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Abstract

Brylawski and Seymour independently proved that if M is a connected matroid
with a connected minor N , and e ∈ E(M)− E(N), then M\e or M/e is connected
having N as a minor. This paper proves an analogous but somewhat weaker result
for 2-polymatroids. Specifically, if M is a connected 2-polymatroid with a proper
connected minor N , then there is an element e of E(M)− E(N) such that M\e or
M/e is connected having N as a minor. We also consider what can be said about
the uniqueness of the way in which the elements of E(M)− E(N) can be removed
so that connectedness is always maintained.
Mathematics Subject Classifications: 05B35

1 Introduction

Tutte [9] proved that, whenever e is an element of a connected matroid M , at least one of
M\e and M/e is connected. Brylawski [1] and Seymour [8] independently extended this
theorem by showing that if N is a connected minor of M and e is in E(M)−E(N), then
M\e or M/e is connected having N as a minor. In this paper, we prove a similar result
for 2-polymatroids.

For a positive integer k, a k-polymatroid M is a pair (E, r) consisting of a finite
ground set E and a rank function r, from the power set of E into the integers, satisfying
the following conditions:

(i) r(∅) = 0;

(ii) if X ⊆ Y ⊆ E, then r(X) 6 r(Y );

(iii) if X and Y are subsets of E, then r(X) + r(Y ) > r(X ∪ Y ) + r(X ∩ Y ); and
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(iv) r({e}) 6 k for all e ∈ E.

A matroid is just a 1-polymatroid, so every matroid is a 2-polymatroid. We call M
a polymatroid if M is a k-polymatroid for some k. Our focus here will be mainly on 2-
polymatroids. Elements of a polymatroid of ranks 0, 1, and 2 are called loops, points, and
lines, respectively. Non-loop elements p and q are parallel if r({p, q}) = r({p}) = r({q}).

Many matroid concepts that are stated in terms of the rank function can be extended
to polymatroids. In particular, for a polymatroid M = (E, r) and a subset T of E, the
deletion M\T and the contraction M/T of T from M are the polymatroids with ground
set E − T and rank functions rM\T and rM/T where rM\T (X) = r(X) and rM/T (X) =
r(X ∪ T )− r(T ) for all subsets X of E − T . A minor of M is any polymatroid that can
be obtained from M by a sequence of deletions and contractions. A polymatroid M is
connected, or equivalently 2-connected, if there is no non-empty proper subset X of its
ground set E such that r(X) + r(E − X) = r(E). We sometimes use E(M) and rM to
denote the ground set and rank function of M .

The following is the main result of the paper.

Theorem 1. Let M be a connected 2-polymatroid and let N be a connected minor of M .
When N 6=M , there is an element e of E(M)−E(N) such that M\e or M/e is connected
having N as a minor.

Unlike in the matroid case, it is not true that, for every element e of E(M)− E(N),
at least one of M\e and M/e is connected having N as a minor. For example, let
E(M) = {x, y, z} where x, y, and z are lines, r({x, y}) = r({y, z}) = 3, and r({x, z}) = 4.
Let N be the 2-polymatroid consisting of a single line z. Then both M\y and M/y are
disconnected, as the former consists of two lines in rank 4, and the latter is isomorphic to
the matroid U2,2.

Theorem 1 will be proved in Section 3. The next section includes a number of pre-
liminaries needed for this proof. In Section 4, we consider what can be said about the
uniqueness of the element e.

2 Preliminaries

Our matroid terminology follows Oxley [4]. Indeed, much of the notation from matroid
theory carries over to polymatroids. For instance, when M is the polymatroid (E, r) and
T ⊆ E, the deletion M\(E − T ) is also denoted by M |T . Moreover, we frequently write
r(M) for r(E). A subset S of E spans a subset T if r(S ∪ T ) = r(S). A component
of M is a maximal non-empty subset X of E such that M |X is connected. As for
matroids, the connectivity function λM or λ of M is defined for all subsets X of E(M) by
λM(X) = r(X) + r(E −X)− r(E). For a positive integer j and a subset Z of E(M), we
call Z and (Z,E(M)− Z) j-separating if λM(Z) < j.

