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Abstract
We give a q-enumeration of circular Dyck paths, which is a superset of the

classical Dyck paths enumerated by the Catalan numbers. These objects have re-
cently been studied by Alexandersson and Panova. Furthermore, we show that this
q-analogue exhibits the cyclic sieving phenomenon under a natural action of the
cyclic group. The enumeration and cyclic sieving is generalized to Möbius paths.
We also discuss properties of a generalization of cyclic sieving, which we call subset
cyclic sieving, and introduce the notion of Lyndon-like cyclic sieving that concerns
special recursive properties of combinatorial objects exhibiting the cyclic sieving
phenomenon.
Mathematics Subject Classifications: 05A15, 05A30, 05A19

1 Introduction

Unit interval graphs are in bijection with Dyck paths, and enumerated by the Catalan
numbers, see e.g. Stanley’s book on Catalan numbers [Sta15]. Recently, a natural gener-
alization of these graphs was considered by Alexandersson and Panova [AP18] and also
by Ellzey [Ell17a, Ell17b] in the study of Stanley chromatic symmetric functions. This
generalization leads to an extension of Dyck paths to circular Dyck paths, see below for a
precise definition.

The number of circular Dyck paths of size n is given by the formula

(n+ 2)
(

2n− 1
n− 1

)
− 22n−1, (1)

and they are in bijection with pairs of Dyck paths of size n with certain constraints, see
A194460 in The On-Line Encyclopedia of Integer Sequences [Slo19]. Such pairs of Dyck
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paths have been studied in a different context by Baur and Mazorchuk [BM12], where
they mentioned that Christian Krattenthaler previously has given a proof of (1) “via a
lengthy combinatorial computation” starting from a recursion. Circular Dyck paths are
described naturally by their area sequences, which extend the classical area sequences of
Dyck paths, see e.g. the book by Haglund [Hag07].

The main results of this paper are listed below.

• We prove a q-analogue of (1) in Proposition 14. This also gives the first combinatorial
proof of the fact that the number of circular Dyck paths is given by (1). In Section 3,
we then generalize the q-analogue to circular Dyck paths with width w, obtaining

∑
s∈Z

w∑
j=1

qs
2(w+2)+s(j+1)

[ 2n− 1
n− 1− (w + 2)s

]
q

−
[

2n− 1
n+ j + (w + 2)s

]
q

 (2)

in Corollary 20. The q-analogue of (1) is the case w = n.

• In Theorem 22, we prove that circular Dyck paths of width w together with (2) exhibit
the cyclic sieving phenomenon (CSP) under a cyclic shift of the area sequence.

• In Section 5, we introduce and give a few examples of a phenomenon called subset cyclic
sieving, where the values of a polynomial f(q) at nth roots of unity give the number of
elements in Y ⊆ X fixed under a cyclic group action on X, and f(1) is equal to the
cardinality of Y .

• In Section 6, we prove a similar q-formula and instance of the CSP for paths embedded
in a Möbius strip. In the process, we prove a new CSP instance for binary words of
length n under a twisted cyclic shift, with associated polynomial

n∑
k=0

q(
k
2)
[
n

k

]
q

.

• In Section 7, we focus on families of CSP instances of a special type, parametrized by
the size n of the cyclic group. We ask the associated polynomials to fulfill the relation

fn/m(1) = fn(exp(2πi/m)) whenever m|n.

For example, this holds for the family of polynomials in (2) for each fixed w > 1. For
natural reasons, we call such a sequence of CSP instances Lyndon-like, and we provide
several more examples of this type.

Finally, we acknowledge that the On-line Encyclopedia of Integer Sequences, [Slo19],
has been of great help in this project. This paper also benefited from experimentation
with Sage [Dev19] and its combinatorics features developed by the Sage-Combinat com-
munity [com08].
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1.1 Brief background on the cyclic sieving phenomenon

The cyclic sieving phenomenon (CSP) was introduced in 2004 by Reiner, Stanton and
White [RSW04]. It generalizes Stembridge’s q = −1 phenomenon [Ste94b, Ste94a, Ste96].
The definition consists of three ingredients: a finite set X, a cyclic group Cn = 〈g〉
of order n acting on X, and a polynomial f(q) with non-negative integer coefficients
satisfying f(1) = |X|, for example a generating function for X. Let ωn be a primitive nth

root of unity, for example e 2πi
n , and, as usual, let [n] := {1, . . . , n}.

Definition 1. The triple (X,Cn, f(q)) exhibits the CSP if for every k ∈ [n],

[f(q)]q=ωkn = |{x ∈ X : gk · x = x}|,

that is, f(q) evaluated at the kth power of a primitive nth root of unity is the number of
fixed points of X under gk.

Reiner, Stanton and White also gave an alternative, equivalent definition of the cyclic
sieving phenomenon. The stabilizer-order of a C-orbit is the size of the stabilizer group
of the elements of the orbit.

Proposition 2 ([RSW04]). The triple (X,C, f(q)) exhibits the CSP if a` defined by

f(q) ≡
n−1∑
`=0

a`q
` mod (qn − 1)

is the number of C-orbits on X for which the stabilizer-order divides `.

By now, there is a multitude of CSP results. Below are some examples. For more,
see for example the survey by Sagan [Sag11]. For the first one, we say that g ∈ C with
|g| = n acts freely on [N ] if all of its cycles are of length n. A slight relaxation, we say
that g acts nearly freely on [N ] if it either acts freely or if all of its cycles have length n
except for one singleton. The cyclic group C is said to act (nearly) freely on [N ] if it has
a generator acting (nearly) freely on [N ]. Finally, recall that

(
[N ]
k

)
and

((
[N ]
k

))
denote the

sets of k-subsets and k-multisubsets of [N ], respectively.

Theorem 3 (Theorem 1.1, [RSW04]). Suppose C is a cyclic group acting nearly freely
on [N ]. Then (( [N ]

k

))
, C,

[
N + k − 1

k

]
q

 and
([N ]

k

)
, C,

[
N

k

]
q


exhibit the CSP.

Rhoades [Rho10] proved a CSP result for rectangular standard Young tableaux. For
a more geometric version, for example in terms non-crossing matchings in the two-row
case, see the work by Petersen, Pylyavskyy and Rhoades [PPR08].
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Theorem 4 (Theorem 1.3, [Rho10]). If λ = (nm), then

(SYT(λ), 〈∂〉, fλ(q))

exhibits the CSP, where SYT(λ) is the set of standard Young tableaux of the shape λ, 〈∂〉
is the cyclic group generated by the jeu-de-taquin promotion operator, and fλ(q) is the
natural q-analogue of the hook-length formula.

In the two-row case λ = (n, n), note that there is a bijection between SYT(λ) and
Dyck paths of size n. Pechenik [Pec14] proved that the small Schröder paths also exhibit
the CSP.

Another result specializing to lattice paths is the following. The major index of a word
w of length n is the sum of the indices i ∈ [n− 1] such that wi > wi+1. A pair (i, j) is an
inversion of w if i < j but wi > wj, and inv(w) is the number of inversions in w.

Theorem 5 (A reformulation of [RSW04, Prop. 4.4]). Let Xn(µ) be the set of words of
length n and content µ, that is, each word has µi entries equal to i. Let the cyclic group
Cn act on X by cyclic shift, and let

fn(µ; q) :=
[
n

µ

]
q

=
∑

w∈Xn(µ)
qmaj(w) =

∑
w∈Xn(µ)

qinv(w).

Then (Xn, Cn, fn(µ; q)) exhibits the CSP.

In the case µ = (µ1, µ2) with µ1 + µ2 = n, Xn(µ) is in an obvious bijection with, for
example, lattice paths starting at (0, 0) and with steps from {(0, 1), (1, 0)}. Ahlbach and
Swanson [AS18] have proved a refinement of this Theorem 5.

1.2 Background on q-analogues

In the previous examples we saw how q-analogues appear in the context of the cyclic
sieving phenomenon. We will also encounter them in this paper and hence introduce
them here. The starting point is the definition [n]q := 1−qn

1−q = 1 + q + · · ·+ qn−1, which is
motivated by the observation

lim
q→1

1− qn
1− q = n.

Then it is natural to define the q-factorial

[n]q! := [1]q · [2]q · · · [n− 1]q · [n]q = 1− q
1− q ·

1− q2

1− q · · ·
1− qn−1

1− q · 1− qn
1− q

= 1 · (1 + q) · · · (1 + q + · · ·+ qn−2) · (1 + q + · · ·+ qn−1).

