is not recurrent. The aim of this subsection is to
prove that for recurrent words the abelian complexity cannot be bounded by 2:

Theorem 7. Let w be a two-dimensional aperiodic recurrent word. Then there exist
integers m and n such that aw(m,n) > 3.

We first prove a few simple technical lemmas.

Lemma 8. Let w be a one-dimensional binary word with uniform frequency of 1 equal to
α, 0 < α < 1. Then for each N there exists n > N such that aw(n) > 2.

Proof. If α is irrational, clearly, we cannot have abelian complexity 1 for any n, since
otherwise the word would have rational uniform frequency given by |v|1

n
for a factor v of

w of length n. If α is rational, α = p
q
, then take n to be any prime number greater than

q and N . Then the uniform frequency of 1 is |v|1
n

for a factor v of w of length n, which
cannot be equal to p

q
, since n is a prime greater than q and α 6= 0, 1.

Lemma 9. Let w and w′ be one-dimensional binary words with uniform frequencies of
1 equal to α0 and α1, respectively. If α0 6= α1, then there exists N such that PVw(n) ∩
PVw′(n) = ∅ for each n > N .

Proof. Follows from the definition of uniform frequency.

Proof of Theorem 7. Assume that for each m,n we have aw(m,n) 6 2. First note that
taking m = n = 1 we get that the word is binary; we let 0 and 1 denote the letters.
Taking n = 1, we get that in horizontal lines we have abelian complexity at most 2 for
each m. This means that in each horizontal line there exists a uniform frequency of 1.
Since abelian complexity is at most 2 for each n, the uniform frequency can take at most
two distinct values.

First consider the case of two values. Clearly, these two values cannot be achieved in
one horizontal line. So, we have one uniform frequency in some lines and another uniform
frequency in other lines. Lemma 9 implies that for n big enough we must have only one
Parikh vector in each line. Let α be the uniform frequency in one of the lines. If α 6= 0, 1,
then, due to Lemma 8, for some n, which can be chosen as big as needed, we must have at
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least two distinct Parikh vectors, which gives at least three in total together with Parikh
vector of another uniform frequency – a contradiction. Therefore, the only possible case
of two distinct uniform frequencies is given by 0 and 1. It is not hard to see that lines
with uniform frequency 1 can only be all-ones lines and lines with uniform frequency 0
can only be all-zero lines. Indeed, otherwise we necessarily have abelian complexity at
least 3 for n = 2: we have factors 00 and 11 in the lines with uniform frequency 0 and 1,
respectively, and we must have factor 01 or 10 if some line contains both 0 and 1. And
in the case when lines with uniform frequency 1 are all-ones lines and lines with uniform
frequency 0 are all-zero lines we have a periodicity vector (1, 0).

Therefore, in all horizontal lines we have the same uniform frequencies of letters.
Symmetrically, we also have the same uniform frequencies of letters in all vertical lines.
Taking into account our assumption about abelian complexity at most 2, we have balance
in 1×m and n× 1 rectangles.

Now for any (m,n) consider an m × n-rectangle and a vertical stripe of width m
containing it. Consider such a rectangle and its vertical shift by one. These two rectangles
have a (m − 1) × n-rectangle in common (plus a m × 1-rectangle each). Since we have
balance in m×1-rectangles and abelian complexity 2 for m×n rectangles, we get balance
in m× n-rectangles in each vertical stripe of width m. Symmetrically, we get balance in
each horizontal stripe of height n. Now from abelian complexity 2 in m×n-rectangles we
get balance in m× n-rectangles.

Now we use the characterization of balanced two-dimensional words by V. Berthé and
R. Tijdeman [2]. In the paper, Corollary from the Introduction states the following:

Corollary 10 ([2]). Two-dimensional 1-balanced words have uniform frequencies of let-
ters, and moreover they are fully periodic unless the uniform frequency of 1-s equals 0
or 1.

On the other hand, it is not hard to describe balanced words of uniform frequency 0
(or, symmetrically, 1). Clearly, each rectangular block must have at most one occurrence
of 1 (otherwise we have unbalanceness, since in a word with uniform frequency 0 we
must have an all-0 block of any size). So, the whole two-dimensional word has at most
one occurrence of 1. Therefore, this is either all-0 word, or a word containing only one
occurrence of 1. The first one is fully periodic, the second one is not recurrent. The
theorem is proved.