The local connectivity u(X, Y ) between subsets X and Y of E is given by u(X, Y ) =
r(X)+r(Y )−r(X∪Y ). Thus u(X,E−X) = λ(X). The following useful results for local
connectivity and connectivity are proved for matroids in [4, Lemmas 8.2.3 and 8.2.4]; the
proofs there extend to polymatroids.
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Lemma 2. Let (E, r) be a polymatroid and let X1, X2, Y1, and Y2 be subsets of E with
Y1 ⊆ X1 and Y2 ⊆ X2. Then

u(Y1, Y2) 6 u(X1, X2).

Lemma 3. Let (E, r) be a polymatroid M and let X,C, and D be disjoint subsets of E.
Then

λM\D/C(X) 6 λM(X).

Moreover, equality holds if and only if

r(X ∪ C) = r(X) + r(C)

and
r(E −X) + r(E −D) = r(E) + r(E − (X ∪D)).

Next we note a useful consequence of Lemma 2.

Corollary 4. Let X and Y be sets in a polymatroid M such that X ∩ Y 6= ∅ and both
M |X and M |Y are connected. Then M |(X ∪ Y ) is connected.

Proof. Suppose that M |(X ∪ Y ) is disconnected, and let Z be a component of it. Let
W = (X∪Y )−Z. By Lemma 2, u(Z∩X,W ∩X) 6 u(Z,W ) = 0. AsM |X is connected,
Z ∩X or W ∩X is empty. By symmetry, Z ∩ Y or W ∩ Y is empty. As neither Z nor W
is empty, we may assume that both Z ∩X and W ∩ Y are empty. It follows that X ∩ Y
is empty, a contradiction.

The following generalization of a matroid result was noted in [7, Lemma 3.12(ii)].

Lemma 5. Let A,B, and C be subsets of the ground set of a polymatroid. Then

u(A ∪B,C) + u(A,B) = u(A ∪ C,B) + u(A,C).

We omit the proof of the next result, which follows easily using the submodularity of
the rank function.

Lemma 6. If λ(Z) = 0 in a polymatroid M , then M\Z =M/Z.

As noted in [4, p.409], with every 2-polymatroid M , we can associate a matroid as
follows. Let L be the set of lines of M . For each ` in L, freely add two points to ` letting
M+ be the resulting 2-polymatroid. Then M ′, the natural matroid derived from M , is
M+\L. Oxley, Semple, and Whittle [7, Lemma 3.3] noted the following straightforward
result.

Lemma 7. Let M be a 2-polymatroid with |E(M)| > 2 and let M ′ be the natural matroid
derived from M . Then M is connected if and only if M ′ is connected.
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The proof of our main theorem will use the operations of parallel connection and 2-
sum of polymatroids as introduced by Matúš [3] and Hall [2]. For a positive integer k, let
M1 and M2 be k-polymatroids (E1, r1) and (E2, r2). Suppose first that E1∩E2 = ∅. The
direct sum M1⊕M2 of M1 and M2 is the k-polymatroid (E1∪E2, r) where, for all subsets
A of E1∪E2, we have r(A) = r(A∩E1)+r(A∩E2). Clearly a 2-polymatroid is connected
if and only if it cannot be written as the direct sum of two non-empty 2-polymatroids.
Now suppose that E1 ∩ E2 = {p} and r1({p}) = r2({p}). Let P (M1,M2) be (E1 ∪ E2, r)
where r is defined for all subsets A of E1 ∪ E2 by

r(A) = min{r1(A ∩ E1) + r2(A ∩ E2), r1((A ∩ E1) ∪ p) + r2((A ∩ E2) ∪ p)− r1({p})}.

Hall [2] notes that it is routine to check that P (M1,M2) is a k-polymatroid. We call it
the parallel connection of M1 and M2 with respect to the basepoint p. When M1 and
M2 are both matroids, this definition coincides with the usual definition of the parallel
connection of matroids.