While n! counts the number of permutations on [n], it is well-known (see, for example,
[Sta11]) that [n]q! = ∑

σ∈Sn q
inv(σ)
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Having defined q-factorials, the next natural step is to define q-binomial coefficients
(also called Gaussian binomial coefficients, Gaussian coefficients and Gaussian polynomi-
als) by [

n

k

]
q

:= [n]q!
[n− k]q![k]q!

for 0 6 k 6 n,

and letting
[
n
k

]
q

:= 0 otherwise. One combinatorial interpretation of the q-binomial coeffi-
cient is that it counts the number of k-dimensional subspaces of the n-dimensional vector
space over the q-element field, see [Sta11] for the details.

Many identities for binomial coefficients have their counterparts for q-binomial coeffi-
cients. For example, we have the symmetry[

n

k

]
q

=
[

n

n− k

]
q

and the q-Pascal identities[
n

k

]
q

= qk
[
n− 1
k

]
q

+
[
n− 1
k − 1

]
q

and
[
n

k

]
q

=
[
n− 1
k

]
q

+ qn−k
[
n− 1
k − 1

]
q

.

A useful tool for proving CSP results is the q-Lucas theorem below. We shall make
use of the following notation. Given a ∈ Z and d ∈ N, let {a}d denote the remainder of a
mod d, so that a = dba/dc+ {a}d.

Lemma 6 (See, for example, [Sag92]). We have that[
n

k

]
q

≡
(
bn/dc
bk/dc

)[
{n}d
{k}d

]
q

mod Φd,

where Φd is the dth cyclotomic polynomial.

In particular, Lemma 6 implies that with q a primitive dth root of unity,[
n

k

]
q

=
(
bn/dc
bk/dc

)[
{n}d
{k}d

]
q

,

a fact we use extensively in later sections.
The following two well-known results due to MacMahon are also related to our work.

Lemma 7 (See [And76, Thm. 3.6]). Let BW(k,m) denote the set of binary words of
length k +m with k 1s. Then

∑
b∈BW(k,m)

qmaj(b) =
[
k +m

k

]
q

.
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Proposition 8 (See e.g. the lemma on p. 255 in [FH85]). The major index of binary
words corresponding to Dyck paths generates the classical Carlitz q-analogue of the Catalan
numbers: ∑

D∈DP(n)
qmaj(D) = 1

[n+ 1]q

[
2n
n

]
q

.

When evaluating the right-hand side at e2πik/n, we obtain non-negative integers which
count fixed points under promotion. That action can be described either by bijecting
to 2 × n SYT, or by considering 2π/n rotations of perfect matchings in a 2n-gon. The
special case of Theorem 4 mentioned in the previous section is a refinement of this, using
rotations of π/n instead.

2 Enumeration of circular Dyck paths

A Dyck path of size n is a sequence of north steps (0, 1) and east steps (1, 0) starting from
(0, 0) and ending at (n, n) that lies weakly above the line y = x. It may be described via
its area sequence. For example, the path (0, 1, 2, 3, 2, 2) corresponds to

6
5

4
3

2
1

(3)

where the area sequence specifies the number of white squares in each row, from bottom
to top. The number of Dyck paths of size n is given by the nth Catalan number, 1

n+1

(
2n
n

)
.

A circular Dyck path of size n is specified via an area sequence a1, . . . , an satisfying

• 0 6 ai 6 n− 1 for 1 6 i 6 n,

• ai+1 6 ai + 1 for 1 6 i 6 n,

where the index is taken mod n in the second condition. This set is denoted CDP(n).
The subset of paths with a1 = 0 corresponds to classical Dyck paths, DP(n). Circular
Dyck paths can also be illustrated as diagrams.
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Example 9. For example, a = (3, 4, 2, 3, 2, 3) is illustrated as

1
3 6
2 5
3 4
2 3
4 2
3 1

where the top row is a repetition of the first row to illustrate the cyclic nature of the path.

It is often convenient to describe circular Dyck paths as paths along the border of the
white squares, see Figure 1. For this to be uniquely defined, one has to fix a starting
point x = (x0, 0), 1 6 x0 6 n. We denote such a path by (x,b), where b = (b1, . . . , b2n) ∈
{0, 1}2n is a binary sequence with n 0s and 1s, respectively. Here 0 corresponds to an east
step and 1 to a north step, with b2n = 1, that is, the last step is up.

Figure 1: Example of the bijection with lattice paths, with n = 8. The path in the
middle, starting at (6, 0) and with binary word 0111010100100101, corresponds to the
area sequence a = (2, 3, 4, 4, 4, 3, 2, 2). The area sequence is determined by the number of
(whole) squares to the right of the path in each row. The two dashed diagonals are never
touched by a lattice path corresponding to an area sequence.

The condition b2n = 1 is needed to make the starting point well defined. Note that
one may not have x0 = n+ 1, since the last step is up, it would mean passing the illegal
point (2n+ 1, n− 1).

We also study circular Dyck paths with a width different from the height, which are
defined in an analogous manner. A circular Dyck path of height n and width w is specified
via an area sequence such that a1, . . . , an satisfy

• 0 6 ai 6 w − 1 for 1 6 i 6 n,

• ai+1 6 ai + 1 for 1 6 i 6 n,
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where the index is taken mod n in the second condition. This set is denoted CDP(n,w).
Equivalently we can think of the elements in CDP(n,w) as (x, b), where x = (x0, 0),
1 6 x0 6 w, is the starting point and b = (b1, . . . , bn+w) ∈ {0, 1}n+w is a binary sequence
with n 1s and w 0s such that the corresponding path stays between the diagonals y = x
and y = x− (w + 2), and bn+w = 1.

There is a natural Cn-action on CDP(n,w), where the generator shifts the area se-
quence cyclically by one step to the right. We let α denote such a cyclic shift.

2.1 Bijection with tuples of Dyck paths

There is a bijection between circular Dyck paths and pairs of Dyck paths with certain
peak conditions. A peak in a Dyck path is a north step followed by an east step. In the
area sequence, this corresponds to ai+i 6 ai or to the last number an. The height of the
first peak of a Dyck path Q, denoted hf (Q), is the number of north steps before the first
east step, or equivalently, ai + 1 for the smallest i such that ai+i 6 ai (or an + 1 if no such
i exists). Similarly we define the height of the last peak, hl(Q), as the number of ending
east steps after the last north step, or equivalently an + 1.

For the reflected Dyck path P in the following lemma, think of the roles of east and
north steps as being reversed.
Lemma 10 ([AP18, Lem. 5]). Circular Dyck paths of size n are in bijection with pairs
(P,Q) of ordinary Dyck paths of size n, such that

hf (P ) + hl(Q) > n and hl(P ) + hf (Q) > n.

The bijection in the previous lemma is illustrated in Figure 2.

P

↘

↖ Q

Figure 2: The bijection with pairs of Dyck paths. The circular area sequence of the
circular Dyck path in the figure is (2, 3, 4, 4, 4, 3, 2, 2). The first and last peaks have been
marked, and arrows point the first peak in each path.

Lemma 11. The set CDP(kn, n) is in bijection with 2k-tuples of Dyck paths (P1, . . . , P2k)
such that

hl(Pj) + hf (Pj+1) > n, for 1 6 j < 2k, and hl(P2k) + hf (P1) > n.

Proof. This follows from simply extending the idea in Lemma 10, as shown in Figure 3.
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Figure 3: Here we have a path (dashed) from CDP(8, 4), which is mapped to a 4-tuple of
Dyck paths of size 4 (solid). The first peak has been marked in each Dyck path.

2.2 Circular Möbius paths

It is natural to ask what happens if we have a single Dyck path P of size n, such that
(P, P ) satisfies the peak condition in Lemma 10. It is straightforward to show that such
Dyck paths are in bijection with (x,b) in CDP(n) such that b = (b1, . . . , b2n) fulfills the
relation

bi = 1− bn+i for all i ∈ [n]. (4)

Note that, in particular, bn = 0 as we always have b2n = 1. The starting point x = (x0, 0)
is uniquely determined by b since bn = 0 must correspond to an east step that ends on
the vertical line x = n + 1. From this it is easy to see that all possible b correspond to
exactly one path. We let CMP(n) ⊆ CDP(n) denote this set, and refer to such paths as
circular Möbius paths, see Figure 4 for an example.

Figure 4: Two Möbius paths in CMP(8). Note that each path is the concatenation of two
smaller paths, the second part being a reflection of the first. Hence the name “Möbius”.

