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Abstract

The Hales-Jewett Theorem states that given any finite nonempty set A and
any finite coloring of the free semigroup S over the alphabet A there is a variable
word over A all of whose instances are the same color. This theorem has some
extensions involving several distinct variables occurring in the variable word. We
show that, when combined with a sufficiently well behaved homomorphism, the
relevant variable word simultaneously satisfies a Ramsey-Theoretic conclusion in
the other structure. As an example we show that if τ is the homomorphism from
the set of variable words into the natural numbers which associates to each variable
word w the number of occurrences of the variable in w, then given any finite coloring
of S and any infinite sequence of natural numbers, there is a variable word w whose
instances are monochromatic and τ(w) is a sum of distinct members of the given
sequence.

Our methods rely on the algebraic structure of the Stone-Čech compactification
of S and the other semigroups that we consider. We show for example that if τ is as
in the paragraph above, there is a compact subsemigroup P of βN which contains
all of the idempotents of βN such that, given any p ∈ P , any A ∈ p, and any finite
coloring of S, there is a variable word w whose instances are monochromatic and
τ(w) ∈ A.
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We end with a new short algebraic proof of an infinitary extension of the Graham-
Rothschild Parameter Sets Theorem.

Mathematics Subject Classifications: 05D10, 54D80

1 Introduction

We let N be the set of positive integers and let ω = N ∪ {0}. Then ω is the first infinite
ordinal.

Given a nonempty set A (or alphabet) we let A+ be the set of all finite words w =
a1a2 · · · an with n > 1 and ai ∈ A. The quantity n is called the length of w and denoted
|w|. The set A+ is naturally a semigroup under the operation of concatenation of words,
known as the free semigroup over A. For each u ∈ A+ and a ∈ A, we let |u|a be the
number of occurrences of a in u. As is customary, we will identify the elements of A with
the length one words over A.

Throughout this paper we will let A be a nonempty set, let S0 = A+ be the free
semigroup over A, and let v (a variable) be a letter not belonging to A. By a variable
word over A we mean a word w over A ∪ {v} with |w|v > 1. We let S1 be the set of
variable words over A. If w ∈ S1 and a ∈ A, then w(a) ∈ S0 is the result of replacing each
occurrence of v by a. For example if A = {a, b, c} and w = avbvva, then w(a) = aabaaa
while w(c) = acbcca. A finite coloring of a set X is a function from X to a finite set. A
subset A of X is monochromatic if the function is constant on A.

Theorem 1 (A. Hales and R. Jewett). Assume that A is finite. For each finite coloring
of S0 there exists a variable word w such that {w(a) : a ∈ A} is monochromatic.

Proof. [5, Theorem 1].

Some extensions of the Hales-Jewett Theorem, including for example Theorem 3 or
the Graham-Rothschild Parameter Sets Theorem [4] (see Theorem 4 below), involve the
notion of n-variable words .

Definition 2. Let n ∈ N and v1, v2, . . . , vn be distinct variables which are not members
of A.

(a) An n-variable word over A is a word w over A∪ {v1, v2, . . . , vn} such that |w|vi > 1
for each i ∈ {1, 2, . . . , n}.

(b) If w is an n-variable word over A and ~x = (x1, x2, . . . , xn), then w(~x) is the result
of replacing each occurrence of vi in w by xi for each i ∈ {1, 2, . . . , n}.

(c) If w is an n-variable word over A and u = l1l2 · · · ln is a length n word, then w(u) is
the result of replacing each occurrence of vi in w by li for each i ∈ {1, 2, . . . , n}.

(d) A strong n-variable word is an n-variable word such that for each i ∈ {1, 2, . . . , n−1},
the first occurrence of vi precedes the first occurrence of vi+1.
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(e) Sn is the set of n-variable words over A and S̃n is the set of strong n-variable words
over A.

(f) S̃0 = S0.

(g) If m ∈ ω and m < n, then S̃
( n
m

)
is the set of u ∈ S̃m such that |u| = n.

(h) If m ∈ ω and m < n, then S
( n
m

)
is the set of u ∈ Sm such that |u| = n.

The notation above does not reflect the dependence on the alphabet A.

We note that if m,n ∈ ω and m < n, then for each w ∈ S̃n and each u ∈ S̃
( n
m

)
, the

word w(u) belongs to S̃m.
The following is a first simple example of a multivariable extension of the Hales-Jewett

Theorem:

Theorem 3. Assume that A is finite. Let S0 be finitely colored and let n ∈ N. There
exists w ∈ Sn such that {w(~x) : ~x ∈ An} is monochromatic.

Theorem 3 follows immediately from the Hales-Jewett Theorem applied to the alpha-
bet An, replacing each occurrence of v in the variable word over An by v1v2 · · · vn. It is
also a consequence of Theorem 17, which constitutes one of the main results of this paper.
(See the paragraph immediately following Theorem 49.) Theorem 3 also follows directly
from Theorem 5 later in this section.

It is natural to ask the following question. Assume that A is finite. Let S∞ be the
set of infinite words over A ∪ {vi : i ∈ N} in which each vi occurs and assume that the
set AN of infinite words over A is finitely colored. Must there exist w ∈ S∞ such that
{w(~x) : ~x ∈ AN} is monochromatic, where w(~x) has the obvious meaning? As long as
|A| > 2, the answer is easily seen to be “no” already with 2-colorings, using a standard
diagonalization argument: One has that |AN| = |S∞| = c, so one may inductively color
two elements of AN for each w ∈ S∞ so that there exist ~x and ~y in AN with the color of
w(~x) and w(~y) different. (When one gets to w, fewer than c things have been colored and
there are c distinct values of w(~x) possible.)

The following simplified version of the Graham-Rothschild Parameter Sets Theorem
constitutes yet another fundamental multivariable extension of the Hales-Jewett Theorem.
It was shown in [2, Theorem 5.1] that the full version as stated in [4, Section 4] can be
easily derived from the version stated here.

Theorem 4 (R. Graham and B. Rothschild). Assume that A is finite. Let m,n ∈ ω with

m < n and let S̃m be finitely colored. There exists w ∈ S̃n such that {w(u) : u ∈ S̃
( n
m

)
}

is monochromatic.
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After identifying the elements of A with the length 1 words over A, one sees that
Theorem 1 is exactly the m = 0 and n = 1 case of Theorem 4. Notice also that Theorem
3 is actually equivalent to Theorem 4 in the special case of m = 0. In fact if w ∈ Sn, σ
is a permutation of {1, 2, . . . , n} and u is the result of replacing each vi in w by vσ(i) for
each i ∈ {1, 2, . . . , n}, then {u(~x) : ~x ∈ An} = {w(~x) : ~x ∈ An}. In this paper we shall be
mostly concerned with cases of Theorem 4 with m = 0 and arbitrary n ∈ N. (We are not
concerned with m > 0 because the natural versions of our main theorems are not valid
for m > 0. We shall discuss this point in Remark 25.) Accordingly, from this point on
until Section 6 we will not be concerned with the order of occurrence of the variables.

In contrast to Theorem 3, the Graham-Rothschild Parameter Sets Theorem does not
appear to be deducible directly from the Hales-Jewett Theorem; at least we know of no
such proof.

Our main results in this paper deal with obtaining n-variable words satisfying the
Hales-Jewett Theorem and simultaneously relating to Ramsey-Theoretic results in some
relevant semigroup. The paper is organized as follows:

In Section 2 we present our main theorems relating Sn with other structures. In Section
3 we determine precisely which homomorphisms from Sn to (N,+) satisfy the hypotheses
of our main theorem of Section 2, namely Theorem 17.

The statements and proofs of the results in this paper use strongly the algebraic
structure of the Stone-Čech compactification of a discrete semigroup. We now present a
brief description of this structure. For more details or for any unfamiliar facts encountered
in this paper, we refer the reader to [6, Part I]. All topological spaces considered herein
are assumed to be Hausdorff.

Let S be a semigroup. For each s ∈ S, ρs : S → S and λs : S → S are defined by
ρs(x) = xs and λs(x) = sx. If S is also a topological space, S is said to be right topological
if the map ρs is continuous for every s ∈ S. In this case, the set of elements s ∈ S for
which λs is continuous, is called the topological center of S.