In Proposition 6 we saw that there exist aperiodic words with abelian complexity at
most 3 and equal to 1 for some pairs (m,n), but the abelian complexity 1 still gives some
periodicity-like structure (periodicity in lattices). The following proposition shows that
we can in fact have abelian complexity at most 3 without this periodicity-like structure:

Proposition 11. There exist recurrent aperiodic two-dimensional words that have abelian
complexity 2 or 3 and are aperiodic in any lattice.

Proof. To build such an example, we start with any binary word x ∈ {0, 1}Z. We build a
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two-dimensional word w by 2× 2 blocks in the following way:

w2i,2j+1 w2i+1,2j+1

w2i,2j w2i+1,2j
=


1 0

0 1
, if xi = xj,

0 1

1 0
, if xi 6= xj.

For the proof we define a “domino pair” to be a pair of adjacent elements of the form

w2k,lw2k+1,l+1 or
wk,2l+1

wk,2l
. Note that each “domino pair” contains exactly one occurrence

of 0 and one occurrence of 1 by construction.
To prove that abelian complexity aw(m,n) of this word is at most 3, we consider three

cases:
Case 1: m and n are both odd. In this case the Parikh vector of an (m×n)-block can

be divided into mn−1
2

domino pairs plus one element which can be either 0 or 1 (See Fig.
1), hence in this case aw(m,n) = 2 and

PV (m,n) =

{(
mn− 1

2
,
mn+ 1

2

)
,

(
mn+ 1

2
,
mn− 1

2

)}
.

Case 2: one of the numbers m and n is odd, and the other one is even. Without loss
of generality suppose that n is odd and m is even. Here we have two subcases: either
(m× n)-block is situated in a point with an even second coordinate, or with an odd one.
In the first subcase the (m × n)-block contains mn

2
domino pairs and hence the Parikh

vector is (mn
2
, mn

2
) (See Fig. 1, Case 2a). In the other subcase the (m× n)-block contains

mn
2
− 1 domino pairs plus two points (See Fig. 1, Case 2b). These two points can be

either both 0, or both 1, or one of them 0 and the other one 1, which gives three possible
Parikh vectors, one of which coinciding with the previous subcase:

PV (m,n) =
{(mn

2
,
mn

2

)
,
(mn

2
− 1,

mn

2
+ 1
)
,
(mn

2
+ 1,

mn

2
− 1
)}

and aw(m,n) = 3.
Case 3: both m and n are even. Here we have two subcases: either (m × n)-block is

situated in a point with one or both even coordinates, or both coordinates are odd. In
the first subcase the (m×n)-block contains mn

2
domino pairs and hence the Parikh vector

is (mn
2
, mn

2
) (See Fig. 1, Case 3a). In the other subcase the (m×n)-block contains mn

2
− 2

domino pairs plus four points of the form (2k+ 1, 2l+ 1), (2k+m, 2l+ 1), (2k+ 1, 2l+n)
and (2k+m, 2l+n) (See Fig. 1, Case 3b). By construction, if xs = xt, then w2s,i = w2t,i =
1−w2s+1,i = 1−w2t+1,i for each i; and if xs 6= xt, then w2s,i = 1−w2t,i = 1−w2s+1,i = w2t+1,i

for each i. Applying this observation to (s, t) ∈ {(k, l), (k+ m
2
, l), (k, l+ n

2
), (k+ m

2
, l+ n

2
)}

(for example, using a straighforward case study), we get three Parikh vectors:

PV (m,n) =
{(mn

2
,
mn

2

)
,
(mn

2
− 2,

mn

2
+ 2
)
,
(mn

2
+ 2,

mn

2
− 2
)}
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Case 1 Case 2a Case 2b Case 3a Case 3b

Figure 1: The cases from the proof of Proposition 11 (up to symmetry).

and aw(m,n) = 3.
Summing up, the abelian complexity of this word is given by:

aw(m,n) =

{
2, if m and n are odd,

3, otherwise.

It is not hard to see that if x is recurrent and aperiodic, then w is recurrent and
aperiodic. The proposition is proved.