Lemma 12. We have that |CMP(n)| = 2n−1.

Proof. As noted above, a path in CMP(n) is determined uniquely by the first n− 1 steps
in b.
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Problem 1. DP(n) is in bijection with permutations of [n] avoiding a pattern τ of
length 3, Avn(τ). There are also several pairs (τ1, τ2) of patterns of length 3 such that
|Avn(τ1, τ2)| = 2n−1. At the same time, CMP(n) ⊆ DP(n) has 2n−1 elements. It could be
interesting to find a natural bijection between DP(n) and Avn(τ), for some τ , such that
restricted to CMP(n) it becomes a bijection to Avn(τ, τ ′), where τ ′ is some other pattern
of length 3.

2.3 A q-analogue

As mentioned, circular Dyck paths and NE-lattice paths in general correspond to pairs
(x,b) of a starting point x and a binary word b where bi = 1 if the ith step is a north step,
and bi = 0 otherwise. For example, the path in Figure 2 gives the word 0100100101011101.

The major index of a circular Dyck path a (corresponding to (x,b)) is defined as the
major index of the binary word b. Recall that the major index of a binary word w of
length n is the sum of all i ∈ [n− 1] such that wi > wi+1.

Define the following q-analogue of circular Dyck paths:

|CDP(n,w)|q :=
∑

(x,b)∈CDP(n,w)
qmaj(b). (5)

We end this section by proving a q-analogue of (1) in the introduction, that enumerates
CDP(n). The proof mimics the ideas of [FH85, p. 255]. In the next section, we extend
the method and do the same for CDP(n,w).

We begin the proof with a lemma generalizing q-ballot numbers.

Lemma 13. Summing over all north-east paths b starting in (x, 0), ending in (i, j), and
never touching the x = y diagonal, and with i > j, x > 0, we get

∑
b
qmaj(b) =

[
i+ j − x

j

]
q

− qx
[
i+ j − x
j − x

]
q

. (6)

Proof. We proceed by induction over x. For x = 0 it is clearly true since then there are
no paths. The maj-count of all north-east paths from (x, 0) to (i, j) is

[
i+j−x
j

]
q
, and we

will now count and subtract the paths that touch the diagonal x = y. The idea for this
proof comes from [FH85, p. 255], where they construct a major-index preserving bijection
between sets of lattice paths.

In this proof we define the depth of a path to measure how far beyond the diagonal
x = y the path goes, or, more formally, to be the largest value of s− r for any point (r, s)
on the path. We now define a bijection ϕ that maps a path b ending in (i, j) with depth
d > 0 to a path ending in (i+ 1, j − 1) with depth d− 1.

Let (r, s) be the first point of maximal depth on the path. Since x > 0, (r, s) is not the
starting point. If it is the point directly after the starting point, we must have r = s = 1.
Otherwise, the last two steps reaching (r, s) are north steps. The map ϕ is defined by
switching the north step just before (r, s) to an east step, that is, relabeling br+s−x from
1 to 0. In ϕ(b) the position (r, s − 1) will then be the last point of maximal depth and

the electronic journal of combinatorics 26(4) (2019), #P4.16 10



it is thus easy to find it and define ϕ−1. The corner in position (r, s) has been replaced
with a corner in (r, s− 1), unless r = s = 1. In any case, maj(b) = maj(ϕ(b)) + 1. Thus
ϕ is a bijection between the paths from (x, 0) to (i, j) that touch the diagonal x = y and
paths from (x, 0) to (i + 1, j − 1) that touch the diagonal x = y + 1, with a shift of q1.
By induction, the maj-count of paths from (x, 0) to (i + 1, j − 1) that do not touch the
diagonal x = y + 1 is[

i+ j − 1− (x− 1)
j − 1

]
q

− qx−1
[
i+ j − 1− (x− 1)
j − 1− (x− 1)

]
q

,

and thus the maj-count of those touching the diagonal x = y + 1 is

qx−1
[
i+ j − 1− (x− 1)
j − 1− (x− 1)

]
q

= qx−1
[
i+ j − x
j − x

]
q

.

Using ϕ we thus get that the maj-count of the paths from (x, 0) to (i, j) that touch the
diagonal x = y is qx

[
i+j−x
j−x

]
q
, which gives the formula claimed in the lemma.

Proposition 14. For any n > 1,

|CDP(n)|q = n

[
2n− 1
n− 1

]
q

−
n∑
j=1

qj
[
2n− 1
n+ j

]
q

−
n∑
j=1

[
2n− 1
j − 2

]
q

. (7)

Proof. For each possible starting point (x, 0), 1 6 x 6 n, the maj-count of all paths to
(x+ n, n− 1) (remember that the last step of b is a north step) is

[
2n−1
n−1

]
q
. This gives the

first term. We will now subtract the paths that touch the surrounding diagonals. Note
that no path can touch both diagonals. By Lemma 13 the maj-count of paths touching
the diagonal x = y is ∑n−1

x=1 q
j
[

2n−1
n−1−x

]
q
, which gives the first sum.

For paths touching the diagonal x = y+ n+ 2 we can use the bijection defined dually
to ϕ in the proof of Lemma 13. That is, we change an east step to a north step for the
first corner being diagonally furthest to the right. This time there clearly is no shift in
the maj of the path and we get the second sum.

3 A formula for the q-analogue for circular Dyck paths

The goal of this section is to express |CDP(n,w)|q as a sum of q-binomial coefficients.
To achieve this, we need to consider the major index generating function for arbitrary
north-east lattice paths starting at the origin and with some constraints, which will be
used in an inclusion-exclusion argument.

A diagonal is a set of lattice points of the form {x + k(1, 1) : k ∈ Z} for some x ∈ Z2.
It is clear that a diagonal is uniquely specified by any point on the diagonal. For a lattice
point y in the non-negative quadrant, let

H(y; d1, d2, . . . , d`), di ∈ Z (8)
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denote the q-enumeration (using major index) of north-east lattice paths L from (0, 0) to
y, such that L includes points from each of the ` diagonals specified by the points

di(1, 0) i = 1, 2, . . . , `,

in this order. In other words, there must be points p1, . . . , p` on L visited in this order,
such that pi is on the diagonal specified by di. Note that by definition

H(y; 0, d1, d2, . . . , d`) = H(y; d1, d2, . . . , d`)

since the starting point (0, 0) is on the diagonal specified by 0. Abusing notation, we
henceforth let the diagonal di be the unique diagonal specified by di.

We say that the configuration (y; d1, . . . , d`) is alternating if any of the four conditions
below is fulfilled:

1. 0 > d1 < d2 > d3 < d4 > · · · > d` and y is to the right of diagonal d`,

2. 0 > d1 < d2 > d3 < d4 > · · · < d` and y is to the left of diagonal d`,

3. 0 6 d1 > d2 < d3 > d4 < · · · < d` and y is to the left of diagonal d` or

4. 0 6 d1 > d2 < d3 > d4 < · · · > d` and y is to the right of diagonal d`.

By convention, if ` = 0, the configuration is considered to be alternating as well. Note that
H(y; d1) = H(y) if (0, 0) and y are on different sides of d1. Note also more generally that
given a non-alternating subsequence dk > dk+1 > dk+2 or dk < dk+1 < dk+2 of diagonals,
H(y; d) = H(y; d′) where d′ denotes d with dk+1 removed.

Let nw denote the vector (−1, 1) and recall that we identify east steps with 0 and
north steps with 1.

Lemma 15. Suppose that (y; d1, . . . , d`) is alternating and ` > 1. Then the generating
function H(y; d1, . . . , d`) is equal toH(y− nw; d1 + 1, d2 + 2, d3 + 2, . . . , d` + 2)× q if d1 < 0

H(y + nw; d1 − 1, d2 − 2, d3 − 2, . . . , d` − 2) otherwise.
(9)

Furthermore, both new configurations above are alternating as well.

Proof. The proof is a more complicated version of the proof of Lemma 13. We have two
different cases to consider: d1 < 0 and d1 > 0. Let us start with the former. In all cases,
we let (r, s) be the first point maximizing the depth sgn(d1)(x−y) among points (x, y) ∈ L
before L meets the diagonal d2. In other words, (r, s) is the first point furthest away from
d1 on the side opposite of (0, 0), or on d1 if L does not cross d1.

Case d1 < 0: Suppose L is a path counted by H(y; d1, . . . , d`). A north step 1 has
to precede (r, s), while an east step 0 has to follow it.