Now let M1 and M2 be 2-polymatroids having at least two elements. Suppose that
E(M1) ∩ E(M2) = {p}, that neither λM1({p}) nor λM2({p}) is 0, and that r1({p}) =
r2({p}) = 1. We define the 2-sum, M1 ⊕2 M2, of M1 and M2 to be P (M1,M2)\p. This
definition [7] extends Hall’s definition since the latter requires each of M1 and M2 to have
at least three elements. Weakening that requirement does not alter the validity of Hall’s
proof of the following result [2, Proposition 3.6].

Proposition 8. Let M be a 2-polymatroid (E, r) having a partition (X1, X2) of E such
that r(X1) + r(X2) = r(E) + 1. Then there are 2-polymatroids M1 and M2 with ground
sets X1 ∪ p and X2 ∪ p, where p is a new element, such that M = P (M1,M2)\p. In
particular, for all A ⊆ X1 ∪ p,

r1(A) =

{
r(A), if p 6∈ A;
r((A− p) ∪X2)− r(X2) + 1, if p ∈ A.

The following was shown by Hall [2, Corollary 3.5].

Proposition 9. Let M1 and M2 be 2-polymatroids (E1, r1) and (E2, r2) where E1 ∩E2 =
{p}. Suppose r1({p}) = r2({p}) = 1 and each of M1 and M2 has at least two elements.
Then the following are equivalent.

(i) M1 and M2 are both 2-connected;

(ii) M1 ⊕2 M2 is 2-connected; and

(iii) P (M1,M2) is 2-connected.

The next theorem, a special case of a result of Hall [2, Theorem 4.3], will play a crucial
role in the proof of our main theorem.

Theorem 10. Every connected 2-polymatroid M having at least two elements has distinct
elements x and y such that each of {M\x,M/x} and {M\y,M/y} contains a connected
2-polymatroid.
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The proof of our main theorem will also use the next two results, which are special-
izations of [5, Theorem 3.1] and [7, Lemma 46], respectively.

Lemma 11. Let A be a subset of the ground set of a connected polymatroid M . If
λ(A) < 2min{λ(X) : ∅ 6= X $ E(M)}, then M\A or M/A is connected.

Lemma 12. Suppose that the 2-polymatroid M is the 2-sum of polymatroids M1 and M2

that have ground sets E1 ∪ p and E2 ∪ p, respectively. For q in E1,

(i) if u(E1 − q, E2) = 1, then M\q = (M1\q)⊕2 M2; and

(ii) if u({q}, E2) = 0, then M/q = (M1/q)⊕2 M2.

The following lemma holds for polymatroids in general and will be useful in Section 4.

Lemma 13. Let M be a connected polymatroid and let M/e be disconnected. If Z is a
component of M/e, then u(Z, {e}) > 0.

Proof. Let Y = E(M)− (Z ∪ e). Then

rM/e(Z) + rM/e(Y ) = r(M/e) = r(M)− rM({e}). (2.1)

Moreover, since M is connected,

rM(Z) + rM(Y ∪ e) > r(M). (2.2)

By the definition of local connectivity, rM(Y ) + rM({e}) − u(Y, {e}) = r(Y ∪ e), so we
can rewrite (2.2) as

rM(Z) + rM(Y ) > r(M)− rM({e}) + u(Y, {e}). (2.3)

By subtracting (2.1) from (2.3), we obtain

(rM(Z)− rM/e(Z)) + (rM(Y )− rM/e(Y )) > u(Y, {e}). (2.4)

The differences on the left-hand side can be rewritten as local connectivities. Thus
u(Z, {e}) + u(Y, {e}) > u(Y, {e}), so u(Z, {e}) > 0.

3 A Splitter Theorem for Connected 2-polymatroids

This section is devoted to proving the main result of the paper.