Example: Such two-dimensional word can be constructed, for example, using the Thue-
Morse word t, which is defined as the fixed point of the morphism τ : 0→ 01, 1→ 10:

t = 0110100110010110 · · ·

As a word x from the above construction, we can take any word form the shift orbit
closure of t, for example, tRt. A fragment of the corresponding two-dimensional word of
abelian complexity at most 3 is

1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1

Remark: For some values of (m,n) the balance constant is 4 for abelian complexity
3, which is not possible in one-dimensional case: in one dimension, words of abelian
complexity 3 are exactly 2-balanced words (in the binary case).

3.3 Some observations on abelian complexity of one-dimensional words

By Lemma 3 we know that the abelian complexity of an aperiodic one-dimensional word is
at least 2 for each n. Theorem 4 says that aperiodic words achieving the minimal abelian
complexity 2 for each n are exactly Sturmian words. Can an aperiodic word have abelian
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complexity greater than 2 for only one (or finitely many) values of n? The following
lemma basically says in an aperiodic non-Sturmian case the abelian complexity is not
minimal for infinitely many n:

Lemma 12. Let w be a binary aperiodic one-dimensional word which is not balanced.
Then we have aw(n) > 3 for infinitely many n.

Proof. Since w is not balanced, there exists a length k for which at least three abelian
classes exist. Since the word is aperiodic, each of its suffixes is aperiodic. Hence in its
suffix for each length there are at least two abelian classes of factors, which means that
for each length factors from at least two abelian classes occur infinitely many times in w.
Without loss of generality assume that for length k two abelian classes of factors occurring
infinitely many times contain m and m+ 1 occurrences of a, and there also exists a factor
u containing m− 1 occurrences of a (possibly occurring only finitely many times). We let
s denote some position of an occurrence of u. Consider an occurrence of a factor v from
the class with m + 1 occurrences of a. We let t denote the position of this occurrence,
and we remark that t can be chosen bigger than any given constant. Now consider two
factors U = ws · · ·wt−1 and V = ws+k · · ·wt+k−1 of the same length t − s, which can be
bigger than any given constant by the remark above.

|U |a − |V |a = (|ws · · ·ws+k−1|a + |ws+k · · ·wt−1|a)− (|ws+k · · ·wt−1|a + |wt · · ·wt+k−1|a) =

= |ws · · ·ws+k−1|a − |wt · · ·wt+k−1|a = |u|a − |v|a = (m− 1)− (m+ 1) = −2.

Therefore, we have at least three abelian classes of words of length (t − s). Since t
can be chosen bigger than any number, we have infinitely many lengths with 3 abelian
classes.

The lemma is proved.

We remark that for biinfinite words Lemma 12 does not hold, for example, the following
word:

· · · 010101010101100110101010101010101 · · ·
has three abelian classes of length 2 and two abelian classes for length greater than 2.
By the definition of periodicity for biinfinite words, this word is aperiodic – although
obviously it has some periodicity structure similar to ultimate periodicity (prefixes and
suffixes are periodic). However, for aperiodic biinfinite words recurrence is enough to
guarantee that it is impossible to have three abelian classes for finitely many lengths:

Lemma 13. Let w be a binary aperiodic recurrent biinfinite one-dimensional word which
is not balanced. Then we have aw(n) > 3 for infinitely many n.

Proof. Suppose the converse, and let n denote the biggest length for which we have three
or more abelian classes. Consider two factors u, v of w of length n with |u|1 − |v|1 > 2.
Since w is recurrent, u and v occur infinitely many times in w. In particular, this means
that for each N ∈ N, there exist an occurrence of u at position i and an occurrence of v
at position j, such that |j − i| > N . Without loss of generality suppose that j > i. Then
|wi · · ·wj−1|1 − |wi+n · · ·wj+n−1|1 = |wi · · ·wi+n−1|1 − |wj · · ·wj+n−1|1 = |u|1 − |v|1 > 2.
Therefore, for length j − i we also have at least three abelian factors. A contradiction.
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3.4 Abelian complexity eventually bounded by 2

A fact similar to Lemma 13 is true also for two-dimensional words and even in a slightly
stronger form (no aperiodicity is needed), although the proof is more complicated:

Theorem 14. Let w be a binary two-dimensional recurrent word whose abelian complexity
is not bounded by 2, i.e. there exists a pair (m,n) of integers with aw(m,n) > 2. Then
there exists infinitely many pairs (m,n) for which the inequality holds.

The proof is split into several lemmas.

