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Paris, France

bram.petri@imj-prg.fr

Submitted: Mar 27, 2019; Accepted: Aug 11, 2019; Published: Oct 11, 2019

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Starting from an arbitrary sequence of polygons whose total perimeter is 2n, we
can build an (oriented) surface by pairing their sides in a uniform fashion. Chmutov
& Pittel have shown that, regardless of the configuration of polygons we started
with, the degree sequence of the graph obtained this way is remarkably constant
in total variation distance and converges towards a Poisson–Dirichlet partition as
n→∞. We actually show that several other geometric properties of the graph are
universal. En route we provide an alternative proof of a weak version of the result
of Chmutov & Pittel using probabilistic techniques and related to the circle of ideas
around the peeling process of random planar maps. At this occasion we also fill a
gap in the existing literature by surveying the properties of a uniform random map
with n edges. In particular we show that the diameter of a random map with n
edges converges in law towards a random variable taking only values in {2, 3}.
Mathematics Subject Classifications: 05C80, 60C05
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1 Introduction

1.1 Gluings of polygons and a conjecture

Suppose we are given a set of k > 1 polygons whose perimeters are prescribed by
P = {p1, p2, . . . , pk} where pi ∈ {1, 2, 3, . . . }. We can then form a random surface by
gluing their sides two-by-two in a uniform manner, see Fig. 1. This model of random
surface has been considered e.g. by Brooks & Makover [6] in the case of the gluing of
triangles (pi = 3) and later studied by Pippenger & Schleich [22] and Chmutov & Pittel
[11] when pi > 3.

In this work, we release the constraint that the polygon’s perimeters are larger than
3 but will only consider configurations which do not contain too many 1 or 2-gons. If
P = {p1, . . . , pk} is a configuration of polygons, we write

#P = k, |P| = 1

2

k∑
i=1

pi, L(P) = #{i : pi = 1}, B(P) = #{i : pi = 2}
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Figure 1: Creation of a surface by gluing polygons whose perimeters are 1, 2, 4 and 5.

respectively for half of its total perimeter, the number of 1-gon (loops) and the number of
2-gons (bigons) in P . A sequence (Pn)n>1 of configurations of polygons so that |Pn| = n is
said to be good if

L(Pn)√
n
→ 0 and

B(Pn)

n
→ 0 as n→∞. (1)

We focus on good (sequences of) configurations because in this case the surface obtained
after the uniform gluing is with high probability connected (see Proposition 15). Specifically,
given P , we randomly label the sides of the polygons from 1, 2, . . . , 2|P| in a uniform way
and then glue them two by two using an independent pairing of {1, 2, . . . , 2|P|}, that is,
an involution without fixed points. In all that follows, we only consider oriented surfaces
and when we glue two edges we always assume we make sure to preserve the orientation
of each polygon1. When the gluing is connected, the images of the edges of the polygons
form a map MP with |P| edges drawn on the surface created. By abuse of notation we
speak of MP as our “random surface”. The labeling of the sides of the polygons yields a
labeling of the oriented edges of the map by 1, 2, . . . , 2|P|: the map MP is labeled2. If we
forget the labelings and the orientation of the surface, we get a random multi-graph GP ,
which is the object of study in this work.

To motivate our results, we start with a conjecture which roughly says that given |P|
and provided the random graph GP is connected, its law is always the same (in a strong
sense), regardless of the configuration of polygons we started with and is close to the law
of the random graph obtained from a uniform random map with |P| edges. However, it is
easy to see from Euler’s formula that the number of vertices of GP has the same parity as
|P|+ #P and so the proper conjecture needs to deal with this parity constraint. Let Gn

be the random graph structure of a uniform random labeled map on n edges, and denote
Godd
n (resp. Geven

n ) the random graph Gn conditioned respectively on having an odd (resp.
even) number of vertices. Simulations of the random graph Gn can be seen on Figure 2.

1A heuristic way to formulate this is to imagine that the polygons have two sides, a black side and a
white side, and we only glue sides with the same colors when identifying two edges.

2Usually a map must be connected and so we put MP to a cemetery point when the gluing is not
connected.
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Figure 2: Three samples of the graph structure of a uniform random map (genus
unconstrained) with 2000 edges. We see that the graph is highly connected with few
vertices carrying many multiple edges and loops.

Question 1 (Universality for GP). Let (Pn)n>1 be a good sequence of configurations. We
denote by εn ∈ {even, odd} the parity of n+ #Pn. Then we have

dTV (GPn ,Gεn
n )→ 0, as n→∞.

Here and later we write dTV(X, Y ) for the total variation distance between the laws
of two random variables X and Y . Compelling evidence for the above conjecture is the
result of Chmutov & Pittel [11] (generalizing work by Gamburd [15] in the case when the
polygons have the same perimeter), which asserts that when all the polygon’s perimeters
are larger than 3 then up to an error of O(1/n) in total variation distance, the degree
distribution of GPn is the same3 as that of Gεn

n . The proof of [11] is based on representation
theory of the symmetric group. One of the goal of this work is to give a probabilistic
proof of a weak version (Theorem 6) of the above conjecture. We also take this work as a
pretext to gather a few results (some of which may belong to the folklore) on the geometry
of a uniform random map with n edges.

In the rest of the paper, all the maps considered are labeled.

1.2 Geometry of random maps

For n > 1, we denote by Mn a random (labeled) map chosen uniformly among all (labeled)
maps with n edges. Recall that its underlying graph structure is Gn. It is well known that
the distribution of degrees of a random map is closely related to the cycle structure of a
uniform permutation, we make this precise in Theorem 2.

3Their result is expressed in terms of the cycle structure of a uniform permutation over A2n if k and
n have the same parity (resp. Ac

2n if k and n have different parity) where A2n ⊂ S2n is the group of
alternate permutations over {1, 2, . . . , 2n}. But given our Theorem 2 this can be rephrased as the degree

distribution of Godd/even
n .
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Permutations and Poisson–Dirichlet distribution. For n > 0 we denote by Un =
{u(n)1 > u

(n)
2 > . . . > u

(n)
k } the cycle lengths in decreasing order of a uniform permutation

σn ∈ Sn. This distribution is well-known and in particular

dTV

(
#Un,Poisson(log n)

)
−−−→
n→∞

0, (2)

1

n

(
u
(n)
i

)
i>1

(d)−−−→
n→∞

PD(1), (3)

where the (standard) Poisson–Dirichlet distribution PD(1) is a probability measure on
partitions of 1, i.e. on sequences x1 > x2 > x3 > · · · such that

∑
xi = 1, which is obtained

by reordering in decreasing order the lengths U1, U2(1− U1), U3(1− U1)(1− U2), . . . where
(Ui : i > 1) is a sequence of i.i.d. uniform variables on [0, 1]. We refer e.g. to [2] for details.

Recall our notation4 MP for the map obtained by the uniform labeling and gluing of
the sides of oriented polygons whose perimeters are prescribed by P . If P is itself random,
one can still consider MP by first sampling the perimeters in P and then performing our
random gluing.

Theorem 2 (Random map as a random gluing with discrete Poisson–Dirichlet perimeters).
For some constant C > 0 we have for all n > 1

dTV (Mn; MU2n) 6
C

n
.

In words, a random uniform (labeled) map can be obtained, up to a small error in total
variation distance, by a random gluing of random polygons whose sides follow the discrete
Poisson–Dirichlet law U2n.

We can deduce several consequences of the above result. First of all, the faces degrees in
Mn have the same law as U2n up to a small error in total variation distance. By well-known
results on the distribution of U2n (see [2]) this shows that the number of faces of degree
1, 2, 3, . . . in Mn converge jointly towards independent Poisson random variables of means
1, 1/2, 1/3, . . . . On the other side, by (3) the large face degrees, once rescaled by 1/(2n),
converge towards PD(1). Finally by (2), the number of faces #F(Mn) in Mn is close in
total variation distance to #U2n and thus of Poisson(log n).

Since Mn is self-dual, the same results hold for M†n the dual map of Mn. We shall
prove in Proposition 8 that #F(Mn),#V(Mn) the number of faces and vertices of Mn and
its genus G(Mn) obey(

#V(Mn)− log n√
log n

,
#F(Mn)− log n√

log n
,

G(Mn)− n
2

+ log n
√

log n

)
(d)−−−→

n→∞

(
N1,N2,−

N1 +N2

2

)
,

(4)

4In order to help the reader make the distinction between the concepts, we kept the bb font (M,G,V, . . . )
for random variables derived from sampling a uniform random map with a fixed number of edges, and
the bf font (M,G,V, . . . ) for random variables associated with the gluing construction started from a
configuration of polygons.
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where N1 and N2 are independent standard Gaussian random variables. The convergences
of the first and second components alone follow from the discussion above. The perhaps
surprising phenomenon is that the number of vertices and faces of Mn are asymptotically
independent: this is a consequence of our forthcoming Theorem 4. This result was also
proved recently by Carrance [9, Theorem 3.14 and its proof] by using the techniques of [11].

Configuration model. We will use Theorem 2 in conjunction with the self-duality
property of Mn to deduce an approximate construction of its graph structure. More
precisely, if Graph(m) denotes the (multi)graph obtained from a map m by forgetting the
labeling and the cyclic orientation of edges then, up to an error of O(1/n) in total variation
distance, we have

Gn = Graph(Mn)
(d)
=

self duality
Graph(M†n)

dTV≈
Thm. 2

Graph
(
M†
U2n

)
.