The assumption that S is compact and right topological has powerful algebraic impli-
cations. S has a smallest two sided ideal K(S) which is the union of all of the minimal
right ideals, as well as the union of all of the minimal left ideals. The intersection of any
minimal left ideal and any minimal right ideal is a group. In particular, S has idempo-
tents. Any left ideal of S contains a minimal left ideal of S, and any right ideal of S
contains a minimal right ideal of S. So the intersection of any left ideal of S and any
right ideal of S contains an idempotent. An idempotent in S is said to be minimal if it is
in K(S). This is equivalent to being minimal in the ordering of idempotents defined by
p 6 q if pq = qp = p. For any semigroup T , we let E(T ) be the set of idempotents in T .
So E

(
K(S)

)
is the set of minimal idempotents in S. If q is any idempotent in S, there is

a minimal idempotent p ∈ S for which p 6 q.
Given a discrete semigroup (T, ·), let βT = {p : p is an ultrafilter on T}. We identify

the principal ultrafilter e(x) = {A ⊆ T : x ∈ A} with the point x ∈ T and thereby
pretend that T ⊆ βT . A base for the topology of βT consists of the clopen sets A for
all A ⊆ T , where A = {p ∈ βT : A ∈ p}. The operation · on T extends to an operation
on βT , also denoted by · making (βT, ·) a right topological semigroup with T contained
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in its topological center. So, given p, q ∈ βT , p · q = lim
s→p

lim
t→q

s · t, where s and t denote

elements of T . If A ⊆ T , A ∈ p · q if and only if {x ∈ T : x−1A ∈ q} ∈ p, where
x−1A = {y ∈ T : x · y ∈ A}. If (T,+) is a commutative discrete semigroup, we will use +
for the semigroup operation on βT , even though βT is likely to be far from commutative.
In this case, we have that A ∈ p + q if and only if {x ∈ T : −x + A ∈ q} ∈ p, where
−x+ A = {y ∈ T : x+ y ∈ A}.

A set D ⊆ T is piecewise syndetic if and only if D ∈ p for some p ∈ K(βT ) and is
central if and only D ∈ p for some idempotent p ∈ K(βT ). We will also need the following
equivalent characterization of piecewise syndetic sets: D is piecewise syndetic if and only
if there exists a finite subset G of T with the property that for every finite subset F of T
there exists x ∈ T such that Fx ⊆

⋃
t∈G t

−1D. (See [6, Theorem 4.40].) Given a sequence
〈xn〉∞n=1 and m ∈ N, we set FP (〈xn〉∞n=m) = {

∏
t∈F xt : F ∈ Pf (N) and minF > m},

where Pf (N) is the set of finite nonempty subsets of N and the products are computed

in increasing order of indices. Then
⋂∞
m=1 FP (〈xn〉∞n=m) is a compact semigroup so there

is an idempotent p with FP (〈xn〉∞n=m) ∈ p for every m. (See [6, Lemma 5.11].) If p
is any idempotent in βT and A ∈ p, then there is a sequence 〈xn〉∞n=1 in T such that
FP (〈xn〉∞n=1) ⊆ A. If the operation is denoted by +, we write FS(〈xn〉∞n=m) = {

∑
t∈F xt :

F ∈ Pf (N) and minF > m}.
If γ is a function from the discrete semigroup T to a compact space C, then γ has a

continuous extension from βT to C, which we will also denote by γ. If γ : T → W , where
W is discrete, we will view the continuous extension as taking βT to βW , unless we state
otherwise. If γ : T → C is a homomorphism from T into a compact right topological
semigroup C, with γ[T ] contained in the topological center of C, then the continuous
extension γ : βT → C is a homomorphism by [6, Corollary 4.22].

As consequences of the results of Section 2 we establish that for k ∈ N, the set of points
(p1, p2, . . . , pk) ∈ (βN)k with the property that whenever Bi ∈ pi for i ∈ {1, 2, . . . , k}, the
k-tuple (B1, B2, . . . , Bk) satisfies the conclusions of one of those theorems, is a compact
subsemigroup of (βN)k containing the idempotents of (βN)k (or the minimal idempotents,
depending on the theorem). The details of these results will be presented in Section 4.

In Section 5 we restrict our attention to versions of the Hales-Jewett Theorem. Letting
Rn = {p ∈ βS0 : (∀B ∈ p)(∃w ∈ Sn)({w(~x) : ~x ∈ An} ⊆ B)}, we show that each Rn is a
compact ideal of βS0, that Rn+1 ( Rn for each n ∈ N, and that c`K(βS0) (

⋂∞
n=1Rn.

In Section 6 we present a new fully algebraic proof of an infinitary extension of the
Graham-Rothschild Parameter Sets Theorem. This new proof is a significant simplifica-
tion of the original.

We end this section with a few simple illustrations of how the algebraic structure
described above may be applied to derive simple algebraic proofs of some of the results
discussed earlier including for instance the Hales-Jewett Theorem. We begin with the
following theorem whose proof is based on an argument due to Andreas Blass which first
appeared in [1]. We regard this theorem as an algebraic extension of Theorem 3.

Theorem 5. Let T be a semigroup and let S be a subsemigroup of T . Let F be a nonempty
set of homomorphisms mapping T to S which are equal to the identity on S.
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(1) Let p be a minimal idempotent in βS. Let q be an idempotent in βT for which q 6 p.
Then ν(q) = p for every ν ∈ F .

(2) For any finite subset F0 of F and any central subset D of S, there is a central subset
Q of T such that, for every t ∈ Q, {ν(t) : ν ∈ F0} ⊆ D.

(3) For any finite subset F0 of F and any finite coloring of S, there is a central subset
Q of T such that, for every t ∈ Q, {ν(t) : ν ∈ F0} is monochromatic.

Proof. (1) For each ν ∈ F , ν(q) 6 ν(p) = p and so, since ν(q) ∈ βS, ν(q) = p.

(2) Pick a minimal idempotent p ∈ βS such that D ∈ p. By [6, Theorem 1.60], pick a
minimal idempotent q ∈ βT such that q 6 p. Then ν(q) = p for every ν ∈ F0. Hence, if
Q =

⋂
ν∈F0

ν−1[D], then Q ∈ q.
(3) Pick a minimal idempotent p ∈ βS and let D be a monochromatic member of p.

We note that the above theorem provides an algebraic proof of Theorem 3 and hence of
the Hales-Jewett Theorem. In fact, put S = S0, T = S0∪Sn and F = {h~x : ~x ∈ An}, where

h~x(w) =

{
w(~x) if w ∈ Sn
w if w ∈ S0 .

Then by Theorem 5 we deduce that for any finite coloring

of S0 there exists a central subset Q of T such that for every w ∈ Q, {w(~x) : ~x ∈ An} is
monochromatic. Pick q ∈ K(βT ) with Q ∈ q. Then since Sn is an ideal of T it follows
that Sn ∈ q. So for any w ∈ Sn ∩Q we have {w(~x) : ~x ∈ An} is monochromatic.

We conclude this section with two additional simple corollaries of Theorem 5 that will
not be needed in the rest of the paper.

Corollary 6. Let T be a semigroup and let S be a subsemigroup of T . Let F be a finite
nonempty set of homomorphisms mapping T to S which are equal to the identity on S. Let
D be a piecewise syndetic subset of S. Then

⋂
ν∈F ν

−1[D] is a piecewise syndetic subset
of T .

Proof. By [6, Theorem 4.43], we may pick s ∈ S for which s−1D is a central subset of
S. We can choose a minimal idempotent p in βS for which s−1D ∈ p, and we can then
choose a minimal idempotent q in βT for which q 6 p, by [6, Theorem 1.60]. By Theorem
5(1), ν(q) = p for every ν ∈ F . Hence, if Q =

⋂
ν∈F ν

−1[s−1D], then Q ∈ q. Now sQ
is a piecewise syndetic subset of T , because sQ ∈ sq and sq ∈ K(βT ). We claim that
sQ ⊆

⋂
ν∈F ν

−1[D]. In fact, let x ∈ sQ, pick t ∈ Q such that x = st, and let ν ∈ F . Then
ν(x) = ν(st) = sν(t) ∈ s(s−1D) ⊆ D.

Given an idempotent p and B ∈ p let B?(p) = {x ∈ B : x−1B ∈ p}. Then B?(p) ∈ p
and for each x ∈ B?(p), one has that x−1B?(p) ∈ p. (See [6, Lemma 4.14]). If there is no
risk of confusion, we will sometimes write B? for B?(p).

Corollary 7. Let T be a semigroup and let S be a subsemigroup of T . Let F be a finite
nonempty set of homomorphisms from T onto S which are equal to the identity on S.
Let p be a minimal idempotent in βS and let P ∈ p. Let q be a minimal idempotent
of βT for which q 6 p and let Q =

⋂
ν∈F ν

−1[P ?]. Then Q ∈ q. There is an infinite
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sequence 〈wn〉∞n=1 of elements of Q such that for each H ∈ Pf (N) and each ϕ : H → F ,∏
t∈H ϕ(t)(wt) ∈ P ?, where the product is computed in increasing order of indices.

Proof. Choose w1 ∈ Q. Let m ∈ N and assume we have chosen 〈wt〉mt=1 in Q such that
whenever ∅ 6= H ⊆ {1, 2, . . . ,m} and ϕ : H → F ,

∏
t∈H ϕ(t)(wt) ∈ P ?. Note that this

hypothesis is satisfied for m = 1. Let

E = {
∏

t∈H ϕ(t)(wt) : ∅ 6= H ⊆ {1, 2, . . . ,m} and ϕ : H → F} .