Lemma 15. Let w be a binary two-dimensional word such that its abelian complexity is
eventually bounded by 2, i.e. there exist M,N ∈ N such that for each (m,n) with n > N
or m > M we have aw(m,n) 6 2. Then w has uniform frequencies of letters. Moreover,
the balance condition is satisfied for m× n-rectangles with n > N or m > M .

Proof. The proof is similar to the first part of the proof of Theorem 7. Taking n = 1, we
get that in horizontal lines we have abelian complexity at most 2 for each m > M . This
means that in each horizontal line there exists a uniform frequency of 1. Since abelian
complexity is at most 2 for each m > M , the uniform frequency can take at most two
distinct values.

First consider the case of two values. Clearly, these two values cannot be achieved in
one horizontal line. So, we have one uniform frequency in some lines and another uniform
frequency in other lines. Lemma 9 implies that for m big enough we must have only one
Parikh vector in each line. Let α be the uniform frequency in one of the lines. If α 6= 0, 1,
then, due to Lemma 8, for some m, which can be chosen as big as needed, we must have at
least two distinct Parikh vectors, which gives at least three in total together with Parikh
vector of another uniform frequency – a contradiction. Therefore, the only possible case
of two distinct uniform frequencies is given by 0 and 1. It is not hard to see that lines
with uniform frequency 1 can only be all-ones lines and lines with uniform frequency 0
can only be all-zero lines. Indeed, otherwise we necessarily have abelian complexity at
least 3 for each m > 2: we have factors 0m and 1m in the lines with uniform frequency 0
and 1, respectively, and we must have factor 01m−1 or 10m−1 if some line contains both 0
and 1. And in the case when lines with uniform frequency 1 are all-ones lines and lines
with uniform frequency 0 are all-zero lines we have a periodicity vector (1, 0).

Therefore, in all horizontal lines we have the same uniform frequencies of letters and
the balance condition for m×1-rectangles with m >M . Symmetrically we prove that the
uniform frequencies are the same in vertical lines, and get balance condition in vertical
rectangles. The existence of uniform frequency and balance follows. The balance in m×n
rectangles is proved in exactly the same way as in the Theorem 7. Lemma is proved.

Lemma 16. Let w be a two-dimensional word satisfying the conditions of Lemma 15.
Then the uniform frequencies of letters in w are rational.

To prove that, we will make use of properties of Sturmian words and in particular their
definition via rotations. Before giving the proof, we provide some facts about Sturmian
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words, making use of their definition via rotations. In [19], Morse and Hedlund showed
that each Sturmian word may be realized geometrically by an irrational rotation on the
circle. More precisely, every Sturmian word x is obtained by coding the symbolic orbit of
a point ρ(x) on the circle (of circumference one) under a rotation by an irrational angle α
where the circle is partitioned into two complementary intervals, one of length α (labeled
1) and the other of length 1− α (labeled 0). And conversely each such coding gives rise
to a Sturmian word. The irrational α is called the slope and the point ρ(x) is called the
intercept of the Sturmian word x. More precisely, a Sturmian word sα,ρ is defined as

sα,ρ(i) =

{
1, if{ρ+ iα} ∈ I1,

0, if{ρ+ iα} ∈ I0,

where I1 = (1− α, 1] and I0 = (0, 1− α] (or I1 = [1− α, 1) and I0 = [0, 1− α)).
It is well known (e.g. [17], see also a short survey in [11]) that each of the m+1 factors

of a Sturmian word of length m corresponds to a half-open interval on the circle. More
precisely, if we arrange the m + 2 points 0, 1, {−α}, {−2α}, . . . , {−mα} in increasing
order, we determine a partition of the circle into m + 1 half-open subintervals L0(m),
L1(m), . . . , Lm(m). Each of these subintervals is in bijection with a factor of length m
of a Sturmian word of slope α. Moreover, the factors associated with these intervals are
lexicographically ordered.

Recall that a factor of length m of a Sturmian word sα has a Parikh vector equal either
to (dmαe,m− dmαe) (in which case it is called light) or to (bmαc,m− bmαc) (in which
case it is called heavy). We let I(α, β), α, β ∈ [0, 1), α < β, denote the interval [α, β) if
0 ∈ I1 and for (α, β] if 0 /∈ I1. The following proposition relates the intervals Li(m) to
the Parikh vectors of the associated factors:

Proposition 17 (Proposition 3.3. in [11]; see also Theorem 19 in [23]). Let s be a
Sturmian word of angle α and m be a positive integer. Let ti be the factor of length m
associated with the interval Li(m). Then ti is heavy if Li(m) ⊂ I({−mα}, 1), while it is
light if Li(m) ⊂ I(0, {−mα}).