The point is that Graph(M†
U2n) has a particularly simple probabilistic construction: it

is obtained as a configuration model with degrees prescribed by U2n. Recall that the
configuration model with vertices of degrees d1, . . . , dk is the random graph obtained by
starting with k vertices having d1, . . . , dk “legs” and pairing those legs two by two in a
uniform manner. This model was introduced by Bender & Canfield [3] and Bollobás [5]
and was later studied in depth, see e.g. [24]. This remark is used to prove the following
striking property (which is new to the best of our knowledge):

Corollary 3 (The diameter of a random map is 2 or 3.). There exists a constant ξ ∈ (0, 1)
such that

lim
n→∞

P(Diameter(Mn) = 3) = 1− lim
n→∞

P(Diameter(Mn) = 2) = ξ.

The proof of Corollary 3 gives an expression of ξ in terms of a rather simple random
process involving independent Poisson random variables and a PD(1) partition. Unfor-
tunately, we have not been able to transform this expression into a close formula. A
numerical approximation shows that ξ ≈ 0.3.

As mentioned above, the literature concerning the configuration model is abundant.
Notice however that the conditions we impose on our perimeters are very different from
the usual “critical” conditions that can be found e.g. in [18, 21]. We also mention the
works [7, 20] which study respectively random plane trees and random planar maps with
prescribed degrees.

1.3 Poisson–Dirichlet universality for random surfaces

We now turn to random maps obtained by gluing polygons of prescribed perimeters. We
will prove (Proposition 15) that the uniform gluing of polygons yields a connected surface
with high probability provided that we control the number of loops and bigons.
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Number of vertices. Recall the notation MP and GP respectively for the random map
and the corresponding graph created by the uniform labeling/gluing of sides of polygons of
P . We also write #VP for the number of vertices of MP . Finally, for α > 0, let Poissonodd

α

(resp. Poissoneven
α ) be a Poisson variable of parameter α conditioned on being odd (resp.

even).

Theorem 4 (Universality for the number of vertices). Let (Pn)n>1 be a good sequence of
configurations and εn be the parity of n+ #Pn. Then we have

dTV

(
#VPn ,Poissonεnlogn

)
→ 0, as n→∞.

This is supporting our Conjecture 1: indeed recall from (2) that the total variation
distance between #U2n and Poisson(log n)) goes to 0 as n→∞. Hence, using our Theorem
2 and duality, we see that Poissonodd

logn is close in total variation to #V(Godd
n ) (and similarly

in the even case). In the case when all the perimeters of Pn are larger than 3, the last
result is a trivial consequence of [11] (although the idea of the proof is very different). In
essence, the above theorem says that up to parity considerations, the number of vertices
of MPn is asymptotically independent of its number of faces, which is key in proving (4).

Connectivity of the edges. On the way towards Conjecture 1 we describe the con-
nectivity properties of GP , at least for the vast majority of its edges. We start with a
definition. Given a (random) graph gn with n edges, denote by v1, v2, . . . the vertices of
gn ordered by decreasing degrees. For i, j > 1, we write [i, j]gn for the number of edges
between vi and vj with the convention that [i, i]gn is twice the number of self-loops attached
to vi. We say that a sequence (gn)n>1 of random graphs satisfies the Poisson–Dirichlet
universality if(

[i, j]gn
2n

: i, j > 1

)
(d)−−−−→

n→+∞
(Xi ·Xj : i, j > 1) , (PDU) (5)

where (Xi)i>1 ∼ PD(1).

Remark 5. The above Poisson–Dirichlet universality convergence can be rephrased in
the theory of edge exchangeable random graphs as the convergence towards the rank 1
multigraph driven by the Poisson–Dirichlet partition, see [17, Example 7.1 and 7.8] and
[12].

Using the approximate construction of Gn as a configuration model based on U2n, it
follows from easy concentration arguments that the graphs Gn satisfy the Poisson–Dirichlet
universality (5). On the other hand, an intuitive way to formulate (5) is that the graphs
gn look like configuration models for a large proportion of the edges. We show that this
phenomenon actually holds true for more general polygonal gluings:

Theorem 6. For any good sequence (Pn)n>1 of configurations, the graphs GPn satisfy the
Poisson–Dirichlet universality (5).
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Let us draw a few consequences of the last theorem. The total number of loops (each
loop is counted twice) in the graph GPn can be written as

∑
i[i, i]GPn and hence satisfies

1

2n
#Loops(GPn)

(d)−−−→
n→∞

∑
i>1

X2
i .

The last convergence (without identification of the limit law) was recently established in
[4] in the case of uniform maps using the method of moments . They also studied the
degree and the number of edges incident to the root vertex (without counting loops twice)
in a random map. Since the root vertex is a degree-biased vertex, if we introduce a random
index I > 0 chosen proportionally to the degree of vI in GPn , then these variables can
respectively be written as∑

j>0

[I, j]GPn and
∑
j>0

[I, j]GPn −
1

2
[I, I]GPn ,

and thus converge once rescaled by 1/(2n) towards X and X − 1
2
X

2
where X is a size-bias

pick in a Poisson–Dirichlet partition, for which it is well known that X = Unif([0, 1]) in
distribution. This extends the results of [4] to a much broader class of random maps.

The above result shows that the distribution of large degrees is universal among random
maps obtained by gluing of good configurations. Actually, the distribution of small degrees,
namely the fact that they converge in law towards independent Poisson random variables
of means 1, 1/2, 1/3, . . . should also be universal among this class of random maps (and
this would indeed be implied by our Conjecture 1). An approach using the method of
moments might be possible but would not fit the general scope of this paper and so we
leave this problem for future works.

Finally, let us mention that our proof of Theorem 6 is robust and also allows to obtain
results about the location of small faces. For example, if Pn has a positive proportion of
triangles, then the proportion of these triangles whose three vertices are vi, vj and vk (in
this order) is asymptotically XiXjXk (see Remark 21).

1.4 Organization and techniques

The paper is organized as follows.
Section 2 is devoted to the study of uniform maps with a fixed number of edges and

no restriction on the genus. Using the classical coding of maps by permutations, we prove
that random maps can approximately be seen as a gluing of polygons whose perimeters
follow the cycle length of a uniform permutation. By duality, this enables us to see the
graph structure of a uniform map as a configuration model which is key in our proof of
Corollary 3.

We then focus on the more general model MP . We prove Theorem 4 and Theorem 6
using “dynamical” explorations of the random surfaces MP . Although most of the ideas
presented here are already underlying papers in the field (see e.g. [6, 22]), we draw a direct
link with the circles of ideas used in the theory of random planar maps and in particular
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with the peeling process, see [13]. We then use two specific algorithms to explore the
surface MP either by peeling the minimal hole or by discovering the vertices one by one,
which yield Theorem 4 and Theorem 6 respectively.

2 Uniform random maps

Most of what follows in this section is probably known to many specialists in the field, but
we were not able to find precise references and thus took the opportunity to fill a gap in
the literature.

2.1 Uniform maps as a configuration model

Let m be a (connected) labeled map with n edges. The combinatorics of the map is then
encoded by two permutations α, φ ∈ S2n: the permutation α is an involution without
fixed points coming from the pairing of the oriented edges into edges of the map and φ is
the permutation whose cycles are the oriented edges arranged clockwise around each face
of the map, see e.g. [19, Chapter 1.3.3].

We denote by I2n ⊂ S2n the subset of involutions without fixed points (i.e. product
of n non overlapping transpositions). Clearly, we have #I2n = (2n− 1)!!. Remark that
a pair (α, φ) ∈ I2n ×S2n is not necessarily associated to a (connected labeled) map: for
n = 2, the “map” associated with the permutations α = (12)(34) and φ = (1)(2)(3)(4)
consists of two disjoint loops. However, this situation is marginal:

Proposition 7 (Uniform maps are almost uniform permutations). Let C2n = {(α, φ) ∈
I2n × S2n : (α, φ) encodes a connected labeled map}, so that C2n is in bijection with
labeled maps with n edges and the number of rooted maps with n edges is 1

(2n−1)!#C2n.
Then we have the asymptotic expansion

#C2n
(2n)!(2n− 1)!!

= 1− 1

2n
+O(1/n2).

In particular, if (An, Fn) ∈ I2n×S2n is the pair of permutations associated with a uniform
labeled map with n edges and if (αn, φn) is uniformly distributed over I2n ×S2n, then

dTV

(
(An, Fn); (αn, φn)

)
∼

n→∞

1

2n
.

Proof. Let (αn, φn) ∈ I2n × S2n be uniformly distributed. If (αn, φn) does not yield
a connected map, that means that the subgroup generated by αn and φn does not act
transitively on {1, 2, . . . , 2n}, or equivalently that {1, 2, . . . , 2n} can be partitioned into
two non-empty subsets I and J such that both I and J are stable by αn and φn. By
partitioning according to the smallest stable subset containing 1, we obtain the following
recursive relation5:

#C2n = (2n− 1)!!(2n)!−
n−2∑
`=0

(
2n− 1

2`+ 1

)
#C2(`+1)(2n− 2`− 3)!!(2n− 2`− 2)!.

