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Abstract

The Hales-Jewett Theorem states that given any finite nonempty set A and
any finite coloring of the free semigroup S over the alphabet A there is a variable
word over A all of whose instances are the same color. This theorem has some
extensions involving several distinct variables occurring in the variable word. We
show that, when combined with a sufficiently well behaved homomorphism, the
relevant variable word simultaneously satisfies a Ramsey-Theoretic conclusion in
the other structure. As an example we show that if 7 is the homomorphism from
the set of variable words into the natural numbers which associates to each variable
word w the number of occurrences of the variable in w, then given any finite coloring
of S and any infinite sequence of natural numbers, there is a variable word w whose
instances are monochromatic and 7(w) is a sum of distinct members of the given
sequence.

Our methods rely on the algebraic structure of the Stone-Cech compactification
of S and the other semigroups that we consider. We show for example that if 7 is as
in the paragraph above, there is a compact subsemigroup P of SN which contains
all of the idempotents of SN such that, given any p € P, any A € p, and any finite
coloring of S, there is a variable word w whose instances are monochromatic and
T(w) € A.
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We end with a new short algebraic proof of an infinitary extension of the Graham-
Rothschild Parameter Sets Theorem.

Mathematics Subject Classifications: 05D10, 54D80

1 Introduction

We let N be the set of positive integers and let w = N U {0}. Then w is the first infinite
ordinal.

Given a nonempty set A (or alphabet) we let A™ be the set of all finite words w =
aias---a, with n > 1 and a; € A. The quantity n is called the length of w and denoted
|w|. The set AT is naturally a semigroup under the operation of concatenation of words,
known as the free semigroup over A. For each u € A" and a € A, we let |ul, be the
number of occurrences of a in u. As is customary, we will identify the elements of A with
the length one words over A.

Throughout this paper we will let A be a nonempty set, let Sy = A" be the free
semigroup over A, and let v (a variable) be a letter not belonging to A. By a wvariable
word over A we mean a word w over A U {v} with |w|, > 1. We let S; be the set of
variable words over A. If w € S; and a € A, then w(a) € Sy is the result of replacing each
occurrence of v by a. For example if A = {a,b, ¢} and w = avbvva, then w(a) = aabaaa
while w(c) = acbceca. A finite coloring of a set X is a function from X to a finite set. A
subset A of X is monochromatic if the function is constant on A.

Theorem 1 (A. Hales and R. Jewett). Assume that A is finite. For each finite coloring
of Sy there exists a variable word w such that {w(a) : a € A} is monochromatic.

Proof. [5, Theorem 1]. O

Some extensions of the Hales-Jewett Theorem, including for example Theorem 3 or
the Graham-Rothschild Parameter Sets Theorem [4] (see Theorem 4 below), involve the
notion of n-variable words.

Definition 2. Let n € N and vy, vs, ..., v, be distinct variables which are not members
of A.
(a) An n-variable word over A is a word w over AU {vy,vq,...,v,} such that |wl|,, >1

for each i € {1,2,...,n}.

(b) If w is an n-variable word over A and ¥ = (1,2, ..., 2,), then w(Z) is the result
of replacing each occurrence of v; in w by x; for each i € {1,2,...,n}.

(c) If w is an n-variable word over A and u = ljly - - -1, is a length n word, then w(u) is
the result of replacing each occurrence of v; in w by [; for each i € {1,2,...,n}.

(d) A strong n-variable word is an n-variable word such that for each i € {1,2,...,n—1},
the first occurrence of v; precedes the first occurrence of v; ;.
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(e) Sy, is the set of n-variable words over A and S, is the set of strong n-variable words
over A.

(f) Sy = So.

(g) If m € w and m < n, then 5(:1) is the set of u € S,, such that |u| = n.

(h) If m € w and m < n, then S(:z) is the set of u € S, such that |u| = n.

The notation above does not reflect the dependence on the alphabet A.
We note that if m,n € w and m < n, then for each w € §n and each u € g(;), the

word w(u) belongs to S,
The following is a first simple example of a multivariable extension of the Hales-Jewett
Theorem:

Theorem 3. Assume that A is finite. Let Sy be finitely colored and let n € N. There
exists w € Sy, such that {w(Z) : £ € A"} is monochromatic.

Theorem 3 follows immediately from the Hales-Jewett Theorem applied to the alpha-
bet A", replacing each occurrence of v in the variable word over A™ by vyvs - --v,. It is
also a consequence of Theorem 17, which constitutes one of the main results of this paper.
(See the paragraph immediately following Theorem 49.) Theorem 3 also follows directly
from Theorem 5 later in this section.

It is natural to ask the following question. Assume that A is finite. Let S, be the
set of infinite words over A U {v; : i € N} in which each v; occurs and assume that the
set AN of infinite words over A is finitely colored. Must there exist w € Ss such that
{w(Z) : ¥ € AN} is monochromatic, where w(T) has the obvious meaning? As long as
|A| > 2, the answer is easily seen to be “no” already with 2-colorings, using a standard
diagonalization argument: One has that |AN| = [S,| = ¢, so one may inductively color
two elements of AN for each w € S, so that there exist Z and 7 in AN with the color of
w(Z) and w(y) different. (When one gets to w, fewer than ¢ things have been colored and
there are ¢ distinct values of w(Z) possible.)

The following simplified version of the Graham-Rothschild Parameter Sets Theorem
constitutes yet another fundamental multivariable extension of the Hales-Jewett Theorem.
It was shown in [2, Theorem 5.1] that the full version as stated in [4, Section 4] can be
easily derived from the version stated here.

Theorem 4 (R. Graham and B. Rothschild). Assume that A is finite. Let m,n € w with
m < n and let S,, be finitely colored. There exists w € S, such that {w(u) : u € g(:})}
s monochromatic.
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After identifying the elements of A with the length 1 words over A, one sees that
Theorem 1 is exactly the m = 0 and n = 1 case of Theorem 4. Notice also that Theorem
3 is actually equivalent to Theorem 4 in the special case of m = 0. In fact if w € S,,, o
is a permutation of {1,2,...,n} and w is the result of replacing each v; in w by v, for
each i € {1,2,...,n}, then {u(¥) : ¥ € A"} = {w(Z) : £ € A"}. In this paper we shall be
mostly concerned with cases of Theorem 4 with m = 0 and arbitrary n € N. (We are not
concerned with m > 0 because the natural versions of our main theorems are not valid
for m > 0. We shall discuss this point in Remark 25.) Accordingly, from this point on
until Section 6 we will not be concerned with the order of occurrence of the variables.

In contrast to Theorem 3, the Graham-Rothschild Parameter Sets Theorem does not
appear to be deducible directly from the Hales-Jewett Theorem; at least we know of no
such proof.

Our main results in this paper deal with obtaining n-variable words satisfying the
Hales-Jewett Theorem and simultaneously relating to Ramsey-Theoretic results in some
relevant semigroup. The paper is organized as follows:

In Section 2 we present our main theorems relating S,, with other structures. In Section
3 we determine precisely which homomorphisms from S,, to (N, +) satisfy the hypotheses
of our main theorem of Section 2, namely Theorem 17.

The statements and proofs of the results in this paper use strongly the algebraic
structure of the Stone-Cech compactification of a discrete semigroup. We now present a
brief description of this structure. For more details or for any unfamiliar facts encountered
in this paper, we refer the reader to [6, Part I]. All topological spaces considered herein
are assumed to be Hausdorff.

Let S be a semigroup. For each s € S, ps : § — S and A\; : S — S are defined by
ps(x) = xs and \s(x) = sx. If S is also a topological space, S is said to be right topological
if the map p; is continuous for every s € S. In this case, the set of elements s € S for
which A is continuous, is called the topological center of S.

The assumption that S is compact and right topological has powerful algebraic impli-
cations. S has a smallest two sided ideal K (S) which is the union of all of the minimal
right ideals, as well as the union of all of the minimal left ideals. The intersection of any
minimal left ideal and any minimal right ideal is a group. In particular, S has idempo-
tents. Any left ideal of S contains a minimal left ideal of S, and any right ideal of S
contains a minimal right ideal of S. So the intersection of any left ideal of S and any
right ideal of S contains an idempotent. An idempotent in S is said to be minimal if it is
in K(S). This is equivalent to being minimal in the ordering of idempotents defined by
p < q if pg = qp = p. For any semigroup T, we let E(T') be the set of idempotents in 7.
So E(K(S)) is the set of minimal idempotents in S. If ¢ is any idempotent in S, there is
a minimal idempotent p € S for which p < q.

Given a discrete semigroup (7', -), let ST = {p : p is an ultrafilter on 7'}. We identify
the principal ultrafilter e(z) = {A C T : v € A} with the point x € T and thereby
pretend that T C BT. A base for the topology of ST consists of the clopen sets A for
all AC T, where A= {p € 8T : A c p}. The operation - on T extends to an operation
on [T, also denoted by - making (87, -) a right topological semigroup with 7" contained
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in its topological center. So, given p,q € BT, p-q = lim lims - t, where s and t denote
S—p t—q

elements of T. If A C T, A€ p-qifandonlyif {zr € T:2'A € q} € p, where
v 'A={yeT:x-ye€ A}. If (T,+) is a commutative discrete semigroup, we will use +
for the semigroup operation on 87T, even though ST is likely to be far from commutative.
In this case, we have that A € p+ ¢ if and only if {x € T': —x + A € ¢} € p, where
—x+A={yeT :x+ye A}

A set D C T is piecewise syndetic if and only if D € p for some p € K(8T) and is
central if and only D € p for some idempotent p € K(57"). We will also need the following
equivalent characterization of piecewise syndetic sets: D is piecewise syndetic if and only
if there exists a finite subset GG of T' with the property that for every finite subset F' of T'
there exists z € T such that Fz C |J,.ot ' D. (See [6, Theorem 4.40].) Given a sequence
(@n)p>y and m € N, we set FP((z,)p2,) = {[L,cpa: : F € Pr(N) and min F' > m},
where P;(N) is the set of finite nonempty subsets of N and the products are computed
in increasing order of indices. Then (~_, FP((x,)52,,) is a compact semigroup so there

is an idempotent p with F'P({x,)> ) € p for every m. (See [6, Lemma 5.11].) If p
is any idempotent in ST and A € p, then there is a sequence (x,)°2; in T such that
FP({zn);2,) C A. If the operation is denoted by +, we write F'S((z,)52,,) = {D_cp 2t :
F € P¢(N) and min F' > m}.

If ~ is a function from the discrete semigroup 7' to a compact space C', then v has a
continuous extension from 7" to C', which we will also denote by . If v : T — W, where
W is discrete, we will view the continuous extension as taking 87 to SW, unless we state
otherwise. If v : T' — (' is a homomorphism from 7" into a compact right topological
semigroup C, with v[T'] contained in the topological center of C', then the continuous
extension v : T — C'is a homomorphism by [6, Corollary 4.22].

As consequences of the results of Section 2 we establish that for £ € N, the set of points
(p1,p2, - -, pr) € (BN)* with the property that whenever B; € p; for i € {1,2,...,k}, the
k-tuple (By, Bs, ..., By) satisfies the conclusions of one of those theorems, is a compact
subsemigroup of (8N)* containing the idempotents of (SN)* (or the minimal idempotents,
depending on the theorem). The details of these results will be presented in Section 4.