Proof of Theorem 1. Assume that the theorem fails. Then it follows from Theorem 10
that N is non-empty. Hence, as M is connected, it has no loops. Next we note the
following.
1.1. If x is an element of M such that both M\x and M/x have N as a minor, then x is
a line of M .
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Clearly neitherM\x norM/x is connected. It follows by Lemma 11 that rM({x}) 6= 1.
Hence x is a line of M .

Take e in E(M)−E(N). Then, for someM0 in {M\e,M/e}, the 2-polymatroidM0 has
N as a minor. By assumption, M0 is not connected. Take an element f of a component
of M0 that avoids E(N). Then both M\f and M/f have N as a minor. Thus, by 1.1, f
is a line of M . Moreover,
1.2. r(M\f) = r(M).

To see this, suppose r(E − f) < r(E). Then, as M is connected, r(E − f) = r(E)−
1. Let M ′ be the natural matroid derived from M and let f1 and f2 be the points of
M ′ corresponding to f . Then M ′\f1 has f2 as a coloop, so M ′/f1 is connected. Now
M/f is disconnected, so, by Lemma 7, M ′/f1, f2 is disconnected. Therefore, M ′/f1\f2 is
connected. But M ′\f2 has f1 as a coloop, so M ′\f2/f1 = M ′\f2\f1. As this matroid is
connected, by Lemma 7, M\f is too, a contradiction.
1.3. Let K be a component of M/f . Then M |(K ∪ f) is connected.

SupposeM |(K∪f) is disconnected. Then K is the disjoint union of sets X and Y such
that r(X ∪ f) + r(Y ) = r(K ∪ f). As Y is 1-separating in M |(K ∪ f), it is 1-separating
in (M |(K ∪ f))/f , that is, in (M/f)|K. But K is a component of the last matroid, so
K = Y . Thus X = ∅, so r(K ∪ f) = r(K) + r({f}). It follows that K is 1-separating in
M , a contradiction. Hence 1.3 holds.

Now let F be a component of M/f that avoids E(N). By 1.1, every element of F is
a line in M . Let G = E(M)− f −F . By 1.3, M |(F ∪ f) is connected. Next we show the
following.
1.4. There is a line g in F such that (M |(F ∪ f))\g or (M |(F ∪ f))/g is connected.
Moreover, u({f}, {g}) < 2.

By Theorem 10, F contains an element g such that (M |(F ∪ f))\g or (M |(F ∪ f))/g
is connected. As g is in F , we see that g is a line. Since the theorem fails, M\g is not
connected, so u({f}, {g}) < 2. Thus 1.4 holds.
1.5. M |(G ∪ f) is connected, (M |(F ∪ f))/g is connected, and r({f, g}) = 3.

To see this, first note that, by 1.3, M |(K ∪ f) is connected for each component K of
M/f . Then, by Corollary 4, M |(G ∪ f) is connected. The same argument shows that
(M |(F ∪ f))\g is disconnected for if it is connected, then so is M\g, a contradiction.
Thus, by 1.4, (M |(F ∪ f))/g is connected.

Now suppose that uM({f}, {g}) = 0. Then, as uM/f (G, {g}) = 0, one easily checks
that uM(G∪ f, {g}) = 0. Hence M |(G∪ f) = (M |(G∪ f ∪ g))/g = (M/g)|(G∪ f). Thus,
as (M |(F ∪ f))/g and M |(G ∪ f) are connected and both contain f , Corollary 4 implies
that M/g is connected, a contradiction. Hence 1.5 holds.

Recall that f is a line of M such that M\f and M/f are disconnected. Moreover, F
is a component of M/f and E(N) ⊆ G = E(M)− f −F . Let A be a component of M\f
avoiding E(N) and let B = E(M)− f −A. The next two observations follow because M
is connected.
1.6. Neither A nor B spans f .

the electronic journal of combinatorics 26(4) (2019), #P4.21 6



1.7. r(G ∪ f) < r(G) + 2 and r(F ∪ f) < r(F ) + 2.
Next we show the following.