5We also note that a very similar (but different) formula appears in [1].
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Writing cn = #C2n/(2n−1)! for the number of rooted maps with n edges and ξn = (2n−1)!!,
the above recursive equation is equivalent to cn = 2n× ξn −

∑n−1
`=1 c`ξn−`. Iterating this

yields

cn =
∑
i>1

(−1)i−1
∑

k1+k2+···+ki=n
ki>1

2k1 · ξk1ξk2 . . . ξki .

The terms 2nξn and −2(n− 1)ξn−1ξ1 give (2n− 1)!!(2n− 1 +O(1/n)) while the total sum
of the absolute values of the other terms is easily seen to be of order O(1/n)× (2n− 1)!!.
This proves the first claim of the theorem. The second one is a trivial consequence of the
definition of total variation distance since (An, Fn) is uniformly distributed over C2n.

Proof of Theorem 2. Theorem 2 is an easy consequence of the last proposition. Indeed,
if we first sample the polygon’s perimeter U2n and then assign in a uniform way labels
{1, 2, . . . , 2n} to the edges of the polygons, this represents a uniform permutation φn ∈ S2n

whose cycles are the labeled polygons. The independent involution αn without fixed points
then plays the role of the gluing operation which identifies the edges of the polygons 2 by
2. Provided the resulting surface is connected, the random labeled map MU2n it creates is
plainly associated to the pair of permutation (αn, φn) ∈ I2n ×S2n.

As we alluded to in the introduction, we will use Theorem 2 in conjunction with the
self-duality property of Mn to deduce an approximate construction of its graph structure.
Indeed, recall that up to an error of O(1/n) in total variation distance, we have

Gn = Graph(Mn)
(d)
=

self duality
Graph(M†n)

dTV≈
Thm. 2

Graph(M†
U2n)

(d)
= ConfigModel(U2n), (6)

where ConfigModel({d1, d2, . . . , dk}) is the random graph obtained by starting with k
vertices having d1, . . . , dk half-legs and labeling/pairing those 2 by 2 in a uniform manner,
see [5].

2.2 Euler’s relation in the limit

We prove (4) which we recall below.

Proposition 8 (Euler’s relation in the limit). If #F(Mn),#V(Mn) and G(Mn) are respec-
tively the number of faces, vertices and the genus of Mn then we have(

#V(Mn)− log n√
log n

,
#F(Mn)− log n√

log n
,

G(Mn)− n
2

+ log n
√

log n

)
(d)−−−→

n→∞

(
N1,N2,−

N1 +N2

2

)
,

where N1 and N2 are independent standard Gaussian random variables.

Proof. We will rely on Theorem 4 which is proved later in the paper. We beg the reader’s
pardon for this inelegant “back to the future” construction. Let us first focus on the
second component. By Theorem 2 together with (2) we deduce that

#F(Mn)
dTV≈ #U2n

dTV≈ Poisson(log 2n)
dTV≈ Poisson(log n),

the electronic journal of combinatorics 26(4) (2019), #P4.2 10



since for any c > 0 we have dTV(Poisson(λ + c),Poisson(λ)) → 0 as λ → ∞. It is then
standard that λ−1/2(Poisson(λ) − λ) converges in law towards a standard Gaussian as
λ→∞. This proves the convergence of the second coordinate, the first one being obtained
by self-duality. It remains to show that the (rescaled) number of faces and vertices are
asymptotically independent. Once this is done, the convergence of the third component
follows from Euler’s relation:

#V(Mn) + #F(Mn)− n = 2(1− G(Mn)).

To prove the asymptotic independence, we rely on Theorem 4. Indeed, if (U2n)n>1 is
the cycle structure of a uniform random permutation of S2n, then as recalled in the
introduction, the numbers of loops and bigons in U2n satisfy

(L(U2n),B(U2n))
(d)−−−→

n→∞

(
Poisson(1),Poisson

(
1

2

))
,

with independent Poisson variables. In particular, for any ε > 0, the probability that
either B(U2n) > n1−ε or L(U2n) > n

1
2
−ε tends to 0 as n→∞. We can then apply Theorem

4 (using its notation) to deduce that

E
[
dTV

(
#V(MU2n),Poissonεnlogn

) ∣∣∣ U2n,B(U2n) 6 n1−ε, L(U2n) 6 n
1
2
−ε
]

P−−−→
n→∞

0,

where εn is the parity of n+ #U2n. But since λ−1/2(Poissonελ − λ)→ N regardless of the
parity ε we indeed deduce that the rescaled number of faces and vertices in MU2n are
asymptotically independent. The same is true in Mn by Theorem 2.

2.3 The diameter is 2 or 3

In this section we prove Corollary 3, showing that the diameter of a random map with n
edges converges in law towards a random variable whose support is {2, 3}. Before going
into the proof, let us sketch the main idea (a quick glance at Figure 2 may help to get
convinced). We first prove that with high probability all vertices have a neighbor among
the vertices of degree comparable to n. Since all these vertices are linked to each other,
this proves that the diameter of the map is at most 3. The diameter of the map can even
be equal to 2 if all pairs of vertices of low degree share a neighbor among the vertices of
high degree.

Let us recall a simple calculation that we will use several times below. If U2n is the
cycle structure of a uniform random permutation of S2n, then for any positive function
ψ : {1, 2, . . . } → R+ we have

E

[∑
d∈U2n

ψ(d)

]
= 2n · E

[
1

2n

∑
d∈U2n

d · ψ(d)

d

]
= 2n · 1

2n

2n∑
i=1

ψ(i)

i
=

2n∑
i=1

ψ(i)

i
, (7)

simply because the law of the length of a typical cycle in a uniform permutation of S2n

(i.e. a cycle sampled proportionally to its length or equivalently the cycle containing a
given point) is uniformly distributed over {1, 2, . . . , 2n}.
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Proof of Corollary 3. According to (6), it suffices to prove the result for the random
graph obtained from a configuration model whose vertices have degrees prescribed by
U2n, which we denote below by ConfigModel(U2n). We write C

(n)
1 , . . . , C

(n)
2n for the number

of occurrences of 1, 2, . . . , 2n in U2n, i.e. the number of vertices of degree 1, 2, . . . , 2n in
ConfigModel(U2n). For δ > 0 we denote by V

(n)
δn the set of vertices of ConfigModel(U2n)

whose degree is larger than or equal to δn. We first state two lemmas:

Lemma 9. For any ε > 0, we can find δ > 0 and A > 0 such that for all n sufficiently
large, in the random graph ConfigModel(U2n), we have

P
(

all vertices have a neighbor in V
(n)
δn

)
> 1− ε, (8)

P
(

all vertices with degree > A are connected to all the vertices of V
(n)
δn

)
> 1− ε. (9)

The next lemma is a decoupling result between the small degrees and the large degrees
in U2n:

Lemma 10. If C
(n)
1 , C

(n)
2 , . . . denote the number of occurences of 1, 2, . . . in U2n and if

M
(n)
1 > M

(n)
2 > . . . are the degrees of U2n ranked in decreasing order, then we have the

following convergence in distribution in the sense of finite-dimensional marginals:((
C

(n)
i

)
i>1

,

(
M

(n)
i

2n

)
i>1

)
(d)−−−→

n→∞
((Pi)i>1,PD(1)),

where P1, P2, . . . are independent Poisson random variables of mean 1, 1
2
, 1
3
, . . . and PD(1)

is an independent Poisson–Dirichlet partition.

Proof of Corollary 3 given Lemmas 9 and 10. Given the last two lemmas, the proof of
Corollary 3 is rather straightforward. Indeed, combining (8) and (9) we deduce that with

probability at least 1−2ε all vertices of ConfigModel(U2n) are linked to V
(n)
δn , and if δn > A

then all the vertices of V
(n)
δn are linked to each other. Hence the diameter of the graph is

less than 3 and we even have dgr(u, v) 6 2 as soon as u or v has degree larger than A. On
the other hand, we clearly have Diameter(ConfigModel(U2n)) > 2 with high probability.
To see this, just consider a vertex u with degree of order O(1): this vertex cannot be linked
to all the vertices (there are ≈ log n vertices) and thus must be at distance at least 2 from
another vertex in ConfigModel(U2n). By this reasoning, up to an event of probability 2ε,
to decide whether the diameter of ConfigModel(U2n) is 2 or 3, one must know whether or
not we can find two vertices u, v such that

deg(u) 6 A,
deg(v) 6 A,

and u, v do not share a neighbor in V
(n)
δn . (10)

But clearly, by Lemma 10 and the definition of the configuration model, one can describe
the limit in distribution of the connections of all vertices of low degree as follows. Consider
P1, P2, . . . independent Poisson random variables of means 1, 1

2
, 1
3
, . . . . When Pi > 0,
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we imagine that we have Pi vertices v
(i)
1 , . . . , v

(i)
Pi

of “degree i”, each of them carrying i
independent uniform random variables over [0, 1] denoted by

U1(v
(i)
k ), . . . , Ui(v

(i)
k ), ∀i > 1,∀1 6 k 6 Pi.

Independently of this, consider X = (X1 > X2 > · · · ) a partition of unity distributed

according to PD(1). The vertices v
(i)
k describe the low degree vertices, Xa describe the

large degree vertices and U`(v
(i)
k ) describe the connections of those low degree vertices

to the large degree vertices. Hence, for two distinct “small vertices” v
(i)
k and v

(j)
` , we say

that they share a neighbor if we can find 1 6 a 6 i and 1 6 b 6 j such that Ua(v
(i)
k ) and

Ub(v
(j)
` ) fall into the same component of [0, 1] induced by X. If we put

ξ = P(there exist two vertices which do not share a neighbor),

then we leave the reader verify that ξ is the limit of the probability of the event in (10).
But since the event in (10) is, up to an error of probability at most 2ε, the same event
as {Diameter(Mn) = 3} when n is large, the corollary is proved. Finally, elementary
computations6 show that in the limit model, almost surely, the number of pairs of small
vertices with no common neighbour is finite and that 0 < ξ < 1.

