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Abstract

We prove a q-analogue of the modular hook length formula using position se-
quences. These position sequences, which correspond to moving the beads in a
mathematical abacus, provide a new combinatorial interpretation for the characters
of the irreducible representations of the symmetric group.

Mathematics Subject Classifications: 05E05, 05E10, 20C30

1 Introduction

Let n and k be positive integers and let λ and µ = (µ1, µ2, . . . ) be integer partitions of n.
A rim hook of length k is a sequence of k connected cells in the (English) Young diagram
for λ that begins in a cell on the southeast boundary and travels up along the southeast
edge such that its removal leaves the Young diagram of a smaller integer partition.

The sign of a rim hook ρ is (−1)(the number of rows spanned by ρ)−1. For example, below is a
rim hook of length 6 with sign (−1)3−1 = +1 inside of the Young diagram of the integer
partition (7, 6, 4, 3, 1):

A rim hook tableau of shape λ and content µ is a filling of the cells of the Young
diagram of λ with rim hooks of lengths µ1, µ2, . . . labeled with 1, 2, . . . such that the
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removal of the last i rim hooks leaves the Young diagram of a smaller integer partition
for all i. Let RHT λµ be the set of all rim hook tableaux of shape λ and content µ.

The sign of a rim hook tableau T is the product of all of the signs of the rim hooks in
T . We let

χλµ =
∑

T∈RHTλµ

signT.

For example, all rim hook tableaux of shape (3, 3, 2, 1) and content (3, 3, 3) are:

1

2

3

1

2 3

1 2

3

These three rim hook tableaux have sign −1 and so χ
(3,3,2,1)
(3,3,3) = −3.

The numbers χλµ are of significant interest because they give

1. the value of the irreducible character of Sn indexed by λ on Cµ where Cµ denotes
the conjugacy class containing the permutations with cycle type µ,

2. the coefficient of the Schur symmetric function sλ in the power symmetric function
pµ, and

3. the coefficient of |Cµ|pµ in n!sλ.

As such, rim hook tableaux have been extensively studied and can be found in most treat-
ments of the representation theory of the symmetric group Sn and symmetric functions
(see, for instance, [11, 14, 9]).

In the special case of µ = (1, . . . , 1), rim hook tableaux of shape λ and type µ are
standard tableaux and the number χλ(1,...,1) can be found using the hook length formula.

Theorem 1 (The hook length formula). If λ is an integer partition of n, then

χλ(1,...,1) =
n!∏
c∈λ hc

where the notation c ∈ λ means that c is a cell in the Young diagram of λ and the hook
length hc is the length of the rim hook that begins in the same column as c and ends in
the same row as c.

The hook length formula is a true crown jewel of enumerative combinatorics. Originally
proved by Frame, Robinson, and Thrall [2], there are now a panoply of beautiful proofs
(see final remark 10.3 and the references in [10]).

The hook length formula has been generalized in two different ways, the first of which
involves the major index of a standard tableau. If p = p1 · · · p` is any sequence of integers,
the major index of p, denoted maj p, is equal to

∑
i where the sum runs over all indices
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i such that pi > pi+1. Adapting this idea for standard tableaux, if T ∈ RHT λ(1,...,1) is a
standard tableau, then the integer i is a descent in T if rim hook i appears in a row above
that of rim hook i + 1. The major index of T , denoted majT , is equal to

∑
i where the

sum runs over all descents i in T .
For example, the descents in

1 3 4

2 6 8

5 7

9

are 1, 4, 6 and 8, and so the major index is 19.
The first generalization of the hook length formula is the q-hook length formula. It

first appeared in [13] and was later proved using the elegant Hillman-Grassl algorithm [3].

Theorem 2 (The q-hook length formula). If λ = (λ1, λ2, . . . ) is an integer partition of
n, then ∑

T∈RHTλ
(1,...,1)

qmajT−(0λ1+1λ2+··· ) =
[n]q!∏
c∈λ[hc]q

where [n]q = q0 + · · ·+ qn−1 and [n]q! = [n]q · · · [1]q are the usual q-analogues of n and n!.

The second generalization of the hook length formula involves rim hook tableaux
of shape λ and content (k, . . . , k). These rim hook tableaux are useful in the modular
representation theory of the symmetric group and can be used to generalize the Robinson-
Schensted-Knuth (RSK) algorithm [15].

All rim hook tableaux of shape λ with content (k, . . . , k) have the same sign (this is

implied by (2.7.26) in [4]) and so
∣∣∣χλ(k,...,k)∣∣∣ is the number of rim hook tableaux of shape

λ and type (k, . . . , k). The value of this quantity is given by the modular hook length
formula, first proved in [1]. The modular hook length formula is less well known than
Theorem 1 but is beginning to receive the attention it deserves [16].

Theorem 3 (The modular hook length formula). If λ is an integer partition of n such
that χλ(k,...,k) 6= 0, then ∣∣χλ(k,...,k)∣∣ =

(n/k)!∏
hc/k

where the product is over all cells c ∈ λ with hc divisible by k.