In Section 5 we restrict our attention to versions of the Hales-Jewett Theorem. Letting
R,={p€ BSy: (VB € p)(Fw e S,){w(Z) : ¥ € A"} C B)}, we show that each R, is a
compact ideal of 55y, that R,41 C R, for each n € N, and that c/K(5Sy) C (., Rn-

In Section 6 we present a new fully algebraic proof of an infinitary extension of the
Graham-Rothschild Parameter Sets Theorem. This new proof is a significant simplifica-
tion of the original.

We end this section with a few simple illustrations of how the algebraic structure
described above may be applied to derive simple algebraic proofs of some of the results
discussed earlier including for instance the Hales-Jewett Theorem. We begin with the
following theorem whose proof is based on an argument due to Andreas Blass which first
appeared in [1]. We regard this theorem as an algebraic extension of Theorem 3.

Theorem 5. Let T be a semigroup and let S be a subsemigroup of T'. Let F' be a nonempty
set of homomorphisms mapping T to S which are equal to the identity on S.
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(1) Let p be a minimal idempotent in 5S. Let q be an idempotent in ST for which q < p.
Then v(q) = p for every v € F.

(2) For any finite subset Fy of F' and any central subset D of S, there is a central subset
Q of T such that, for everyt € Q, {v(t) :v € Fo} C D.

(8) For any finite subset Fy of F' and any finite coloring of S, there is a central subset
Q of T such that, for everyt € Q, {v(t) : v € Fu} is monochromatic.

Proof. (1) For each v € F, v(q) < v(p) = p and so, since v(q) € S, v(q) = p.

(2) Pick a minimal idempotent p € 5S such that D € p. By [6, Theorem 1.60], pick a
minimal idempotent ¢ € ST such that ¢ < p. Then v(q) = p for every v € Fy. Hence, if
Q= yer, v '[D], then Q € q.

(3) Pick a minimal idempotent p € 5S and let D be a monochromatic member of p. [

We note that the above theorem provides an algebraic proof of Theorem 3 and hence of
the Hales-Jewett Theorem. In fact, put S = Sy, T' = SoUS,, and F' = {hz : & € A"}, where
hz(w) = w(F) %f w E Sn Then by Theorem 5 we deduce that for any finite coloring

w ifwed,.
of Sy there exists a central subset @ of T such that for every w € Q, {w(Z) : ¥ € A"} is
monochromatic. Pick ¢ € K(ST) with Q € ¢q. Then since S, is an ideal of T it follows
that S,, € ¢. So for any w € S, N Q we have {w(Z) : ¥ € A"} is monochromatic.

We conclude this section with two additional simple corollaries of Theorem 5 that will

not be needed in the rest of the paper.

Corollary 6. Let T be a semigroup and let S be a subsemigroup of T'. Let F' be a finite
nonempty set of homomorphisms mapping T to S which are equal to the identity on S. Let
D be a piecewise syndetic subset of S. Then (\,cp v '[D] is a piecewise syndetic subset
of T.

Proof. By [6, Theorem 4.43], we may pick s € S for which s7!'D is a central subset of
S. We can choose a minimal idempotent p in 8S for which s~'D € p, and we can then
choose a minimal idempotent ¢ in ST for which ¢ < p, by [6, Theorem 1.60]. By Theorem
5(1), v(¢q) = p for every v € F. Hence, if Q = (),cpv *[s7'D], then Q € ¢. Now sQ
is a piecewise syndetic subset of T, because s@) € sq and sq € K(ST). We claim that
$Q C (yep v '[D]. In fact, let x € sQ, pick t € @ such that = st, and let v € F. Then
v(z) =v(st) = sv(t) € s(s7'D) C D. O

Given an idempotent p and B € p let B*(p) = {x € B : z7'B € p}. Then B*(p) € p
and for each z € B*(p), one has that z7!B*(p) € p. (See [6, Lemma 4.14]). If there is no
risk of confusion, we will sometimes write B* for B*(p).

Corollary 7. Let T be a semigroup and let S be a subsemigroup of T'. Let F' be a finite
nonempty set of homomorphisms from T onto S which are equal to the identity on S.
Let p be a minimal idempotent in 58S and let P € p. Let q be a minimal idempotent
of BT for which q < p and let Q = (),cpv '[P*]. Then Q € q. There is an infinite
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sequence (wy,)>>, of elements of QQ such that for each H € Pr(N) and each p : H — F,
[Licw ©(t)(we) € P*, where the product is computed in increasing order of indices.

Proof. Choose w; € Q. Let m € N and assume we have chosen (w;);”; in @ such that
whenever @ # H C {1,2,...,m} and ¢ : H — F, [],.;; (t)(w:) € P*. Note that this
hypothesis is satisfied for m = 1. Let

E={[Leget)(w):@#HC{1,2,...,m} and ¢ : H — F}.

Then E C P*. Let R = P*N(\,cpy 'P* Then R € pso (\,cpv '[R] € ¢ Pick
Wint1 € (yer ¥ ' [R] and note that w41 € Q.

To verify the hypothesis let @ # H C {1,2,...,m + 1} and let ¢ : H — F. If
m+1 ¢ H, the conclusion holds by assumption, so assume that m+1 € H. If H = {m+1},
then wy, 11 € p(m + 1)7'[P*], so assume that {m + 1} C H and let G = H \ {m + 1}.

Let y = J[ieq p(®)(we). Then wyar € @(m + 1)y P*] so []iepy () (we) = y(m +
1)(wm+1) c P*. ]

The authors thank the referee for a thorough report.

2 Combining structures

Throughout this section, and up until Section 6, A is a fixed non-empty finite alphabet.
Most of the results in this paper involve families of well behaved homomorphisms between
certain semigroups:

Definition 8. Let n € N and let v : S,, — Sy be a homomorphism. We shall say that v is
So-preserving if v(uw) = uv(w) and v(wu) = v(w)u for every u € Sy and every w € S,.

Note that if £ € A", then the function hz : S, — Sy defined by hz(w) = w(Z) is
an Sp-preserving homomorphism. Also, the function ¢ : 5, — Sy which simply deletes
all occurrences of variables is an Sy-preserving homomorphism. As another example,
assume that n > 2 and define u : S, — S,, where u(w) is obtained from w by replacing
each occurrence of vy by vivy. Given & € A", hz o i is an Sy-preserving homomorphism
which cannot be obtained by composing those of the kind mentioned previously; in fact
|hz o p(w)| > |w| for each w € S,.

Definition 9. Let S, T, and R be semigroups such that S UT is a semigroup and 7' is
an ideal of SUT. Then a homomorphism 7 : T" — R is said to be S-independent if, for
every w € T and every u € S, 7(uw) = 7(w) = 7(wu).

In most cases, the above definition will be applied to the case S = Sy and T = S, for
some n € N. We shall see later in Lemma 28 that if n € N, R is a cancellative commutative
semigroup, and 7 : S,, — R is an Sp-independent homomorphism, then 7(w) = 7(w’)
whenever |wl,, = |w'|,, for each i € {1,2,...,n}. For reasons which will be made clear in
Section 3, we will primarily be concerned with Sp-independent homomorphisms from .S,
to (N, +) of the form 7(w) = |w|,, for some i € {1,2,...,n}.
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Lemma 10. Let S and T be semigroups such that SUT is a semigroup and T is an ideal
of SUT. Let ¢ : T — C be an S-independent homomorphism from T into the topolog-
ical center of a compact right topological semigroup C. Then ¢ extends to a continuous
homomorphism from BT into C, which we shall also denote by ¢. For every q € BT and

every p € S, ¢(q) = o(pq) = ¢(qp).

Proof. The fact that ¢ extends to a continuous homomorphism is [6, Corollary 4.22]. Let
p € 5S and g € BT be given. In the following expressions let s and ¢t denote members of
S and T respectively. Since ¢ is continuous on ST and since both pq and ¢p are in ST by
[6, Corollary 4.18], we have that

d(pq) = ¢(lim lim st) = lim lim ¢(st) = lim ¢(t) = ¢(q)

s—p t—q s—p t—q t—q
and similarly
¢(ap) = ¢(limlimts) = lim lim ¢(ts) = lim ¢(¢) = ¢(q). O

Theorem 11. Let S and T be semigroups such that SUT is a semigroup and T is an ideal
of SUT. Let ¢ : T — C be an S-independent homomorphism from T into a compact right
topological semigroup C with ¢|T] contained in the topological center of C' and denote also
by ¢ its continuous extension to 1. Let F be a finite nonempty set of homomorphisms
from S UT into S which are each equal to the identity on S, and let D be a piecewise
syndetic subset of S. Let p be an idempotent in ¢[ST], and let U be a neighborhood of p
in C. There exists w € T' such that ¢(w) € U and v(w) € D for every v € F.

Proof. Since D is piecewise syndetic in S, pick by [6, Theorem 4.43] some s € S such that
s71D is central in S and pick a minimal idempotent r € 3S such that s™'D & r.

Let V = ¢ '[{p}]. Since ¢ is a continuous homomorphism from ST to C, V is a
compact subsemigroup of 7. By Lemma 10, Vr is a left ideal of V' and rV is a right
ideal of V. Pick an idempotent ¢ € Vr N rV and note that ¢ < r in 7. By Theorem
5(1), v(q) = r for every v € F.

Since s7'D € r we have that for each v € F, v™1[s7! D] € ¢. Since U is a neighborhood
of p, pick R € ¢ such that ¢[R] C U. Pick w € RN(,cpv '[s'D]. Then ¢(sw) =
¢(w) € U and for v € F, v(w) € s7'D so v(sw) = sv(w) € D. O

Corollary 12. Letn € N. Let ¢ : S,, — C be an Sy-independent homomorphism from S,
into a compact right topological semigroup C with ¢|S,| contained in the topological center
of C' and denote also by ¢ the continuous extension to 3S,. Let F' be a finite nonempty
set of Sy-preserving homomorphisms from S, into Sy, let D be a piecewise syndetic subset
of So, let p be an idempotent in ¢|3S,], and let U be a neighborhood of p in C. There
exists w € Sy, such that p(w) € U and v(w) € D for every v € F.

Proof. Let S = Sy, let T =5, and for v € F, extend v to Sy U .S, by defining v to be
the identity on Sy. Then Theorem 11 applies. O

We obtain the first result that was stated in the abstract as a corollary to Theorem 11.
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Corollary 13. Define 7 : S1 — N by 7(w) = |wl|.,, let Sy be finitely colored, and let
(xn)2, be a sequence in N. There exists w € Sy such that {w(a) : a € A} is monochro-
matic and T(w) € FS((z,)22,).

Proof. Let S = Sy, let T =51, and let C = GN. Then 7[S;] is contained in the topological
center of C. Denote also by 7 the continuous extension taking £5; to SN. Given a € A,

define fa : SO U Sl — S[) by

 f w(a) fweS
fa(w)_{ w ifseSy,

and let F' = {f, : a € A}. Then F is a finite nonempty set of homomorphisms from
So U Sy into Sy which are each equal to the identity on Sy. Pick by [6, Lemma 5.11] an
idempotent p € SN such that FS((z,)5°,) € p. Pick any ¢ € K(5Sy) and pick D € ¢
which is monochromatic. Note that 7[S;] = N so by [6, Exercise 3.4.1], 7[85;] = SN.
Therefore, p € 7[354]. Consequently, Theorem 11 applies with U = F.S({x,)> ). O

n=1
Lemma 14. Let (T,-) be a discrete semigroup and let m,n € N. Let ¢ : S, — X2, T
be an Sy-independent homomorphism. Then ¢ extends to a continuous Sp-independent
homomorphism ¢ : BS, — X[ BT. Moreover if o= (p1,p2,.-.,DPm) is an idempotent in
X, BT with the property that whenever B; € p; for each i € {1,2,... ,m}, there exists
w € S, such that p(w) € X, By, then p € ¢[BS,].