Then E ⊆ P ?. Let R = P ? ∩
⋂
y∈E y

−1P ?. Then R ∈ p so
⋂
ν∈F ν

−1[R] ∈ q. Pick

wm+1 ∈
⋂
ν∈F ν

−1[R] and note that wm+1 ∈ Q.
To verify the hypothesis let ∅ 6= H ⊆ {1, 2, . . . ,m + 1} and let ϕ : H → F . If

m+1 /∈ H, the conclusion holds by assumption, so assume thatm+1 ∈ H. If H = {m+1},
then wm+1 ∈ ϕ(m + 1)−1[P ?], so assume that {m + 1} ( H and let G = H \ {m + 1}.
Let y =

∏
t∈G ϕ(t)(wt). Then wm+1 ∈ ϕ(m + 1)−1[y−1P ?] so

∏
t∈H ϕ(t)(wt) = yϕ(m +

1)(wm+1) ∈ P ?.

The authors thank the referee for a thorough report.

2 Combining structures

Throughout this section, and up until Section 6, A is a fixed non-empty finite alphabet.
Most of the results in this paper involve families of well behaved homomorphisms between
certain semigroups:

Definition 8. Let n ∈ N and let ν : Sn → S0 be a homomorphism. We shall say that ν is
S0-preserving if ν(uw) = uν(w) and ν(wu) = ν(w)u for every u ∈ S0 and every w ∈ Sn.

Note that if ~x ∈ An, then the function h~x : Sn → S0 defined by h~x(w) = w(~x) is
an S0-preserving homomorphism. Also, the function δ : Sn → S0 which simply deletes
all occurrences of variables is an S0-preserving homomorphism. As another example,
assume that n > 2 and define µ : Sn → Sn where µ(w) is obtained from w by replacing
each occurrence of v2 by v1v2. Given ~x ∈ An, h~x ◦ µ is an S0-preserving homomorphism
which cannot be obtained by composing those of the kind mentioned previously; in fact
|h~x ◦ µ(w)| > |w| for each w ∈ Sn.

Definition 9. Let S, T , and R be semigroups such that S ∪ T is a semigroup and T is
an ideal of S ∪ T . Then a homomorphism τ : T → R is said to be S-independent if, for
every w ∈ T and every u ∈ S, τ(uw) = τ(w) = τ(wu).

In most cases, the above definition will be applied to the case S = S0 and T = Sn for
some n ∈ N. We shall see later in Lemma 28 that if n ∈ N, R is a cancellative commutative
semigroup, and τ : Sn → R is an S0-independent homomorphism, then τ(w) = τ(w′)
whenever |w|vi = |w′|vi for each i ∈ {1, 2, . . . , n}. For reasons which will be made clear in
Section 3, we will primarily be concerned with S0-independent homomorphisms from Sn
to (N,+) of the form τ(w) = |w|vi for some i ∈ {1, 2, . . . , n}.
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Lemma 10. Let S and T be semigroups such that S ∪T is a semigroup and T is an ideal
of S ∪ T . Let φ : T → C be an S-independent homomorphism from T into the topolog-
ical center of a compact right topological semigroup C. Then φ extends to a continuous
homomorphism from βT into C, which we shall also denote by φ. For every q ∈ βT and
every p ∈ βS, φ(q) = φ(pq) = φ(qp).

Proof. The fact that φ extends to a continuous homomorphism is [6, Corollary 4.22]. Let
p ∈ βS and q ∈ βT be given. In the following expressions let s and t denote members of
S and T respectively. Since φ is continuous on βT and since both pq and qp are in βT by
[6, Corollary 4.18], we have that

φ(pq) = φ(lim
s→p

lim
t→q

st) = lim
s→p

lim
t→q

φ(st) = lim
t→q

φ(t) = φ(q)

and similarly

φ(qp) = φ(lim
t→q

lim
s→p

ts) = lim
t→q

lim
s→p

φ(ts) = lim
t→q

φ(t) = φ(q).

Theorem 11. Let S and T be semigroups such that S∪T is a semigroup and T is an ideal
of S∪T . Let φ : T → C be an S-independent homomorphism from T into a compact right
topological semigroup C with φ[T ] contained in the topological center of C and denote also
by φ its continuous extension to βT . Let F be a finite nonempty set of homomorphisms
from S ∪ T into S which are each equal to the identity on S, and let D be a piecewise
syndetic subset of S. Let p be an idempotent in φ[βT ], and let U be a neighborhood of p
in C. There exists w ∈ T such that φ(w) ∈ U and ν(w) ∈ D for every ν ∈ F .

Proof. Since D is piecewise syndetic in S, pick by [6, Theorem 4.43] some s ∈ S such that
s−1D is central in S and pick a minimal idempotent r ∈ βS such that s−1D ∈ r.

Let V = φ−1[{p}]. Since φ is a continuous homomorphism from βT to C, V is a
compact subsemigroup of βT . By Lemma 10, V r is a left ideal of V and rV is a right
ideal of V . Pick an idempotent q ∈ V r ∩ rV and note that q 6 r in βT . By Theorem
5(1), ν(q) = r for every ν ∈ F .

Since s−1D ∈ r we have that for each ν ∈ F , ν−1[s−1D] ∈ q. Since U is a neighborhood
of p, pick R ∈ q such that φ[R ] ⊆ U . Pick w ∈ R ∩

⋂
ν∈F ν

−1[s−1D]. Then φ(sw) =
φ(w) ∈ U and for ν ∈ F , ν(w) ∈ s−1D so ν(sw) = sν(w) ∈ D.

Corollary 12. Let n ∈ N. Let φ : Sn → C be an S0-independent homomorphism from Sn
into a compact right topological semigroup C with φ[Sn] contained in the topological center
of C and denote also by φ the continuous extension to βSn. Let F be a finite nonempty
set of S0-preserving homomorphisms from Sn into S0, let D be a piecewise syndetic subset
of S0, let p be an idempotent in φ[βSn], and let U be a neighborhood of p in C. There
exists w ∈ Sn such that φ(w) ∈ U and ν(w) ∈ D for every ν ∈ F .

Proof. Let S = S0, let T = Sn, and for ν ∈ F , extend ν to S0 ∪ Sn by defining ν to be
the identity on S0. Then Theorem 11 applies.

We obtain the first result that was stated in the abstract as a corollary to Theorem 11.
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Corollary 13. Define τ : S1 → N by τ(w) = |w|v1, let S0 be finitely colored, and let
〈xn〉∞n=1 be a sequence in N. There exists w ∈ S1 such that {w(a) : a ∈ A} is monochro-
matic and τ(w) ∈ FS(〈xn〉∞n=1).

Proof. Let S = S0, let T = S1, and let C = βN. Then τ [S1] is contained in the topological
center of C. Denote also by τ the continuous extension taking βS1 to βN. Given a ∈ A,
define fa : S0 ∪ S1 → S0 by

fa(w) =

{
w(a) if w ∈ S1

w if s ∈ S0 ,

and let F = {fa : a ∈ A}. Then F is a finite nonempty set of homomorphisms from
S0 ∪ S1 into S0 which are each equal to the identity on S0. Pick by [6, Lemma 5.11] an
idempotent p ∈ βN such that FS(〈xn〉∞n=1) ∈ p. Pick any q ∈ K(βS0) and pick D ∈ q
which is monochromatic. Note that τ [S1] = N so by [6, Exercise 3.4.1], τ [βS1] = βN.
Therefore, p ∈ τ [βS1]. Consequently, Theorem 11 applies with U = FS(〈xn〉∞n=1).

Lemma 14. Let (T, ·) be a discrete semigroup and let m,n ∈ N. Let φ : Sn → ×m
i=1T

be an S0-independent homomorphism. Then φ extends to a continuous S0-independent
homomorphism φ : βSn → ×m

i=1βT . Moreover if ~p = (p1, p2, . . . , pm) is an idempotent in
×m

i=1βT with the property that whenever Bi ∈ pi for each i ∈ {1, 2, . . . ,m}, there exists
w ∈ Sn such that φ(w) ∈×m

i=1Bi, then ~p ∈ φ[βSn].

Proof. Let C = ×m
i=1βT . Regarding φ as an S0-independent homomorphism from Sn

into the right topological semigroup C, we see that φ[Sn] is contained in ×m
i=1T which

in turn is contained in the topological center of C by [6, Theorem 2.22]. Hence by [6,
Corollary 4.22], φ extends to a continuous homomorphism from βSn into C. To see that
the extension is S0-independent, let u ∈ S0 and let p ∈ βSn. Then, letting s denote a
member of Sn, we have

φ(up) = φ(lim
s→p

us) = lim
s→p

φ(us) = lim
s→p

φ(s) = φ(lim
s→p

s) = φ(p)

and similarly, φ(pu) = φ(p).
Now assume that ~p = (p1, p2, . . . , pm) is an idempotent in ×m

i=1βT and whenever
Bi ∈ pi for each i ∈ {1, 2, . . . ,m}, there exists w ∈ Sn such that φ(w) ∈ ×m

i=1Bi, To see
that ~p ∈ φ[βSn] let (B1, B2, . . . , Bm) ∈×m

i=1pi, and let

G(B1,...,Bm) = {w ∈ Sn : φ(w) ∈×m
i=1Bi} .