The main result in this paper, Theorem 13, synthesizes the generalizations of the
hook length formula in Theorems 2 and 3 to provide a q-analogue for the modular hook
length formula. In order to prove Theorem 13 we introduce the concept of a position
sequence. Position sequences are sequences of integers created from recording bead moves
in a mathematical abacus. They provide a natural framework in which to understand rim
hook tableaux, especially when interested in q-analogues.
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The outline of the paper is as follows. In section 2 we introduce position sequences, the
main tool needed to prove the q-modular hook length formula. Interesting connections
with the RSK algorithm are made, a position sequence version of Theorem 2 is given, and
we find a q-analogue for the entire character table for the symmetric group in section 2.
Section 3 contains our proof of the q-modular hook length formula.

2 Position sequences

A k-abacus consists of k runners, each of which is a sequence of beads and empty places.
For example, this is a 3-abacus with 7 beads:

(1)

Starting in the bottom left corner, label the beads and the empty places in the abacus
with the integers 1, 2, . . . by moving up each column, working left to right. For example,
the above abacus is numbered

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

and there are beads at positions 4, 5, 7, 8, 9, 15 and 16.
Each k-abacus A represents an integer partition. Let b1, . . . , b` be the labels of the

beads on a k-abacus and let empty(bi) be the number of empty places with a label smaller
than bi. Then the integer partition corresponding to A is

λA = (empty(b`), . . . , empty(b1)) .

For example, if A is the 3-abacus above, then λA = (9, 9, 4, 4, 4, 3, 3).
Moving a bead in a k-abacus A from position i to an empty place in position i − j

removes a rim hook of length j from λA. When j = k this move sends a bead one step
left on its runner. The sign of the removed rim hook is (−1)b where b is the number of
beads in positions between i and i− j (see Section 2.7 in [4]). These facts have been used
to great effect in proving classic results from symmetric function theory using abaci [6, 7].

Therefore a rim hook tableau T of shape λ and content µ = (µ1, . . . , µ`) can be
interpreted as a sequence of bead moves in a k-abacus A such that the ith bead move
moves a bead in position j for some j to an empty place in position j − µ`+1−i for
i = 1, . . . , `. The beads in A will be pushed as far as possible to the left after all of the
moves. The sign of T is the product of the signs of the bead moves.

We record such a sequence of bead moves with a position sequence. A position sequence
p = p1 · · · p` is the sequence of integers defined such that pi is the empty position filled by
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a bead on bead move i. If A is a k-abacus with λA = λ, we let PSλµ be the set of position
sequences with bead moves of lengths given by µ. It follows that PSλµ and RHT λµ have
the same number of elements.

For example, one position sequence when λ = (9, 9, 4, 4, 4, 3, 3) and µ = (3, . . . , 3) is

2 13 5 12 6 1 10 3 9 6 4 7. (2)

Starting with the 3-abacus displayed above, this position sequence says to move the bead
in position 5 into position 2, then move the bead in position 16 to position 13, then move
the bead in position 8 into position 5, and so on. The rim hook tableau of shape λ and
content µ for this position sequence is:

12

11

10

9

8

7

6

5

4

32

1

This rim hook tableau was created by finding λA after each bead move and placing a rim
hook in the removed cells.

The position sequence in (2) contains the subsequence 12 6 3 9 6. This subsequence
comes from moving beads within the 3rd runner in the 3-abacus (reading bottom to top),
and so these numbers are congruent to 3 modulo 3. Furthermore, the position sequence
contains the subsequences 6 9 and 3 6 because in order for the rightmost bead on
the top runner to move into positions 9 and 6, the leftmost bead on the top runner must
already have moved into positions 6 and 3. With this example as a guide we work towards
characterizing position sequences in PSλ(k,...,k) by their subsequences.

Let λ = (λ1, . . . , λ`) be an integer partition. For each j = 1, . . . , `, define Ij to be
the sequence created by listing the integers in the interval [j, λ`−j+1 + j− 1] in decreasing
order. The sequence Ij gives the positions that the jth bead in the 1-abacus will occupy
when moved in a position sequence in PSλ(1,...,1). For example, the corresponding labeled

1-abacus for λ = (4, 4, 3, 1) is

1 2 3 4 5 6 7 8

and the sequences I1, . . . , I4 are

I1 = 1, I2 = 4 3 2, I3 = 6 5 4 3, and I4 = 7 6 5 4. (3)

A shuffle of the sequences I1, . . . , I` is a sequence created by interleaving I1, . . . , I` such
that each of I1, . . . , I` appears as a subsequence.
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Lemma 4. Let λ = (λ1, . . . , λ`) be an integer partition. Then p is a position sequence in
PSλ(1,...,1) if and only if p is a shuffle of I1, . . . , I` and each integer m in p that comes from
Ij appears after every m− 1 in p coming from I1, . . . , Ij−1 for all j = 1, . . . , `.

Proof. Suppose p is a position sequence in PSλ(1,...,1). Since Ij gives the positions the jth

bead moves into in a sequence of bead moves that correspond to a position sequence, each
Ij appears as a subsequence in p with the order of the integers in Ij preserved. Therefore
p is a shuffle of I1, . . . , I`.