We now prove the two lemmas.

Proof of Lemma 9. We start with the first point. Let δ > 0 and let us write∑
u∈V(n)

δn

deg(u) = 2n(1− E(δ, n)).

By the convergence of the renormalized degrees towards the Poisson–Dirichlet partition
(actually, we only use the fact that this is a partition of unity), for any ε ∈ (0, 1/2) we can
find δ > 0 such that for all n large enough we have

P(E(δ, n) > ε) 6 ε.

By the definition of the configuration model, conditionally on U2n, the probability that a
given vertex of degree d > 1 is not linked to V

(n)
δn is bounded above by E(n, δ)d. Hence we

deduce that the probability of the event in (8) is bounded as follows:

1− P
(

all vertices have a neighbor in V
(n)
δn

)
6 E

[∑
d∈U2n

E(n, δ)d

]

6 P(E(n, δ) > ε) + E

[∑
d∈U2n

εd

]

=
(7)

P(E(n, δ) > ε) +
2n∑
k=1

εk

k
6 3ε.

6See also the proof of Lemma 9 below.
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The second point is similar. Conditionally on U2n, if w is a vertex of degree larger than δn
then the probability that any fixed vertex v of degree d is not linked to w is bounded above
by (1− δ

2
)d. Since there are deterministically less than 2

δ
vertices in V

(n)
δn , the complement

probability of (9) is bounded above by

2

δ
E

[∑
d∈U2n

(
1− δ

2

)d
1d>A

]
=

2

δ

2n∑
k=A

(
1− δ

2

)k
k

6

(
2

δ

)2(
1− δ

2

)A
1

A
.

For fixed δ > 0, the right-hand side can be made arbitrary small by taking A large and
this proves the second point of the lemma.

Proof of Lemma 10. This is essentially a corollary of the very general results presented
in [2]. More precisely, the convergence in law of the small cycle lengths count is a
corollary of their Theorem 3.1, whereas the convergence of the large cycle lengths is the
convergence towards PD(1) recalled in the introduction. To see that they are asymptotically

independent, just notice that for fixed k0, conditionally on C
(n)
1 = c1, . . . , C

(n)
k0

= ck0 for

fixed values c1, . . . ck0 > 0, the law of C
(n)
k0+1, . . . , C

(n)
2n is distributed as Pk0+1, . . . , P2n

conditioned on
∑2n

i=k0+1 = 2n −
∑k0

i=1 ici which again falls in the general “conditioning
relation and logarithmic condition” of [2], for which we can thus apply their Theorem 3.2
giving in particular the convergence towards Poisson–Dirichlet.

3 Dynamical exploration of random surfaces

In this section we describe the “dynamical” exploration of the random surface MP . Our
approach is close to the peeling process used in the theory of random planar maps, see
[8, 13].

3.1 Exploration of surfaces and topology changes

We fix a configuration P of (oriented) polygons with |P| = n whose sides have been labeled
from 1 to 2n, and ω ∈ I2n a pairing of its edges. Since everything we describe below is
deterministic, we do not need to assume here that ω is random.

We will construct step by step the discrete surface MP that is created by matching
the edges 2 by 2 according to ω. More precisely, we will create a sequence

S0 → S1 → · · · → Sn = MP

of “combinatorial surfaces” where S0 is made of the set of labeled polygons whose perimeters
are specified by P and where we move on from Si to Si+1 by identifying two edges of the
pairing ω. More specifically, Si will be a union of labeled maps with distinguished faces
called the holes (they are in light green in the figures below). The holes are made of the
edges which are not yet paired. The set of these edges will be called the boundary of the
surface and be denoted by ∂Si. Clearly, if 2|P| = |∂S0| = 2n, we thus have

|∂Si| = 2n− 2i.
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etc. etc.

Figure 3: Starting configuration (on the left) and a typical state of the exploration (on the
right). Here and later the labeling of the oriented edges does not appear for the sake of
visibility. The final vertices of the graph are black dots whereas “temporary” vertices are
in white. Notice on the right-hand side that Si contains a closed surface without boundary:
if this happens, the final surface Sn = MP is disconnected.

To go from Si to Si+1 we select an edge on ∂Si which we call the edge to peel (in red in
the figures below) and identify it with its partner edge in ω (in green in the figures below),
also belonging to ∂Si. We now describe the possible outcomes of the peeling of one edge.
The reader should keep in mind that our surfaces are always labeled and oriented and
that when identifying two edges we glue them in a way compatible with the orientation.
We shall also pay particular attention to the process of creation of vertices. Indeed, the
initial vertices of the polygons are not all vertices in the final map MP : in the figures
below those “temporary” vertices belonging to holes are denoted by white dots, whereas
actual vertices of MP = Sn are denoted by black dots and called “true” vertices.

p1
p2 p1 + p2 − 2

Figure 4: If we identify two edges of different components, the holes and the components
merge (their genuses and number of true vertices add up). In particular the perimeter of
the resulting boundary is the sum of the perimeters of the former boundaries minus 2.
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p1

p′1

p′′1

Figure 5: If we identify two edges on the same hole, then this hole splits into two holes of
perimeters p′1 and p′′1 such that p′1 + p′′1 + 2 is the perimeter of the initial boundary.

p1

p2

p1 + p2 − 2

Figure 6: If we identify two edges of different holes belonging to the same component,
then the holes merge, adding one unit to the genus of the map. As in Fig. 4, the perimeter
of the new hole is the sum of the perimeters of the initial holes minus 2.

We now describe the possible steps that yield to creation of true vertices:

p = p p− 2

Figure 7: As a special case of Fig. 5, if we identify two neighboring edges on the same
hole, then one of the two holes created has perimeter 0: we have formed a true vertex.
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creation of
1 vertex

creation of
2 vertices

Figure 8: The two other ways to create true vertices: if we identify (left) two loops (holes
of perimeter 1), then we create one true vertex. If we identify (right) the two edges of a
hole of perimeter 2, then we create two true vertices.

3.2 Peeling exploration

We now move on to our random setting and suppose that ω ∈ I2n is independent of the
starting configuration of labeled polygons. On top of ω, the sequence S0 → S1 → · · · → Sn
depends on an algorithm called the peeling algorithm which is simply a way to pick the
next edge to peel A(Si) ∈ ∂Si. The function A(Si) can be deterministic or may use
another source of randomness, as long as it is independent of ω: we call such an algorithm
Markovian. Highlighting the dependence in A, we can thus form the random exploration
sequence SA0 → SA1 → · · · → SAn = MP by starting with SA0 , the initial configuration made
of the labeled polygons whose perimeters are prescribed by P. To go from SAi to SAi+1,
we perform the identification of the edge A(Si) together with its partner in the pairing
ω. When ω is uniform and A is Markovian, the sequence (SAi : 0 6 i 6 n) is a simple
(inhomogeneous) Markov chain:

Proposition 11. If the gluing ω is uniformly distributed and independent of the labeled
polygons of P, then for any Markovian algorithm A, the exploration (SAi )06i6n is an
inhomogeneous Markov chain whose probability transitions are described as follows. Condi-
tionally on SAi and on A(SAi ), we pick Ei uniformly at random among the 2(n − i) − 1
edges of ∂SAi \{A(SAi )}, and identify A(SAi ) with Ei.

Proof. It suffices to notice by induction that at each step i > 0 of the exploration,
conditionally on Si, the pairing ω̃ of the (unexplored) edges of ∂SAi is uniform. Hence,
if an edge A(SAi ) is picked independently of ω̃ then its partner is a uniform edge on
∂SAi \{A(SAi )}.
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Remark 12 (Uniform peeling and split/merge dynamics). Probably the most obvious
Markovian peeling algorithm is the following. For i > 0, given the discrete surface Si,
we pick the next edge to peel uniformly at random on ∂Si (independently of the past
operations and of the gluing of the edges).
Although very natural, we shall not use this peeling algorithm in this paper. We note
however that the Markov chain this algorithm induces on the set of perimeters of the
holes of Si is very appealing. If {p1, . . . , pk} is the configuration of the perimeters at
time i, the next state is obtained by first sampling independently two indices I, J ∈
{1, 2, . . . , k} proportionally to p1, . . . , pk. If I 6= J , then we replace the two numbers pI
and pJ by pI + pJ − 2. If I = J , we replace pI by a uniform splitting of pI − 2 into
{{0, pI − 2}, {1, pI − 2}, . . . , {pI − 2, 0}}. This is a discrete version of the split-merge
dynamic, which preserves the Poisson–Dirichlet law, considered in [14, 23], except that we
have a deterministic “erosion” of −2 at each step in the above dynamic.

The strength of the above proposition is that, as for planar maps [13], we can use
different algorithms A to explore the same random surface MP and then to get different
types of information. We will see this motto in practice in the following sections. When
exploring our random surface with a given peeling algorithm, we will always write (Fi)06i6n
for the canonical filtration generated by the exploration.