Then by assumption, G = {G(B1,...,Bm) : (B1, B2, . . . , Bm) ∈ ×m
i=1pi} has the finite inter-

section property so one may pick q ∈ βSn such that G ⊆ q. Then ~p = φ(q) ∈ φ[βSn].

Theorem 15. Let (T, ·) be a discrete semigroup and let m,n ∈ N. Let ~p = (p1, p2, . . . , pm)
be an idempotent in ×m

i=1βT . For i ∈ {1, 2, . . . ,m} let τi be an S0-independent homo-
morphism from Sn to T . Assume that whenever Bi ∈ pi for each i ∈ {1, 2, . . . ,m}, there
exists w ∈ Sn such that

(
τ1(w), τ2(w), . . . , τm(w)

)
∈×m

i=1Bi. Let D be a piecewise synde-
tic subset of S0 and let F be a finite nonempty set of S0-preserving homomorphisms from
Sn to S0. Then whenever Bi ∈ pi for each i ∈ {1, 2, . . . ,m}, there exists w ∈ Sn such that
ν(w) ∈ D for each ν ∈ F and for each i ∈ {1, 2, . . . ,m}, τi(w) ∈ Bi.
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Proof. Define φ : Sn →×m
i=1T by

φ(w) =
(
τ1(w), τ2(w), . . . , τm(w)

)
.

Then φ is an S0-independent homomorphism and hence by Lemma 14, φ extends to a
continuous S0-independent homomorphism φ : βSn → ×m

i=1βT and ~p ∈ φ[βSn]. The
result now follows from Corollary 12.

Corollary 16. Let k, n ∈ N with k < n and let T be the set of words over {v1, v2, . . . , vk}
in which vi occurs for each i ∈ {1, 2, . . . , k}. Given w ∈ Sn let τ(w) be obtained from w by
deleting all occurrences of elements of A as well as all occurrences of vi for k < i 6 n. Let
〈yt〉∞t=1 be a sequence in T , let F be a finite nonempty set of S0-preserving homomorphisms
from Sn to S0, and let D be a piecewise syndetic subset of S0. There exists w ∈ Sn such
that ν(w) ∈ D for all ν ∈ F and τ(w) ∈ FP (〈yt〉∞t=1).

Proof. Pick an idempotent p ∈ βT such that FP (〈yt〉∞t=1) ∈ p. Since τ is an S0-
independent homomorphism from Sn onto T , Theorem 15 applies with m = 1.

Theorem 17 is one of the main results of this paper. It involves a matrix with entries
from Q or Z. We assume appropriate hypotheses in order to ensure that In order to ensure
that matrix multiplication makes sense and is distributive. In particular we assume that
T is commutative and write the operation as +.

Theorem 17. Let (T,+) be a commutative semigroup, let k,m, n ∈ N, and let M be a
k×m matrix. If T is not cancellative assume that the entries of M come from ω. If T is
isomorphic to a subsemigroup of a direct sum of copies of (Q,+) (so that multiplication by
members of Q makes sense), assume that the entries of M come from Q. Otherwise as-
sume that the entries of M come from Z. For i ∈ {1, 2, . . . ,m} let τi be an S0-independent

homomorphism from Sn to T . Define a function ψ on Sn by ψ(w) =


τ1(w)
τ2(w)

...
τm(w)

. Let

~p = (p1, p2, . . . , pk) be an idempotent in ×k
i=1βT with the property that whenever Bi ∈ pi

for each i ∈ {1, 2, . . . , k}, there exists ~z ∈ ψ[Sn] such that M~z ∈×k
i=1Bi. Let F be a finite

nonempty set of S0-preserving homomorphisms from Sn to S0 and let D be a piecewise
syndetic subset of S0. Then whenever Bi ∈ pi for each i ∈ {1, 2, . . . , k}, there exists
w ∈ Sn such that ν(w) ∈ D for every ν ∈ F and Mψ(w) ∈×k

i=1Bi.

Proof. If T is not cancellative, let G = T . If T is isomorphic to a subsemigroup of
⊕

i∈I Q
for some set I, assume without loss of generality that T ⊆

⊕
i∈I Q and let G =

⊕
i∈I Q.

Otherwise let G be the group of differences of T . In each case we define an S0-independent
homomorphism φ : Sn → ×k

j=1G. by φ(w) = Mψ(w). Let C = ×k
j=1βG. Then by

Lemma 14, φ extends to an S0-independent homomorphism φ : βSn → C and ~p ∈ φ[βSn].
The rest now follows from Corollary 12.

Definition 18. Let n ∈ N and let j ∈ {1, 2, . . . , n}. Define µj : Sn → N by µj(w) = |w|vj .
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Remark 19. As a consequence of Theorem 17 (with k = m = 1, T = N, M = (1), τ = µ1,
F = {h~x : ~x ∈ An}, and p any idempotent in βN) we have that whenever D is piecewise
syndetic in S0 and n ∈ N, there exists w ∈ Sn such that {w(~x) : ~x ∈ An} ⊆ D. Since
whenever S0 is finitely colored, one color class must be piecewise syndetic, we see that
the multi-variable Hales-Jewett Theorem, Theorem 3, follows. And, since central sets are
piecewise syndetic, we have that whenever D is central in S0 and n ∈ N, there exists
w ∈ Sn such that {w(~x) : ~x ∈ An} ⊆ D.

Theorem 20. Let n ∈ N and let D be a central subset of S0. Let F be a finite nonempty set
of S0-preserving homomorphisms from Sn into S0. Then {w ∈ Sn : (∀ν ∈ F )(ν(w) ∈ D)}
is central in Sn.

Proof. Let T = Sn ∪ S0 and extend each ν ∈ F to all of T by defining ν to be the
identity on S0. By Theorem 5(2), pick a central subset Q of T such that for each t ∈ Q,
{ν(t) : ν ∈ F} ⊆ D}. Since Sn is an ideal of T , Q ∩ Sn is central in Sn and Q ∩ Sn ⊆
{w ∈ Sn : (∀ν ∈ F )(ν(w) ∈ D)}.

The following corollary provides sufficient conditions for applying Theorem 17.

Corollary 21. Let m,n ∈ N with m 6 n. Let M be an m ×m lower triangular matrix
with rational entries. Assume that the entries on the diagonal are positive and the entries
below the diagonal are negative or zero. Let ~p = (p1, p2, . . . , pm) be an idempotent in
×m

i=1βN. For i ∈ {1, 2, . . . ,m} let τi =
∑n

j=1 αi,jµj where each αi,j ∈ Q. Assume that for
each i ∈ {1, 2, . . . ,m} we can choose t(i) ∈ {1, 2, . . . , n} such that

(1) αi,t(i) > 0,

(2) if l ∈ {1, 2, . . . ,m} and l > i, then αi,t(l) = 0, and

(3) if l ∈ {1, 2, . . . ,m} and l < i, then αi,t(l) 6 0.

Then each τi is an S0-independent homomorphism from Sn to Q. Let F be a nonempty
finite set of S0-preserving homomorphisms from Sn to S0 and let D be a piecewise syndetic
subset of S0. Whenever Bi ∈ pi for each i ∈ {1, 2, . . . ,m}, there exists w ∈ Sn such that
ν(w) ∈ D for each ν ∈ F and

M


τ1(w)
τ2(w)

...
τm(w)

 ∈×m
i=1Bi .

Proof. Define ψ : Sn → Qm by ψ(w) =

 τ1(w)
...

τm(w)

. We wish to apply Theorem 17 with

T = Q. For this we need to show that whenever Bi ∈ pi for i ∈ {1, 2, . . . ,m}, there exists
~z ∈ ψ[Sn] such that M~z ∈×m

i=1Bi. So let Bi ∈ pi for i ∈ {1, 2, . . . ,m}.
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We show first that for each r ∈ N, there exists ~z ∈ (rN)m such that M~z ∈ ×m
i=1Bi,

so let r ∈ N be given. Note that M−1 is lower triangular with positive diagonal entries
and nonnegative entries below the diagonal. Probably the easiest way to see this is to
solve the system of equations M~z = ~x by back substitution. Alternatively we may write
M = D(I + N) where D is diagonal with positive entries and N is a strictly lower
triangular matrix (all of whose non-zero entries are negative) verifying Nm = O. Setting
x = −N in 1− xm = (1− x)(1 + x+ x2 + · · · xm−1) gives (I +N)−1 = I +

∑m−1
j=1 (−1)jN j.