If a bead is moved into position m in a sequence of bead moves, then each of the beads
to its left must already have been moved into in position m−1 or smaller. Therefore each
integer m in p that comes from Ij must appear after every integer m− 1 that appears in
each of I1, . . . , Ij−1.

Now suppose p is a shuffle of I1, . . . , I` satisfying the condition in the statement of
the theorem. The subsequence Ij in p represents moving the jth bead from its starting
position to its final position, and condition in the statement of the theorem guarantees
that position m will be empty at the time when bead j is moved into position m. Therefore
p represents a sequence of bead moves and so p ∈ PSλ(1,...,1).

It will be convenient to break the k-abacus into k instances of 1-abaci. Let λ(i) be
the integer partition found by considering the ith runner reading bottom to top on the
k-abacus as a 1-abacus. For example, λ(1) = (3, 1, 1), λ(2) = (1, 1), and λ(3) = (3, 2) for
the abacus in (1).

Theorem 5. Let λ be an integer partition such that RHT λ(k,...,k) is nonempty. Let PSλ
(i)

k

be the set of position sequences p ∈ PSλ(i)(1,...,1) with each integer j in p replaced with kj + i.

Then p is a position sequence in PSλ(k,...,k) if and only if p is a shuffle of p(1), . . . , p(k) for

some p(1) ∈ PSλ(1)k , . . . , p(k) ∈ PSλ(k)k .

Proof. Suppose p ∈ PSλ(k,...,k) and let p(i) be the subsequence of p consisting of the values
in p congruent to i modulo k. Each bead move on the k-abacus moves a bead on a runner
one position to the left on the same runner. Therefore bead moves on a single runner
must satisfy the conditions in Lemma 4, showing that p(i) ∈ PSλ(i)k for i = 1, . . . , `. This

shows that p is a shuffle of p(1), . . . , p(k) for some p(1) ∈ PSλ(1)k , . . . , p(k) ∈ PSλ(k)k .

Now suppose p is a shuffle of p(1), . . . , p(k) for some p(1) ∈ PSλ
(1)

k , . . . , p(k) ∈ PSλ
(k)

k .
Since bead moves on different runners do not influence each other, it follows from 4 that
p corresponds to a sequence of bead moves on the k-abacus and so p ∈ PSλ(k,...,k).

An increasing run in a sequence of integers is a maximal weakly increasing consecutive
subsequence.

Lemma 6. Let A1, . . . , A` be finite sequences of integers. We interpret each of A1, . . . , A`
as having the same number r of increasing runs by possibly padding the beginning of each
of A1, . . . , A` with empty increasing runs. Define p̂ to be the shuffle of A1, . . . , A` with
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r increasing runs such that the ith increasing run in p̂ contains the integers in the ith

increasing runs in each of A1, . . . , A` sorted into increasing order for i = 1, . . . , r. Then

maj p̂ = maj(A1) + · · ·+ maj(A`)

and this p̂ is the unique shuffle of A1, . . . , A` with the minimum possible major index.

As an example, consider

A1 = 1 2 4 3 6, A2 = 3 2 3 3, and A3 = 1 5 5.

Here A1 and A2 have 2 nonempty increasing runs and A3 has 1 nonempty increasing run,
so we interpret A3 as having 2 increasing runs where the first increasing run is empty. Then
we see p̂ = 1 2 3 4 1 2 3 3 3 5 5 6 and maj p̂ = 4 = 3+1+0 = majA1+majA2+majA3.

Proof. The assertion is trivially true when each of A1, . . . , A` is empty. We proceed by
induction on |A1|+ · · ·+ |A`|.

Let Ãj be Aj with its final increasing run removed. The only descent in Aj that does

not appear in Ãj is in position |Aj| − |Ãj| and so

maj Ãj + |Aj| − |Ãj| = majAj (4)

for j = 1, . . . , `.
Let p be a shuffle of A1, . . . , A`. There must be a descent in p at position

|A1|+ · · ·+ |A`| − |Ã1| − · · · − |Ã`| (5)

or greater because this is the position where the maximum possible final increasing run
in any shuffle of A1, . . . , A` begins (this maximum possible final increasing run is created
by combining the final increasing runs in A1, . . . , A` into one increasing sequence). If we
define p′ to be p with its final increasing run removed, then this implies

maj p > |A1|+ · · ·+ |A`| − |Ã1| − · · · − |Ã`|+ maj p′

where equality is achieved only when the final descent in p occurs in the position in (5).
Let A′1, . . . , A