3.3 Controlling loops and bigons for good configurations

In this subsection, we give rough bounds on the number of holes of perimeter 1 and 2
that appear during Markovian explorations of good sequences of configurations. We will
call loop (resp. bigon) a hole of perimeter 1 (resp. 2). Note that most of the self-edges
appearing in the final map MPn do not come from a boundary loop at some peeling step.
Indeed, as noted in the Introduction, Theorem 6 implies that the number of self-edges
in MPn is linear in n, whereas we will bound the number of boundary loops in a much
stronger way. The purpose of such estimates will be to bound the number of steps at
which the cases of Figure 8 occur during the exploration, which will be useful several times
in the next sections.

Recall from the introduction the definition of a good sequence (Pn)n>1 of configurations
and assume we explore MPn using a Markovian algorithm. With an implicit dependence
on Pn and n, denote by (Li : 0 6 i 6 n) and (Bi : 0 6 i 6 n) the number of loops and
bigons in ∂Si during the exploration. We also write π(i) for the perimeter of the hole to
which the peeled edge at time i belongs.

Proposition 13 (Bounds on loops and bigons). For any configuration and any Markovian
peeling algorithm we have the stochastic dominations

sup
06i6n

Li 6 L0 +Xn, sup
06i6n

Bi 6 B0 + L0 +Xn and
n−1∑
i=0

1π(i)=2 6 B0 + L0 +Xn

where Xn = 2
n∑
i=1

Bern

(
4

i

)
,
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with independent Bernoulli random variables. In particular, if (Pn)n>1 is a good sequence of
configurations then we have supLi = o(

√
n), also supiBi = o(n) and

∑n−1
i=0 1π(i)=2 = o(n)

with very high probability. Finally, for any good sequence of configurations, for any ε > 0,
we have

1√
n
E

[(1−ε)n]∑
i=0

1π(i)=1

 −−−→
n→∞

0.

Proof. Let us describe first the variation of the number of bigons and loops during a
peeling step using Section 3.1. One can create loops or bigons if at step i > 0 we are
peeling on a p-gon with p > 3 and identify the peeled edge with the second edge on its
right or left along the same hole (creation of one loop) or the third edge on its right or left
along the same hole (creation of a bigon). When p = 4, peeling the second edge on the
right or left are the same event but it yields to creation of 2 loops, and similarly when
p = 6 for bigons. In any of these cases we have ∆Li 6 2 and ∆Bi 6 2, and the conditional
(on Fi) probability of those events is bounded above by

4

2(n− i)− 1
.

In the case p = 2, recall that the identification of both sides of a bigon only results in
the disappearance of the bigon and the creation of 2 true vertices. Otherwise, the i-th
peeling step identifies the peeled hole of perimeter π(i) with another hole of perimeter we
denote by ξ(i). This results in the creation of a hole of perimeter π(i) + ξ(i)− 2 (in the
case π(i) = ξ(i) = 1, i.e. when we identify two loops, we just create a true vertex).

First domination. By the above description, appart from the first kind of events
where we identify two edges on the same hole, we notice that we always have ∆Li 6 0.
Hence, the distribution of ∆Li conditionally on Fi is stochastically dominated by

2 · Bern

(
2

2(n− i)− 1

)
,

where Bern(p) is a Bernoulli variable of parameter p. Clearly supi<n(Li − L0) is stochas-

tically dominated by Z = 2
∑n−1

i=0 Bern
(

2
2(n−i)−1

)
with independent Bernoulli variables,

and this proves the first claim.
Second domination. We now focus on ∆(Li +Bi) = Li+1 − Li +Bi+1 −Bi. Again,

appart from the cases where we identify two edges on the same hole which result in
∆(Li + Bi) 6 2, we always have ∆(Li + Bi) 6 0. Hence, conditionally on Fi, the
distribution of ∆(Li +Bi) is stochastically dominated by

2 · Bern

(
4

2(n− i)− 1

)
,

and the same reasoning as above yields the second point of the Proposition.
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Third domination. With a closer look at the cases above, we see that the conditional
distribution of 1π(i)=2 + ∆(Li + Bi) given Fi is again stochastically dominated by 2 ·
Bern( 4

2(n−i)−1). Summing over 0 6 i 6 n− 1 yields the result.
Last convergence. For the last convergence of the proposition, remark that

E[1π(i)=1 + ∆Li | Fi] 6
2

2(n− i)− 1
+
1π(i)=1 · 2Bi

2(n− i)− 1
, (11)

where the first term in the right hand side comes from splitting a hole of perimeter p > 3,
and the second term comes from the case where a loop is peeled and identified with a
bigon to produce a new loop. Taking expectation, after summing over 0 6 i 6 (1− ε)n,
we get for n large

E

[(1−ε)n]∑
i=0

1π(i)=1

 6 L0 +

[(1−ε)n]∑
i=0

2

2(n− i)− 1
+ E

[(1−ε)n]∑
i=0

2

2(n− i)− 1
1π(i)=1 sup

06j6n
Bj


6 L0 +O(log n) + 2n(1− ε)P

(
sup

06j6n
Bj > ε2n

)
+ εE

[(1−ε)n]∑
i=0

1π(i)=1

.
By our second domination supiBi 6 B0 +L0 +Xn and our goodness assumption L0 +B0 =
o(
√
n)+o(n) = o(n), we easily deduce that P(sup06j6nBj > ε2n) decreases faster than n−2.

Therefore, after re-arranging the last display, we obtain (1−ε)E
[∑[(1−ε)n]

i=0 1π(i)=1

]
= o(
√
n)

as required.

4 Peeling the minimal hole and number of vertices

In this section we study the number of vertices of MP and prove Theorem 4. The corner
stone of the proof is to explore our surface using the following algorithm.

Algorithm H or peeling the minimal hole: Given Si for 0 6 i < n, the
next edge to peel H(Si) is one of the edges which belong to a hole of minimal
perimeter. If there are multiple choices, we pick the edge having the minimal
label.

It is clear that the above algorithm is Markovian and so the transitions of the Markov
chain (Si)i>0 are described by Proposition 11. In the rest of this section, we always explore
our random surfaces using the above algorithm.

4.1 Towards a single hole

Fix a configuration P with |P| = n and let us explore the random surface MP using the
peeling algorithm H. All our notations below depend implicitly on P . A first observation
concerns the number of holes during this exploration. If Hi denotes the number of holes
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of Si then H0 = #P and it is easy to see from the possible topology changes (Section 3.1)
that

Hi+1 −Hi ∈ {−2,−1, 0,+1}.

Furthermore, if Hi+1 −Hi ∈ {0, 1}, then we have identified two edges of the same hole
during the i-th peeling step. Since the minimal perimeter of a hole is at most b|∂Si|/Hic,
if Fi is the σ-field of the past exploration up to time i, we get from Proposition 11 that

P(Hi+1 −Hi ∈ {0, 1} | Fi) 6
b|∂Si|/Hic − 1

|∂Si| − 1
6

1

Hi

. (12)

In other words, as long as Hi is large, the process H undergoes a strong negative drift (it
decreases by 1 or 2 with a high probability at each step). If τ = inf{i > 0 : Hi = 1} is
the first time at which Si has a single hole, then the above inequality together with easy
probabilistic estimates show that H hits the value 1 “almost as soon as possible”.

Lemma 14 (τ ≈ #P). For every ε > 0 we can find Cε > 0 such that uniformly in P,
we have

P(τ > (1 + ε)#P + Cε) 6 ε.

Proof. Fix ε > 0 and pick A > 1 large so that A
A−2 6 (1 +ε). Let us define τA = inf{i > 0 :

Hi 6 A}. Clearly, by the Markov property of the exploration and the above calculation, as
long as i 6 τA, the increments of H are stochastically dominated by independent random
variables ξi with law P(ξ = 1) = 1

A
and P(ξ = −1) = 1− 1

A
. As a result, τA is stochastically

dominated by α(#P) the hitting time of A by a random walk with i.i.d. increments of
law ξ started from #P. Now, as soon as Hi drops below A and until time τ , we can
stochastically bound its increments by those of a simple symmetric random walk on Z. If
β denotes the hitting time of 1 by a simple symmetric random walk on Z started from A,
we can thus write the stochastic inequality

τ 6 α(#P) + β,

where the last two variables are independent (but we shall not use it). Notice that by the
law of large numbers α(#P) ∼ #P A

A−2 as #P → ∞. By our choice of A, this implies
that P(α(#P) > (1 + ε)#P) 6 ε/2 for all #P larger than some p0 > 1. We then fix Cε
large so that P(β > Cε/2) 6 ε/4 and P(supp6p0 α(p) > Cε/2) 6 ε/4. When doing so, the
statement of the lemma holds true.

Back to one hole and unicellular maps. Performing the exploration of the surface
with algorithm H until time τ is particularly convenient. Indeed, Sτ has a single hole of
perimeter 2(n− τ) and by the Markov property of the exploration, to get the final surface
MP , one just needs to glue the edges of this hole using an independent uniform pairing of
its edges. This is obviously a particular case of our construction of random surface for the
case where P = {2(n−τ)} is made of a single polygon. The (obviously connected!) surface
M{2k} is known as a unicellular map with k edges since it is a map having a single face.
Using this observation, we can draw two conclusions: first, the surface MP is connected
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if and only if Sτ is connected. Second, if we focus on the number of vertices VP of the
underlying surface we can write

VP = Xτ + V{2(n−τ)}, (13)

where Xτ is the number of “true” vertices of Sτ (i.e. actual vertices of MP) and V{2(n−τ)} is
the number of vertices of M{2(n−τ)} a unicellular map with n−τ edges, which is conditionally
on τ , independent of Sτ . Let us use these two remarks to study the connectedness and the
number of vertices of MP .