Proof of Lemma 16. Suppose the uniform frequencies are irrational. We let α denote the
uniform frequency of 1. Due to balance in m × 1 blocks (given by Lemma 15), we have
uniform frequency α in all horizontal lines. Hence all horizontal lines, as well as their one-
way infinite suffixes, are aperiodic. By Lemma 12, in each line we have a balanced word
with the same irrational uniform frequencies of letters, hence all the words in horizontal
lines are Sturmian with the same slope.

We will now prove that in this case, for two consecutive horizontal lines (corresponding
to y = t and y = t+ 1), there exists m > M (where M is as in Lemma 15) and positions
i and j such that ||Bm,2(i, t)|0 − |Bm,2(j, t)|0| = 2 (equivalently, for any two Sturmian
words of the same slope, there exist infinitely many m such that they both have at some
position factors are light, and in another position factors heavy). This means that w is
unbalanced in rectangle m × 2 with m > M , which gives the unbalance contradicting
Lemma 15. First note that by Kronecker’s theorem (see, e.g., [13]), the points {−mα}
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are dense in the circle for α irrational. We now have two Sturmian words with the same
slope α and different intercepts x and x′: sα,x and sα,x′ . Since {−mα} are dense in
the circle, we can choose m such that the distance between x and x′ on the circle (i.e.,
min(|x− x′|, 1− |x− x′|)) is smaller than min({−mα}, 1− {−mα}). Now, again due to
the fact that the points {−mα} are dense in the circle, there exists a position i such that
both x + iα ∈ I({−mα}, 1) and x′ + iα ∈ I({−mα}, 1). Symmetrically, there exists a
position j such that both x+ jα ∈ I(0, {−mα}) and x′ + jα ∈ I(0, {−mα}).

Lemma is proved.

Lemma 18. Let w be a two-dimensional word satisfying the conditions of Lemma 15,
i.e. there exist M,N ∈ N such that for each (m,n) with n > N or m > M we have
aw(m,n) 6 2, and let λ be the rational uniform frequency p

q
of the letter 1. Let (m1, n1)

and (m2, n2) be two pairs of integers satisfying mi > M or ni > N for i = 1, 2, with m1n1

and m2n2 divisible by q. Then one of the three possibilities holds for pairs (m1, n1) and
(m2, n2) simultaneously:

1. PV (mi, ni) = {(mini
p
q
,mini(1− p

q
)), (mini

p
q

+ 1,mini(1− p
q
)− 1)},

2. PV (mi, ni) = {(mini
p
q
,mini(1− p

q
)), (mini

p
q
− 1,mini(1− p

q
) + 1)},

3. PV (mi, ni) = {(mini
p
q
,mini(1− p

q
))}.

In particular, in the case m1n1 = m2n2 we have PV (m1, n1) = PV (m2, n2).

Proof. Due to the condition on mi and ni, we have balance in mi×ni rectangles by Lemma
15. By the condition on the uniform frequency, one of the three cases holds for each pair
(mi, ni) independently. So, it remains to prove that they must happen simultaneously.

Suppose first that (m1, n1) satisfies Case 1, i.e., PV (m1, n1) = {(m1n1
p
q
,m1n1(1 −

p
q
)), (m1n1

p
q

+ 1,m1n1(1 − p
q
) − 1)}. Consider a rectangular factor of size (m1m2, n1n2)

and its factorization with m1 × n1-rectangles, such that in the factorization there is a
rectangle with Parikh vector (m1n1

p
q

+1,m1n1(1− p
q
)−1). Clearly, the uniform frequency

of 1 in this bigger rectangle is larger than λ. Now consider its factorization with m1×n1-
and m2×n2-rectangles. Due to uniform frequency and m2×n2-balance, it must contain a
m2×n2-rectangle with Parikh vector (m1n1

p
q
+1,m1n1(1− p

q
)−1). Therefore, PV (m2, n2)

also satisfies Case 1. Case 2 is symmetric.
Now suppose that (m1, n1) satisfies Case 3, i.e., we have only one abelian class for

m1 × n1-rectangle: PV (m1, n1) = {(m1n1
p
q
,m1n1(1 − p

q
))}. If for m2 × n2-rectangles we

have only one abelian class, then clearly its Parikh vector should be the same. The case
of two Parikh vectors for (m2×n2) is impossible, since we have just proved that it implies
two Parikh vectors for (m1 × n1). Lemma is proved.