′
` be A1, . . . , A` but with possibly some of their tails trimmed so that p′

is a shuffle of A′1, . . . , A
′
`. Then Ãj is equal to A′j but maybe with some final integers

deleted. Therefore we have majA′j > maj Ãj for each j = 1, . . . , `.
The induction hypothesis on p′ gives that maj p′ > majA′1 + · · ·+majA′` with equality

holding if and only if p′ is the unique shuffle of A′1, . . . , A
′
` with the minimum possible

major index as described in the statement of the Lemma.
Putting these observations together gives

maj p > |A1|+ · · ·+ |A`| − |Ã1| − · · · − |Ã`|+ maj p′

> |A1|+ · · ·+ |A`| − |Ã1| − · · · − |Ã`|+ majA′1 + · · ·+ majA′`

> |A1|+ · · ·+ |A`| − |Ã1| − · · · − |Ã`|+ maj Ã1 + · · ·+ maj Ã`

= majA1 + · · ·+ majA`
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where the last line used (4).
Equality is achieved in this string of inequalities if and only if there is a descent exactly

in the position in (5) (hence A′j = Ãj for all j) and p′ is the unique shuffle of A′1, . . . , A
′
`

with the minimum possible major index. In other words, equality is uniquely achieved
when the shuffle p is the shuffle p̂ as described in the statement of the Lemma.

Corollary 7. Let p̂ be the position sequence in PSλ(1,...,1) with the minimum major index.
Then p̂ corresponds to finding the rightmost bead b in the 1-abacus that can be moved one
position to the left, moving b one position to the left, and then iterating until no more
moves can be made.

Proof. Since Ij has length λ`−j+1, the sequences I1, . . . , I` weakly increase in length. Let
m be the minimum integer such that the sets Im, . . . , I` all have the same length. This
means that λ has `−m+1 copies of its largest part, and, on the 1-abacus, the sequence of
beads and empty places ends with an empty place and then `−m+ 1 consecutive beads.

Let z be the first integer in Im. If b is the rightmost bead in the 1-abacus that can be
moved one position to the left, then the appearance of z in a position sequence corresponds
to moving b one position to the left. It remains to be shown that p̂ begins with z.

Since each of I1, . . . , Im−1 has a length less than that of Im, we begin creating p̂ by
padding each of I1, . . . , Im−1 with empty increasing runs. Then z appears first in p̂ because
z is the minimum integer appearing in the first increasing runs of I1, . . . , I`.

Theorem 8. If p̂ is the element in PSλ(k,...,k) with the minimum major index, then

maj p̂ =
∑(

x

2

)
where the sum runs over all parts x in the integer partitions λ(1), . . . , λ(k).

Proof. Suppose λ(i) = (λ
(i)
1 , . . . , λ

(i)
`i

) and let p(i) be an element of PSλ
(i)

k . By Lemma 4,

p(i) has kIj + i as subsequence for j = 1, . . . , `i. This subsequence has length λ
(i)
`i−j+1, so it

has major index 1 + 2 + · · ·+ (λ
(i)
`i−j+1 − 1) =

(λ(i)`i−j+1

2

)
. Using Lemma 6 on the sequences

kI1 + i, . . . , kI`i + i gives that the minimum major index over all elements in PSλ
(i)

k is(
λ
(i)
1

2

)
+ · · ·+

(
λ
(i)
`i

2

)
. (6)

The second condition in Lemma 4 says that m must appear after a certain number of
appearances of m− 1. As can be seen using Corollary 7, this condition is preserved when
using Lemma 6. Therefore this minimum major index is actually achieved by an element
in PSλ

(i)

k .
By Theorem 5, each element in PSλ(k,...,k) is a shuffle of sequences p(1), . . . , p(k) with

p(i) ∈ PSλ(i)k . Taking each p(i) to be the element with major index given in (6), another
application of Lemma 6 completes the proof.
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As an example of Theorem 8, consider the k-abacus in (1). Since λ(1) = (3, 1, 1),
λ(2) = (1, 1), and λ(3) = (3, 2), the minimum major index is

(
3
2

)
+
(
1
2

)
+ · · ·+

(
3
2

)
+
(
2
2

)
= 7.

Lemma 6 and the proof of Theorem 8 tell us that the unique position sequence p̂ that
achieves this minimum is p̂ = 12 13 6 9 10 1 2 3 4 5 6 7.

The RSK algorithm can be used to understand monotonic subsequences in words.
Lemma 4 characterizes position sequences in terms of decreasing subsequences, and so it
may not come as a surprise that there is a relationship between the RSK algorithm and
position sequences.

Theorem 9. The RSK algorithm produces the same insertion tableau P for every position
sequence in PSλ(1,...,1).

Proof. We will use Knuth equivalence, defined as follows. Let A and B be finite sequences
with integer letters. An elementary Knuth operation on A is one of these two operations
or their inverses:

1. If x z y appears consecutively in A and x 6 y < z, then the order of these letters is
changed to z x y and the rest of A is left unchanged.

2. If y z x appears consecutively in A and x < y 6 z, then the order of these letters is
changed to y x z and the rest of A is left unchanged.

Then A and B are defined to be Knuth equivalent if A can be transformed into B by a
sequence of elementary Knuth operations. This is relevant because A and B are Knuth
equivalent if and only if the RSK algorithm produces the same P tableau for A and B [5].