4.2 Connectedness

Let us focus first on the connectivity of our surface. We fix a good sequence (Pn)n>1 of
polygonal configurations and for each n, perform the exploration of MPn using algorithm
H. We write τ ≡ τn to highlight the dependence in Pn and n. Remark that if (Pn) is a
good sequence of configurations, then we have few loops and bigons and so

#Pn
n

6
2

3
(14)

asymptotically as n→∞. In particular, by Lemma 14, when performing the peeling using
algorithm H, we reach a configuration having a single hole typically before 2n/3 out of
the n peelings steps. By the last discussion, MPn is connected if and only if we managed
to reach time τn without having disconnected a piece of our surface en route. We prove
that for a good sequence of configurations, this situation is very likely:

Proposition 15. If (Pn)n>1 is a good sequence of configurations, then MPn is connected
with high probability as n→∞.

Remark 16. It is an exercise to prove that if P either contains more that ε
√
|P| loops or

more than ε|P| bigons, then there exists a constant cε > 0 such that

P(MP is not connected) > cε

uniformly for all configurations. Our assumptions for connectedness are thus optimal.

Proof. We recall that S0 → S1 → · · · → Sn = MPn is the exploration of MPn using
the peeling algorithm H. By the list of the possible outcomes of a peeling step, we see
that if Sτn is not connected, then at some time 0 6 i < τn, we have performed a peeling
step identifying either the two sides of a bigon or two loops together. We shall see that
such operations are unlikely to happen before τn if we start with few loops and bigons.
Recall that Li (resp. Bi) is the number of loops (resp. bigons) in ∂Si and that π(i) is the
perimeter of the hole peeled at time i. For each 0 6 i < n, conditionally on the past of
the exploration, the probability of either closing the two sides of a bigon or identify two
loops together is

1

2(n− i)− 1

(
1π(i)=2 + Li1π(i)=1

)
.
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Summing for all 0 6 i 6 3n/4 and taking expectations, we deduce that there is a constant
C > 0 such that, for every ε > 0, we have

E

[3n/4]∑
i=0

1

2(n− i)− 1

(
1π(i)=2 + Li1π(i)=1

)
6

C

n
E

[3n/4]∑
i=0

1π(i)=2

+
C

n
E

[3n/4]∑
i=0

1π(i)=1 sup
j6n

Lj


6

Prop.13
o(1) +

C

n

ε√nE
[3n/4]∑

i=0

1π(i)=1

+ n2P(sup
j6n

Lj > ε
√
n)


6

Prop.13
o(1) + Cn× P(sup

j6n
Lj > ε

√
n).

But by Proposition 13 again, Cn× P(supj6n Lj > ε
√
n) goes to 0 as n→∞ since by our

goodness assumption we have L0 = o(
√
n). Hence the probability to perform an event

which may yield to disconnection of the surface before time 3n/4 is going to 0. Since
τn 6 3n/4 with high probability, by Lemma 14, the result is proved.

It follows from the above proof that it is very unlikely that two loops are glued together
before time τn. If so, the number of holes cannot decrease by more than 1 at each step
and so with high probability we have

τn > #Pn − 1, (15)

which complements the upper bound of Lemma 14. The above proof of connectedness
of MPn is probabilistic in essence and should be compared with the analytical proof of
Chmutov & Pittel [11, Theorem 4.1] in the case when all perimeters are larger than 3.
The strategy followed by their proof is closer to that of Proposition 7, with more involved
calculations.

4.3 Number of vertices and Theorem 4

We now turn to the proof of Theorem 4, which is obviously based on (13). We shall
estimate separately the two contributions of (13) and start by controlling Xτn , the number
of vertices created during the exploration of the surface MPn until time τn:

Lemma 17. If (Pn)n>1 is a good sequence of configurations, then

dTV

(
Xτn ,Poisson

(
log

n

n−#Pn

))
−−−→
n→∞

0.

Remark 18. Notice that by (14) the parameter in the Poisson law above asymptotically
belongs to [0, log 3], which implies that (Xτn)n>1 is tight. This is the only fact we shall use
to prove Theorem 4.
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Proof. Fix n > 1 and perform the exploration of the surface MPn using algorithm H and
stop at τn. Using the description of the possible topology changes (Section 3.1), for each
0 6 i < n, conditionally on Fi, the number of vertices created by the next peeling step is

1 with probability 2
2(n−i)−11π(i)>3,

2 with probability 1
2(n−i)−11π(i)=2,

1 with probability Li−1
2(n−i)−11π(i)=1.

The proof of Proposition 15 shows that the expected number of vertices created before
time 3n/4 by the last two possibilities is negligible as n→∞ and τn 6 3n/4 with high
probability. Furthermore, by Proposition 13, all but o(n) peeling step take place on p-gons
with p > 3. Since the sum of o(n) Bernoulli variables with parameter bounded by 3

n
is 0

with high probability, we deduce that the law of Xτn is well approximated by

Xτn

dTV≈
τn∑
i=0

Bernoulli

(
2

2(n− i)− 1

)
dTV≈

Prop. 15 and (15)

#Pn∑
i=0

Bernoulli

(
1

n− i

)
dTV≈ Poisson

(
log

n

n−#Pn

)
.

Once Xτn is controlled, we need to get our hands on the other part of (13), namely
V{2n}, which is the number of vertices of a unicellular map with n edges. We prove the
analog of our target result Theorem 4 for those random maps:

Lemma 19. Let εn ∈ {odd, even} be the opposite parity of n. Then we have

dTV

(
V{2n},Poissonεnlogn

)
−−−→
n→∞

0.

Proof. First proof. This result is a straightforward consequence of the general theorem of
Chmutov & Pittel [11], once we recalled that the number of cycles of a random permutation
of Sn is close in total variation to a Poisson random variable of parameter log n.
Second proof. The well-known Harer–Zagier formula [16] precisely gives access to the
generating function of the number of vertices of unicellular maps. This formula has been
exploited to give a local limit theorem for V{2n} in [10, Theorem 3.1]. Combining this local
limit theorem with the explicit distribution of a Poisson random variable of parameter
log n yields the result (we leave the straightforward calculations to the courageous reader).
Sketch of a third proof. The above lines may disappoint the reader who expected that our
results are “self-contained” and do not rely on any algebraic method. Let us explain how
to get the lemma without relying on [11] nor [16]. The idea is to directly show that the
number of vertices of a uniform unicellular map with n edges is close (in total variation
distance) to the number of vertices of a uniform map with n edges, provided that it has
the same parity as n+ 1. To fix ideas, let us suppose that n is even. Let us thus consider
Modd

n , or by Theorem 2, up to a negligible error in total variation distance, MUodd
2n

where
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Uodd
2n is the random variable U2n conditioned on #U2n being odd. We have

#V
(
Modd

n

)
=

duality
#F (Mn) cond. on being odd

dTV≈
Thm2

#U2n cond. on being odd

dTV≈
(2)

Poissonodd
logn. (16)

On the other hand, let us explore MUodd
2n

using algorithm H until time τn. Since the

number of polygons of Uodd
2n is typically of order log n, we get from Proposition 15 and

(15) that τn ≈ log n and from Lemma 17 that with high probability, no vertex has been
created by the exploration until time τn. Hence, we can write

Poissonodd
logn

dTV≈
(16)

VUodd
2n

dTV≈
(13)

Lem.14
Lem.17

V{2(n−τn)}.

We are almost there. Notice first that, with high probability, since we have not created
vertices up to time τn, then τn is even and so is n − τn. The above line shows that the
number of vertices of a unicellular map with a random number of edges n− τn is close
in total variation to our goal Poissonodd

logn. To finish the proof, it remains to see that if
n′ > n have the same parity and n′ − n = O(log n), then V{2n} ≈ V{2n′} in total variation
distance. To see this, we will couple the two discrete surfaces M{2n} and M{2n′} so that
they have the same number of vertices with high probability. The idea will be to couple
their explorations using algorithm H in such a way that they are independent until some
stopping time ξ, and coincide afterwards. The key is that during these explorations, the
number of holes is a process which spends most of its time on small values. More precisely,
let us explore independently M{2n} and M{2n′} using algorithm H and denote by H and
H ′ the processes of the number of holes in each exploration. Notice that as long as we do
not create vertices (which happens only after ≈ n steps by Lemma 17), the numbers Hi

and H ′i have the same parity. We will be interested in the stopping time

ξ = inf{i > n′ − n : H ′n′−n+i = Hi = 1}.

By (12) (see also the proof of Lemma 14), the processes (Hi) and (H ′n′−n+i) are dominated
(up to time ≈ n) by two independent copies X and X ′ of a positive recurrent process, where
X and X ′ have the same parity. In particular, there is a small i such that Xi = X ′i = 1. It
follows that ξ happens quickly in the sense that

P(ξ > C log n and no vertex has been created by then in either surfaces) −−−→
n→∞

1.