Let φ be the map replacing the north step 1 preceding (r, s) with an east step. Note
that φ is similar to ϕ in the proof of Lemma 13 but now only the points of L before it
meets d2 are considered.
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y

y′

1
0

d2d1 d′
2

Figure 5: The map φ. In the figure, d1 = −2 and d2 = 1. The path L is shown as a solid
line and φ(L) is dashed. We have the new endpoint y′ = y−nw and the shifted diagonal
d′2 = 3. Note that L touches d2 in the same manner as φ(L) touches d′2.

Now, maj(φ(L)) = maj(L) − 1, the new endpoint is given by y − nw and φ(L) hits
the shifted diagonals d1 + 1, d2 + 2, d3 + 2, . . . , d` + 2, see Figure 5.

It is evident that φ is invertible. The inverse is given by replacing the east step 0
following the last deepest point (that is, maximizing y − x) after touching the diagonal
d1 + 1 and before the diagonal d2 + 2 with a north step 1.

Case d1 > 0: In this case, construct a bijection ψ by replacing the east step 0
preceding (r, s) with a north step 1.

Note that this does not affect the major index and that ψ(L) ends at y + nw. Fur-
thermore, ψ(L) intersects all diagonals d1 − 1 as well as d2 − 2, d3 − 2, and so on. As
before, it is straightforward to show that ψ has an inverse. This proves the second case
of (9).

Corollary 16. If (y; d1, . . . , d`) is alternating, then H(y; d1, . . . , d`) is equal to

H(y + d1nw; d2 − 2d1, d3 − 2d1, . . . , d` − 2d1)×

q−d1 if d1 < 0
1 otherwise.

(10)

Proof. Apply Lemma 15 repeatedly.

We shall now focus on generating functions of lattice paths that touch two diagonals at
least ` times in an alternating fashion. Let 〈a, b〉` denote the alternating list (a, b, a, b, . . . )
of length `.

Corollary 17. Suppose δ > γ > 0. Then for all j = 0, . . . , b`/2c, we have the identities

H(y; 〈γ, γ − δ〉`) = qj
2δ+jγH(y− jδnw; 〈γ + 2jδ, γ − δ + 2jδ〉`−2j)
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and
H(y; 〈γ − δ, γ〉`) = qj

2δ−jγH(y + jδnw; 〈γ − δ − 2jδ, γ − 2jδ〉`−2j)

Proof. The first identity is proved by applying the recursion in (10) two times, and using
induction over j. The first application on the expression

H(y− jδnw; 〈γ + 2jδ, γ − δ + 2jδ〉`−2j)

gives
H(y + (jδ + γ)nw; 〈−γ − δ − 2jδ,−γ − 2jδ〉`−2j−1).

The second application of the recursion gives

qγ+δ+2jδH(y− (jδ + δ)nw; 〈γ + 2δ + 2jδ, γ + δ + 2jδ〉`−2j−2).

Finally, we observe that

(j2δ + jγ) + (γ + δ + 2jδ) = (j + 1)2δ + (j + 1)γ,

so the result now follows via induction over j. The second identity is proved in a similar
fashion.

Lemma 18. Suppose δ > γ > 0 and y = (n, n− 1). We then have the identities

H(y; 〈γ, γ − δ〉2`) = q`
2δ+`γ

[
2n− 1

n− 1− δ`

]
q

, ` > 0 (11)

H(y; 〈γ, γ − δ〉2`+1) = q`
2δ+`γ

[
2n− 1

n− 1 + γ + δ`

]
q

, ` > 0, (12)

H(y; 〈γ − δ, γ〉2`) = q`
2δ−`γ

[
2n− 1

n− 1 + δ`

]
q

, ` > 0, (13)

H(y; 〈γ − δ, γ〉2`−1) = q`
2δ−`γ

[
2n− 1

n− 1 + γ − δ`

]
q

, ` > 1. (14)

Proof. Note that in all cases we deal with north-east lattice paths of length 2n− 1 with
exactly n east steps, which we interpret as binary words of length 2n − 1 with exactly
n 0s. From this observation, it is straightforward to see that Corollary 17 together with
Lemma 7 implies the first and third identity.

To prove (12), note that Corollary 17 and (9) gives

H(y; 〈γ, γ − δ〉2`+1) = q`
2δ+`γH(y− (`δ)nw; 〈γ + 2`δ〉1)

= q`
2δ+`γH(y + (γ + `δ)nw; 〈·〉0)

= q`
2δ+`γ

[
2n− 1

(n− 1) + (γ + `δ)

]
q

.
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Finally, the last identity follows from the fact that

H(y; 〈γ − δ, γ〉2`−1)
= q(`−1)2δ−γ(`−1)H(y + (−δ + `δ)nw; 〈γ − δ − 2(`− 1)δ〉1)
= q(`−1)2δ−γ(`−1)−γ+δ+2(`−1)δH(y + (−δ + `δ + γ − δ − 2`δ + 2δ)nw; 〈·〉0)
= q`

2δ−γ`H(y + (γ − `δ)nw; 〈·〉0)

= q`
2δ−γ`

[
2n− 1

n− 1 + γ − `δ

]
q

.

This finishes the proof of the identities.
Definition 19. Fix an integer w > 0 and j ∈ {1, . . . , w} and let the diagonals through
(0, 0) and (w + 2, 0) be referred to as the left and the right diagonal, respectively.

Let Lj(n,w, `) be the q-enumeration of north-east paths L from

(w + 1− j, 0) to (n+ w + 1− j, n− 1) (15)

with the property that there are ` points on the path L, p1, p2, . . . , p`, appearing in
this order from the start, such that the odd-indexed pi lie on the left diagonal, and the
even-indexed pi are points on the right diagonal. Similarly, define Rj(n,w, `) to be the
q-enumeration of north-east paths in (15) such that there are ` points p1, p2, . . . , p` on the
path with the even-indexed pi being on the left diagonal, and the odd-indexed pi being
points on the right diagonal.

Let δ := w+ 2 and y = (n, n−1). From Definition 19, it is straightforward to see that
the generating functions Lj(n,w, `) and Rj(n,w, `) are equal to the generating functions
in Lemma 18. Unraveling the definitions, we have that

Lj(n,w, 2`) = H(y; 〈j + 1− δ, j + 1〉2`) = q`
2δ−`(j+1)

[
2n− 1

n− 1 + δ`

]
q

Lj(n,w, 2`+ 1) = H(y; 〈j + 1− δ, j + 1〉2`+1) = q`
2δ−`(j+1)

[
2n− 1

n+ j − δ`

]
q

Rj(n,w, 2`) = H(y; 〈j + 1, j + 1− δ〉2`) = q`
2δ+`(j+1)

[
2n− 1

n− 1− δ`

]
q

Rj(n,w, 2`− 1) = H(y; 〈j + 1, j + 1− δ〉2`−1) = q`
2δ+`(j+1)

[
2n− 1

n+ j + δ`

]
q

.

Corollary 20. We have the q-enumeration

|CDP(n,w)|q =
∑
s∈Z

w∑
j=1

qs
2δ+s(j+1)

[ 2n− 1
n− 1− δs

]
q

−
[

2n− 1
n+ j + δs

]
q

 , (16)

where δ = w + 2. In particular, when w > n, we have

|CDP(n,w)|q = w

[
2n− 1
n− 1

]
q

−
w∑
j=1

qj
[
2n− 1
n+ j

]
q

−
w∑
j=1

[
2n− 1

n+ j − (w + 2)

]
q

. (17)
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Proof. We have that CDP(n,w) are certain north-east lattice paths avoiding the two
diagonals through (0, 0) and (δ, 0). To find the maj-count of these paths, we use an
inclusion-exclusion argument. Not taking the restrictions imposed by the diagonals into
account, the maj-count is given by

w∑
j=1

[
2n− 1
n− 1

]
q

= w

[
2n− 1
n− 1

]
q

.

The paths counted by Lj(n,w, 1) and Rj(n,w, 1) for j ∈ [w] enumerate all forbidden
paths. However, we cannot simply subtract both as there are paths counted by both of
these expressions, namely Lj(n,w, 2) and Rj(n,w, 2), and so on. Combining Definition 19
and the enumeration in Lemma 18 then gives the expression in (16).

Note that, in particular, Lj(n,w, 2) = Rj(n,w, 2) = 0 whenever w > n (since a path
cannot hit both forbidden diagonals in this case) so we get the less complicated expression
in (17). Letting w = n in (17) gives (7).