Hence (I + N)−1 is lower triangular with 1s along the diagonal and nonnegative entries
below the diagonal. Multiplying (I + N)−1 by D−1 on the right gives the desired result.
Let c ∈ N be such that all entries of cM−1 are nonnegative integers. By [6, Lemma 6.6]
rcN ∈ pi for each i ∈ {1, 2, . . . ,m} so pick xi ∈ Bi ∩ rcN. Letting ~z = M−1~x one has that
~z ∈ (rN)m and M~z ∈×m

i=1Bi.
Now assume we have chosen t(i) for i ∈ {1, 2, . . . ,m} as in the statement of the

corollary. Pick d ∈ N such that dαi,j ∈ Z for each i ∈ {1, 2, . . . ,m} and each j ∈
{1, 2, . . . , n} and let δi,j = dαi,j. Let

J = {1, 2, . . . , n} \ {t(1), t(2), . . . , t(m)} .

Let s =
∏m

i=1 δi,t(i) and pick r ∈ N such that s divides r and

r > max
{
s
∑

j∈J |δi,j| : i ∈ {1, 2, . . . ,m}
}
.

Pick ~z ∈ (rN)m such that M~z ∈×m
i=1Bi. We shall produce w ∈ Sn such that ψ(w) = ~z by

determining µj(w) for each j ∈ {1, 2, . . . , n}. (To be definite, we then let w =
∏n

j=1 v
µj(w)
j .)

For j ∈ J , let µj(w) = s. Let

µt(1)(w) = d
z1

δ1,t(1)
−
∑

j∈Jδ1,j
s

δ1,t(1)

and note that
∏m

l=2 δl,t(l) divides µt(1)(w) and by the choice of r, µt(1)(w) > 0, as is, of
course, required. Now let k ∈ {2, 3, . . . ,m} and assume that for each i ∈ {1, 2, . . . , k−1},
we have chosen µt(i)(w) ∈ N such that

∑m
l=i+1 δl,t(l) divides µt(i)(w). Then let

µt(k)(w) = d
zk

δk,t(k)
−
∑k−1

i=1

δk,t(i)
δk,t(k)

µt(i)(w)−
∑

j∈Js
δk,j
δk,t(k)

.

Then µt(k)(w) > 1
δk,t(k)

(dzk −
∑

j∈J sδk,j) > 0 and, if k < m, then
∑m

l=k+1 δl,t(l) divides

µt(k)(w).
It is now a routine matter to verify that for k ∈ {1, 2, . . . ,m},

τk(w) =
∑k

i=1 αk,t(i)µt(i)(w) +
∑

j∈J αk,jµj(w) = zk .

The sufficient conditions in Corollary 21 on the coefficients αi,j of the homomorphisms
τi apply to all lower triangular matrices with positive diagonal entries and entries below
the diagonal less than or equal to zero. A complete solution to the problem of which
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matrices and which S0-independent homomorphisms satisfy the hypotheses of Theorem
17 seems quite difficult. The following simple example illustrates that one cannot get
necessary and sufficient conditions on the coefficients of the homomorphisms τi valid for
all lower triangular matrices with positive diagonal entries and entries below the diagonal
less than or equal to zero.

Theorem 22. Let M =

(
1 0
−1 1

)
, let N =

(
1 0
0 1

)
, let τ1 = 2µ1 + µ2 and let

τ2 = µ1 + 2µ2.

(1) If p1 and p2 are any idempotents in βN, B1 ∈ p1, and B2 ∈ p2, F is a finite set of
S0-preserving homomorphisms from S2 to S0, and D is a piecewise syndetic subset

of S0, then there exists w ∈ S2 such that M

(
τ1(w)
τ2(w)

)
∈ B1 × B2 and ν(w) ∈ D

for each ν ∈ F .

(2) There exist idempotents p1 and p2 in βN and sets B1 ∈ p1 and B2 ∈ p2 for which

there does not exist w ∈ S2 such that N

(
τ1(w)
τ2(w)

)
∈ B1 ×B2.

Proof. (1) Let p1 and p2 be idempotents in βN, and let B1 ∈ p1 and B2 ∈ p2 be given. By

Theorem 15, it suffices to show that there exists w ∈ S2 such that M

(
τ1(w)
τ2(w)

)
∈×2

i=1Bi

By [6, Lemma 6.6], 3N ∈ p1 and 3N ∈ p2. Pick z2 ∈ B2 ∩ 3N and pick z1 > z2 in B1 ∩ 3N.
Let k1 = 1

3
z1− 1

3
z2 and let k2 = 1

3
z1− 1

3
z2. Let w = vk11 v

k2
2 so that µ1(w) = 1

3
z1− 1

3
z2 and

µ2(w) = 1
3
z1 + 2

3
z2. Then τ1(w) = z1, τ2(w) = z1 + z2, and M

(
τ1(w)
τ2(w)

)
=

(
z1
z2

)
.

(2) Let B1 = FS(〈24n〉∞n=1) and let B2 = FS(〈24n+2〉∞n=1). By [6, Lemma 5.11] pick
idempotents p1 and p2 in βN such that B1 ∈ p1 and B2 ∈ p2. Suppose we have some

w ∈ S2 and elements z1 ∈ B1 and z2 ∈ B2 such that N

(
τ1(w)
τ2(w)

)
=

(
z1
z2

)
. Then

2z1 − z2 = 3µ1(w) > 0 and 2z2 − z1 = 3µ2(w) > 0 so z2 < 2z1 and z1 < 2z2. Pick F,G ∈
Pf (N) such that z1 =

∑
t∈F 24t and z2 =

∑
t∈G 24t+2. Let m = maxF and let k = maxG.

Then 24m 6 z1 < 24m+1 and 24k+2 6 z2 < 24k+3. Then 24m+2 > 2z1 > z2 > 24k+2 so
m > k + 1. Also 24k+4 > 2z2 > z1 > 24m > 24k+4, a contradiction.

Recall that a k×m matrix M is image partition regular over N if and only if, whenever
N is finitely colored, there is some ~z ∈ Nm such that the entries of M~z are monochromatic.
This class includes all triangular (upper or lower) matrices with rational entries and
positive diagonal entries. See [6, Theorem 15.24] for several characterizations of matrices
that are image partition regular over N.

Corollary 23. Let k,m, n ∈ N with m 6 n. Let M be a k × m matrix with rational
entries which is image partition regular over N. Let p be a minimal idempotent in βN and
let p̂ = (p, p, . . . , p) ∈ ×k

i=1βN. Let σ be an injection from {1, 2, . . . ,m} to {1, 2, . . . , n}.
For i ∈ {1, 2, . . . ,m} let τi = µσ(i). Let F be a nonempty finite set of S0-preserving
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homomorphisms from Sn to S0 and let D be a piecewise syndetic subset of S0. Then
whenever B ∈ p there exists w ∈ Sn such that ν(w) ∈ D for each ν ∈ F and

M


τ1(w)
τ2(w)

...
τm(w)

 ∈ Bk .

Proof. We note that the mapping

w 7→
(
τ1(w), τ2(w), . . . , τm(w)

)
defines an S0-independent homomorphism from Sn onto Nm. So in order to apply Theorem
17, we must verify that whenever Bi ∈ p for each i ∈ {1, 2, . . . , k}, there exists ~z ∈ Nm such
that M~z ∈×k

i=1Bi. We then pick w ∈ Sn such that τi(w) = zi for each i ∈ {1, 2, . . . ,m},
which one may do because σ is injective.

Now
⋂k
i=1Bi ∈ p so B =

⋂k
i=1Bi is central in N. By [6, Theorem 15.24(h)] there exists

~z ∈ Nm such that M~z ∈ Bk.

Corollary 23 applies to a much larger class of matrices than Corollary 21, but is
more restrictive in that the same minimal idempotent must occur in each coordinate.
Suppose we have a k × m matrix M which is image partition regular over N. If we
knew that whenever B1, B2, . . . , Bk are central subsets of N, there exist ~z ∈ Nm with
M~z ∈×k

i=1Bi, then in Corollary 23 we could allow ~p = (p1, p2, . . . , pk) to be an arbitrary
minimal idempotent in ×k

i=1βN. We shall see now that this fails.

Theorem 24. Let M =

(
1 1
1 2

)
. Then M is image partition regular over N. For x ∈ N

let φ(x) = max{t ∈ ω : 2t 6 x} and for i ∈ {0, 1, 2, 3} let Bi = {x ∈ N : φ(x) ≡ i (
mod 4)}. Then B0 and B2 are central and there do not exist x and y ∈ N such that

M

(
x
y

)
∈ B0 ×B2.

Proof. By [6, Theorem 15.5] M is image partition regular over N. Since N =
⋃3
i=0Bi

some Bi is central. But then, by [6, Lemma 15.23.2], each Bi is central. Suppose we have

some x, y ∈ N such that M

(
x
y

)
∈ B0×B2. Let n = φ(x+ y). Then 2n 6 x+ y < 2n+1

so y < 2n+1 − x and thus 2y < 2n+2 − 2x so x + 2y < 2n+2 − x < 2n+2 and thus
φ(x+ 2y) ∈ {n, n+ 1}.