Therefore, the surfaces Sξ and S ′n′−n+ξ both have exactly one hole, with the same size
2(n − ξ). Hence, on the event described above, we can couple M{2n} and M{2n′} by
identifying their explorations from time ξ and ξ + n′ − n respectively on. In particular,
when this coupling occurs, we have V{2n} = V{2n′} as desired. We leave the details to the
interested reader.
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Proof of Theorem 4. Recalling (13) we write VPn = Xτn + V{2(n−τn)} where conditionally
on τn the variables V{2(n−τn)} and Xτn are independent. Hence

VPn = Xτn + V{2(n−τn)}
dTV≈

Lem.19
Xτn + Poisson

parity(n−τn+1)
log(n−τn)

dTV≈
Lem.14

Xτn + Poisson
parity(n−τn+1)
logn

dTV≈
Lem.17

Poisson
parity(Xτn+n−τn+1)
logn .

The second-to-last equality uses the fact that Poissonlogn and Poissonlog(n−i) are close
for dTV uniformly over 0 6 i 6 3n

4
. The last one uses the fact that Xτn is tight and for

any fixed i, the variables Poissonlogn and i + Poissonlogn are close for dTV as n → +∞.
Finally, if MPn is connected, by applying the Euler formula to Sτn , it is easy to check that
Xτn + n− τn + 1 has the same parity as n+ #Pn. We just landed on the desired Poisson
variable having the correct parity.

5 Peeling vertices and the Poisson–Dirichlet universality

In this section we prove the Poisson–Dirichlet universality, that is our Theorem 6. Again,
the idea is to explore our random surface via a peeling algorithm tailored to our objective.
Since we are interested in the vertex degrees, our algorithm will explore the 1-neighborhood
of a given vertex. Once all the edges adjacent to this vertex have been discovered, we
choose a new vertex on the boundary of the current surface and iterate. More precisely:

Algorithm R or peeling vertices: Given the initial configuration of labeled
polygons S0 ≡ P we pick a “red” vertex R0 ∈ ∂S0 uniformly at random.
Inductively, given the discrete surface Si with a distinguished “red” point
Ri ∈ ∂Si, we peel the edge lying immediately on the left of Ri to get Si+1. If
during this peeling step the red vertex has been swallowed by the process, then
we resample Ri+1 ∈ ∂Si+1 uniformly at random (independently of the past and
of the gluing). Otherwise Ri+1 canonically results of Ri.

It is easy to see that the above algorithm is again Markovian and so we can apply
Proposition 11. We shall always use the above algorithm when exploring our surfaces in
this section.

5.1 Closure times and targeting distinguished vertices

If Si is a discrete surface with a red vertex Ri ∈ ∂Si, then the peeling of the edge
immediately on the left of Ri leaves the red vertex on the boundary of Si+1 except in two
cases:

• if the peeled edge is glued to the edge immediately on the right of Ri, see Figure 7.
We say that time i is then a strong closure time;
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• or if the red vertex Ri belongs to a hole of perimeter 1, which is glued to another
hole of perimeter 1, see Figure 8 left. In this case, we say that i is a loop closure
time.

Notice that in both cases the peeling step yields the creation of at least 1 true vertex of
MP (this can be 2 if the peeling step closes the two sides of a bigon). There is actually
another scenario which yields to the creation of a true vertex at time i: if the peeled edge
is identified to the edge immediately on its left. We call these times weak closure times
and we will see in the proof that the vertices created there have a low degree and so do
not affect the Poisson–Dirichlet universality. We will denote by

0 = θ(0) 6 θ(1) < θ(2) < · · ·

the strong closure times with the convention that θ(0) = 0. If |P| = n, then we have

P(i is a strong closure time | Fi) =
1

2(n− i)− 1
1
Ri is not on a loop . (17)

In the rest of this section, we will be interested in asymptotic properties as |P| → ∞ so as
expected, we fix a good sequence of configurations (Pn)n>1 and explore MPn using the

peeling algorithm R. To highlight the dependence in n we write θ
(i)
n for the strong closure

times. To describe the degree of the vertices created by strong closure times and their
connectivity it will be convenient to work with “finite dimensional marginals”. Specifically,
imagine that we number arbitrarily the vertices on S0 from 1 up to 2n and keep track of
these labels during the exploration procedure. More precisely, these labels are “merged”
if two vertices coalesce and they can disappear from ∂Si if they are swallowed during a
strong, weak or loop closure time. We denote by σ

(j)
n the time at which the vertex carrying

the label j is identified with the red vertex. If the label j disappears before being glued to
the red vertex, then we write σ

(j)
n =∞ by convention.

Proposition 20 (Closure times and Poisson–Dirichlet of parameter 1/2). Let (Pn)n>1 be
a good sequence of configurations. We have the convergence in distribution in the sense of
finite dimensional marginals((

θ
(i)
n − θ(i−1)n

n− θ(i−1)n

)
,

(
σ
(i)
n

n

))
i>1

−−−→
n→∞

(
Ti, Si

)
i>1
,

where (Ti)i>1 and (Si)i>1 are i.i.d. random variables with distribution β
(
1, 1

2

)
, i.e. variables

with density
1

2
√

1− t
1t∈[0,1] with respect to the Lebesgue measure.

Preparation to the proof. To prepare the reader to the proof, we first concentrate on an
approximate model for which the result is easy to get. We assume we are in an ideal
situation, i.e. that there are no loop closure times and that for each time 0 6 i 6 n, the
red vertex Ri has conditional probability exactly

1

2(n− i)− 1
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(to be compared to (17)) to be swallowed in a strong closure time. We furthermore assume
that the k labels 1, 2, 3, . . . , k are always carried by distinct vertices and each of them has
probability exactly 1

2(n−i)−1 of being glued to the red vertex (and thus to disappear) at
time i, provided it has not been glued to the red vertex so far. We also suppose that the
above events (strong closure time, or gluing of one of the remaining labels) are mutually
exclusive (to be precise, one should stop the process when k + 1 > 2(n − i) − 1). We

denote by θ̃
(i)
n and σ̃

(1)
n , . . . , σ̃

(k)
n the associated strong closure times and gluing times. We

first prove the convergence of
(
θ̃
(i)
n

n

)
i>1

. For every x ∈ (0, 1), we have

P(θ̃(1)n > xn) =

[xn]∏
i=0

(
1− 1

2(n− i)− 1

)
−−−→
n→∞

√
1− x, (18)

which gives the convergence of θ̃
(1)
n

n
to T1. Now conditionally on θ̃

(1)
n = xn, the process

(θ̃
(i+1)
n )i>1 has the same distribution as (xn + θ̃

(i)
(1−x)n)i>1 and by an easy induction, we

obtain the convergence of the first term in Proposition 23. Moreover, the computation
(18) also shows, for every i, the convergence of n−1 · σ̃(i)

n to a variable with distribution

β(1, 1
2
). Therefore, it remains to prove that in the limit, the variables σ̃

(i)
n are independent

of each other and of (θ̃
(i)
n )i>1. For this, it is easy to see that conditionally on (θ̃

(i)
n )i>1,

they have the same distribution as i.i.d. variables ˜̃σ
(i)
n conditionned to be pairwise distinct

and different from the θ̃
(i)
n . On the other hand, for any fixed i 6= j, the probability that

˜̃σ
(i)
n = ˜̃σ

(j)
n or ˜̃σ

(i)
n = θ̃

(j)
n goes to 0 as n→ +∞. Therefore, this conditioning has negligible

effect in total variation distance, which proves the claim.

Compared to the above ideal situation, the true exploration has the following differences:

• strong closure times are ruled by (17) and thus are perturbed when Ri is on a loop,

• some labels 1, 2, 3, . . . could be merged together before being glued to the red vertex,

• some labels 1, 2, 3, . . . could even be swallowed by the process (by a weak closure
time) before being glued to the red vertex,

• when resampling Ri after a closure time, we may identify a given label to the red
vertex.

Those annoying situations will be ruled out with high probability in the next section thus
reducing our exploration model to the above ideal situation. Before doing that, let us
show how Proposition 20 implies our Theorem 6.

Proof of Theorem 6. With the notation of Proposition 20, we denote by v
(i)
n the vertex

of MPn created by the i-th strong closure time θ
(i)
n . Let j be a fixed label, and consider

the unique i such that
θ(i−1)n 6 σ(j)

n < θ(i)n . (19)
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As explained above, the possibility that the vertex label j is swallowed by a weak or a loop
closure time will be ruled out later (Lemma 23). Therefore, the label j will eventually

land on the vertex v
(n)
i in the end of the exploration.

The idea of the proof will be to pick k edges uniformly at random on the polygons
of Pn and to label their endpoints as 1, 2, . . . , 2k. After the gluing, these edges result
in k uniform edges of GPn . Note that since we are working with a good sequence of
configurations, the probability for one of these k edges to be a loop is o(

√
n), so with high

probability the labeled vertices are pairwise distinct before the exploration. Given the
graph GPn , let Gk,n be the multi-graph induced by these k uniform edges by throwing out
all isolated points (this graph may be disconnected). Then the graph Gk,n is completely

described by the relative order of the numbers σ
(j)
n and θ

(i)
n , which is itself described by

Proposition 20. Since relative order does not change if we apply to these numbers an
increasing function, one can apply the map

φ : x ∈ [0, 1] 7→
√

1− x ∈ [0, 1]

to the numbers n−1σ
(j)
n and n−1θ

(i)
n . Then Proposition 20 and an easy calculation show that

they converge respectively towards U1, U2, . . . independent uniform random variables on
[0, 1] and towards V1, V2(1− V1), V3(1− V1)(1− V2), . . . where (Vi : i > 1) are independent

uniform random variables on [0, 1]. In other words, (n−1θ
(i)
n )i>1 converges towards the

stick breaking construction of the Poisson–Dirichlet partition (Xi)i>1. Hence, the limit of
Gk,n as n→∞ can be described by the variables (Uj) and the Poisson–Dirichlet partition
(Xi). More precisely, consider the following random graph: start with a Poisson–Dirichlet

partition (Xi : i > 1) of [0, 1] and throw k independent pairs (U
(1)
j , U

(2)
j ) of independent

uniform random variables on [0, 1]. If U
(1)
j falls in the interval Xa and U

(2)
j in Xb, then add

an edge between the vertices a and b (this may be a loop). Denote the induced subgraph
(by throwing out the isolated vertices) by Gk,∞. This is a particular case of the construction
[17, Example 7.1].