Lemma 21. We have the identity

|CDP(n,w)| = (w + 2)
∑
t∈Z

(
2n− 1

n+ (w + 2)t

)
−
∑
t∈Z

(
2n− 1
n+ t

)
(18)

= (w + 2)
∑
t∈Z

(
2n− 1

n+ (w + 2)t

)
− 22n−1. (19)

Proof. This is a straightforward consequence of (16), by letting q = 1 and then adding
and subtracting the case j = 0 and j = w + 1 to the inner sum.

We note that the q = 1 case of (16) follows easily from a result by Mohanty [Moh79,
Thm. 2], where the proof is also done via a reflection argument together with inclusion-
exclusion. However, his approach is not compatible with our use of major index.

4 The cyclic sieving phenomenon under shifting

This section contains the proof of our main result, Theorem 22 stated below.

Theorem 22. Let α act on CDP(n,w) by cyclically shifting the area sequence one step.
Then the triple

(CDP(n,w), 〈α〉, |CDP(n,w)|q)

is a CSP-triple.

The proof consists of first counting the number of fixed points under cyclic shift by k
steps, which is done in Lemma 23. Then, in Proposition 25, we show that the q-analogue
|CDP(n,w)|q evaluates to it at q = e2πik/n.

Let CDPk(n,w) be the subset of area sequences in CDP(n,w) that is fixed by a cyclic
shift of k steps.
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Lemma 23. For n > k > 1, let d := gcd(n, k), then

|CDPk(n,w)| = |CDP(d, w)|. (20)

Proof. This is straightforward to prove.

Let δ := w + 2. We have that |CDP(n,w)|q is equal to

∑
s∈Z

w∑
j=1

qs
2δ+s(j+1)

[2n− 1
n+ δs

]
q

−
[

2n− 1
n+ j + δs

]
q

 .
We need to evaluate this at powers of exp(2πi/n). All such powers are of the form
exp(2πi`/m), where m|n and gcd(`,m) = 1. The goal is to show that if n = md, then

|CDP(n,w)|q=exp(2πi`/m) = |CDP(d, w)|.

This identity is trivial whenever m = 1, so we assume that m > 2. Recall that {d}m de-
notes the (non-negative) remainder of d when divided by m. The q-Lucas theorem implies
that whenever q = exp(2πi`/m) for n = md, gcd(`,m) = 1, we have that |CDP(n,w)|q is
equal to

∑
s∈Z

w∑
j=1

qs
2δ+s(j+1)

( 2d− 1
d+ b δs

m
c

)[
m− 1
{δs}m

]
q

−
(

2d− 1
d+ b δs+j

m
c

)[
m− 1
{j + δs}m

]
q

 . (21)

Introduce

A(s, j) = qs
2δ+s(j+1)

(
2d− 1
d+ b δs

m
c

)[
m− 1
{δs}m

]
q

B(s, j) = −qs2δ+s(j+1)
(

2d− 1
d+ b δs+j

m
c

)[
m− 1
{j + δs}m

]
q

which also implicitly depend on δ and m.
The following lemma is needed for the proof of Proposition 25.

Lemma 24. We have the following identities:

(I) A(s, j) = −A(−s, w − j), for j 6= w, δs 6≡m 0.

(II) B(s, j) = −B(−s− 1, w − j), for j 6= w, j + 1 + δs 6≡m 0.

(III) A(s, w) = −B(s− 1, w) for δs 6≡m 0, 1.

(IV) B(s− 1, w) +∑w
j=1 A(−s, j) = −

(
2d−1

d+ δs
m
−1

)
whenever δs ≡m 0 and s 6≡m 0.

(V) A(s, j) =
(

2d−1
d+ δs

m

)
whenever s ≡m 0.
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(VI) A(s, w) = −
(

2d−1
d+ δs−1

m

)
whenever δs ≡m 1.

(VII) B(s, j) = −
(

2d−1
d+ δs+j+1

m
−1

)
whenever j + 1 + δs ≡m 0 and j < w.

(VIII) B(s− 1, w) =
(

2d−1
d+ δs

m
−1

)
whenever s ≡m 0.

(IX) B(s− 1, w) = −
(

2d−1
d+ δs−1

m
−1

)
whenever δs ≡m 1.

Furthermore, over all combinations of s ∈ Z and j = 1, 2, . . . , w, the above cases cover
each term in (21) exactly once.
Proof. Case I: For q = exp(2πi`/m), we want to show A(s, j) = −A(−s, w−j), whenever
1 6 j < w and δs 6≡m 0. We must prove that

qs
2δ+s(j+1)

(
2d− 1

d+ bδs/mc

)[
m− 1
{δs}m

]
q

= −qs2δ−s(w−j+1)
(

2d− 1
d+ b−δs/mc

)[
m− 1
{−δs}m

]
q

.

Let us first assume that s > 0 and let r := (δs mod m), so that 0 < r < m. We must
show that

qsδ
(

2d− 1
d+ bδs/mc

)[
m− 1
r

]
q

= −
(

2d− 1
d− 1− bδs/mc

)[
m− 1
m− r

]
q

qr
(

2d− 1
d+ bδs/mc

)
1− qm−r
1− qm

[
m

r

]
q

= −
(

2d− 1
d+ bδs/mc

)
1− qm−(m−r)

1− qm

[
m

m− r

]
q

qr(1− qm−r) = qr − 1

which is true. The case s < 0 is treated in a similar manner.
Case II: For q = exp(2πi`/m), we want to show B(s, j) = −B(−s−1, w−j) whenever

1 6 j < w and j + δs+ 1 6≡m 0. We must prove that

qs
2δ+s(j+1)

(
2d− 1

d+ b j+δs
m
c

)[
m− 1
{δs}m

]
q

=− q(−s−1)2δ+(−s−1)(w−j+1)
(

2d− 1
d+ bw−j+δ(−s−1)

m
c

)[
m− 1

{w − j + δ(−s− 1)}m

]
q

=− qs(j+δs+1)+j+δs+1
(

2d− 1
d+ b−2−j−δs

m
c

)[
m− 1

{−2− j − δs}m

]
q

=− qs(j+δs+1)+j+δs+1
(

2d− 1
d− 1− b j+δs

m
c

)[
m− 1

{−2− j − δs}m

]
q

.

Now, let j + δs ≡m r, 0 < r < m. Then, we need to show

qs(r+1)
(

2d− 1
d+ b j+δs

m
c

)[
m− 1
r

]
q

=− qs(r+1)+r+1
(

2d− 1
d− 1− b j+δs

m
c

)[
m− 1
r + 1

]
q

.
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This follows from that

qr+1
[
m− 1
r + 1

]
q

= qr+1
[
m− 1
r

]
q

1− qm−r−1

1− qr+1 = −
[
m− 1
r

]
q

.

Case III: Let r ≡m δ(s + 1) with 0 6 r < m. We want to prove that A(s + 1, w) =
−B(s, w) under the condition that r /∈ {0, 1}, which implies that s 6= −1.

This amounts to proving

q(s+1)2δ+(s+1)(δ−1)
(

2d− 1
d+ bδ(s+ 1)/mc

)[
m− 1

{δ(s+ 1)}m

]
q

=

qs
2δ+s(δ−1)

(
2d− 1

d+ b(δ(s+ 1)− 2)/mc

)[
m− 1

{δ(s+ 1)− 2}m

]
q

Since the binomials are equal under our conditions, it is enough to show that

q2r
[
m− 1
r

]
q

= q

[
m− 1
r − 2

]
q

q2r [m− r]q
[r]q

[
m− 1
r − 1

]
q

= q
[r − 1]q

[m− r + 1]q

[
m− 1
r − 1

]
q

q2r 1− q−r
1− qr = q

1− qr−1

1− q1−r

and it is easy to verify that these are equal.
Case IV: We need to prove that

B(s− 1, w) +
∑

16j6w
A(−s, j) = −

(
2d− 1

d+ δs
m
− 1

)

whenever δs ≡m 0, s 6≡m 0 and q = exp(2πi`/m). Note that m > 2 in this case. Inserting
the definitions, we need to evaluate

− q(s−1)2δ+(s−1)(w+1)
(

2d− 1
d+ b(w + δ(s− 1))/mc

)[
m− 1

{w + δ(s− 1)}m

]
q

+ w∑
j=1

qs
2δ−s(j+1)

( 2d− 1
d+ b−δs/mc

)[
m− 1
{−δs}m

]
q

.