Note also that Corollary 23 is more restrictive than Corollary 21 in that the idempotent
p is also required to be minimal. It is well known and easy to see that FS(〈22t〉∞t=1) does
not contain any three term arithmetic progression. Consequently, if

M =

 1 0
1 1
1 2

 ,
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then the assumption in Corollary 23 that the idempotent p is minimal cannot be deleted.

Remark 25. We remarked in the introduction that we are not concerned with the instances
of Theorem 4 with m > 0 because the natural versions of our results in this section are not
valid. The results in this section apply to all piecewise syndetic subsets of S0. In particular,
they apply to central subsets. It was shown in [2, Theorem 3.6] that, given a ∈ A, there
is a central set D ∈ S1 such that there is no w ∈ S2 with {w(av1), w(v1a)} ⊆ D.

3 Homomorphisms satisfying our hypotheses

In Corollary 21 we produced S0-independent homomorphisms from Sn to Q as linear
combinations of the functions µi with coefficients from Q. We shall see in Corollary 30
that if T is commutative and cancellative, then the only S0-independent homomorphisms
ϕ : Sn → T are of the form ϕ(w) =

∑n
i=1 µi(w) · ai where each ai is in the group of

differences of T .
In Corollary 23 we used S0-independent homomorphisms τi = µσ(i) from Sn to N and

the surjection w 7→
(
τ1(w), τ2(w), . . . , τm(w)

)
from Sn onto Nm. We show in Corollary 33

that if T = N, then these are essentially the only choices for τi satisfying the hypotheses
of Theorem 17.

Recall that throughout this section A is a fixed nonempty finite alphabet.

Definition 26. Let n ∈ N. For w ∈ Sn, let w′ ∈ {v1, v2, . . . , vn}+ be obtained from w by
deleting all occurrences of letters belonging to A.

Lemma 27. Fix n ∈ N. Let (T,+) be a cancellative semigroup and let ϕ : Sn → T be an
S0-independent homomorphism. Then ϕ(w) = ϕ(w′) for all w ∈ Sn.

Proof. It suffices to show that if w1, w2 ∈ Sn and u ∈ S0, then ϕ(w1uw2) = ϕ(w1w2).
Let v = v1v2 · · · vn. On one hand ϕ(vw1uw2v) = ϕ(v) + ϕ(w1uw2) + ϕ(v), and on the
other hand ϕ(vw1uw2v) = ϕ(vw1u) + ϕ(w2v) = ϕ(vw1) + ϕ(w2v) = ϕ(vw1w2v) = ϕ(v) +
ϕ(w1w2) + ϕ(v). The result now follows.

For u,w ∈ A+ we say u and w are Abelian equivalent, and write u ∼Ab w, whenever
|u|a = |w|a for all a ∈ A.

Lemma 28. Fix n ∈ N. Let (T,+) be a cancellative and commutative semigroup and
let ϕ : Sn → T be an S0-independent homomorphism. For each w1, w2 ∈ Sn we have
ϕ(w1) = ϕ(w2) whenever w′1 ∼Ab w′2.

Proof. Assume w1, w2 ∈ Sn and w′1 ∼Ab w′2. Let m = |w′1| = |w′2|. We show that
ϕ(w′1) = ϕ(w′2) which in turn implies that ϕ(w1) = ϕ(w2) by Lemma 27. The result is
immediate in case n = 1 for in this case w′1 = w′2 = vm1 . So let us assume that n > 2 in
which case m > 2. Since the symmetric group on m-letters is generated by the 2-cycle
(1, 2) and the m-cycle (1, 2, . . . ,m) it suffices to show

(i) If x,w ∈ (A ∪ {v1, v2, . . . , vn})+ and xw ∈ Sn, then wx ∈ Sn and ϕ(wx) = ϕ(xw).
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(ii) Let ε be the empty word. If x, y ∈ (A∪{v1, v2, . . . , vn})+, w ∈ (A∪{v1, v2, . . . , vn})+
∪ {ε} and xyw ∈ Sn, then yxw ∈ Sn and ϕ(yxw) = ϕ(xyw).

Then given l1, l2, . . . , lm ∈ A ∪ {v1, v2, . . . , vn} by (i) we have ϕ(l1l2 · · · lm) =
ϕ(l2l3 · · · lml1) and by (ii) we have ϕ(l1l2l3 · · · lm) = ϕ(l2l1l3 · · · lm).

To establish (i), we have ϕ(xw) + ϕ(xwx) = ϕ(xwxwx) = ϕ(xwx) + ϕ(wx), whence
ϕ(xw) = ϕ(wx). Note that we are using here that T is commutative. For (ii), let v =
v1v2 · · · vn. Then, using (i) twice, ϕ(v) +ϕ(xyw) +ϕ(v) = ϕ(vxywv) = ϕ(vx) +ϕ(ywv) =
ϕ(xv) + ϕ(ywv) = ϕ(xvywv) = ϕ(xvy) + ϕ(wv) = ϕ(vyx) + ϕ(wv) = ϕ(vyxwv) =
ϕ(v) + ϕ(yxw) + ϕ(v). The result now follows.

We remark that Lemma 28 does not hold in general if T is not commutative. For
example, consider the homomorphism ϕ : S3 → S2 where ϕ(w) is the word in S2 obtained
from w by deleting all occurrences of the variable v3 in addition to all letters belonging
to A. Then S2 is cancellative and ϕ is an S0-independent homomorphism. However,
ϕ(v1v2v3) = v1v2 6= v2v1 = ϕ(v2v1v3) yet v1v2v3 ∼Ab v2v1v3.

Theorem 29. Fix n ∈ N. Let (T,+) be a cancellative and commutative semigroup and
let ϕ : Sn → T be an S0-independent homomorphism. Then there exists a homomorphism
f : Nn → T such that ϕ(w) = f

(
µ1(w), µ2(w), . . . , µn(w)

)
for all w ∈ Sn.

Proof. Define f : Nn → T by f(x1, x2, . . . , xn) = ϕ(vx11 v
x2
2 · · · vxnn ). By Lemma 28, f is as

required.

Corollary 30. Let n ∈ N, let (T,+) be a commutative and cancellative semigroup, let G
be the group of differences of T , and let ϕ be an S0-independent homomorphism from Sn
to T . There exist a1, a2, . . . , an in G such that for each w ∈ Sn, ϕ(w) =

∑n
i=1 µi(w) · ai.

Proof. Pick a homomorphism f : Nn → T as guaranteed by Theorem 29. For j ∈
{1, 2, . . . , n}, define ~z [j] ∈ Nn by, for i ∈ {1, 2, . . . , n},

z
[j]
i =

{
2 if i = j
1 if i 6= j .

(1)

Let 1̂ = (1, 1, . . . , 1) ∈ Nn. Let c = f( 1̂ ) and for j ∈ {1, 2, . . . , n}, let aj = f(~z [j]) − c.
Then

(n+ 1) · c = f(n+ 1, n+ 1, . . . , n+ 1) =
n∑
j=1

f(~z [j]) = (
n∑
j=1

aj) + n · c

so c =
∑n

j=1 aj.
We claim that f(x1, x2, . . . , xn) =

∑n
j=1 xj · aj for all (x1, x2, . . . , xn) ∈ Nn. To see this

we proceed by induction on
∑n

j=1 xj. If
∑n

j=1 xj = n then (x1, x2, . . . , xn) = 1̂ whence

f(x1, x2, . . . , xn) = c =
∑n

j=1 aj =
∑n

j=1 1 · aj .
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Next let N > n and suppose that f(x1, x2, . . . , xn) =
∑n

j=1 xj · aj for all (x1, x2, . . . , xn) ∈
Nn with

∑n
j=1 xj 6 N. Let (x1, x2, . . . , xn) ∈ Nn be such that

∑n
j=1 xj = N + 1. Pick

j ∈ {1, 2, . . . , n} such that xj > 2. Then

f(x1, x2, . . . , xn) + f( 1̂ ) = f(x1, . . . , xj−1, xj − 1, xj+1, . . . , xn) + f(~z [j]).

Since f(~z [j])− f( 1̂ ) = aj it follows by our induction hypothesis that

f(x1, x2, . . . , xn) =
∑j−1

i=1 xi · ai + (xj − 1) · aj +
∑n

i=j+1 xi · ai + aj =
∑n

i=1 xi · ai .

Consequently, for all w ∈ Sn,

ϕ(w) = f
(
µ1(w), µ2(w), . . . , µn(w)

)
=
∑n

j=1 µj(w) · aj .

In the proof of the next lemma, we shall use the fact that if n ∈ N,
f : Nn → N is a homomorphism, ~x, ~y [1], ~y [2], . . . , ~y [n] ∈ Nn, α1, α2, . . . , αn ∈ Z, and
~x =

∑n
i=1 αi~y

[i], then
f(~x) =

∑n
i=1 αif(~y [i]) .