Proof. Let C = X ,5T. Regarding ¢ as an Sp-independent homomorphism from S,
into the right topological semigroup C, we see that ¢[S,] is contained in X[*,T" which
in turn is contained in the topological center of C' by [6, Theorem 2.22]. Hence by [6,
Corollary 4.22], ¢ extends to a continuous homomorphism from 35, into C. To see that
the extension is Sp-independent, let u € Sy and let p € 3S,,. Then, letting s denote a
member of 5, we have

6(up) = ¢(lim us) = lim (us) = lim 6(s) = o(1im 5) = 9(p)

S—p S—Dp

and similarly, ¢(pu) = ¢(p).
Now assume that 7 = (p1,ps,...,pm) is an idempotent in X!",87T and whenever

B; € p; for each i € {1,2,...,m}, there exists w € S,, such that ¢p(w) € X" B;, To see
that p € ¢[8S,] let (By, B, ..., By) € X p;, and let

G(Bl 77777 Bm) = {’LU < Sn : ¢(w) c X;llBi} .

Then by assumption, G = {G(p,,..B,) : (B1,Ba,...,By) € X2 p;} has the finite inter-
section property so one may pick ¢ € 35, such that G C ¢q. Then p'= ¢(q) € ¢[8S,]. O

Theorem 15. Let (T',-) be a discrete semigroup and let m,n € N. Let p'= (p1,p2y- -, Pm)
be an idempotent in X", ST. Fori € {1,2,...,m} let 7; be an Sy-independent homo-
morphism from S, to T. Assume that whenever B; € p; for each i € {1,2,...,m}, there
evists w € S, such that (1 (w), Ta(w), ..., Tm(w)) € X1y B;. Let D be a piecewise synde-
tic subset of Sy and let F' be a finite nonempty set of Sy-preserving homomorphisms from
Sp to Sy. Then whenever B; € p; for eachi € {1,2,...,m}, there exists w € S,, such that
v(w) € D for each v € F and for each i € {1,2,...,m}, 7;(w) € B;.
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Proof. Define ¢ : S, — X-,T by

p(w) = (Tl(w), To(w), . .. ,Tm(w)) )

Then ¢ is an Sp-independent homomorphism and hence by Lemma 14, ¢ extends to a
continuous Sp-independent homomorphism ¢ : 3S, — X!,6T and p € ¢[5S,]. The
result now follows from Corollary 12. O

Corollary 16. Let k,n € N with k < n and let T be the set of words over {vy, vy, ..., v}
in which v; occurs for each i € {1,2,...,k}. Givenw € S, let T(w) be obtained from w by
deleting all occurrences of elements of A as well as all occurrences of v; for k <i < mn. Let
(y)52, be a sequence in T, let F' be a finite nonempty set of Sy-preserving homomorphisms

from S, to Sy, and let D be a piecewise syndetic subset of Sy. There exists w € S,, such
that v(w) € D for allv € F and 7(w) € FP((y)2,)-

Proof. Pick an idempotent p € BT such that FP({y)°,) € p. Since 7 is an Sp-
independent homomorphism from S,, onto T', Theorem 15 applies with m = 1. O]

Theorem 17 is one of the main results of this paper. It involves a matrix with entries
from QQ or Z. We assume appropriate hypotheses in order to ensure that In order to ensure
that matrix multiplication makes sense and is distributive. In particular we assume that
T is commutative and write the operation as +.

Theorem 17. Let (T,+) be a commutative semigroup, let k,m,n € N, and let M be a

k x m matriz. If T is not cancellative assume that the entries of M come from w. If T is

isomorphic to a subsemigroup of a direct sum of copies of (Q,+) (so that multiplication by

members of Q makes sense), assume that the entries of M come from Q. Otherwise as-

sume that the entries of M come from Z. Fori € {1,2,...,m} let 7; be an Sy-independent
71 (w)

To(w
homomorphism from S, to T. Define a function 1 on S, by (w) = 2(, ) . Let

Tm (W)
P = (p1,p2,---,pk) be an idempotent in szlﬂT with the property that whenever B; € p;
foreachi € {1,2,...,k}, there exists Z € [S,] such that MZ € X¥ | B;. Let F be a finite
nonempty set of So-preserving homomorphisms from S, to Sy and let D be a piecewise

syndetic subset of Sy. Then whenever B; € p; for each i € {1,2,...,k}, there exists
w € S, such that v(w) € D for every v € F and Mi(w) € X B;.

Proof. If T is not cancellative, let G = T. If T' is isomorphic to a subsemigroup of ,.; Q
for some set I, assume without loss of generality that 7' C €, ., Q and let G = @, Q.
Otherwise let G be the group of differences of T'. In each case we define an Sy-independent
homomorphism ¢ : S, — X?ZIG. by ¢(w) = Miy(w). Let C' = X§:15G- Then by
Lemma 14, ¢ extends to an Sp-independent homomorphism ¢ : S, — C and p’ € ¢[5S5,].
The rest now follows from Corollary 12. O]

Definition 18. Let n € Nand let j € {1,2,...,n}. Define p; : S, = N by p;(w) = |wl,,.
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Remark 19. As a consequence of Theorem 17 (with k=m=1,T =N, M = (1), 7 = i,
F = {hz:Z € A"}, and p any idempotent in SN) we have that whenever D is piecewise
syndetic in Sy and n € N, there exists w € S, such that {w(Z) : ¥ € A"} C D. Since
whenever Sy is finitely colored, one color class must be piecewise syndetic, we see that
the multi-variable Hales-Jewett Theorem, Theorem 3, follows. And, since central sets are

piecewise syndetic, we have that whenever D is central in Sy and n € N, there exists
w € S, such that {w(7) : ¥ € A"} C D.

Theorem 20. Letn € N and let D be a central subset of Sy. Let F' be a finite nonempty set
of So-preserving homomorphisms from S,, into Sy. Then {w € S, : (Vv € F)(v(w) € D)}
is central in S,,.

Proof. Let T' = S, U .Sy and extend each v € F to all of T' by defining v to be the
identity on Sy. By Theorem 5(2), pick a central subset @ of T" such that for each ¢t € @,
{v(t) : v € F} C D}. Since S, is an ideal of T', Q@ N S, is central in S, and @ N S,, C
{weS,: (VveF)(v(w) e D)} O

The following corollary provides sufficient conditions for applying Theorem 17.

Corollary 21. Let m,n € N with m < n. Let M be an m x m lower triangular matriz
with rational entries. Assume that the entries on the diagonal are positive and the entries
below the diagonal are negative or zero. Let p = (p1,pa,-..,Dm) be an idempotent in
X2 BN. Fori€{1,2,...,m} let 7y = Y7  jju; where each o j € Q. Assume that for
each i € {1,2,...,m} we can choose t(i) € {1,2,...,n} such that

(1) Qi t(3) > 0,
(2) ifl e {1,2,...,m} and l > 1, then o, ,q) = 0, and
(3) ifl € {1,2,....,m} and | < i, then o) < 0.

Then each T; is an Sp-independent homomorphism from S, to Q. Let F' be a nonempty
finite set of Sy-preserving homomorphisms from S, to Sy and let D be a piecewise syndetic
subset of Sy. Whenever B; € p; for each i € {1,2,...,m}, there exists w € S,, such that
v(w) € D for each v € F and

71 (w)
T (w
a| ™| e X™ B;.
T (W)
i (w)
Proof. Define 9 : S,, = Q™ by ¥(w) = : . We wish to apply Theorem 17 with
T (W)

T = Q. For this we need to show that whenever B; € p; for i € {1,2,...,m}, there exists
Z € 1[Sy] such that M2 € X" B;. Solet B; € p; fori € {1,2,...,m}.
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We show first that for each r € N, there exists 2 € (rN)” such that Mz € X[ B;,
so let 7 € N be given. Note that M ! is lower triangular with positive diagonal entries
and nonnegative entries below the diagonal. Probably the easiest way to see this is to
solve the system of equations Mz = & by back substitution. Alternatively we may write
M = D(I + N) where D is diagonal with positive entries and N is a strictly lower
triangular matrix (all of whose non-zero entries are negative) verifying N = O. Setting
r=—-Ninl—z"=1-2)1+z+2*+ 2™ 1) gives [+ N) ' = I+Z;";11(—1)7Nj.
Hence (I + N)~! is lower triangular with 1s along the diagonal and nonnegative entries
below the diagonal. Multiplying (I + N)~! by D~! on the right gives the desired result.
Let ¢ € N be such that all entries of cM~! are nonnegative integers. By [6, Lemma 6.6]
rcN € p; for each i € {1,2,...,m} so pick z; € B;NrcN. Letting 2= M~'Z one has that
Ze (rN)™ and Mz € X", B,.

Now assume we have chosen ¢(i) for ¢ € {1,2,...,m} as in the statement of the
corollary. Pick d € N such that do;; € Z for each i € {1,2,...,m} and each j €
{1,2,...,n} and let 9, ; = day; j. Let

J={1,2,....0}\ {t(1),£(2),....t(m)} .

Let s = [[:2, i +() and pick r € N such that s divides r and

r>max{szjej|5i,j|:z'€ {1,2,...,m}}.

Pick z2'€ (rN)™ such that Mz € X", B;. We shall produce w € S,, such that ¢)(w) = Z by
determining yz;(w) for each j € {1,2,...,n}. (To be definite, we then let w = []}_, v;-”(w).)

For j € J, let p;(w) = s. Let

21 S

L o N
01.4(1) jes o 01,4(1)

Mt(l)(w) =d

and note that [[}", 0;4) divides pu1)(w) and by the choice of r, pyq1y(w) > 0, as is, of
course, required. Now let k € {2,3,...,m} and assume that for each i € {1,2,... k—1},
we have chosen ;) (w) € N such that 3", | 64y divides puy)(w). Then let

2k k—1 5k,t(z‘) 5k;,'
pagy (W) = ds—— = 30 =y (W) = X je 55—
e t (k) e (k) ke t (k)
Then pypy(w) = 5 o (dzr — D s 80k;) > 0 and, if & < m, then 3 ", . &) divides
(k) (W)
It is now a routine matter to verify that for & € {1,2,...,m},

k
Te(w) = D201 iy gy (W) + D25 5 kit (W) = 2 - O

The sufficient conditions in Corollary 21 on the coefficients ; ; of the homomorphisms
7; apply to all lower triangular matrices with positive diagonal entries and entries below
the diagonal less than or equal to zero. A complete solution to the problem of which
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matrices and which Sy-independent homomorphisms satisfy the hypotheses of Theorem
17 seems quite difficult. The following simple example illustrates that one cannot get
necessary and sufficient conditions on the coefficients of the homomorphisms 7; valid for
all lower triangular matrices with positive diagonal entries and entries below the diagonal
less than or equal to zero.