Proof of Theorem 14. Suppose the converse: let w be a two-dimensional word which has
abelian complexity bounded by 2 for all but a finite non-empty set of pairs (m,n). Let
S × T be the largest block for which aw(S, T ) > 3 (in the sense that for all blocks with
m > S and n > T or m > S and n > T we have aw(m,n) 6 2). We remark that the
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x x+ S x′ x′ + S

y

y + T

BS,T (x, y) BS,T (x′, y)

Figure 2: Illustration to the proof of Claim 1.

choice of S and T is not necessarily unique, and that for M and N defined in Lemma 15,
we have M > S,N > T . So, there exist an integer l and occurrences of S×T -blocks with
> l occurrences of 1, l occurrences of 1 and < l occurrences of 1. By Lemmas 15 and
16, the uniform frequency of 1 in w exists and is rational; we let λ denote this uniform
frequency.

Claim 1 : Let (x, y) be an occurrence of S × T -block with > l occurrences of 1, i.e.,
|BS,T (x, y)|1 > l. Then for each x′ > x+M we have |BS,T (x′, y)|1 > l. Symmetrically, the
same holds for (x′, y) with x′ < x−M and for each (x, y′) with y′ > y+N or y′ < y−N .
And, symmetrically, one can replace > l with < l and obtain a similar statement.

Proof of Claim 1. Assume the converse, i.e., there exists x′ > x+M with

|BS,T (x′, y)|1 < l.

Then
||Bx′−x,T (x, y)|1 − |Bx′−x,T (x+ S, y)|1| =

||BS,T (x, y)|1 − |BS,T (x′, y)|1| > 2

(see Fig. 2) So, we get unbalance in (x′ − x) × T -blocks; since x′ − x > M , we have a
contradiction with Lemma 15. The other statements are symmetric. Claim 1 is proved.

Claim 2 : Let (x, y) be an occurrence of S × T -block with > l occurrences of 1, i.e.,
|BS,T (x, y)|1 > l. Then for each x′ > x+M +S we have |BS,T (x′, y)|1 6 l. Symmetrically,
the same holds for (x′, y) with x′ < x−M −S and for each (x, y′) with y′ > y+N +T or
y′ < y − N − T . And, symmetrically, one can replace > l with < l and obtain a similar
statement.

Proof of Claim 2. Assume the converse, that is, there exists x′ > x + M + S with
|BS,T (x′, y)|1 > l. Consider an occurrence (x1, y1) of an S × T -block with < l occurrences
of 1. Due to Claim 1 applied to (x1, y1) (a symmetric statement for < l),

|BS,T (x1 + x′ − x, y1)|1 6 l.
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Then either
||Bx′−x+S,T (x, y)|1 − |Bx′−x+S,T (x1, y1)|1| > 2,

or
||Bx′−x−S,T (x+ S, y)|1 − |Bx′−x−S,T (x1 + S, y1)|1| > 2.

So, we get unbalance in (x′ − x + S) × T -blocks, or in (x′ − x − S) × T -blocks; since
x′ − x − S > M , we have a contradiction with Lemma 15. The other statements are
symmetric. Claim 2 is proved.

Claims 1 and 2 immediately imply

Corollary : Let l be as above, (x, y) be an occurrence of S × T -block with > l or
< l occurrences of 1, i.e., |BS,T (x, y)|1 6= l. Then for each x′ > x + M + S we have
|BS,T (x′, y)|1 = l. Symmetrically, the same holds for (x′, y) with x′ < x−M − S and for
each (x, y′) with y′ > y +N + T or y′ < y −N − T .

Claim 3 : For the (rational) uniform frequency λ = p
q

of 1 in the word, we have p
q

= l
ST

.