Let p̂ be the position sequence in PSλ(1,...,1) with the minimum major index and let p

be any other position sequence in PSλ(1,...,1). We will prove the theorem by showing that
p and p̂ are Knuth equivalent.

The theorem is clearly true when |λ| is 0, 1 or 2 because in these cases there is at most
one position sequence in PSλ(1,...,1). We will prove the theorem true when the length of p

is larger than 2 by induction on |λ|.
Let z be the first integer in p̂. If p also begins with z, then we are done by induction

on the remaining portion of p. If not, we will show that z can be moved into the first
position of p using a sequence of elementary Knuth operations at which point the theorem
again follows by induction on the remaining portion of p. For this it is enough to show
that the leftmost appearance of z in p can be moved one position to the left in p by a
sequence of elementary Knuth operations.

Since p̂ begins with z, position z on the 1-abacus is initially empty and remains empty
when performing moves in the order given by p until the move corresponding to the
leftmost z. Furthermore, Corollary 7 implies that all integers larger than z in p appear
to the right of the leftmost z. Therefore, if we define x to be the integer immediately to
the left of the leftmost z in p, then x+ 1 < z.

Let p′ be the sequence of integers appearing to the right of the leftmost z in p. Then

p′ is a position sequence in PSλ̃(1,...,1) for some integer partition λ̃ such that λ̃ ⊂ λ. Let p′′

be a position sequence in PSλ̃(1,...,1) that begins with an integer y that satisfies x 6 y < z.
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Such a p′′ exists because the integer x + 1 appears to the right of the leftmost z in p
(because the bead moves corresponding to the x z in p leave position x + 1 empty and
that empty position must eventually be filled with a bead). Thus one possible bead move
that would correspond to an acceptable value of y can be moving the leftmost possible
bead to the right of x first.

By induction, RSK produces the same insertion tableau P for every position sequence

in PSλ̃(1,...,1) and therefore all position sequences in PSλ̃(1,...,1) are Knuth equivalent. In
particular, there is a sequence of elementary Knuth operations that turns p′ into p′′.
Applying these same elementary Knuth operations to p yields a position sequence p′′′ ∈
PSλ(1,...,1) such that p and p′′′ are the same up until the leftmost z and such that the tail
end of p′′′ is p′′.

The sequence p′′′ now contains the consecutive sequence x z y with x < y < z. Using
the first elementary Knuth operation, turn this into z x y. This still gives a valid position
sequence because z x y corresponds to moving a bead into position z and then moving a
bead into position x instead of vice versa. We have now successfully moved the leftmost
z one position to the left using a sequence of Knuth operations, as needed.

For example, the insertion tableau P found when applying the RSK algorithm to any
p ∈ PSλ(1,...,1) when λ = (4, 4, 3, 1) is

1 2 3 4

3 4 5

4 5 6

6 7

The reading word for a tableau is the word found by reading the rows left to right, bottom
to top. The reading word for the above tableau is

6 7 4 5 6 3 4 5 1 2 3 4.

This word is also the position sequence p̂ ∈ PSλ(1,...,1) with the minimum major index.

Theorem 10. Let λ be an integer partition and let P be the insertion tableau found when
applying the RSK algorithm to any position sequence in PSλ(1,...,1). Then the shape of P is

the conjugate partition λ′ and the reading word for P is the position sequence p̂ ∈ PSλ(1,...,1)
with the minimum major index.

Proof. The position sequence p̂ with the minimum major index is the reading word for
some standard tableau, say P̂ . The construction of p̂ given in Lemma 6 implies that P̂
has shape λ′ because the parts of λ′ give the lengths of the increasing runs in p̂.

Lemma 3.4.5 in [11] says that the insertion tableau P found when applying the RSK
algorithm to p̂ is also P̂ , and Theorem 9 says that all position sequences in PSλ have the
same insertion tableau P .
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Theorem 11 (The position sequence version of the q-hook length formula). If λ =
(λ1, . . . , λ`) is an integer partition of n and p̂ is the position sequence in PSλ(1,...,1) with
the minimum major index, then∑

p∈PSλ
(1,...,1)

qmaj p−maj p̂ =
[n]q!∏
c∈λ[hc]q

.

Proof. There are the same number of position sequences in PSλ(1,...,1) as there are rim hook

tableaux of shape λ and type (1, . . . , 1), which is also the number of rim hook tableaux
of shape λ′ and type (1, . . . , 1). If P is the tableau of shape λ′ with reading word p̂ as in
Theorem 10, then

{(P,Q) : Q is a rim hook tableau of shape λ′ and type (1, . . . , 1)} (7)

has the same size as PSλ(1,...,1). Since RSK is a bijection, applying RSK to PSλ(1,...,1)
produces every element in (7) exactly once.