Theorem 22. Let M = (_11 ?), let N = ((1) (1)>, let 71 = 2u1 + po and let

Ty = 1 + 2.
(1) If p1 and ps are any idempotents in fN, By € p1, and By € py, F' is a finite set of
So-preserving homomorphisms from Sy to Sy, and D is a piecewise syndetic subset
of Sy, then there exists w € Sy such that M ( :1§Z§ > € By X By and v(w) € D
2

for each v € F.

(2) There exist idempotents p; and ps in BN and sets By € p; and By € py for which

there does not exist w € Sy such that N ( :123 ) € By x Bs.
2

Proof. (1) Let p; and ps be idempotents in SN, and let By € p; and By € p, be given. By
Theorem 15, it suffices to show that there exists w € Sy such that M ( :1 Ez> ) € X?ZlBZ-
2

)
By [6, Lemma 6.6], 3N € p; and 3N € p,. Pick 25 € B, N3N and pick z; > 25 in B; N 3N.

Let k) = %zl — %22 and let ky = %21 — %22. Let w = v]flv§2 so that p;(w) = %zl — %22 and
_1 2 _ _ n(w) \ _ [ &
po(w) = 321 + 522. Then 7 (w) = 21, To(w) = 21 + 22, and M ( ra(u0) ) = < o )

(2) Let By = FS((2'™)2,) and let By = FS((2"*2)> ). By [6, Lemma 5.11] pick
idempotents p; and py in SN such that By € p; and By € py. Suppose we have some
w € Sy and elements z; € B; and 2z, € By such that N ( 7 (w) ) = ( “1 > Then

TQ(’LU) Z9
221 — 25 = 3pg(w) > 0 and 225 — 27 = 3ug(w) > 0 50 29 < 221 and z; < 2z5. Pick F,G €
Py(N) such that zy = >, 2% and 2o = >, 2% Let m = max F and let k£ = max G.
Then 24" < z; < 24+ and 2%+2 < 2y < 2%+3. Then 242 > 22, > 2, > 2%+2 g0
m >k +1. Also 241 > 22, > 2 > 24m > 24+ 5 contradiction. O

Recall that a k x m matrix M is image partition reqular over N if and only if, whenever
N is finitely colored, there is some z" € N such that the entries of M 2z are monochromatic.
This class includes all triangular (upper or lower) matrices with rational entries and
positive diagonal entries. See [6, Theorem 15.24] for several characterizations of matrices
that are image partition regular over N.

Corollary 23. Let k,m,n € N with m < n. Let M be a k X m matriz with rational
entries which is image partition reqular over N. Let p be a minimal idempotent in BN and
let b= (p,p,...,p) € X*_BN. Let o be an injection from {1,2,...,m} to {1,2,...,n}.
Fori € {1,2,...,m} let 7, = ,u. Let F' be a nonempty finite set of Sy-preserving
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homomorphisms from S, to Sy and let D be a piecewise syndetic subset of Sy. Then
whenever B € p there exists w € S, such that v(w) € D for each v € F and

71 (w)
| | ep
T (W)
Proof. We note that the mapping
w— ((w), (W), ..., Tm(w))

defines an Sy-independent homomorphism from S,, onto N”*. So in order to apply Theorem
17, we must verify that whenever B; € p foreach i € {1,2,..., k}, there exists Z € N™ such
that M7 € X% | B;. We then pick w € S, such that 7;(w) = 2 for each i € {1,2,...,m},
which one may do because ¢ is injective.

Now ﬂle B;epsoB= ﬂle B; is central in N. By [6, Theorem 15.24(h)] there exists
7 € N™ such that M7 € B*. O

Corollary 23 applies to a much larger class of matrices than Corollary 21, but is
more restrictive in that the same minimal idempotent must occur in each coordinate.
Suppose we have a k£ x m matrix M which is image partition regular over N. If we
knew that whenever By, Bs,..., B, are central subsets of N, there exist 2 € N™ with
M?Z e X¥  B;, then in Corollary 23 we could allow ' = (py, ps, ..., px) to be an arbitrary
minimal idempotent in X AN. We shall see now that this fails.

11 . »y
Theorem 24. Let M = ( 1 9 ) Then M 1is image partition reqular over N. For x € N
let p(x) = max{t € w: 2" < z} and fori € {0,1,2,3} let B; = {x € N : ¢(z) =i (
mod 4)}. Then By and By are central and there do not exist x and y € N such that

M(i)engBQ.

Proof. By [6, Theorem 15.5] M is image partition regular over N. Since N = U?:o B;
some B; is central. But then, by [6, Lemma 15.23.2], each B; is central. Suppose we have

some z,y € N such that M ( g ) € By X By. Let n = ¢(x +y). Then 2" < x4y < 2"!

soy < 2"t — 2 and thus 2y < 2"*2 — 22 so ¢ + 2y < 22 — x < 2"*2 and thus
Sr+2) € (nn 1} .

Note also that Corollary 23 is more restrictive than Corollary 21 in that the idempotent
p is also required to be minimal. It is well known and easy to see that F'S({2%)%°,) does
not contain any three term arithmetic progression. Consequently, if

1
M=|1
1

N = O
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then the assumption in Corollary 23 that the idempotent p is minimal cannot be deleted.

Remark 25. We remarked in the introduction that we are not concerned with the instances
of Theorem 4 with m > 0 because the natural versions of our results in this section are not
valid. The results in this section apply to all piecewise syndetic subsets of Sy. In particular,
they apply to central subsets. It was shown in [2, Theorem 3.6] that, given a € A, there
is a central set D € Sy such that there is no w € Sy with {w(av,), w(via)} C D.

3 Homomorphisms satisfying our hypotheses

In Corollary 21 we produced Sp-independent homomorphisms from S, to Q as linear
combinations of the functions p; with coefficients from Q. We shall see in Corollary 30
that if T' is commutative and cancellative, then the only Sp-independent homomorphisms
¢ S, = T are of the form ¢(w) = > | p;(w) - a; where each q; is in the group of
differences of T

In Corollary 23 we used Sp-independent homomorphisms 7; = pi,(;) from S, to N and
the surjection w — (71 (w), 72(w), ..., Ty (w)) from S, onto N™. We show in Corollary 33
that if T = N, then these are essentially the only choices for 7; satisfying the hypotheses
of Theorem 17.

Recall that throughout this section A is a fixed nonempty finite alphabet.

Definition 26. Let n € N. For w € S,,, let w’ € {v1,vs,...,v,}" be obtained from w by
deleting all occurrences of letters belonging to A.

Lemma 27. Fizn € N. Let (T,+) be a cancellative semigroup and let ¢ : S,, — T be an
So-independent homomorphism. Then o(w) = p(w') for all w € S,,.

Proof. 1t suffices to show that if wy,wy € S, and u € Sy, then p(wiuws) = p(wiws).
Let v = vjvg---v,. On one hand p(vwijuwev) = p(v) + @(wiuwy) + ¢(v), and on the
other hand ¢(vwuwyv) = p(vwiu) + e(wav) = e(vwy) + p(wew) = P(vwiwev) = p(v) +
o(wywy) + ¢(v). The result now follows. O

For u,w € A" we say u and w are Abelian equivalent, and write u ~ 4, w, whenever
lul, = |w]|, for all a € A.

Lemma 28. Fiz n € N. Let (T,+) be a cancellative and commutative semigroup and
let ¢ : S, — T be an Sy-independent homomorphism. For each wy,ws € S, we have
o(wy) = p(wse) whenever wy ~ 4, wh.

Proof. Assume wy,wy € S, and w) ~y wh. Let m = |wj| = |wh|. We show that
o(w]) = p(wh) which in turn implies that ¢(w;) = p(wz) by Lemma 27. The result is
immediate in case n = 1 for in this case w] = w) = v". So let us assume that n > 2 in
which case m > 2. Since the symmetric group on m-letters is generated by the 2-cycle
(1,2) and the m-cycle (1,2,...,m) it suffices to show

(i) If z,w € (AU {v1,v9,...,0,})" and 2w € S, then wz € S, and p(wz) = (zw).
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(ii) Let € be the empty word. If z,y € (AU{v1,ve,..., v, })T, w € (AU{vy,va, ..., 0, })7T
U{e} and zyw € S, then yrw € S, and p(yrw) = p(ryw).

Then given Iy, lo,... L, € A U {vi,vq,...,v,} by (i) we have o(lily---1,) =
©(lals -+ - 1yl1) and by (ii) we have o(l1lols - - - 1) = @(lalyls -+ - 1y).

To establish (i), we have p(zw) + ¢(zwz) = p(rwrwz) = p(rwz) + e(wz), whence
o(zw) = p(wx). Note that we are using here that 7" is commutative. For (ii), let v =
V10g - - - U,. Then, using (i) twice, ¢(v) +@(zyw) + (v) = p(vrywv) = (ve) + p(ywv) =
p(v) + p(ywv) = plavywv) = p(zvy) + p(wv) = p(vyz) + p(wv) = Plvyzwy) =
o(v) + ¢(yrw) + ¢(v). The result now follows. O

We remark that Lemma 28 does not hold in general if T" is not commutative. For
example, consider the homomorphism ¢ : S3 — S5 where p(w) is the word in Sy obtained
from w by deleting all occurrences of the variable v3 in addition to all letters belonging
to A. Then S, is cancellative and ¢ is an Sp-independent homomorphism. However,

©(v1vaU3) = V109 F# Vov = P(VaV1V3) Yet V1VaU3 ~ 4p Vo1 Vs3.

Theorem 29. Fizn € N. Let (T,+) be a cancellative and commutative semigroup and

let p : S, = T be an Sy-independent homomorphism. Then there exists a homomorphism
[N = T such that p(w) = f(p1(w), pa(w), ..., pa(w)) for allw € S,.

Proof. Define f: N* — T by f(z1,29,...,2,) = @(v{*vy? - --vi*). By Lemma 28, f is as
required. O]

Corollary 30. Letn € N, let (T,+) be a commutative and cancellative semigroup, let G
be the group of differences of T', and let ¢ be an Sy-independent homomorphism from S,
to T. There exist a1, as, ..., a, in G such that for each w € S, p(w) =31, wi(w) - a;.

Proof. Pick a homomorphism f : N* — T as guaranteed by Theorem 29. For j €
{1,2,...,n}, define 2V € N by, fori € {1,2,...,n},

y ) 2 ifi=j
@i _{1 if i £ g (1)

Let 1= (1,1,...,1) € N*. Let ¢ = f(1) and for j € {1,2,...,n}, let a; = f(ZV) — c.
Then

(n+1)~c:f(n+1,n+1,...,n+1):Zf(,?m):(Zaj)—i—n-c

soc=)0, a;.

We claim that f(z1,z9,...,2,) = 2?21 z; - a; for all (z1,2,,...,2,) € N". To see this

we proceed by induction on Y7, @, If 377 | 5 = n then (21,29, ..., 2,) = T whence

[z, @9, .00 @) ZCZZ?:M:Z?:J-%-
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Next let N > n and suppose that f(zq,xs,...,2,) = Z?Zl xj-a; for all (x1,29,...,2,) €
N" with Z?:l zr; < N. Let (x1,29,...,2,) € N be such that Z?:l x; = N + 1. Pick
j€41,2,...,n} such that x; > 2. Then

flz, @, ... xy) —|—f(T) = f(x1, ...z, — Lxjpn, .. ) + f(Z[j]).