Proof of Claim 3. Since the uniform frequency is p
q
, due to Lemma 18, we have in the

blocks iS × T for iST divisible by q the uniform frequency of l equal to either p
q

= l
ST

, or
p
q

= l+1
ST

, or p
q

= l−1
ST

. The second case is impossible, since considering the 2iS × T blocks,

we get imbalance: we get blocks with 2l occurrences of 1’s (in positions (x′, y)), as well as
blocks with p

q
2iST = 2(l + 1) occurrences of 1’s (due to uniform frequency and Lemma

18). The difference in the numbers of occurrences of 1’s is 2; the unbalance follows. The
third case is symmetric. The claim is proved.

Now we continue the proof of the theorem. By Lemma 18, we get that for any pair
(m,n) of integers satisfying m > M or n > N , with mn divisible by q, there are m × n
blocks of uniform frequency λ = p

q
, and moreover we have three possibilities for the sets

of Parikh vectors:

1. PV (m,n) = {(mnp
q
,mn(1− p

q
)), (mnp

q
+ 1,mn(1− p

q
)− 1)},

2. PV (m,n) = {(mnp
q
,mn(1− p

q
)), (mnp

q
− 1,mn(1− p

q
) + 1)},

3. PV (m,n) = {(mnp
q
,mn(1− p

q
))}.

We will now show that the third case is impossible. Consider two blocks of the same
size: let (x, y) be an occurrence of S × T -block with > l or < l occurrences of 1, i.e.,
|BS,T (x, y)|1 6= l. Now we consider for x′ > x + M + S a block Bx′−x,T (x, y) and its
shift by (S, 0): Bx′−x,T (x + S, y). Due to the corollary above, we have |BS,T (x′, y)|1 = l.
Therefore,

|Bx′−x,T (x, y)|1 − |Bx′−x,T (x+ S, y)|1 6= 0.

So, we have distinct Parikh vectors for these blocks (Case 3 is therefore impossible),
and hence for all (m,n) satisfying m > M or n > N , with mn divisible by q, we have either
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Case 1 or Case 2. Without loss of generality assume we have Case 1, i.e., PV (m,n) =
{(mnp

q
,mn(1− p

q
)), (mnp

q
+ 1,mn(1− p

q
)− 1)}.

Now take any two occurrences of an S × T -block at positions (x, y) and (x′, y′) with
l+1 occurrences of 1. Due to recurrence and Corollary above, we can assume that (x′−x)
and (y′ − y) are divisible by q and up to symmetry x′ > x + M + S, y′ > y + N + T .
Indeed, due to recurrence there are infinitely many occurrences of S×T blocks with l+ 1
occurrences of 1. Due to the corollary above, there cannot be infinitely many with the
same x or the same y. Therefore, we must have an infinite sequence of occurrences (xi, yi)
with xi+1 > xi+M +S, yi+1 > yi+N +T (up to symmetry). By the pigeonhole principle
applied to residues (xi mod q, yi mod q), we can choose two occurrences with the same
residues; the divisibility follows. By the choice of x, x′, y, y′ we have:

|BS,T (x, y)|1 = |BS,T (x′, y′)|1 = l + 1; (3)

Now we notice that (see yellow rectangles on Fig. 3):

|Bx′−x,T (x+ S, y)|1 = |Bx′−x,T (x, y′)|1 = B(x′ − x)
p

q
; (4)

Indeed, otherwise due to Lemma 18 for (x′−x)×T blocks we would have |Bx′−x,T (x+
S, y)|1 = T (x′ − x)p

q
+ 1 and hence |Bx′−x+S,T (x, y)|1 = T (x′ − x+ S)p

q
+ 2, contradicting

Lemma 18 for (x′ − x+ S)× T blocks. Similarly for the other equality.
Due to Lemma 18 we have the following inequality (in fact, the inequality holds for all

blocks of sizes satisfying the conditions of the lemma) for the green rectangle on Fig. 3:

|Bx′−x+S,y′−y−T (x, y + T )|1 > (x′ − x+ S)(y′ − y − T )
p

q
. (5)

Summing up (3), (4) and (5), we obtain for big rectangle on Fig. 3:

|Bx′−x+S,y′−y+T (x, y)|1 > (x′ − x+ S)(y′ − y + T )
p

q
+ 2,

which contradicts Lemma 18. The theorem is proved.