If p is any word and RSK sends p to (P,Q), then maj p = majQ where maj p is the
major index for sequences and majQ is the major index for standard tableaux (see, for
instance, [7]). This, combined with Theorem 8, gives∑

p∈PSλ
(1,...,1)

qmaj p−maj p̂ =
∑

Q∈RHTλ′
(1,...,1)

qmajQ−(λ12 )−···−(λ`2 ). (8)

Let λ′ = (λ′1, . . . , λ
′
r) be the conjugate partition to λ. Consider the tableau of shape

λ′ with i− 1 occupying every entry in row i, like this example when λ = (4, 4, 3, 1):

0 0 0 0

1 1 1

2 2 2

3 3

The sum of column j is
(
λj
2

)
. Summing the entries in this tableau column by column and

then row by row, we find
(
λ1
2

)
+
(
λ2
2

)
+ · · · = 0λ′1 + 1λ′2 + · · · . Using this in (8) and then

applying Theorem 2 gives∑
Q∈RHTλ′

(1,...,1)

qmajQ−(0λ′1+1λ′2+··· ) =
[n]q!∏
c∈λ′ [hc]q

=
[n]q!∏
c∈λ[hc]q

,

as needed.

Although this paper is most concerned with the situation where µ = (k, . . . , k), we
can use position sequences to give a q-analogue for χλµ when µ 6= (k, . . . , k). The sign of
a bead move from position i to position i− j is (−1)b where b is the number of beads in
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positions between i and i− j. We define sign p to be the product of the signs of all of the
bead moves given by the position sequence p. A q-analogue for χλµ can be defined as

χλµ,q =
∑
p∈PSλµ

(sign p) qmaj p.

For example, consider λ = (3, 12). The labeled 1-abacus for λ is

1 2 3 4 5 6
.

We have χ
(3,12)

(2,13),q = q+ q2− q4− q5, found by moving beads of distances 1, 1, 1 and 2. The
relevant position sequences are below:

Position Sequence Sign Major Index

5 1 2 3 +1 1
1 5 2 3 +1 2
1 2 5 3 +1 3
5 4 1 2 −1 3
5 1 4 2 −1 4
1 5 4 2 −1 5

Doing this type of calculation as λ and µ range over all integer partitions of 5 gives a
q-analogue for the character table for S5:

C(15) C(2,13) C(22,1) C(3,12) C(3,2) C(4,1) C(5)

χ(5) q10 q6 q3 q3 q q 1

χ(4,1) q6[4]q q3 + q4 + q5 − q6 q2 − q3 q + q2 − q3 −q 1− q −1

χ(3,2) q4[5]q q2 + q3 − q5 q − q2 + q3 q − q2 − q3 1 −q 0

χ(3,12) q3
[4]q[3]q

[2]q
q + q2 − q4 − q5 −q − q2 1− q2 + q3 q − 1 q − 1 1

χ(22,1) q2[5]q q − q3 − q4 1− q + q2 −q −q q 0

χ(2,13) q[4]q 1− q − q2 − q3 q − 1 −1 + q + q2 1 1− q −1

χ(15) 1 −1 1 1 −1 −1 1

The χλ row and Cµ column entry is χλµ,q. The first column was found using Theorem 11.
If ν is a rearrangement of the parts in µ, then χλµ = χλν (see [15, 8]). Unfortunately, the

q-analogue χλµ,q does not enjoy the same property. For example, we have χ
(3,12)
(1,1,1,2),q = q−q5

because the position sequence 4 1 2 3 with sign +1 has major index 1 and the position
sequence 1 5 4 3 with sign −1 has major index 5.
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3 The q-modular hook length formula

After this next Lemma we will be ready to prove our main result in Theorem 13.

Lemma 12. If λ is an integer partition and PSλ
(i)

k is as in Theorem 5, then∑
p∈PSλ

(k,...,k)
qmaj p

(1− q) · · · (1− q|λ|/k)
=

k∏
i=1

∑
p(i)∈PSλ(i)k

qmaj p(i)

(1− q) · · ·
(
1− q|λ(i)|

) . (9)

Proof. The 1/((1−q) · · · (1−q|λ|/k)) term on the left side of (9) is the generating function
for integer partitions with no part larger than |λ|/k. Conjugating such an integer partition
gives an integer partition that has exactly |λ|/k parts with parts of size 0 allowed. The
length of p ∈ PSλ(k,...,k) is |λ|/k and so the left side of (9) is equal to∑

qmaj p+|π|

where the sum runs over all possible p ∈ PSλ(k,...,k) and all possible integer partitions π
with parts of size 0 allowed such that the lengths of π and p are the same. Similarly, the
right side of (9) is equal to∑

qmaj p(1)+···+maj p(k)+|π(1)|+···+|π(k)|

where the sum runs over all possible p(i) ∈ PSλ
(i)

k and all possible integer partitions
π(1), . . . , π(k) with parts of size 0 allowed such that the lengths of π(i) and p(i) are the
same for each i.

We will prove the lemma by exhibiting a bijection ϕ which sends pairs of the form (p, π)
where p is a position sequence in PSλ(k,...,k) and π is an integer partition with 0 parts allowed

such that p and π have the same length to tuples of the form
(
p(1), π(1), . . . , p(k), π(k)

)
where

p(i) ∈ PSλ(i)k and π(i) have the same length for each i. The bijection ϕ will have the weight
preserving property that

maj p+ |π| = maj p(1) + · · ·+ maj p(k) + |π(1)|+ · · ·+ |π(k)|.