Since f(zV]) — f (T) = a; it follows by our induction hypothesis that

flan s, mn) = Y mi a4 (g = 1) aj+ i @+ a; = 20 - ;.
Consequently, for all w € S,
¢(w> - f(Ml(W>,M2(w), s 7:U’n(w)) = Z?:l /“Lj(w) caj . u
In the proof of the next lemma, we shall use the fact that if n € N,
f : N* - N is a homomorphism, Z, ¢!, ?,.... 7" € N*, ay,a9,...,0,, € Z, and

F=>" a7 then

F@) = oaf (7).
We note that if o; < 0, then f is not defined at o7/, So to verify the above equality, let
I={ie{l,2,....n}:0; <O0}andlet J ={ie{1,2,...,n}:a; >0}. Then

T+ Z e[( O‘l>_’[] = ZiGJ O‘ig[i]

F@) + Lier(—aa) () = Fiey 0af (71)

SO

F@) = Yicrusaf (1) = S, aif(g1).
Lemma 31. Let n € N and f : N* — N be a surjective homomorphism. Then there
exists i € {1,2,...,n} such that f(¥) = z; for each ¥ = (x1,22,...,2,) € N", ie., f is
the projection onto the i’th coordinate.
Proof. We begin by showing that i(/l\) — 1 where 1= (1,1,...,1). Since f is surjective,
it suffices to show that f(#) > f(1) for each ¥ = (x1,29,...,2,) € N*. For each r € N
we have that

r#=(r— 1)1+ (L+r(r— 1), 1+r(ee—1),..., 1+ (2, — 1)).

It follows that rf(Z) = f(rZ) > f((r — 1)/1\) = (r—1)f(1) or equivalently that r(f(Z) —
f(T)) > —f(1). As r is arbitrary we deduce that f(Z) — f(1) > 0 as claimed.

For each j € {1,2,...,n}let 210 = (2 bt zg],.. [J]) € N"beasin (1). As Y7 7l =
(n+1)1 we have > i1 fEI) = f((n+ 1)1) = n+1. It follows that there exists a unique
k € {1,2,...,n} such that f(ZI¥) = 2 and f(zVl) = 1 for all j # k. Without loss of
generality, we may assume that f(ZI) =2 and f(zV]) =1 for all j € {2,3,...n}.
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Let @ = (21,29, ...,x,) € N*. We will show that f(Z) = ;. We first note that
(n+ )7 = S0 (s — Yy )71,
JFi
Therefore
(n+1)f(%) = (nx1 — Yo 25) - 24+ Do (na; — Z?;l z;) -1
JF
and thus (n + 1) f(Z) = (n+ 1)x;. O

Corollary 32. Let n,m € N. Fori e {1,2,...,n} and j € {1,2,...,m} let m; : N* - N
and m; : N™ — N denote the projections onto the i’th and j’th coordinates respectively.

Assume that f : N* — N™ is a surjective homomorphism. For i € {1,2,...,m}, let
fi =mlo f. Then there is an injection o : {1,2,...,m} — {1,2,...,n} such that for each
i€{l1,2,...,m}, fi = mow. In particular m < n.

Proof. By hypothesis each f; : N — N is a surjective homomorphism. Therefore by
Lemma 31, there exists a mapping o : {1,2,...,m} — {1,2,...,n} such that f;(¥) =
To@i)(T) = 4@ for each & € N". But as f is surjective, it follows that o is injective. [

Corollary 33. Let n,m € N. For each i € {1,2,...,m} let 7, : S, — N be an Sp-

independent homomorphism. If the mapping w — (7'1 (w), To(w), ... ,Tm(w)) takes S,, onto
N™, then there exists an injection o : {1,2,...,m} — {1,2,...,n} such that 7; = )
for each i € {1,2,...,m}. In particular we must have m < n.

Proof. By Theorem 29, for each i € {1,2,...,m}, pick a homomorphism f; : N* — N
such that 7(w) = f;(p1(w), pa(w), ..., pn(w)) for each w € S,. Define f : N* — N™
by f(Z) = (f1(@), f2(D),..., fn(T)). We claim that f is surjective, so let §¥ € N™ be
given and pick w € S, such that (7 (w), 72(w),..., 7 (w)) = 7. For j € {1,2,...,n}, let
z; = |wl,,. Then f(Z) = 7.

By Corollary 32, pick an injection o : {1,2,...,m} — {1,2,...,n} such that for each
i€ {1,2,...,m}, fi = To). Let w € S, be given and let & = (Jw|y,, [W|vy, - - -, |W]w,),
Then for i € {1,2,...,m}, ni(w) = fi(T) = 250) = |wly, - O

4 Compact subsemigroups of (8N)*

Besides the idempotents in ¢[3S5,], there are more ultrafilters that satisfy Corollary 12,
and they form a compact semigroup.

Theorem 34. Letn € N, let C' be a compact right topological semigroup, let ¢ : S, — C' be
an Sp-independent homomorphism for which ¢[S,] is contained in the topological center
of C', denote also by ¢ the continuous extension from (S to C, and let F' be a finite
nonempty set of So-preserving homomorphisms from S,, into Sy. Let

P = {p € ¢|BS,] : for every neighborhood U of p
and every piecewise syndetic subset D of Sy
(Fw € S,)(¢(w) € U and (Vv € F)(v(w) € D)) }.

Then P is a compact subsemigroup of C' containing all the idempotents of ¢[5Sy).
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Proof. 1t is clear that P is compact. By Corollary 12, P contains all the idempotents in
¢[BSy]. To see that P is a subsemigroup of C, let p, g € P. Let U be an open neighborhood
of pq and let D be a piecewise syndetic subset of Sy. By [6, Theorem 4.43] pick s € Sy
such that s7!D is central and pick a minimal idempotent r in 35y such that s~'D € r.
Pick a neighborhood V' of p such that p,[V] € U. Since (s7'D)* € r, it is piecewise
syndetic so pick w € S, such that ¢(w) € V and v(w) € (s™*D)* for each v € F'.

Then ¢(w)q € U and ¢(w) is in the topological center of C' so pick a neighbor-
hood @ of ¢ such that Ay)[Q] € U. For each v € F, v(w) *(s™'D)* € r. Let
E = ,epv(w) ' (s7'D)*. Then E € r so E is piecewise syndetic in Sy. Pick u € S,
such that ¢(u) € @ and v(u) € E for each v € F. Then ¢(swu) = ¢(w)¢p(u) € U and for
each v € F, v(swu) = sv(w)v(u) € D. O

In the next results we focus on the semigroup of natural numbers N and Sp-independent
homomorphisms from S,, onto N™, so by Corollary 33 we may assume that we have
m < n and are dealing with Sp-independent homomorphisms 7; from S,, to N defined by
7i(w) = |w,,,, for some injection o : {1,2,...,m} — {1,2,...,n}.

We consider the collection of all k-tuples of ultrafilters that satisfy Theorem 17, in the
case where T" = N and where the homomorphisms are of the special form h;.

Definition 35. Let k,m,n € N with m < n, let M be a k x m matrix with entries from
Q, let F' be a finite nonempty set of Sy-preserving homomorphisms from S,, to Sy, and
let o be an injection from {1,2,...,m} to {1,2,...,n}.

Pyuro=1{pc€ X% AN : whenever D is a piecewise syndetic subset of Sy
and for all i € {1,2,...,k}, B; € p;, there exists
w € S, such that (Vv € F)(v(w) € D) and
Mo(l)(w)
M : € XI_ B}
Ho(m) (W)

Recall that for ¥ € A™ we have defined the Sy-preserving homomorphism hz : S,, — Sy
by hz(w) = w(Z). We are particularly interested in the set {hz : & € A"} because of the
relationship with the Hales-Jewett Theorem. We see now that if ' = {hz: & € A"}, then
Py r o does not depend on 0. We keep o in the notation because there are Sy-preserving
homomorphisms which are not of the form hz.

Lemma 36. Let k,m,n € N with m < n, let M be a k X m matriz with entries from Q,
let FF'={hz: 2 € A"}, and let o and n be injections from {1,2,...,m} to {1,2,...,n}.
Then PM,F,U = PM,F,n~

Proof. 1t suffices to show that Py po € Py, S0 let o€ Pypo. To see that p'e Py,

let D be a piecewise syndetic subset of Sy and for i € {1,2,...,k}, let B; € p;. Pick
Ho(1) (W)

w € S, such that for all ¥ € A", hz(w) € D and M : € X B

Ko (m) (w)
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Define § : {o(1),0(2),...,0(m)} — {1,2,...,n} by letting §(c(i)) = n(i) for i €
{1,2,...,m} and extend ¢ to a permutation of {1,2,...,n}. Define v’ € S, by v’ =
w(Vs1)Vs(2) - -~ Vs(ny). Then for j € {1,2,...,n}, pj(w) = psiy(w') so for i € {1,2,...,m},
Ha(i) (W) = fis(a(i) (W) = pin(i) (w') and thus

(1) (W) Ho(1) (W)
M : =M : c Xk B
Hon(m) (w/) Ho(m) (w)
Now let # € A" be given and define 7 € A" by letting z; = x5 for i € {1,2,...,n}.
Then hf(w’) = hg(w) eD. ]
Ho(1)(w)
If one lets C' = (BN)* and defines ¢ on S,, by ¢(w) = M : , one may not
o (m) (W)

be able to invoke Theorem 34 to conclude that Py, is a semigroup because ¢ may not

take S, to C'. Consider, for example, M = ( _11 )

Theorem 37. Let k,m,n € N with m < n, let M be a k x m matriz with entries from
Q, and let F' be a finite nonempty set of Sy-preserving homomorphisms from S, to Sy.
Let o be an injection from {1,2,...,m} to{1,2,...,n}. If Pyr, # @, then Pyr, is a
compact subsemigroup of (BN)*.

Proof. Assume that Py p, # &. We begin by showing that Py;r, is compact. Let
7= (p1,p2,---,px) € (BN)*\ Py, and pick piecewise syndetic D C Sy and B; € p; for
each i € {1,2,...,k} such that there is no w € S, with v(w) € D for all v € F and
PJU(U(w) L
M : € szlBi; then szlBi is a neighborhood of p which misses Py 7, so
o (m) (W)
Pyrr o is closed and hence compact.
To see that Py r . is a semigroup, let p,¢ € Py p,. Let D be a piecewise syndetic
subset of Sy and for each i € {1,2,...,k}, let B; € p; + ¢;- By [6, Theorem 4.43|, pick
s € Sy such that s7!'D is central in Sy and pick a minimal idempotent » € 35, such
that s7'D € r. For each i € {1,2,...,k}, let C; = {x € N: —z + B; € ¢;} and note
that C; € p;. Then as (s7'D)* € r, we deduce that (s7'D)* is central and hence in
particular piecewise syndetic. Since p € Py r o, pick w € S, such that v(w) € (s7'D)*
Ho(1)(w)

for all v € F and M : =z € Xi,0;. Let G =, v(w) Y (s71D)*. Then
Ho(m) (w)

G € r so G is piecewise syndetic in Sp. Also ¢ € Py o and for each i € {1,2,... k},
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Ma(l)(u)
—z; + B; € ¢; so pick u € S,, such that v(u) € G for each v € F and M : =
o (m) (1)
je X (—z+ B)).
Given v € F, v(wu) = v(w)v(u) € s'D so v(swu) = sv(wu) € D. Finally

Ho() (Swu) fo() (wu) Ho (1) (W) + poq) (w)

M : =M : = M : =7Z+y €
fo(m) (W) H(m) (W) Ha(m) (W) + o (m) (1)

XY B O

Corollary 38. Let m,n € N with m < n. Let M be an m x m lower triangular matriz
with rational entries. Assume that the entries on the diagonal are positive and the entries
below the diagonal are negative or zero. Let ' be a finite nonempty set of Sy-preserving
homomorphisms from S, to Sy. Let o be an injection from {1,2,...,m} to {1,2,...,n}.
Then Pyrr o, is a compact subsemigroup of (BN)™ containing the idempotents of (6N)™.