After some simplifications, this is equal to

−q1−s
(

2d− 1
d+ b(δs− 2)/mc

)[
m− 1
{δs− 2}m

]
q

+ q−s

 w∑
j=1

q−sj

( 2d− 1
d+ δs

m
− 1

)

which becomes

−q1−s
(

2d− 1
d+ δs

m
− 1

)[
m− 1
m− 2

]
q

+ q−s

 w∑
j=1

q−sj

( 2d− 1
d+ δs

m
− 1

)
.
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Thus, it suffices to verify thatδ−2∑
j=1

q−sj

− q[m− 1
m− 2

]
q

= −qs,

which is straightforward.

Case V–IX: These are straightforward to prove.

Proposition 25. If md = n, m > 2 and gcd(`,m) = 1, we have that |CDP(n,w)|q
evaluated at q = exp(2πi`/m) is equal to |CDP(d, w)|.

Proof. In Lemma 24, the first three cases cancel, so we know that |CDP(n,w)|q evaluated
at the root of unity is equal to the sum of the six remaining cases. After reordering, the
sum of the cases is given by the expression

w
∑
s∈Z
s≡m0

(
2d− 1
d+ δs

m

)
−

∑
s∈Z
δs≡m0
s 6≡m0

(
2d− 1

d+ δs
m
− 1

)
+
∑
s∈Z
s≡m0

(
2d− 1

d+ δs
m
− 1

)
(22)

−
∑
s∈Z
δs≡m1

(
2d− 1

d+ δs−1
m
− 1

)
−

w−1∑
j=1

∑
s∈Z

j+1+δs≡m0

(
2d− 1

d+ δs+j+1
m
− 1

)
−

∑
s∈Z
δs≡m1

(
2d− 1
d+ δs−1

m

)
.

We note that

∑
s∈Z
δs≡m1

(
2d− 1
d+ δs−1

m

)
=

∑
s∈Z
δs≡m1

(
2d− 1

d+ δ(−s)+1
m
− 1

)
=

∑
s∈Z

δs+1≡m0

(
2d− 1

d+ δs+1
m
− 1

)
,

so we can merge the fifth and sixth sum in (22), and shift the index in the fourth sum.
Furthermore, the second and third sum can be rewritten, by adding and subtracting the
third sum. We get

w
∑
s∈Z
s≡m0

(
2d− 1
d+ δs

m

)
+ 2

∑
s∈Z
s≡m0

(
2d− 1

d+ δs
m
− 1

)
−

∑
s∈Z
δs≡m0

(
2d− 1

d+ δs
m
− 1

)

−
∑
s∈Z

δ−1+δs≡m0

(
2d− 1

d+ δ(s+1)−1
m

)
−

w−1∑
j=0

∑
s∈Z

j+1+δs≡m0

(
2d− 1

d+ δs+j+1
m
− 1

)
.

The last three terms can be merged, and we do some further simplifications to obtain

w
∑
t∈Z

(
2d− 1
d+ δt

)
+ 2

∑
t∈Z

(
2d− 1
d+ δt

)
−

w+1∑
j=0

∑
s∈Z

j+1+δs≡m0

(
2d− 1

d+ δs+j+1
m
− 1

)
.
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Finally, we note that

w+1∑
j=0

∑
s∈Z

j+1+δs≡m0

(
2d− 1

d+ δs+j+1
m
− 1

)
=
∑
r∈Z

(
2d− 1
d+ r

)

and thus we have equality with (18) in Lemma 21.

5 The subset cyclic sieving phenomenon

Recall that CDP(n,w) is a family of lattice paths L of length 2n, ending with a north
step. Note that such a lattice path L is in CDPk(n,w) if and only if the binary word
of L is invariant under cyclic shift by 2k steps. However, the action of shifting the area
sequence k steps and shifting the underlying binary word 2k steps are not equivalent —
the family CDP(n,w) is not closed under such a shifting of the binary word. This curious
observation leads us to make the following definition.

Definition 26. Let Y ⊆ X be a set of combinatorial objects and Cn = 〈g〉 be a cyclic
group acting on X. Let f(q) ∈ Z[q] have non-negative coefficients, such that f(1) = |Y |.
Then (Y ⊂ X,Cn, f(q)) exhibits the subset cyclic sieving phenomenon if for every k ∈ [n]
we have

f(ωkn) = |{y ∈ Y : gk · y = y}|.

We shall need the following theorem by Alexandersson and Amini.

Theorem 27 ([AA19, Thm. 2.7]). Let f(q) ∈ Z[q] take non-negative integer values at all
nth roots of unity, and let X be a set of cardinality f(1). Define

Sk :=
∑
j|k
µ(k/j)f(ωjn) whenever k|n.

If Sk > 0 for all k, then there is a cyclic group Cn acting on X, such that (X,Cn, f(q))
is a CSP-triple.

Note that the integers Sk are exactly the number of elements in X which are in a
Cn-orbit of size k.

Proposition 28. If (Y ⊂ X,Cn, f(q)) exhibits the subset-CSP, then there is a group
action Ĉn on Y such that (Y, Ĉn, f(q)) is a CSP-triple.

Proof. Let
Sk :=

∑
j|k
µ(k/j)f(ωjn).

Then Sk is the number of elements in X in a Cn-orbit of size k, so Sk > 0 for all k > 1.
The fact that a group action Ĉn exists on Y now follows from Theorem 27.
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5.1 Lattice paths with subset CSP

We shall now provide an example of the subset-CSP on a family of lattice paths.
Let AVL(n,w) be the set of lattice paths from (0, 0) to (n, n) that never touch the

diagonals ±w.

Proposition 29. The maj-count of AVL(n,w) is given by

|AVL(n,w)|q =
∑
s∈Z

q2s2w+sw

[ 2n
n+ 2sw

]
q

−
[

2n
n+ w + 2sw

]
q

 .
Proof. The proof is analogous to the inclusion-exclusion argument in Corollary 20.

Notice that AVL(n,w) is a subset of AVL(n, n+ 1) — the set of all lattice paths from
(0, 0) to (n, n).

Theorem 30. Let n,w > 1 such that gcd(n,w) = 1. Let Cn act on AVL(n,w) by letting
the generator β shift the binary word associated with the path two steps. Then

(AVL(n,w) ⊂ AVL(n, n+ 1), 〈β〉, |AVL(n,w)|q)

is a subset-CSP-triple.

Proof. We need to evaluate |AVL(n,w)|q at nth roots of unity. Let q = exp(2πi`/m),
where m|n and gcd(`,m) = 1, so that q is a primitive mth root of unity. Note that it
follows that gcd(w,m) = 1 as well, and we introduce d = n/m. Our goal is to show
that |AVL(n,w)|q evaluates to the number of paths in AVL(n,w) fixed under a shift of
2d steps. It is clear that such paths are in bijection with AVL(d, w). There are two cases
to consider.
Case m even. Using the q-Lucas theorem, Lemma 6, we have that

∑
s∈Z

q2s2w+sw
[

2n
n+ 2sw

]
q

=
∑
s∈Z

e
2πi`ws(2s+1)

m

(
2d

d+ b2sw/mc

)[
0

{2sw}m

]
q

. (23)

Notice that the q-binomial is 0 unless m divides 2s. Hence, by letting t := 2s/m, we can
rewrite the sum as

∑
t∈Z

eπi`wt(tm+1)
(

2d
d+ tw

)
=
∑
t∈Z

eπit
(

2d
d+ tw

)

=
∑
t∈Z

(
2d

d+ 2tw

)
−
∑
t∈Z

(
2d

d+ w + 2tw

)

since `, w and tm+ 1 are all odd if m is even. In a similar fashion,

∑
s∈Z

q2s2w+sw
[

2n
n+ w + 2sw

]
q
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is equal to

∑
s∈Z

e
2πi`ws(2s+1)

m

(
2d

d+ bw(2s+ 1)/mc

)[
0

{w(2s+ 1)}m

]
q

(24)

but the last term is always zero, since m does not divide w(2s+ 1)
Case m odd. We consider (23), and see that the q-binomial expression vanishes unless
s it is a multiple of m. We let t = s/m and obtain

∑
s∈Z

(
2d

d+ 2tw

)
.

For the other term in (24), 2s+1 must be an odd multiple of m in order for the q-binomial
to be non-zero. Thus, t = (2s+ 1)/m is an integer and the expression simplifies to

∑
s∈Z

(
2d

d+ w + 2tw

)
.

In conclusion, in both above cases, |AVL(n,w)|q evaluates to the expression we have for
|AVL(d, w)|.