1.8. At least one of A ∩G, A ∩ F , B ∩ F , and B ∩G is empty.
Suppose that all four intersections are non-empty. By 1.2, r(E − f) = r(E). Thus

r(A) + r(B) = r(E) and r(F ∪ f) + r(G ∪ f) = r(E) + 2. Adding these two equations
and applying submodularity to the left-hand side gives

r(A ∪ F ∪ f) + r(A ∩ F ) + r(B ∪G ∪ f) + r(B ∩G) 6 2r(E) + 2,

so
[r(A ∪ F ∪ f) + r(B ∩G)] + [r(B ∪G ∪ f) + r(A ∩ F )] 6 2r(E) + 2. (3.1)

As (A ∪ F ∪ f,B ∩ G) and (B ∪ G ∪ f, A ∩ F ) are partitions of E(M), we deduce,
since M is connected, that equality holds in (3.1). Hence the two specified partitions are
2-separating in M . By symmetry, so are (A ∪G ∪ f,B ∩ F ) and (B ∪ F ∪ f, A ∩G). By
Propositions 8 and 9,M can be written as the 2-sum with basepoint pAF of two connected
2-polymatroids, one with ground set (A ∩ F ) ∪ pAF and the other, Q0, with ground set
(E(M)−(A∩F ))∪pAF . By arguing in terms of the natural matroid derived fromM , it is
straightforward to check that, in Q0, each of A∩G,B∩F , and B∩G is 2-separating. Hence
we can decompose Q0 as a 2-sum of two connected 2-polymatroids one with ground set
(A ∩G) ∪ pAG. Repeating this process twice more, we obtain a connected 2-polymatroid
Q with ground set {f, pAF , pAG, pBF , pBG} where M is obtained from Q by attaching,
via 2-sums, connected 2-polymatroids with ground sets (A ∩ F ) ∪ pAF , (A ∩ G) ∪ pAG,
(B ∩ F ) ∪ pBF , and (B ∩G) ∪ pBG.

As M |A is connected, Proposition 9 implies that pAG and pAF are parallel in Q. Since
(M/f)|F is connected, pBF and pAF are parallel in Q/f . But pAG and pAF are also parallel
in Q/f unless they are loops. In the exceptional case, A ∩ F contains a component of
M/f , a contradiction. We deduce that the component of M/f containing F also contains
A ∩G, a contradiction. Thus 1.8 holds.

By 1.8, A or B is contained in F or G, and F or G is contained in A or B. We know
that B ∩G is non-empty because it contains E(N).

Suppose both F and G span f . Then A or B spans f , a contradiction to 1.6. By 1.7,
there are two remaining cases to consider:

(i) r(F ∪ f) = r(F ) + 1; and

(ii) r(F ∪ f) = r(F ) and r(G ∪ f) = r(G) + 1.

By 1.5, (M |(F ∪f))/g is connected and u({f}, {g}) = 1. Thus r({f, g}) = 3. Assume
(i) holds. Then uM/g(F − g, {f}) = r(F ) + r({f, g})− r(F ∪ f)− r({g}) = 0. Thus {f}
is a component of (M |(F ∪ f))/g. As the last polymatroid is connected, we deduce that
F = {g}. Thus M\g =M |(G ∪ f) so, by 1.5, M\g is connected, a contradiction.

We now know that (ii) holds. As neither A nor B spans f , neither has F as a subset.
Thus both A ∩ F and B ∩ F are non-empty. As B ∩ G is non-empty, 1.8 implies that
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A∩G is empty. Then G ⊆ B. But r(G∪ f) = r(G) + 1. Therefore r(B ∪ f) 6 r(B) + 1.
Since r(B ∪ f) 6= r(B), it follows that r(B ∪ f) = r(B) + 1.

We have r(A)+r(B) = r(M\f), and, by 1.2, r(M\f) = r(M). As r(B∪f) = r(B)+1,
we deduce that r(A)+r(B∪f) = r(M)+1, soM can be written as a 2-sum with basepoint
p of two connected 2-polymatroids with ground sets A ∪ p and B ∪ f ∪ p. Let the former
be M1.