Proof. Let k = m. By Corollary 21, Py r, contains the idempotents of (8N)* so in
particular Py r, # @. The result now follows by Theorem 37. O

Corollary 39. Let k,m,n € N withm < n. Let M be a kxm matrix with rational entries
which is image partition reqular over N. Let F' be a finite nonempty set of Sy-preserving
homomorphisms from S, to Sy. Let o be an injection from {1,2,...,m} to {1,2,...,n}.
Then Pyr ., is a compact subsemigroup of (BN)* containing {(p,p,...,p) € (BN)* : p is
a minimal idempotent of SN}.

Proof. By Corollary 23, Py, contains {(p,p,...,p) € (BN)* : pis a minimal idempotent

of SN} so Theorem 37 applies. O
It M = 1 ; and F' is a finite nonempty set of Sy-preserving homomorphisms

from S, to Sy, then by Corollary 39 we have that Py r, contains {(p,p) : p is a minimal
idempotent of SN} but by Theorem 24, Py, does not contain {(p1,p2) : p1 and py are
minimal idempotents of SN}.

Given a finite coloring of a semigroup, at least one of the color classes must be piece-
wise syndetic, so results concluding that piecewise syndetic sets have a certain property
guarantee the corresponding conclusion for finite colorings. We see now a situation where
the conclusions are equivalent — a fact that has interesting consequences for piecewise
syndetic sets and for colorings.

The following result is analgous to a well know property of piecewise syndetic sets of
natural numbers. That is, a translation invariant family S of finite nonempty subsets of N
is partition regular if and only if every piecewise syndetic subset of N contains a member

of S.

Theorem 40. Let n € N, let 7 be an Sy-independent homomorphism from S,, to N, and
let B C N. The following statements are equivalent.
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(a) Whenever Sy is finitely colored, there exists w € S, such that {w(Z) : x € A"} is
monochromatic and T(w) € B.

(b) Whenever D is a piecewise syndetic subset of Sy, there exists w € S, such that
{w(@): &€ A"} C D and 7(w) € B.

Proof. 1t is trivial that (b) implies (a), so assume that (a) holds and let D be a piecewise
syndetic subset of Sy. Note that for each r € N, there is some m € N such that whenever
the length m words in Sy are r-colored, there is some w € S, of length m such that
{w(Z) : ¥ € A"} is monochromatic and 7(w) € B. (If there is a bad r-coloring ¢,, of the
length m words for each m then |J;,_, ¢, is a bad r-coloring of S.)

Since D is piecewise syndetic, pick finite nonempty G C Sy such that for every finite
nonempty subset H of Sy there exists s € Sy with Hs C |J,.t™'D. Let r = |G| and pick
m € N such that whenever the length m words in Sj are r-colored, there is some w € S,
such that {w(Z) : ¥ € A"} is monochromatic and 7(w) € B. Let H be the set of length
m words in Sy and pick s € Sy such that Hs C |J,.ot™'D. For u € H pick ¢(u) € G
such that us € p(u)'G. Pick w € S, of length m and ¢ € G such that for all Z € A",
¢(w(@)) =t and 7(w) € B. Let w’ = tws. Then for € A", w'(Z) = t(w(Z))s € D and
T(w') =7(w) € B. O

If n = 1, the following corollary yields the statement in the second paragraph of the
abstract.

Corollary 41. Let n € N, let 7 be an Sy-independent homomorphism from S, onto N,
and let Q = {p € BN : whenever Sy is finitely colored and B € p, there exists w € S,
such that {w(Z) : £ € A"} is monochromatic and T(w) € B}. Then @Q is a compact
subsemigroup of BN containing all of the idempotents.

Proof. Let k = m = 1, let M = (1), and let F = {hz : £ € A"}. By Corollary
33, pick o(1) € {1,2,...,n} such that 7 = p,). By Corollary 38, Py p is a compact
subsemigroup of SN containing all of the idempotents and by Theorem 40, Q) = Py . O

Recall that a set of sets B is said to be partition regular if whenever F is a finite set

of sets and |J F € B, there exist A € F and B € B such that B C A.

Corollary 42. Let n € N and let T be an Sy-independent homomorphism from S,, to N.
Let B ={B C N : whenever D is a piecewise syndetic subset of Sy, there exists w € S,
such that {w(Z) : £ € A"} C D and 7(w) € B}. Then B is partition regular.

Proof. By Theorem 40, B = {B C N : whenever S is finitely colored, there exists w € S,
such that {w(Z) : € A"} is monochromatic and 7(w) € B}. It is routine to show that if
ke N, B; CN for each i € {1,2,...,k}, and Ule B; has the property that whenever Sy
is finitely colored, there exists w € S,, such that {w(Z) : z € A"} is monochromatic and
7(w) € UL, B, then some B; € B. O

Since the intersection of any collection of compact semigroups having the finite inter-
section property is a compact semigroup, it follows that there exists a smallest compact
subsemigroup of (8N)* containing the idempotents of (BN)*.
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Question 43. Let £ € N, let M be the k x k identity matrix, and let ¢ be the identity
function on {1,2,...,k}.

(a) If F = {hz : © € A*}, is Py, the smallest compact subsemigroup of (3N)*
containing the idempotents of (3N)*?

(b) If not, does there exist a finite nonempty set F' of Sp-preserving homomorphisms

such that Py g, is the smallest compact subsemigroup of (SN)* containing the
idempotents of (SN)*?

Question 44. Let £ € N and let M and N be k x k lower triangular matrices with
rational entries, positive diagonal entries, and nonpositive entries below the diagonal. Do
there exist a finite nonempty set F' of Sy-preserving homomorphisms from S; to Sy and
a permutation o of {1,2,...,k} such that Py g, # Pnro!

Because of Question 43, we are interested in the smallest compact subsemigroup of
(BN)* containing the idempotents of (8N)~.

Given a compact right topological semigroup 7', recall that we let E(T') be the set of
idempotents in 7" and K (T') is the smallest ideal of T. If I is a set and for each i € I,
T; is a compact right topological semigroup, then E(X;c;T;) = X,;e;E(T;) because the
operation in X ;¢;T; is coordinatewise. Also by [6, Theorem 2.23] K (X ;e/T;) = X1 K(T;)
so that E(K(XZEIT,-)) = X,-GIE(K(TZ-)).

Definition 45. Let T be a compact right topological semigroup and let A C T. Then
Jr(A) is the smallest compact subsemigroup of 17" containing A.

We next show that Jgyx (E((BN)¥)) = (J/BN(IE?(ﬁI\I)))]C for k € N and that a similar
result applies to the minimal idempotents. Notice that in general Jr .7, (A1 X Ay) C
Jr, (A1) x Jr,(As). But equality need not always hold even in the case that T3 = T3 and
A; = A,. For example, let AT be the free semigroup on the alphabet A = {a,b}, and
T = BAT. Then, identifying the letters of A with the length one words so that A is
a subset of T, we have Jr(A) x Jr(A) = T x T while Jryr(A x A) = clpyr{(u,w) €
AT X AT u| = |wl}.

Theorem 46. Let T and Ty be compact right topological semigroups and for i € {1,2}
let A; be a nonempty subset of T; with A; C {ab : a,b € A;}. Then Jpx1,(A1 X Ag) =
Jr, (A1) X I, (Az).

Proof. As Jr, (A1) X Jr,(Asg) is a compact subsemigroup of T} x T, containing A; X As
we have immediately that Jp,«7, (A1 X As) C Jp, (A1) X Jr,(Ag). So it remains to show
that JTl(A1> X JT2(A2) - JTleQ(Al X Ag) Let Y = {q € JTQ(AQ) : (p, (]) € JTleQ(Al X
Ay)for allp € Ay}, Then Y is compact and A; C Y. Further, let ¢1,¢o € Y and p € Ay,
and write p = p1ps with p1,pa € Ay. Then (p1,q1), (P2, ¢2) € Jry <1, (A1 X As) and hence
(p1,q1)(P2,2) = (P, 1q2) € Jryx1 (A1 X Ag). Thus Y is a compact subsemigroup of
J1,(Ay) containing Ay so Y = Jp, (As).

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(4) (2019), #P4.23 23



Now let X = {x € Jp, (A1) : {z} x Jp,(A2) C Jp w1, (A1 X Ag)}. Then X is compact
and lfp € Al, then {p} X JTQ(AQ) = {p} xY C JT1><T2(A1 X AQ), SO Al C X. We next
claim that X is a semigroup. In fact, let 21,29 € X and set Z = {z € Jp,(Ay) : (z122,2) €
Jrx1, (A1 X Ag)}. Then Z is compact. Let ¢ € Ay and write ¢ = ¢1go with ¢1, ¢ € As.
Then (Il,ql), (IQ,(]Q) S JTleQ(Al X Az) and hence (l’leQ,Q) S JTleQ(Al X AQ) Thus Z
contains A,. Finally, let 21, zo € Z. Then since z1, 25 € J1,(A2) and 21, x5 € X we deduce
that (x1,21), (T2, 22) € Jryx1y (A1 X Ag) implying that (zq29, 2122) € Jrx1, (A1 X As) and
hence 2125 € Z. Thus Z is a compact subsemigroup of Jr,(Ay) containing A, and hence
Z = Jr,(As) from which it follows that x;25 € X. Having shown that X is compact
subsemigroup of Jr, (A;) containing A; we deduce that X = Jp,(A4;). In conclusion,
JTl (Al) X JT2 (AQ) =X X JT2 (AQ) - JT1><T2(A1 X AQ) as required. ]

Notice in particular that if for i € {1,2}, A; is a nonempty subset of E(T;), then
Ai - {ab : CL,b c AZ}7 SO JT1><T2(A1 X AQ) = JTl (Al) X JTQ(AQ).
Corollary 47. Let k € N. The smallest compact subsemigroup of (BN)* containing the
idempotents of (BN)* is (Jsn (E(BN)))]C The smallest compact subsemigroup of (BN)k
containing the minimal idempotents of (BN)* is (Jan (E(K(ﬁN))))k
Proof. By Theorem 46 and induction,

k
Jonr (E(BN))") = (Jon (E(K (AN))))

and we already observed that the set of idempotents of (8N)* is (E (BN))k. The second
conclusion is proved in the same way. O

We note now that the version of Theorem 46 for infinite products is also valid.