We note that if αi 6 0, then f is not defined at αi~y
[i]. So to verify the above equality, let

I = {i ∈ {1, 2, . . . , n} : αi < 0} and let J = {i ∈ {1, 2, . . . , n} : αi > 0}. Then

~x+
∑

i∈I(−αi)~y [i] =
∑

i∈J αi~y
[i]

so
f(~x) +

∑
i∈I(−αi)f(~y [i]) =

∑
i∈J αif(~y [i])

so
f(~x) =

∑
i∈I∪J αif(~y [i]) =

∑n
i=1 αif(~y [i]) .

Lemma 31. Let n ∈ N and f : Nn → N be a surjective homomorphism. Then there
exists i ∈ {1, 2, . . . , n} such that f(~x) = xi for each ~x = (x1, x2, . . . , xn) ∈ Nn, i.e., f is
the projection onto the i’th coordinate.

Proof. We begin by showing that f( 1̂ ) = 1 where 1̂ = (1, 1, . . . , 1). Since f is surjective,
it suffices to show that f(~x) > f( 1̂ ) for each ~x = (x1, x2, . . . , xn) ∈ Nn. For each r ∈ N
we have that

r~x = (r − 1)1̂ +
(
1 + r(x1 − 1), 1 + r(x2 − 1), . . . , 1 + r(xn − 1)

)
.

It follows that rf(~x) = f(r~x) > f
(
(r− 1)1̂

)
= (r− 1)f( 1̂ ) or equivalently that r

(
f(~x)−

f(1̂)
)
> −f( 1̂ ). As r is arbitrary we deduce that f(~x)− f( 1̂ ) > 0 as claimed.

For each j ∈ {1, 2, . . . , n} let ~z [j] = (z
[j]
1 , z

[j]
2 , . . . , z

[j]
n ) ∈ Nn be as in (1). As

∑n
j=1 ~z

[j] =

(n+ 1)1̂ we have
∑n

j=1 f(~z [j]) = f
(
(n+ 1)1̂) = n+ 1. It follows that there exists a unique

k ∈ {1, 2, . . . , n} such that f(~z [k]) = 2 and f(~z [j]) = 1 for all j 6= k. Without loss of
generality, we may assume that f(~z [1]) = 2 and f(~z [j]) = 1 for all j ∈ {2, 3, . . . n}.
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Let ~x = (x1, x2, . . . , xn) ∈ Nn. We will show that f(~x) = x1. We first note that

(n+ 1)~x =
∑n

i=1(nxi −
∑n

j=1

j 6=i
xj)~z

[i].

Therefore
(n+ 1)f(~x) = (nx1 −

∑n
j=2 xj) · 2 +

∑n
i=2(nxi −

∑n
j=1

j 6=i
xj) · 1

and thus (n+ 1)f(~x) = (n+ 1)x1.

Corollary 32. Let n,m ∈ N. For i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m} let πi : Nn → N
and π′j : Nm → N denote the projections onto the i’th and j’th coordinates respectively.
Assume that f : Nn → Nm is a surjective homomorphism. For i ∈ {1, 2, . . . ,m}, let
fi = π′i ◦ f . Then there is an injection σ : {1, 2, . . . ,m} → {1, 2, . . . , n} such that for each
i ∈ {1, 2, . . . ,m}, fi = πσ(i). In particular m 6 n.

Proof. By hypothesis each fi : Nn → N is a surjective homomorphism. Therefore by
Lemma 31, there exists a mapping σ : {1, 2, . . . ,m} → {1, 2, . . . , n} such that fi(~x) =
πσ(i)(~x) = xσ(i) for each ~x ∈ Nn. But as f is surjective, it follows that σ is injective.

Corollary 33. Let n,m ∈ N. For each i ∈ {1, 2, . . . ,m} let τi : Sn → N be an S0-
independent homomorphism. If the mapping w 7→

(
τ1(w), τ2(w), . . . , τm(w)

)
takes Sn onto

Nm, then there exists an injection σ : {1, 2, . . . ,m} → {1, 2, . . . , n} such that τi = µσ(i)
for each i ∈ {1, 2, . . . ,m}. In particular we must have m 6 n.

Proof. By Theorem 29, for each i ∈ {1, 2, . . . ,m}, pick a homomorphism fi : Nn → N
such that τi(w) = fi

(
µ1(w), µ2(w), . . . , µn(w)

)
for each w ∈ Sn. Define f : Nn → Nm

by f(~x) =
(
f1(~x), f2(~x), . . . , fm(~x)

)
. We claim that f is surjective, so let ~y ∈ Nm be

given and pick w ∈ Sn such that
(
τ1(w), τ2(w), . . . , τm(w)

)
= ~y. For j ∈ {1, 2, . . . , n}, let

xj = |w|vj . Then f(~x) = ~y.
By Corollary 32, pick an injection σ : {1, 2, . . . ,m} → {1, 2, . . . , n} such that for each

i ∈ {1, 2, . . . ,m}, fi = πσ(i). Let w ∈ Sn be given and let ~x = (|w|v1 , |w|v2 , . . . , |w|vn),
Then for i ∈ {1, 2, . . . ,m}, τi(w) = fi(~x) = xσ(i) = |w|vσ(i) .

4 Compact subsemigroups of (βN)k

Besides the idempotents in φ[βSn], there are more ultrafilters that satisfy Corollary 12,
and they form a compact semigroup.

Theorem 34. Let n ∈ N, let C be a compact right topological semigroup, let φ : Sn → C be
an S0-independent homomorphism for which φ[Sn] is contained in the topological center
of C, denote also by φ the continuous extension from βS to C, and let F be a finite
nonempty set of S0-preserving homomorphisms from Sn into S0. Let

P =
{
p ∈ φ[βSn] : for every neighborhood U of p

and every piecewise syndetic subset D of S0

(∃w ∈ Sn)
(
φ(w) ∈ U and (∀ν ∈ F )(ν(w) ∈ D)

)}
.

Then P is a compact subsemigroup of C containing all the idempotents of φ[βSn].
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Proof. It is clear that P is compact. By Corollary 12, P contains all the idempotents in
φ[βSn]. To see that P is a subsemigroup of C, let p, q ∈ P . Let U be an open neighborhood
of pq and let D be a piecewise syndetic subset of S0. By [6, Theorem 4.43] pick s ∈ S0

such that s−1D is central and pick a minimal idempotent r in βS0 such that s−1D ∈ r.
Pick a neighborhood V of p such that ρq[V ] ⊆ U . Since (s−1D)? ∈ r, it is piecewise
syndetic so pick w ∈ Sn such that φ(w) ∈ V and ν(w) ∈ (s−1D)? for each ν ∈ F .

Then φ(w)q ∈ U and φ(w) is in the topological center of C so pick a neighbor-
hood Q of q such that λφ(w)[Q] ⊆ U . For each ν ∈ F , ν(w)−1(s−1D)? ∈ r. Let
E =

⋂
ν∈F ν(w)−1(s−1D)?. Then E ∈ r so E is piecewise syndetic in S0. Pick u ∈ Sn

such that φ(u) ∈ Q and ν(u) ∈ E for each ν ∈ F . Then φ(swu) = φ(w)φ(u) ∈ U and for
each ν ∈ F , ν(swu) = sν(w)ν(u) ∈ D.

In the next results we focus on the semigroup of natural numbers N and S0-independent
homomorphisms from Sn onto Nm, so by Corollary 33 we may assume that we have
m 6 n and are dealing with S0-independent homomorphisms τi from Sn to N defined by
τi(w) = |w|vσ(i) for some injection σ : {1, 2, . . . ,m} → {1, 2, . . . , n}.

We consider the collection of all k-tuples of ultrafilters that satisfy Theorem 17, in the
case where T = N and where the homomorphisms are of the special form h~x.

Definition 35. Let k,m, n ∈ N with m 6 n, let M be a k ×m matrix with entries from
Q, let F be a finite nonempty set of S0-preserving homomorphisms from Sn to S0, and
let σ be an injection from {1, 2, . . . ,m} to {1, 2, . . . , n}.

PM,F, σ = {~p ∈×k
i=1βN : whenever D is a piecewise syndetic subset of S0

and for all i ∈ {1, 2, . . . , k} , Bi ∈ pi, there exists
w ∈ Sn such that (∀ν ∈ F )(ν(w) ∈ D) and

M

 µσ(1)(w)
...

µσ(m)(w)

 ∈×k
i=1Bi}

Recall that for ~x ∈ An we have defined the S0-preserving homomorphism h~x : Sn → S0

by h~x(w) = w(~x). We are particularly interested in the set {h~x : ~x ∈ An} because of the
relationship with the Hales-Jewett Theorem. We see now that if F = {h~x : ~x ∈ An}, then
PM,F, σ does not depend on σ. We keep σ in the notation because there are S0-preserving
homomorphisms which are not of the form h~x.

Lemma 36. Let k,m, n ∈ N with m 6 n, let M be a k ×m matrix with entries from Q,
let F = {h~x : ~x ∈ An}, and let σ and η be injections from {1, 2, . . . ,m} to {1, 2, . . . , n}.
Then PM,F, σ = PM,F, η.