Since an oriented edge of MPn is obtained by picking two consecutive vertices on S0,
Proposition 20 implies that

∀k > 1, Gk,n
(d)−−−→

n→∞
Gk,∞. (20)

The end of the proof is now quite standard: given GPn , the number [i, j]Gk,n of edges of

Gk,n joining the vertices v
(n)
i and v

(n)
j is a binomial variable Bin (k, n−1[i, j]n). Therefore,

for k large, uniformly in n, the variable k−1[i, j]Gk,n is concentrated around n−1[i, j]n. On
the other hand, by (20), we have

k−1[i, j]Gk,n −−−−→n→+∞
k−1Bin (k,XiXj) −−−−→

k→+∞
XiXj,

in distribution. The convergence [i, j]n → XiXj when n→ +∞ follows.

Remark 21 (Hypergraph extension.). The above scheme of proof can be pushed further
when our configuration has a positive density of triangles, quadrangles, etc. For example,
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let us consider the case when Pn is made of n/3 triangles only7 as in [6]. With the same
notation as in the introduction, if we denote by [i, j, k]GPn the number of triangles whose
endpoints are the i-th, j-th and k-th largest degree vertices, then we have(

[i, j, k]n
n/3

: i, j, k > 1

)
(d)−−−→

n→∞
(Xi ·Xj ·Xk : i, j, k > 1) .

From this convergence, one can deduce limit laws for the number of triangles incident to
the origin vertex, for the total number of “folded” triangles i.e. whose three apexes are
confounded and so on.

5.2 A few bounds

In this section we rule out the bad situations described after Proposition 20 to reduce
its proof to the ideal situation already considered. We start with controlling loop closure
times and the time spent on peeling loops.

Lemma 22. If (Pn)n>1 is a good sequence of configurations and if Lctn is the first loop
closure time, with the convention that Lctn = n if there are no such times, then

Lctn

n

(P)−−−→
n→∞

1 and
1

n

n−1∑
i=0

1
Ri is on a loop

(P)−−−→
n→∞

0.

Proof. The second convergence is a straightforward consequence of the fourth convergence
of Proposition 13. To prove the first one, conditionally on the past exploration up to
time i, the probability to perform a loop closure time is equal to 1π(i)=1

Li−1
2(n−i)−1 . Hence,

summing over 0 6 i 6 (1 − ε)n, taking expectation and splitting according to whether
supLi > ε

√
n, we get for every ε > 0:

P(Lctn 6 (1− ε)n) 6 E

[(1−ε)n]∑
i=0

1π(i)=1

sup06j6n Lj

2(n− i)− 1


6

1√
n
· E

[(1−ε)n]∑
i=0

1π(i)=1

+ nP
(

sup
06j6n

Lj > ε
√
n

)
.

By our goodness assumption and Proposition 13, this tends to 0.

We will need to rule out a few other annoying situations. Assume we track a distin-
guished label during the exploration, say the label 1. Note that the only case where this
label is never glued to the red vertex is if it is swallowed at some point by a weak closure
time. Part of Proposition 20 is that this situation does not occur (this is important since
it ensures that the edges of MPn are concentrated on the vertices closed at strong closure
times). We will also prove that with high probability, two fixed distinguished labels do
not coalesce before being glued to the red vertex (this is important to rule out strong

correlations between the times σ
(j)
n ).

7supposing that n is divisible by 3
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Lemma 23. Assume that (Pn)n>1 is a sequence of good configurations and perform the
exploration of MPn using algorithm R after having labeled the vertices of S0 by {1, 2, . . . , 2n}
arbitrarily (independently of the matching of the edges). Then for every ε > 0, with high
probability as n→∞, none of the following events occur before time (1− ε)n:

1. the label 1 disappears before being glued to the red vertex;

2. the labels 1 and 2 coalesce before being glued to the red vertex;

3. the red vertex is moved to the vertex carrying the label 1 after some strong closure
time.

Of course, once the lemma is proved for labels 1 and 2, it easily extends to the labels
1, 2, . . . , k for any fixed k.

Proof. We start with the first item. Fix ε > 0. In the event Ai where the label 1 is
swallowed at time i by a weak closure time, this label is necessarily carried by the vertex
immediately to the left of Ri and a weak closure time happens at time i. Hence

P(Ai) 6
1

2(n− i)− 1
P(1 is carried by the vertex on the left of Ri). (21)

We write αi = P(1 is carried by the vertex on the left of Ri). Then we can estimate αi
for i > 1 by looking at the peeling step i− 1 as follows:

• Either the (i− 1)-th peeling step swallows the red vertex and the new one is sampled
uniformly on the boundary. In this case, the probability that Ri is on the right of
the label 1 is

1

2(n− i)
.

• Either the (i− 1)-th peeling step glues a bigon on the left of Ri−1 and, if the label 1
was already on the left of Ri−1, it stays on the left of Ri. The conditional probability
of this scenario is thus bounded above by

2Bi−1

2(n− i) + 1
1
1 is carried by the vertex on the left of Ri−1

.

• Or the (i− 1)-th peeling step glues a loop on the left of Ri−1 and if the label was on
the second vertex on the left of Ri−1, then it becomes immediately on the left of Ri.
We can crudely bound the conditional probability of this event by

Li
2(n− i) + 1

.

• In all other situations, in order for the label 1 to be on the left of Ri, the (i− 1)-th
peeling step should identify the peeled edge with the second edge on the right of the
label 1, which occurs with probability

1

2(n− i) + 1
.
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In total, for any i 6 (1− ε)n, taking expectation, we can bound

αi 6
2

2(n− i)
+ E

[
2Bi−1

2(n− i) + 1
1
1 is carried by the vertex on the left of Ri−1

]
+ E

[
Li

2(n− i) + 1

]
.

Splitting according to whether sup06j6n Lj > ε2
√
n and sup06j6nBj > ε2n, we deduce, for

large n and 0 6 i 6 (1− ε)n,

αi 6
C

n
+ 2ε · αi−1 + P(supBj > ε2n) +

ε√
n

+ P(supLj > ε2
√
n).

Using Proposition 13, and by our goodness assumption, we see that the two probabilities
in the right-hand side are negligible compared to ε√

n
for large n and so we get

αi 6
2ε√
n

+ 2ε · αi−1.

When 2ε < 1 this easily implies that αi 6 Cε/
√
n uniformly in i 6 (1− ε)n as n→∞ for

some constant C > 0 depending on ε. Plugging this back in (21), we obtain P(Ai) 6 Cε
n3/2

for i 6 (1− ε)n, so P
(⋃(1−ε)n

i=0 Ai

)
goes to 0 as n→∞.

For the second item, if we want the labels 1 and 2 to merge in the same vertex, then
one of the two, say 1, must be immediately on the left of Ri at time i and then the peeling
step should identify the edge on the left of Ri with the edge on the left of the label 2.
This has probability αi

1
2(n−i)−1 and the last calculation shows that after summing over

i 6 (1− ε)n we get a negligible contribution.
The third item is the most obvious: the probability that i is a strong closure time and

that the red vertex is moved to the label 1 is at most

1

2(n− i)− 1
× 1

2(n− i)− 3
,

and the result follows by summing over i 6 (1− ε)n.
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[5] Béla Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs, European Journal of Combinatorics 1 (1980), no. 4, 311–316.

[6] Robert Brooks and Eran Makover, Random construction of Riemann surfaces, J.
Differential Geom. 68 (2004), no. 1, 121–157. MR2152911 (2006i:57034)

[7] Nicolas Broutin and Jean-François Marckert, Asymptotics of trees with a prescribed
degree sequence and applications, Random Structures & Algorithms 44 (2014), no. 3,
290–316.

[8] Timothy Budd, The peeling process of infinite Boltzmann planar maps, Electronic
Journal of Combinatorics 23 (2016), #P1.28.

[9] Ariane Carrance, Uniform random colored complexes, Random Structures & Algorithms
55 (2019), no. 3, 615–648.

[10] Sergei Chmutov and Boris Pittel, The genus of a random chord diagram is asymp-
totically normal, Journal of Combinatorial Theory, Series A 120 (2013), no. 1, 102–
110.

[11] , On a surface formed by randomly gluing together polygonal discs, Advances
in Applied Mathematics 73 (2016), 23–42.

[12] Harry Crane and Walter Dempsey, Edge exchangeable models for network data (2016).
arXiv:1603.04571.

[13] Nicolas Curien, Peeling random planar maps, 2016, Cours Peccot, Collège de France.
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