Theorem 48. Let I be an infinite set. For eachi € I, let T; be a compact right topological
semigroup and let A; be a nonempty subset of T; such that A; C {ab : a,b € A;}. Then
i (XierAi) = XierJr,(4;).
Proof. Let Y = X;¢/T;. For each i € I, choose e; € A;. Given F € Ps(I), let Yp =
XierTi, let Zp = Xiep pT;, let
XF = {f € XiGIJTi(Ai) : (VZ el \ F)(I’Z = ei)},
and let Bp = {f € XiGIAi : (Vl c I\F)(l’l = 62)}
We shall show that for each F' € Ps(I), Xp C Jy(X;er4;). Let F' € Ps(I) be given.
Now Xr is topologically and algebraically isomorphic to
XierJr,(Ai) X Xienp{ei}
Br is topologically and algebraically isomorphic to X;cpA; x X,epp{e;}, and Xiep pie}
C Jz.(Xienr{ei}). So using Theorem 46 we have
Xrp = Xiepdr,(Ai) X Xienr{ei}
C Jyp (XierAi) X Jz,(Xienr{ei})
= Jypxzp(XicrAi X Xienrfei})
~ Jy(BF)
C Jy(Xierdi).
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Next we claim that X;e;Jr(A;) C cly UFePf(I) Xp. To see this, let 2 € X;erJr, (4;)
and let U be a neighborhood of Z in Y. Pick F' € Py(I) and for each i € F', pick
a neighborhood V; of z; in Tj such that (... m '[V;] € U. Define ¥ € Y by z; =

icr T
Zi if ¢ er - .
e ificI\F Then 7 € U N Xp. Therefore X;crJr(A;) C Jy(Xierd;). Since
; .
Xierdr,(A;) is a compact semigroup containing X ;7 A;, the reverse inclusion is immediate.

]

The curious reader may wonder what the situation is with respect to the smallest
semigroup containing a given set. Given a semigroup 7" and a nonempty subset A of T', let
J7.(A) be the smallest subsemigroup of 7" containing A, that is the set of all finite products
of members of A in any order allowing repetition. If 7} and T, are any semigroups and
A; and Ay are nonempty subsets of T} and T5 respectively such that A; C {ab:a,b € A;}
for i € {1,2}, then Jp, . (A1 X Ay) = Jp, (A1) X Jp,(Az). This follows from the proof of
Theorem 46 by omitting all references to the topology.

However, the analogue of Theorem 48 need not hold. To see this, let T" be the set
of words over the alphabet {a, : n € N} that have no adjacent occurrences of the same
letter. Given u,w € T, then let u - w be ordinary concatenation unless v = za, and
w = apy for some n € N and some z,y € T'U {@}, in which case u - w = za,y. Let A be
the set of idempotents in 7', that is A is the set of length one words. Then J5.(A) = T but
{Z € X722, T :{|z,| : n € N} is bounded} is a proper subsemigroup of X 2T containing
the idempotents.

5 Compact ideals of (35)F

In this section we deal with results related to the Hales-Jewett Theorem and its extensions.
The first result here is motivated by the following known result that characterizes image
partition regular matrices.

Theorem 49. Let k,m € N and let M be a k x m matrix with entries from Q. The
following statements are equivalent.

(a) M is image partition reqular over N.
(b) For every central subset D of N, there exists & € N™ such that MZ € D*.
(c) For every central subset D of N, {Z € N™: MZ € D*} is central in N™.
Proof. These are statements (a), (h), and (i) of [6, Theorem 15.24]. O
We now investigate ideals related to the extensions of the Hales-Jewett Theorem.

Definition 50. For n € N,

R,={pe€pSy: (VBep)(FweS,){wX): ¥ A"} C B)}.
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There are numerous ways to use known results to show that each R,, # @&. From the
point of view of this paper, probably the easiest way is to invoke Theorem 17 as discussed
above.

Theorem 51. Let n € N. Then R, is a compact two sided ideal of 5.5.

Proof. We have that R, # @ and it is trivially compact. Let p € R, and let ¢ € 85,. To
see that R, is a left ideal, let B € gp. Pick u € Sy such that v='B € p and pick w € S,
such that {w(7) : Z € A"} Cu'B. Then uw € S, and {(uw)(¥) : 7 € A"} C B.

To see that R, is a right ideal, let B € pq. Pick w € S,, such that {w(Z) : ¥ € A"} C
{ue Sy:u'Beq}. Picku € (\;epn w(@) ' B. Then wu € S, and {(wu)(Z) : £ € A"} C
B. O

Theorem 52. Letn € N. Then R,.1 C R,.

Proof. Let p € R,,.1 and let B € p. Pick w € S, such that {w(Z) : ¥ € A"*'} C B. De-
fineu € S, by u = w(vy,va,...,0n,v,). Then given & € A" u(Z) = w(zy, X2, ..., Ty, Ty) €

B. [l

Lemma 53. For each r,n € N there exists m € N such that for all k > m, if S(g) 18
r-colored, then there exists w € S(S) such that {w(Z) : £ € A"} is monochromatic.

Proof. Let r,n € N. By Theorem 3, whenever Sy is r-colored, there exists w € S,, such
that {w(Z) : £ € A"} is monochromatic. As in the proof of Theorem 40, pick m € N such

m) is r-colored, there exists w € S(:;L) such that {w(Z) : £ € A"}

that whenever S ( 0

is monochromatic. Let k > m and pick ¢ € A. Let ¢ : S(g) — {1,2,...,r} and
define ¢ : S(g) — {1,2,...,7} by ¥(u) = p(uc®*™). Pick w € S(ZL) such that 1) is

constant on {w(¥) : ¥ € A"}. Define u € S(i) by u = wc*™™. Then ¢ is constant on
{u(®) : ¥ € A"}. O
Theorem 54. c/K(£Sy) € (o~ Rn.

Proof. That ¢/K(8S5y) C (,—, R, is an immediate consequence of Theorem 51.

Let B = U2, S(lg
clK(BSy) = @. We need to show that there is no G € P(Sy) such that for all F' € Py(Sp)
there exists € Sy such that Fx C (J,. t~1B. Suppose we have such G and let m =
max{|t| : t € G}, let r =m!, pick b€ A, and let F = {b",0*"}. Pick t,s € G and x € S
such that tb"z € B and sb®"z € B. Then |t)"x| = n! for some n > m and |sb* x| = k! for
some k. Now k! = [sb* x| = |sb"|+n!—|t| > nlso k! = (n+1)!so |sb"|+n!—]|t| = (n+ 1)L
Thus n-n! = (n+ 1) —n! <|sb"| = |s| + 7 < m+ m! <n+n! acontradiction.

). We claim first that B is not piecewise syndetic, so that B N
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Now let n € N. We will show that BN R, #+ &. Let R ={D C Sy : whenever D is
finitely colored, there exists w € S, such that {w(Z) : ¥ € A"} is monochromatic}. Notice
that R is partition regular. It suffices to show that B € R, for then by [6, Theorem 3.11]
there exists p € 35, such that B € p and p C R so that p € BN R,,. So let » € N and
let ¢ : B — {1,2,...,r}. Pick m as guaranteed by Lemma 53 for r and n. The ¢ is an

| |
r-coloring of S(%) so pick w € S(i;) such that {w(¥) : ¥ € A"} is monochromatic.

Since {BNR,, : n € N} is a collection of closed sets with the finite intersection property,
we have that BN~ R, # &. O

We will need the following result.

Theorem 55 (Deuber, Promel, Rothschild, and Voigt). Let n,r € N. There exist m € N
and C,,, C S(%l) such that

(1) there does not exist w € S( with {w(¥) : ¥ € A"} C C,,, and

")
n+1

2) whenever C,, is r-colored, there exists w € S "N such that {w(Z) : & € A" is
’ n

monochromatic.
Proof. This is the “main theorem” of [3]. O
Theorem 56. Let n € N. Then R,+1 C R,.

Proof. For each r € N pick m(r) and C,,, as guaranteed for r and n by Theorem 55.
Choose an increasing sequence (r;)°, such that the sequence (m(r;))2, is strictly in-
creasing and let D; = C,,,, for each 7. Let £ = U;’ZI D;. There does not exist w € S,
such that {w(Z) : £ € A""'} C E because any such w would have to have length m(r;)
for some 4, and then one would have {w(Z) : # € A"} C C,,,.. Thus ENR,,; = @.

As in the proof of Theorem 54, let R = {D C Sy : whenever D is finitely colored,
there exists w € S, such that {w(Z) : ¥ € A"} is monochromatic}. It suffices to show
that £ € Rsolet k € Nand let ¢ : E — {1,2,...,k}. Pick ¢ such that r; > k. Then

@, + Dy = {1,2,...,7;} so pick w € S(min)) such that ¢ is constant on {w(Z¥) : ¥ €
A"} O

6 A simpler proof of an infinitary extension

We set out in this section to provide a proof of [2, Theorem 2.12] applied to the simpler
description of n-variable words which we have been using. As defined in this paper, what
is called the set of n-variable words in [2], is what we call the set of strong n-variable
words where we take D = E = {e} in [2], take the function T, to be the identity, and

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(4) (2019), #P4.23 27



let v, = (e,v,) for n € N. As we remarked earlier, in [2, Theorem 5.1] it was shown
that the version of the Graham-Rothschild that we are using here is sufficient to derive
the full original version as used in [2] and [4]. Using that simplified notion, Corollary 69
implies [2, Theorem 2.12] and has a vastly simpler proof. Because of the different, and
more complicated, notation used in [2], we don’t feel that it is appropriate to state [2,
Theorem 2.12] here. It reads essentially like Corollary 69 below.

The first few results apply to an arbitrary nonempty alphabet A. For the results of
this section, except for Corollary 70, we do not need to assume that A is finite.

Deﬁnition 57. For n E N, T, is the free semigroup over AU {vy,vs,...,v,}. Also we set
=Sy and T = |,

1€w

Clearly T is a semigroup. Note that for n € N, the set S, of n-variable words is a
proper subset of T}, and that T,, C T, ;.

For u = lyly - -1,, € T with |u| = m we define h,, : T'— T by stating that h,(w) is the
result of replacing each occurrence of v; in w by [; for i € {1,2,...,m}. (Thus, if w € S,,,
hy(w) = w(u) as defined in Definition 2.) Denote also by h, the continuous extension of

h., taking BT to BT. Observe that, if u € §(ng>, then h,[T},] C T.

Definition 58. For a € NU {w}, a reductive sequence of height o over A is a sequence
of minimal idempotents (p;);<o with p; € E(K(BSt)) such that for each ¢,j € w with

0<j <i<aonehas p; < p; and hy(p;) = p; for each u € §<;>

It is a consequence of Corollary 68 below that reductive sequences of arbitrary height
exist.

Lemma 59. Let i € w. Then K(5S;) = K(5T;).

Proof. We have that S; is an ideal of T; so by [6, Corollary 4.18] S; is an ideal of 5T;.
Therefore K (ST;) C S, so that by [6, Theorem 1.65] K(3S;) = K(5T;). O

Lemma 60. Let k,m € w with k < m and let p € E(BS},). There exists ¢ € E(K(85))
such that q < p.

Proof. We have S,, U 8S, C BT,,. Pick q € E(K(ﬁTm)) such that ¢ < p. By Lemma
59, g € K(BS,,) and since S, N BS, = &, ¢ # p. ]

Lemma 61. Let o € NU {w} and let (p;)i<a be a reductive sequence of height . For
each t < a, p; € E(K(BSt)).