Problem 2. Find a natural cyclic action Ĉn on AVL(n,w) that makes

(AVL(n,w), Ĉn, |AVL(n,w)|q)

into a CSP-triple.

6 Möbius action on binary words

6.1 A new instance of cyclic sieving on binary words

Let BW(n) denote the set of binary words of length n, and define an action η on BW(n)
as

η : (b1, b2, . . . , bn) 7→ (b̂n−1, b̂n, b1, b2, . . . , bn−2)

where b̂i := 1 − bi. Note that the shift is indeed two steps, and that η◦n(b) = b for all
words b of length n. For example,

η(101) = 0̂1̂1 = 101, η(110010) = 011100.

We extend the notation so that b̂ := (b̂1, . . . , b̂n).

Lemma 31. The number of words in BW(n) fixed under η◦m is given by 2d if n
d

is odd
and 0 otherwise, where d = gcd(m,n).
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Proof. Because η generates a cyclic group of order n, the number of words fixed by η◦m is
the same as the number of words fixed by η◦d. Therefore it suffices to show that if n = kd,
then η◦d fixes 2d elements if k is odd, and 0 elements otherwise.

Let b ∈ BW(n) and partition b into k contiguous blocks of length d. Note that η◦d
maps block i onto block i + 2 (mod k). Suppose now b is fixed under η◦d and consider
the following cases.

Case k even. We have that blocks 1, 3, 5, . . . , k−1 must all be equal. However, block
k − 1 and block 1 must also be different, as η◦d not only shifts bits 2d steps to the right,
but also flips all bits that wrap around. This is impossible, so there cannot be any fixed
words in this case.

Case k odd. A similar argument as above shows that all odd-indexed blocks are
equal, all even-indexed blocks are equal, and an even block is given by flipping all bits in
an odd block. Hence, the entire word is determined by the first block. There are 2d such
possibilities, as there are d bits in a block.

Lemma 32. For fixed n, all the expressions

(A)
n∑
k=0

q(
k
2)
[
n

k

]
q

(B)
n−1∏
j=0

(1 + qj) (C)
∑

b∈BW(n)
qmaj(b)+maj(b̂) (25)

are equal.
Proof. Identity (A) = (B). This is simply a consequence of the q-binomial theorem, (see
[KC01, p. 14])

n−1∏
j=0

(1 + xqj) =
n∑
k=0

q(
k
2)
[
n

k

]
q

xk.

Identity (B) = (C). We do induction over n. The base case n = 1 is easy. Now assume
that the identity holds for n−1. Consider a binary word b of length n−1. We can either
append 0 or 1 to make a word b′ of length n. If the last bit of b is equal to the appended
bit,

maj(b) + maj(b̂) = maj(b′) + maj(b̂′),
otherwise, the right-hand side is larger by n− 1.
Proposition 33. Let η act on the binary words BW(n) as before. ThenBW(n), 〈η〉,

n∑
k=0

q(
k
2)
[
n

k

]
q


is a CSP-triple.

Proof. We need to evaluate Bn(q) := ∑n
k=0 q

(k2)
[
n
k

]
q

at nth roots of unity. Suppose n = md

and ξ = e2πi `
m with gcd(`,m) = 1. Note that Lemma 6 gives that[

n

k

]
ξ

=


(

d
k/m

)
if m|k

0 otherwise.
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Therefore,

Bn(ξ) =
n∑
k=0

ξ(
k
2)
[
n

k

]
ξ

=
d∑
j=1

ξ(
mj
2 )
[
n

mj

]
ξ

since only terms in the left hand side where k is a multiple of m contribute. We then get
that

Bn(ξ) =
d∑
j=0

e2πi `
m(mj2 )

(
d

j

)
=

d∑
j=0

(−1)`j(mj−1)
(
d

j

)
=

0 if m even,
2d otherwise.

The two cases in the last step are as follows. If m is even, then ` must be odd, and it
follows that the sum is 0. If m is odd, then every term is positive and we get 2d.

That
(

BW(n), 〈η〉,∑n
k=0 q

(k2)
[
n
k

]
q

)
exhibits the CSP now follows from Lemma 31.

It would be of interest to find a representation-theoretic proof of Proposition 33. One
possibility suggested by the referee is to use representation theory on the exterior algebra.

6.2 Cyclic sieving on circular Möbius paths

Recall the definition of circular Möbius paths, and Lemma 12, showing that |CMP(n)| =
2n−1. As CMP(n) ⊆ CDP(n), we use the same definition of major index for circular
Möbius paths as for the circular Dyck paths.

Let OBW(n) ⊂ BW(n) be the set of binary words with odd parity. Note that the
last bit can be deduced from the remaining word. We have a bijection M : OBW(n) →
CMP(n) by

M(b1, . . . , bn) 7→ (b1, b2, . . . , bn−1, 0, b̂1, b̂2, . . . , b̂n−1, 1).

Since η preserves the parity of the word, η act on OBW(n) and thus induces a Cn action
η̃ on CMP(n).

Example 34. Consider the first path of length 16 in Figure 4. The first half of the
corresponding binary word is given by 10110110, which is identified with 10110110 ∈
OBW(n). We apply η to this word and get 01101101. We drop the last bit and append a
0: 01101100 this determines the first half of a new Möbius path in CMP(8), namely the
second path in Figure 4.

Lemma 35. We have the following formula for |CMP(n)|q, mod (qn − 1):

∑
b∈CMP(n)

qmaj(b) ≡ 1
2

n∑
k=0

q(
k
2)
[
n

k

]
q

mod (qn − 1).

Proof. First note that by the definition in (4),

|CMP(n)|q =
∑

b∈CMP(n)
qmaj(b) =

∑
b∈BW(n)

bn=0

qmaj(b∼b̂) (26)
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where ∼ denotes concatenation. Now observe that maj(b ∼ b̂) ≡n maj(b)+maj(b̂). Any
descent in the second half of the concatenation contributing to maj can simply be shifted
by n. Furthermore, any contribution to maj by a descent between the first and second
half must be exactly 0 or n. It is also clear by symmetry that∑

b∈BW(n)
bn=0

qmaj(b∼b̂) =
∑

b∈BW(n)
bn=1

qmaj(b∼b̂).

This together with Lemma 32 implies the result.

We are now ready to present a CSP instance on circular Möbius paths of size n.

Theorem 36. The triplesCMP(n), 〈η̃〉, 1
2

n∑
k=0

q(
k
2)
[
n

k

]
q

 and (CMP(n), 〈η̃〉, |CMP(n)|q)

are CSP-triples, where 〈η̃〉 is the cyclic group of order n that acts on CMP(n).

Proof. First, Lemma 35 implies that both CSP-instances are the same, up to a choice of
a nice polynomial in q. The map M above shows that the cyclic sieving phenomenon on
CMP(n) is simply half of the cyclic sieving phenomenon in Proposition 33.

Remark 3. There is an alternative way to prove CSP on CMP(n). We view the elements
in CMP(n) as (x,b), a starting point and a path with 2n steps. Let β act on the binary
word b by cyclically shifting the path by two steps. Clearly, β does not preserve the set
CMP(n), but it is fairly easy to prove that

(CMP(n) ⊂ X, 〈β〉, |CMP(n)|q)

is a subset-CSP-triple, where X is chosen appropriately. Proposition 28 now implies
CMP(n) with |CMP(n)|q as the polynomial exhibits the CSP.

7 Lyndon-like cyclic sieving

Most results on cyclic sieving regard a family of combinatorial objects, where the cyclic
group Cn acts on a set Xn. The main result of this paper is no exception. In such cases,
it is natural to pay extra attention to families where the various fixed points in Xn under
elements in Cn are in bijection with Xk for some k 6 n. This occurs when the group action
is some type of cyclic shift on words, as we shall see. The notion of Lyndon-like cyclic
sieving has implicitly been considered before from a different perspective. O. Gorodet-
sky [Gor19] introduced the notion of q-Gauss congruences for a family of polynomials,
which turns out to be equivalent with (27) in the following definition.

the electronic journal of combinatorics 26(4) (2019), #P4.16 26



Definition 37. Let {(Xn, Cn, fn(q))}∞n=1 be a family of instances of the cyclic sieving
phenomenon. We say that the family is Lyndon-like if for every pair of positive integers
m, n, with m|n, we have

fn/m(1) = fn

(
e

2πi
m

)
. (27)

By the definition of CSP, we have that

fn

(
e

2πi
m

)
= |{x ∈ Xn : gn/m(x) = x}|,

where 〈g〉 = Cn. Hence, the family is Lyndon-like if and only if the number of elements
in Xn fixed under gd is equal to |Xd|, for every d|n.