Let p = p1p2 · · · be a position sequence in PSλ(k,...,k) and π = (π1, π2, . . . ) be an integer

partition with 0 parts allowed such that p and π have the same length. Let c(i, j) be the

position of the jth integer in p that is congruent to i modulo k. Define p(i) = p
(i)
1 p

(i)
2 · · ·

where p
(i)
j = pc(i,j) and define π(i) = (π

(i)
1 , π

(i)
2 , . . . ) where

π
(i)
j = πc(i,j) + (the number of descents in p at position c(i, j) or greater)

− (the number of descents in p(i) at position j or greater). (10)

The bijection ϕ is defined to send (p, π) to
(
p(1), π(1), . . . , p(k), π(k)

)
.

For example, suppose λ = (9, 9, 4, 4, 4, 3, 3), k = 3,
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p = 2 13 5 12 6 1 10 3 9 6 4 7 and
π = ( 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0).

Then it can be found that

p(1) = 13 1 10 4 7 ,
π(1) = (5, 3, 3, 0, 0),

p(2) = 2 5 ,
π(2) = (8, 6),

p(3) = 12 6 3 9 6 ,
π(3) = (3, 3, 2, 2, 1),

and we see that maj p+ |π| = 47 = maj p(1) + maj p(2) + maj p(3) + |π(1)|+ |π(2)|+ |π(3)|.
The sequences p(1), . . . , p(k) are indeed elements in PSλ

(i)

k because of Theorem 5.
Suppose p(i) has a descent in position m > j. Since p is a shuffle of p(1), . . . , p(k), the

integer p
(i)
m appears to the left of p

(i)
m+1 in p, and so there must be at least one descent

between p
(i)
m and p

(i)
m+1 in p. Thus every descent in p(i) in position j or greater has at least

one corresponding descent in p in position c(i, j) or greater. Therefore

(the number of descents in p at position c(i, j) or greater)

is at least as large as

(the number of descents in p(i) at position j or greater)

and the difference of these quantities weakly decreases as j increases. We can now conclude
that π(1), . . . , π(k) are indeed integer partitions.

The function ϕ is a bijection because we can describe its inverse. Suppose we are given
the tuple (

p(1), π(1), . . . , p(k), π(k)
)

(11)

where p(i) ∈ PSλ(i)k and π(i) have the same length for each i. Define π̂(i) = (π̂
(i)
1 , π̂

(i)
2 , . . . )

to be the integer partition such that

π̂
(i)
j = π

(i)
j + (the number of descents in p(i) at position j or greater).

This definition of π̂(i) increments each of the j parts π
(i)
1 , . . . , π

(i)
j by 1 if there is a descent

in p(i) at position j, and so |π̂(i)| = maj p(i) + |π(i)|. Furthermore, this definition implies

that p
(i)
j < p

(i)
j+1 for every value of j that satisfies π̂

(i)
j = π̂

(i)
j+1.

Define π̂ = (π̂1, π̂2, . . . ) to be the integer partition found by sorting the parts of
π̂(1), . . . , π̂(k) into weakly decreasing order. Define p = p1p2 · · · to be the shuffle of
p(1), . . . , p(k) such that p

(i)
j appears in the same position in p as π̂

(i)
j appears in π̂ and

such that pj < pj+1 for every value of j that satisfies π̂j = π̂j+1.
If pj > pj+1, then π̂j > π̂j+1, and so

π̂j > (the number of descents in p at position j or greater)

for all j. Define the integer partition π = (π1, π2, . . . ) such that

πj = π̂j − (the number of descents in p at position j or greater).
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The function ϕ sends the pair (p, π) to the tuple in (11) because this pair can easily be

used to find the above π̂ and p(i), which in turn can be used to show that the above π
(i)
j

matches that given in (10). Therefore ϕ is a bijection.
Since π̂ is decremented by 1 for each position j of a descent in p, we have |π| =

|π̂| −maj p and so

maj p+ |π| = |π̂|
= |π̂(1)|+ · · · |π̂(k)|
= maj p(1) + · · ·+ maj p(k) + |π(1)|+ · · ·+ |π(k)|.

The bijection ϕ is weight preserving, as needed.

Theorem 13 (The q-modular hook length formula). If λ is an integer partition of n such
that PSλ(k,...,k) is nonempty and p̂ is the position sequence in PSλ(k,...,k) with the minimum
major index, then ∑

p∈PSλ
(k,...,k)

qmaj p−maj p̂ =
[n/k]q!∏
[hc/k]q

where the product is over all cells c ∈ λ with hc divisible by k.

Proof. After dividing both sides of Theorem 11 by (1−q) · · · (1−q|λ(i)|) and moving terms
around, we have ∑

p(i)∈PSλ(i)
(1,...,1)

qmaj p(i)

(1− q) · · · (1− q|λ(i)|)
= qmaj p̂(i)

∏
c∈λ(i)

1

1− qhc
.