Suppose M1 has at least three elements. Then, by Theorem 10, M1 has an element
q such that q 6= p and M1\q or M1/q is connected. In the first case, by Lemma 12(i),
M\q is the 2-sum of two connected 2-polymatroids each with at least two elements,
so, by Proposition 9, M\q is connected. Now assume that M1/q is connected. Then
uM1({q}, {p}) = 0 otherwise p is a loop of M1/q, a contradiction. Hence uM({q}, E2) = 0
as, by Proposition 8,

uM({q}, E2) = r({q}) + r(E2)− r(E2 ∪ q)
= r({q}) + r(E2)− rM1({p, q})− r(E2) + 1

= r({q}) + r({p})− rM1({p, q})
= uM1({q}, {p}).

Thus, by Lemma 12(ii) and Proposition 9, M/q is connected since we again have the 2-
sum of two connected 2-polymatroids with at least two elements. As q is in A and hence
in F , both M\q and M/q have N has a minor and so we obtain a contradiction.

We may now assume that M1 consists of a single line a through p.
1.9. M/a is connected.

Assume M/a is disconnected. Then its ground set has a partition (V,W ) such that
rM/a(V ) + rM/a(W ) = r(M/a). Now we may assume that f is in V . Thus W ⊆ B since
A = {a}. As uM(A,B) = 0, it follows that rM/a(W ) = rM(W ). Hence rM(V ∪ a) +
rM(W ) = r(M), a contradiction. We conclude that 1.9 holds.

As a ∈ F , we know that M/a has N as a minor. Thus we have a contradiction that
completes the proof of the theorem.

The argument above relies heavily on the fact that we have a 2-polymatroid. However,
we believe that the main theorem also holds for k-polymatroids for all k > 2.

Conjecture 2. Let M be a connected k-polymatroid and let N be a connected minor
of M . When N 6= M , there is an element e of E(M) − E(N) such that M\e or M/e is
connected having N as a minor.

4 Uniqueness

By Theorem 1, for every connected 2-polymatroid M and every connected proper minor
N of M , we can remove the elements of E(M) − E(N) one at a time maintaining a
connected 2-polymatroid with N as a minor. In this section, we consider what can be
said about the uniqueness of this sequence of element removals
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Now let M be a connected polymatroid and N be a connected proper minor of M .
An admissible ordering of E(M)−E(N) is an ordering (a1, a2, . . . , an) of the set E(M)−
E(N) such that, for each k in {1, 2, . . . , n}, there is a connected minor Mk of M with
ground set E(M) − {a1, a2, . . . , ak} such that Mk is a minor of Mk−1, where M0 = M
and Mn = N . We give an example below to show that an admissible ordering may be
unique. We shall show, however, that we always retain some flexibility with respect to
the way in which the elements are removed unless |E(M) − E(N)| = 1. Formally, a
constrained admissible ordering is an ordering ((α1, a1), (α2, a2), . . . , (αn, an)) such that
E(M) − E(N) = {a1, a2, . . . , an} where each αi is a deletion or contraction operation,
and, for each k in {1, 2, . . . , n}, there is a connected minor Mk of M with ground set
E(M)−{a1, a2, . . . , ak} whereMk is obtained fromMk−1 by removing ak by the operation
designated by αk, and (M0,Mn) = (M,N).

To construct a 2-polymatroid with a unique admissible ordering, letN be a simple non-
empty connected matroid. Take N⊕Un,n where the ground set of Un,n is {b0, b1, . . . , bn−1}.
Take bn ∈ E(N) and consider the 2-polymatroid M whose ground set is E(N)∪ {fi : 1 6
i 6 n} where fi = {bi−1, bi} for all i, and the rank function of M is induced by that of
N⊕Un,n. ThenM is connected,M\f1, f2, . . . , fk is connected for all k in {1, 2, . . . , n}, and
M\f1, f2, . . . , fn = N . Thus (f1, f2, . . . , fn) is an admissible ordering of E(M) − E(N).
It is not difficult to check that the admissible ordering is unique. Note, however, that
M\f1\f2 = M/f1\f2, so this example does not give us a unique constrained admissible
ordering. Indeed, as the next result shows, except in the trivial case, there can never be
such a unique ordering.