In the end of this section we treat the case of a non-binary alphabet. Clearly, for
non-binary alphabet abelian complexity cannot be bounded by 2 (since it is at least 3 for
1× 1 block). But it is not hard to show that the fact similar to Theorems 7 and 14 also
holds for non-binary alphabet:

Theorem 19. Let w be a two-dimensional aperiodic recurrent word over an alphabet of
more than two letters. Then there exists infinitely many pairs (m,n) for which aw(m,n) >
3.

Proof. Suppose the converse, i.e., the abelian complexity of w is eventually bounded
by 2, so that we can define M,N ∈ N to be such that for each (m,n) with n > N or
m > M we have aw(m,n) 6 2. Consider m > M . Since w is aperiodic, there exists a
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BS,T (x′, y′)

Figure 3: Illustration to the proof of Theorem 14.

letter a such that this letter is not (m, 0)-periodic. Consider an occurrence (x, y) of a:
w(x, y) = a, such that w(x+m, y) 6= a; we let b denote the letter at position (x+m, y):
w(x + m, y) = b. Consider Parikh vectors of blocks Bm,1(x, y) and Bm,1(x + 1, y). Let
PV (Bm−1,1(x + 1, y)) = (p1, . . . , p|Σ|), hence PV (Bm,1(x, y)) = (p1, . . . , pa + 1, . . . , p|Σ|);
PV (Bm,1(x+ 1, y)) = (p1, . . . , pb + 1, . . . , p|Σ|). Since we only have two Parikh vectors for
blocks of size m× 1, this means that all letters distinct from a and b are (m, 0)-periodic
(and since we have non-binary alphabet, there is at least one such letter). Moreover,
periodic letters must appear in each horizontal line (otherwise there will be a third Parikh
vector). Now take any pair of relatively prime numbers (m1,m2) and notice that any two
arithmetic progressions with differences m1 and m2 intersect. Hence the (m1, 0)-periodic
letter is the same as m2-periodic letter. Now since for any integer n there exist integers p
and q such that n = pm1 + qm2, we obtain that the whole word is constituted from this
single letter. A contradiction.

4 Conclusions

In the paper we considered the minimal abelian complexity of two-dimensional words
under the condition of recurrence. We saw that: (1) There exist aperiodic infinite words
with abelian complexity 1 for infinitely many pairs (m,n) (contrary to one-dimensional
case, where abelian complexity equal to 1 for some length n implies periodicity). (2)
Although the minimal abelian complexity of aperiodic two-dimensional words can be
equal to 2 for all pairs (n,m), under the condition of recurrence it cannot be bounded by
2. Moreover, it must be greater than two for infinitely many pairs (n,m). (3) There exist
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uniformly recurrent words with abelian complexity bounded by 3.
An interesting open question concerns the (non-abelian) Nivat’s conjecture under the

condition of recurrence. It has been recently proved that if we assume that an infinite
word is uniformly recurrent and for some (m,n) its complexity is bounded y mn, then it
has a periodicity vector [14]. On the other hand, Julien Cassaigne characterized infinite
words of complexity mn + 1 [9]. In particular, he showed that none of such sequences is
uniformly recurrent. A challenging open problem is to find uniformly recurrent aperiodic
two-dimensional words of the lowest complexity. We remark that one well-known family
of two-dimensional words of low complexity include Sturmian words, i.e., words obtained
by a rotation on a torus [3]: Let α, β be real numbers, with 1, α, β rationally independent,
and 0 < α+ β < 1. The two-dimensional Sturmian word s over the three-letter alphabet
{1, 2, 3} (with parameters α, β, ρ) is defined as

sm,n = i⇔ (mα + nβ + ρ modulo 1) ∈ Ii,

where I3 = [0, α), I2 = [α, α + β), I1 = [α + β, 1) (the intervals may also be all half-open
on the left). These words have no periodicity vector and they have complexity p(m,n) =
mn+m+ n. A projection of a two-dimensional Sturmian word defined by v(m,n) = 1 if
and only if s(m,n) = 1 or 3 and v(m,n) = 2 if and only if s(m,n) = 2 gives an example
of a two-dimensional uniformly recurrent word of complexity y p(m,n) = mn + n for
sufficiently large m and n.
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[2] V. Berthé, R. Tijdeman, Balance properties of multi-dimensional words: Theoret.
Comput. Sci. 273 (2002), 197–224.
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