Since the major index of a position sequence p(i) ∈ PSλ
(i)

k is unchanged if each integer
j ∈ p(i) is replaced with the integer kj + i, we can set PSλ(1,...,1) in the above equation

to PSλ
(i)

(1,...,1). Multiply the expressions together when each of PSλ
(1)

k , . . . , PSλ
(k)

k replaces

PSλ(1,...,1) in the above equation and then use Lemma 12 to arrive at∑
p∈PSλ

(k,...,k)
qmaj p

(1− q) · · · (1− qn/k)
=

k∏
i=1

qmaj p̂(i)
∏

c(i)∈λ(i)

1

1− qhc(i)
(12)

where p̂(i) is the position sequence in PSλ
(i)

k with the minimum major index.
Each cell c ∈ λ corresponds to a pair (e, b) such that e is an empty position on the

k-abacus, b is a position of a bead on the k-abacus, and e < b. The hook length of c is
b − e. This is divisible by k if and only if both positions e and b appear on the same
runner of the k-abacus. Thus each cell c ∈ λ with hook length kj corresponds to a cell
c(i) ∈ λ(i) with hook length j. Therefore the right side of (12) is equal to

qmaj p̂(1)+···+maj p̂(k)
∏ 1

1− qhc/k
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where the product is over all cells c ∈ λ with hc divisible by k.
There is a sequence of n/k bead moves of length k in the k-abacus that leave the

empty partition (pushing all beads flush to the left) because PSλ(k,...,k) is nonempty, and

so there are exactly n/k such pairs (e, b) where e and b are on the same runner. Any pairs
(e, b) where e and b are not on the same runner do not correspond to cells c ∈ λ with hc
divisible by k, and therefore there are exactly n/k cells c ∈ λ with hc divisible by k.

Theorem 8 implies maj p̂ = maj p̂(1) + · · ·+ maj p̂(k), and so we have now shown that∑
p∈PSλ

(k,...,k)
qmaj p

(1− q) · · · (1− qn/k)
= qmaj p̂

∏ 1

1− qhc/k
.

where the product is over all cells c ∈ λ with hc divisible by k. The result follows after
multiplying by (1− q) · · ·

(
1− qn/k

)
and simplifying.

Acknowledgments

The authors extend a warm and hearty thank you to the anonymous referee who pro-
vided an outstanding report with detailed errata and improvements. The mathematics
community is well served by such a wonderful referee.

References

[1] S. Fomin and N. Lulov. On the number of rim hook tableaux. Zap. Nauchn. Sem.
S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 223(Teor. Predstav. Din. Sistemy,
Kombin. i Algoritm. Metody. I):219–226, 340, 1995.

[2] J. S. Frame, G. de B. Robinson, and R. M. Thrall. The hook graphs of the symmetric
groups. Canadian J. Math., 6:316–324, 1954.

[3] A. P. Hillman and R. M. Grassl. Reverse plane partitions and tableau hook numbers.
J. Combinatorial Theory Ser. A, 21(2):216–221, 1976.

[4] G. James and A. Kerber. The representation theory of the symmetric group, vol-
ume 16 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Pub-
lishing Co., Reading, Mass., 1981.

[5] D. E. Knuth. Permutations, matrices, and generalized Young tableaux. Pacific J.
Math., 34:709–727, 1970.

[6] N. A. Loehr. Abacus proofs of Schur function identities. SIAM J. Discrete Math.,
24(4):1356–1370, 2010.

[7] N. A. Loehr. Bijective combinatorics. Discrete Mathematics and its Applications
(Boca Raton). CRC Press, Boca Raton, FL, 2011.

[8] A. Mendes. The combinatorics of rim hook tableaux. Australas. J. Combin., 73:132–
148, 2019.

the electronic journal of combinatorics 26(4) (2019), #P4.18 16



[9] A. Mendes and J. Remmel. Counting with symmetric functions, volume 43 of Devel-
opments in Mathematics. Springer, Cham, 2015.

[10] A. H. Morales, I. Pak, and G. Panova. Hook formulas for skew shapes I. q-analogues
and bijections. J. Combin. Theory Ser. A, 154:350–405, 2018.

[11] B. E. Sagan. The symmetric group: representations, combinatorial algorithms, and
symmetric functions., volume 203 of Graduate Texts in Mathematics. Springer-
Verlag, New York, second edition, 2001.

[12] C. Schensted. Longest increasing and decreasing subsequences. Canad. J. Math.,
13:179–191, 1961.

[13] R. P. Stanley. Theory and application of plane partitions. I, II. Studies in Appl.
Math., 50:167–188; ibid. 50, 259–279, 1971.

[14] R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

[15] D. W. Stanton and D. E. White. A Schensted algorithm for rim hook tableaux. J.
Combin. Theory Ser. A, 40(2):211–247, 1985.

[16] J. P. Swanson. Standard tableaux and modular major index. Sém. Lothar. Combin.,
78B:Art. 50, 9, 2017.

the electronic journal of combinatorics 26(4) (2019), #P4.18 17


	Introduction
	Position sequences
	The q-modular hook length formula