Pmof Since each p; is an idempotent, it suffices to show that p, € K (55}) Given t < «,
Sy is a right ideal of S so BSt is a right ideal of 35; and thus K(BS)NK(BS,) # @ so that
by [6, Theorem 1.65], K (3S,) = 8S,NK(BS,). Thus it suffices to show that each p, € 85,
We proceed by induction on t. For t = 0, we have py € Sy = Bgo. Now assume that
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t+1<aandp; € 5§t We need to show that §t+1 € pir1- We begin by observing that if
w E St then St+1 Cw™ St+1 from which it follows that S; C {w € Ty4q : w1 Si1 € pry1}-
Now since St € p; we have that {w € Ty : w™ St+1 € pir1} € pr or equivalently that
§t+1 € pipis1- The result now follows from the fact that p;y; < p; and hence in particular
Pt+1 = PtPi+1- ]

We now introduce some new notation. We fix a nonempty (possibly infinite) alphabet
A together with an infinite sequence of symbols {x, x5, x3,...} each of which is not a
member of A U {v; : i € N}. We let A® = A and for m € N, we let A™ = AU
{x1,29,..., 2} For each m € w we let S denote the free semigroup over A™. For
each i € N we let Si(m) denote the set of all i-variable words over the alphabet A(™) and
let gl(m) denote the set of all strong i-variable words over A(™. Tl-(j ) will denote the free
semigroup of all words over the alphabet AW U {v;, vy, ..., v;}. Also, for each j € w, let
SP) = 89 = 1) = §U) | and let TW = |J2°, T, Then T is the set of all words over
AW U {v; :i € N}

To each u = ujuy - - - uy, € TV with |u| = m we associate a morphism A, U]6w T —
UjEW TU) where for each w € Ujew TW, hy(w) is obtained from w by replacing each
occurrence of v; in w by u; for each ¢ € {1,2,...,m}. We also denote by h,, its continuous
extension taking 5(U,c, TY) to 8(U,e, TY). Also, for each i,j € N we define the

morphism, Tl-(j V70 5 TG where Tl-(j )(w) is the word obtained from w by replacing
every occurrence of z; by v; and leaving all other symbols unchanged. We also denote
by 7 the continuous extension of 79 taking BTV to BTU-D. Note that TP =
Tz(j - and the restrlctlon of 7' ) to T( )1 is an 1som0rph1sm onto T b, Consequently the
restriction of 7' ) to 5T | is an isomorphism onto 57 G-,

Lemma 62. Let m € w, let i € N\ {1}, and assume that p\™) € BS™) and p\™™ €
K(BS"™ ™). Then

G = e (D) ST A g D (plm Yy

is a group contained in K(ﬁSi(m)).

Proof. We will show that ngm) is the intersection of a minimal right ideal and a minimal
left ideal of ﬁS ™ and hence by [6, Theorem 1.61], G\™ is a group contained in K (ﬁSi(m)).

7

Notice first that ,BS ) U BS(m - BT(m so that the products pg ™ (mH)(pET_”le)) and
7D (DY pm) are computed in 7™,

Since 7™V is an isomorphism on BTV, we have T "TV[K (BT
= K(BT'™). Since p{™ e K(8S™™) and K(8S) = K(BT™Y) (by Lemma
59 with the underlying alphabet taken to be A(M+1) 1t follows that 7'(mJrl (p; (m+1 ) €
K(ﬂﬂ(m)). Since p{™) € BT C pT™ : We have that p\™) 7" ™ (p{™ ) e K (BT, m)) =

(55 ™) so that p™ 7" (pm)BS™ s a mlnlmal right ideal of 5™ Similarly

BT D (pm Y ) g g mlnlmal left ideal of 35™ . O
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Definition 63. For o € NU {w}, a reductive array of height o over A is an o X w array
of minimal idempotents (pl(m))?g‘” with pim) € BE(K (BSi(m))) satisfying the following
conditions:

1. For each m € w the sequence (pgm)>i<a is a reductive sequence of height o over A™

2. Tlm)(po ) = pgm_l) for each m € N.
(m) .

)

3. For each m € w and i < o with 7 > 2, p;" " is the identity of the group

G = pn I )es™ 0 ps R Y (T )pl

Definition 64. Let i, j,m € w, with 7 < 4. Xi(g”) will denote the set of words in 5(’“)(;)

in which v; occurs only as the last letter.

Lemma 65. Let m,n € N and let p'= (po, p1, P2, - --,Pn) be a reductive sequence of height
n+1 over A" . Let ppy1 be a minimal idempotent in BS +1 for which p,y1 < pn. Let
n 4+ 1)

7 €w with 7 <n and let u = ujusg - - un+1€S < i

(1) [fu ¢ X,,(l:rflj, then hu(pn+1) — p]

(2) Ifu € Xf::l], then for w € TS™™ | h, (Téﬁ':fl)(w)) = 7{m D) (hu(w)).

J

Proof. (1) Assume u ¢ Xy(;ﬂj We have that h,(pn+1) and hy(p,) are both idempotents in
58S ](-m) and hy(ppi1) < hy(pn) because h,, is a homomorphism. Assume first that j < n and

let s = uqug---u,. Then s € §(m)<?> so hs(pn) = p; and since hy and h,, agree on Sr(bm),

hyu(pn) = pj. If j = n, then u = v1vy- -V Up11 SO Dy, is the identity on S and again
hy(pn) = pj. Consequently, h,(p,+1) < p; and p; is minimal in ﬁSj(m) SO hy(Prt1) = pj-

(2) It suffices to show that A, ( anl)(l)) = T}mﬂ)(hu(l)) for each | € A" U
{v1,v9,...,0,}. Now h, ( nﬁzfl)(xmﬂ)) = hy(Vnt1) = Unt1 = v; and T](m_H) (hu($m+1)) =
T‘](m+1)(xm+1) =wv;. If I € A then both sides leave [ fixed. Finally if i € {1,2,...,n},
then A, ( nTIrl)(vi)) = hy(v;) = u; and Tj(m“)(hu(vi)) = T,(l:f;rl)(ui) = u; because u; #

Tm41- O

Lemma 66. Let ¢ € E(K(BSy)) and let r € E(K(8S1)) such that r < q. There is a

reductive array <p£m)>?$w of height 2 over A such that péo) =q and p§°) =

Proof. Let péo) = ¢ and p§°) = r. Let m € N and assume that we have chosen (pz( )>f§g‘

such that for each ¢ < m and each i € {0, 1}, pl(-t) € E(K(ﬁSi(t))) and pi" < p(t). By
Lemma 59, p(m Ve K(BTl(m_l)). Since Tl(m) is an isomorphism from 6T0(m) onto ﬁTlm_l),
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we may let p™ be the unique member of E( (ﬁTém))) such that ™ (pI™) = p{m=Y.
By Lemma 60, we may pick pg E(K (BS )) such that pgm) < p(()m).

We need to show that for each u € S(™ (é), hu(pgm)) po ) so let u € S (é) Now

p(()m) and pg are in BT(m ,p1 ™) p(()m) and h,, is a homomorphlsm 0 hy(p m)) <h (pém)).

Since h,, is the identity on BTO , u(p((] )) pém) SO hu( [ )) < p(() . Since p(() ) is minimal
in 5T, (m) p W(p (m)) = pém) as required. O

Theorem 67. Let n € N and assume that (p (m))m<‘” 1s a reductive array of height n+ 1

D; 1<n+1
over A. There exist unique p,(fi)l for each m < w such that (pgm));’ifl‘i

of height n + 2 over A.

5 15 a reductive array

Proof. For each m < w, let pﬁjﬂ be the identity of the group GEZ:LL)I. This is required by
Definition 63(3), so the uniqueness is satisfied. Let m < w be given We need to show
that (pgm)>i<n+2 is a reductive sequence over A(™ . Since Gn " C ™ BS! +1 N ﬁ - +1

we have that pf::i)l < p™. And by Lemma 62 we have that p{" +)1 € E( (8BS 1
Now let 0 < j <4 < n+2 and let u € S (j) We need to show that hu(pgm) = pi™.

If i < n+ 1, this holds by assumption, so assume that i = n+ 1 so that u € S

D)
) = p}
wesn(t).

Ifj = O then h, is the identity on BS so hy (pn+)1) < hy (pém)) = p{™ and h,, (an) €
BSI™ so hy(p™) = pi™. So assume that j > 1. If u ¢ X nHJ, then by Lemma 65,
h <pm> p"

So we assume that v = wjus - U,y € X,(H)U and let s = wjug---u,. Then we
have that s € g(m)< . ﬁ 1) C g(m“)( : ﬁ 1) and hence h,(p™) = hy(pi™) = pg-rfl and

hu(p%erl ) _ h ( m+1)) pgril,jl)
Combined with Lemma 65, we have that

ha (3 ) = D () = 7 ()

So as ph e GU) = pl D (pin )5Sn+1 npasiMT nffl)(p(mﬂ))p%m we deduce that
o, (pﬁ)l) € pgmi J(mH)( (m 1) )BS N ﬁS mH)(pyffl)) P If J > 2, this says that
hu(pil +)1) is an idempotent in Gg» and pj is the identity of G ;S0 hu(pn +1) = g ™ as
required.

Finally, assume that 7 = 1. Then

ha(pS) € o7 (") BSE  AST D (Y ps™
= p(m)pﬁm BS(’” N BSmpimpim
= p™Bs™ N psmp™ .
(m) (m)

Since p;" is minimal in ﬂSlm , plm ﬁS}m) N ﬂSfm)pgm) is a group with identity p;"", so
ha(Ph) = P, 0
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Combining Lemma 66 and Theorem 67 we obtain:

Corollary 68. For each p € E(K(8S0)) there is a reductive array <p(m)>m<“ of height w

7 i<w
such that péo) = p. Morever p§°) may be taken to be any minimal idempotent of 551 such
that p§°) < p.

[e.o]

o0 o such

Corollary 69. Let p be a minimal idempotent in 5Sy. There is a sequence (p,)
that

(1) DPo=Pp,
(2) for each n € N, p, is a minimal idempotent of BS,;

(3) fOT’ each n € N; Pn < Pn—1;
(4) for each n € N, each j € {0,1,...,n— 1}, and each u € g(?), hy(pn) = pj.

Further, p; can be any minimal idempotent of 5S1 such that p1 < pg.

Proof. Let (p(m)>m<“ be as guaranteed by Corollary 68 and for each i < w let p; = Y

) 1<w i

By Lemma 61 each p, € E(K(3S,)). O

For several stronger combinatorial consequences of Corollary 69, see Sections 3 and 4
of [2].
To derive the following extension of Theorem 4, we need to restrict to a finite alphabet.

Corollary 70. Assume that A is finite and for each m < w, let v, be a finite coloring
of Sy,. For each m < w, there exists a central subset C,, of S,, such that

(1) om is constant on Cy, and

(2) whenever n € N, the set of all w € S, such that for each m < n,
{w(u) :u € g(:’l)} C C,, is central in S,

Proof. Pick (pm)m<w as guaranteed by Corollary 69 and for each m < w pick C,, € pp,

with C,, C S,, such that ¢,, is constant on C,,. Let n € N be given. For each m < n
and each u € §<:1>, hu(pn) = pm. Let D = (), ., N7, [Cr] = u € §<:1>) Then
D € p,. L]
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