Apart from Theorem 22 and Theorem 30, there are several other Lyndon-like families
of CSP instances. Here we list a few.

1. Words of length n, in the alphabet [k], with fn(q) = ∑
w∈[k]n q

maj(w) as the polyno-
mial.

2. A Lyndon-like CSP instance related to non-symmetric Macdonald polynomials is
proved in [AU19]. The family fn(q) is defined as fn(q) = ∑

T∈NAF(nλ,k) q
maj(T ), where

NAF(λ, k) is a certain set of non-attacking fillings with maximal entry at most k
and shape λ. This CSP generalizes the Lyndon-like CSP on words.

Lemma 38. Let {(Xn, Cn, fn(q))}∞n=1 be a Lyndon-like family of instances of the CSP.
Then there are unique non-negative integers {td}∞d=1 such that for every n > 1 we have

|Xn| =
∑
d|n
d · td.

Proof. Let On,k be the set of elements in Xn that are in an orbit of size k under g. We let
tn := 1

n
|On,n|, so the identity we wish to prove is via Möbius inversion equivalent to the

right-hand side of

|Xn| =
∑
d|n
d · td ⇐⇒ |On,n| =

∑
d|n
µ
(
n

d

)
|Xd|. (28)

Now since the family is Lyndon-like, we have that for all d|n,

|Xd| = |{x ∈ Xn : gd(x) = x}| =
∑

16k6d
k|d

|On,k|. (29)

Thus, combining (28) and (29), it suffices to show that

|On,n| =
∑

16d6n
d|n

µ
(
n

d

) ∑
16k6d
k|d

|On,k|.
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Möbius inversion on the outer sum gives that

|Xn| =
∑

16k6n
k|n

|On,k|

which is obviously true since every element in Xn belongs to exactly one orbit of some
size. The parameters tn are by construction unique.

We let the integers td be called Lyndon parameters, since if we choose td to be the
usual Lyndon numbers, we get that |Xn| = 2n. A CSP instance with these parameters
can be constructed by considering binary words of length n, with Cn acting via cyclic
shift. The Lyndon words of length n are then in bijection with 1

n
|On,n| in the notation

above — that is, they are representatives of orbits of size n under cyclic shift.

Lemma 39. There is no Lyndon-like family of CSP instances where Cn acts on on some
family of Catalan objects Cat(n).

Proof. We have that |Cat(1)| = 1 and |Cat(3)| = 5, so we must have C3 acting on 5
objects. But then we must have t1 = 2, t3 = 1, or t1 = 5, both of which are incompatible
with |Cat(1)| = 1.

The goal of the remainder of this section is to prove the converse of Lemma 38. That
is, there is a Lyndon-like family of CSP instances for any choice of Lyndon parameters.

Proposition 40. For any sequence of Lyndon parameters T = {td}∞d=1, there is a Lyndon-
like family of instances of the CSP.

Proof. It is enough to constructXn and a Cn-action onXn with the properties in Lemma 38.
Let

Xn = {(d, i, j) : d|n, 1 6 i 6 tk, 1 6 j 6 d}

and let the generator g act as g · (d, i, j) = (d, i, j + n/d), where the last coordinate is
taken modulo d. It is straightforward to show from the construction that for all n and
k|n

|Xn| =
∑
d|n
d · td and |Xk| = |{x ∈ Xn : gk(x) = x}|.

We can then use fn(q) from Proposition 2 to make (Xn, Cn, fn(q)) into a CSP-triple.

It is possible to biject the Cn-action in Proposition 40 into an action on certain (how-
ever, quite artificial) words of length n, where Cn acts by a one-step shift. Thus, it is no
accident that the examples we have given above are all of this form.

Also note that the Lyndon parameters uniquely define the family of instances of the
CSP in the following sense.

Proposition 41. Let (Xn, Cn, fn(q)) and (Yn, Cn, gn(q)) be two families of Lyndon-like
instances of the CSP with the same Lyndon parameters. Then there are Cn-equivariant
bijections ψn : Xn → Yn such that for all g ∈ Cn and x ∈ Xn, ψn(g · x) = g · ψn(x).
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Proof. First, we have that |Xn| = |Yn| for all n, by Lemma 38. From Definition 37, it
then follows that

{x ∈ Xn : gn/k · x = x} = |Xn/k| = |Yn/k| = {y ∈ Yn : gn/k · y = y}.

By using Möbius inversion on (29), it is clear that the number of Cn-orbits of size d in
Xn is equal to the number of Cn-orbits of size d in Yn. We can then simply let ψn map
orbits to orbits in an equivariant manner.

Remark 4. Note that Definition 37 gives a method to computationally check if a sequence
of polynomials {fn(q)}∞n=1 might be completed to a Lyndon-like family of CSP instances.
In this case, one might be able to narrow down the search for a suitable group action.

8 Homomesy under area shift

There is a concept called homomesy that means a statistic has the same average in each
orbit as it has in the full space.

Let α′ denote the operation of shifting a binary sequence b ending in a 1, cyclically so
that the second to last 1 becomes the ending 1. This corresponds to what happens with
b when shifting the cyclic area sequence one step upwards.

Example 5. For n = 2, we have the binary strings ending with a 1, partitioned into orbits
by α′: {0011, 1001}, {0101}. The inversion numbers are inv(0011) = 4, inv(1001) = 2,
inv(0101) = 3, so the average for each orbit is 3. Note that the last orbit corresponds to
two CDP with different starting point, but the inversion number is the same, so it is not
important to keep track of here.

Theorem 42. For the words from circular Dyck paths, inv(w) is homomesic with respect
to the action α′.

Proof. We only have to look at the orbit for any given word b that has n 0s, n 1s and
ends in a 1. It turns out that it is not important here that it comes from a CDP. Let
z(b) = (z1, . . . , zn) be the number of 0s between two consecutive 1s in b, i.e. zi is the
number of 0s between the (i− 1)th and ith one (with z1 =number of leading 0s).

For example b = 011001 has z(b) = (1, 0, 2). Then inv(b) = ∑n
i=1(n − i + 1)zi. The

action α′ is rotating z one step. Thus summing over an orbit of size n we get

∑
i

∑
j

(n− j + 1)zi =
∑
i

zi

(
n+ 1

2

)
= n ·

(
n+ 1

2

)
.

Hence the average over the orbit is
(
n+1

2

)
.

If the orbit is of size strictly shorter than n then the size still divides n, and we can
sum over all n shifts and the same calculation holds to compute the average.

The number of inversions is not homomesic with respect to the operation η discussed
in Section 6.
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9 Further research directions

Computer experiments suggests that the CSP instance in Theorem 22 can be refined by
taking the number of circular peaks of the circular Dyck path into account. A circular
peak of a (circular) Dyck path is an index i ∈ [n] such that ai+1 6 ai in its area sequence,
where the index is taken mod n. In Example 9, 2, 4 and 6 are circular peaks. Whenever
a is an ordinary Dyck path, with a1 = 0, then the number of (ordinary) peaks of a is the
same as the number of circular peaks.

Furthermore, one can also consider Schröder paths, where diagonal steps are allowed.
We do not have an enumeration formula for these; it is an interesting open problem as
that would count certain circular vertical-strip LLT polynomials, see [AP18].

One could also introduce CMP(n,w) ⊆ CDP(n,w) as the set of circular area sequences
satisfying the additional Möbius restriction in (4). Using the machinery above with some
modification, it should be fairly easy to derive analogous expressions for enumeration.
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Corrigendum – Added November 6, 2020

Missing reference

We have learned since the publication that the formula for the maj-generating polyno-
mial for the paths we study was already known. Corollary 21 in our paper follows from
Corollary 3 in [KM93]. The proof techniques are similar but somewhat different, using
different maps. Given this result by Krattenthaler and Mohanty we could have omitted
the five pages leading up to Corollary 21 in our paper. Also, our Proposition 30, which
we proved with the same methods, is a special case of the result in [KM93].
We also want to correct the name we give to the q-Catalan numbers in Proposition 8.
They are MacMahon’s q-Catalan numbers.
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Erratum – Added November 18, 2021
The original published version was not typeset correctly. Every time there was a

reference to a Lemma X, Proposition X, Corollary X, etc it referred to Theorem X. This
has now been corrected. No other changes were made.
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