Theorem 3. Let M be a connected 2-polymatroid and N be a connected proper minor of
M . Then there is a unique constrained admissible ordering of E(M)− E(N) if and only
if |E(M)− E(N)| = 1.

The next two lemmas contain the core of the proof of this theorem.

Lemma 4. Let each of † and ‡ denote a deletion or contraction operation. Suppose both
M † e and M † e ‡ f are connected, but M ‡ f is not. Then {e} and E(M)−{e, f} are the
components of M ‡ f . Moreover,

M ‡ f\e =M ‡ f/e.

Proof. Let (X, Y ) be a 1-separating partition of E(M ‡ f) with Y minimal and non-
empty avoiding e. Then λM‡f (Y ) = 0. Thus, by Lemma 3, λM‡f†e(Y ) = 0. As M † e ‡ f
is connected, X − e = ∅. Thus {e} and E(M)− {e, f} are components of M ‡ f . Hence,
by Lemma 6, M ‡ f\e =M ‡ f/e.

Lemma 5. Let M be a connected polymatroid and N be a connected minor of M . Let e
and f be distinct elements of E(M) and let Z = E(M) − {e, f}. Suppose that {α, β} =
{\, /} = {γ, δ}. Assume that Mαe and Mαeγf are connected. Then either

(i) Mγf is connected and Mαeγf =Mγfαe; or
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(ii) Mγf is disconnected, Mαeγf =Mβeγf , and

(a) Mβe is connected; or

(b) Mβe is disconnected, Mαeγf =Mδfβe, and Mδf is connected; or

(c) Mβe and Mδf are disconnected, and Mαeγf =Mαeδf .

Proof. We may assume that Mγf is disconnected otherwise (i) holds. As Mαeγf is
connected, Lemma 4 implies that {e} is a component of Mγf , and Mγf\e = Mγf/e.
Thus

Mαeγf =Mγfαe =Mγfβe =Mβeγf.

We may assume that Mβe is disconnected otherwise (ii)(a) holds. Then Mβe has {f} as
a component and Mβe\f =Mβe/f . Thus

Mαeγf =Mβeγf =Mβeδf =Mδfβe.

We may now assume thatMδf is disconnected otherwise (ii)(b) holds. ThenMδf\e =
Mδf/e. Thus Mδfβe = Mδfαe. Hence Mαeγf = Mδfβe = Mδfαe = Mαeδf , and
(ii)(c) holds.

We are now able to prove the main result of this section.

Proof of Theorem 3. We may assume that |E(M) − E(N)| > 2. Let ((α, e), (γ, f),
(α3, a3) . . . , (αk, ak)) be a constrained admissible ordering of E(M) − E(N). By us-
ing Lemma 5, we can show that E(M) − E(N) has a constrained admissible order-
ing ((α1, a1), (α2, a2), (α3, a3), . . . , (αk, ak)) in which ((α, e), (γ, f)) 6= ((α1, a1), (α2, a2))
and {e, f} = {a1, a2}. If Mγf is connected, then we can take ((α1, a1), (α2, a2)) to be
((γ, f), (α, e)). Using the notation of Lemma 5, if Mγf is disconnected but Mβe is con-
nected, then we can take ((α1, a1), (α2, a2)) to be ((β, e), (γ, f)). Now suppose that Mγf
and Mβe are disconnected. If Mδf is connected, then we can take ((α1, a1), (α2, a2)) to
be ((δ, f), (β, e)). Finally, if Mδf is disconnected, then we can take ((α1, a1), (α2, a2)) to
be ((α, e), (δ, f)).
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