Proof. It suffices to show that PM,F, σ ⊆ PM,F, η, so let ~p ∈ PM,F, σ. To see that ~p ∈ PM,F, η,
let D be a piecewise syndetic subset of S0 and for i ∈ {1, 2, . . . , k}, let Bi ∈ pi. Pick

w ∈ Sn such that for all ~x ∈ An, h~x(w) ∈ D and M

 µσ(1)(w)
...

µσ(m)(w)

 ∈×k
i=1Bi.
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Define δ : {σ(1), σ(2), . . . , σ(m)} → {1, 2, . . . , n} by letting δ
(
σ(i)

)
= η(i) for i ∈

{1, 2, . . . ,m} and extend δ to a permutation of {1, 2, . . . , n}. Define w′ ∈ Sn by w′ =
w(vδ(1)vδ(2) · · · vδ(n)). Then for j ∈ {1, 2, . . . , n}, µj(w) = µδ(j)(w

′) so for i ∈ {1, 2, . . . ,m},
µσ(i)(w) = µδ(σ(i))(w

′) = µη(i)(w
′) and thus

M

 µη(1)(w
′)

...
µη(m)(w

′)

 = M

 µσ(1)(w)
...

µσ(m)(w)

 ∈×k
i=1Bi .

Now let ~x ∈ An be given and define ~z ∈ An by letting zi = xδ(i) for i ∈ {1, 2, . . . , n}.
Then h~x(w

′) = h~z(w) ∈ D.

If one lets C = (βN)k and defines φ on Sn by φ(w) = M

 µσ(1)(w)
...

µσ(m)(w)

, one may not

be able to invoke Theorem 34 to conclude that PM,F, σ is a semigroup because φ may not

take Sn to C. Consider, for example, M =

(
1
−1

)
.

Theorem 37. Let k,m, n ∈ N with m 6 n, let M be a k ×m matrix with entries from
Q, and let F be a finite nonempty set of S0-preserving homomorphisms from Sn to S0.
Let σ be an injection from {1, 2, . . . ,m} to {1, 2, . . . , n}. If PM,F, σ 6= ∅, then PM,F, σ is a
compact subsemigroup of (βN)k.

Proof. Assume that PM,F, σ 6= ∅. We begin by showing that PM,F, σ is compact. Let
~p = (p1, p2, . . . , pk) ∈ (βN)k \ PM,F, σ and pick piecewise syndetic D ⊆ S0 and Bi ∈ pi for
each i ∈ {1, 2, . . . , k} such that there is no w ∈ Sn with ν(w) ∈ D for all ν ∈ F and

M

 µσ(1)(w)
...

µσ(m)(w)

 ∈ ×k
i=1Bi; then ×k

i=1Bi is a neighborhood of ~p which misses PM,F, σ so

PM,F, σ is closed and hence compact.
To see that PM,F, σ is a semigroup, let ~p, ~q ∈ PM,F, σ. Let D be a piecewise syndetic

subset of S0 and for each i ∈ {1, 2, . . . , k}, let Bi ∈ pi + qi. By [6, Theorem 4.43], pick
s ∈ S0 such that s−1D is central in S0 and pick a minimal idempotent r ∈ βS0 such
that s−1D ∈ r. For each i ∈ {1, 2, . . . , k}, let Ci = {x ∈ N : −x + Bi ∈ qi} and note
that Ci ∈ pi. Then as (s−1D)? ∈ r, we deduce that (s−1D)? is central and hence in
particular piecewise syndetic. Since ~p ∈ PM,F, σ, pick w ∈ Sn such that ν(w) ∈ (s−1D)?

for all ν ∈ F and M

 µσ(1)(w)
...

µσ(m)(w)

 = ~z ∈ ×k
i=1Ci. Let G =

⋂
ν∈F ν(w)−1(s−1D)?. Then

G ∈ r so G is piecewise syndetic in S0. Also ~q ∈ PM,F, σ and for each i ∈ {1, 2, . . . , k},
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−zi + Bi ∈ qi so pick u ∈ Sn such that ν(u) ∈ G for each ν ∈ F and M

 µσ(1)(u)
...

µσ(m)(u)

 =

~y ∈×k
i=1(−zi +Bi).

Given ν ∈ F , ν(wu) = ν(w)ν(u) ∈ s−1D so ν(swu) = sν(wu) ∈ D. Finally

M

 µσ(1)(swu)
...

µσ(m)(swu)

 = M

 µσ(1)(wu)
...

µσ(m)(wu)

 = M

 µσ(1)(w) + µσ(1)(u)
...

µσ(m)(w) + µσ(m)(u)

 = ~z + ~y ∈

×k
i=1Bi.

Corollary 38. Let m,n ∈ N with m 6 n. Let M be an m ×m lower triangular matrix
with rational entries. Assume that the entries on the diagonal are positive and the entries
below the diagonal are negative or zero. Let F be a finite nonempty set of S0-preserving
homomorphisms from Sn to S0. Let σ be an injection from {1, 2, . . . ,m} to {1, 2, . . . , n}.
Then PM,F, σ is a compact subsemigroup of (βN)m containing the idempotents of (βN)m.

Proof. Let k = m. By Corollary 21, PM,F, σ contains the idempotents of (βN)k so in
particular PM,F, σ 6= ∅. The result now follows by Theorem 37.

Corollary 39. Let k,m, n ∈ N with m 6 n. Let M be a k×m matrix with rational entries
which is image partition regular over N. Let F be a finite nonempty set of S0-preserving
homomorphisms from Sn to S0. Let σ be an injection from {1, 2, . . . ,m} to {1, 2, . . . , n}.
Then PM,F, σ is a compact subsemigroup of (βN)k containing {(p, p, . . . , p) ∈ (βN)k : p is
a minimal idempotent of βN}.

Proof. By Corollary 23, PM,F, σ contains {(p, p, . . . , p) ∈ (βN)k : p is a minimal idempotent
of βN} so Theorem 37 applies.

If M =

(
1 1
1 2

)
and F is a finite nonempty set of S0-preserving homomorphisms

from Sn to S0, then by Corollary 39 we have that PM,F, σ contains {(p, p) : p is a minimal
idempotent of βN} but by Theorem 24, PM,F, σ does not contain {(p1, p2) : p1 and p2 are
minimal idempotents of βN}.

Given a finite coloring of a semigroup, at least one of the color classes must be piece-
wise syndetic, so results concluding that piecewise syndetic sets have a certain property
guarantee the corresponding conclusion for finite colorings. We see now a situation where
the conclusions are equivalent – a fact that has interesting consequences for piecewise
syndetic sets and for colorings.

The following result is analgous to a well know property of piecewise syndetic sets of
natural numbers. That is, a translation invariant family S of finite nonempty subsets of N
is partition regular if and only if every piecewise syndetic subset of N contains a member
of S.

Theorem 40. Let n ∈ N, let τ be an S0-independent homomorphism from Sn to N, and
let B ⊆ N. The following statements are equivalent.
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(a) Whenever S0 is finitely colored, there exists w ∈ Sn such that {w(~x) : x ∈ An} is
monochromatic and τ(w) ∈ B.

(b) Whenever D is a piecewise syndetic subset of S0, there exists w ∈ Sn such that
{w(~x) : ~x ∈ An} ⊆ D and τ(w) ∈ B.

Proof. It is trivial that (b) implies (a), so assume that (a) holds and let D be a piecewise
syndetic subset of S0. Note that for each r ∈ N, there is some m ∈ N such that whenever
the length m words in S0 are r-colored, there is some w ∈ Sn of length m such that
{w(~x) : ~x ∈ An} is monochromatic and τ(w) ∈ B. (If there is a bad r-coloring ϕm of the
length m words for each m then

⋃∞
m=1 ϕm is a bad r-coloring of S0.)

Since D is piecewise syndetic, pick finite nonempty G ⊆ S0 such that for every finite
nonempty subset H of S0 there exists s ∈ S0 with Hs ⊆

⋃
t∈G t

−1D. Let r = |G| and pick
m ∈ N such that whenever the length m words in S0 are r-colored, there is some w ∈ Sn
such that {w(~x) : ~x ∈ An} is monochromatic and τ(w) ∈ B. Let H be the set of length
m words in S0 and pick s ∈ S0 such that Hs ⊆

⋃
t∈G t

−1D. For u ∈ H pick ϕ(u) ∈ G
such that us ∈ ϕ(u)−1G. Pick w ∈ Sn of length m and t ∈ G such that for all ~x ∈ An,
ϕ
(
w(~x)

)
= t and τ(w) ∈ B. Let w′ = tws. Then for ~x ∈ An, w′(~x) = t

(
w(~x)

)
s ∈ D and

τ(w′) = τ(w) ∈ B.

If n = 1, the following corollary yields the statement in the second paragraph of the
abstract.

Corollary 41. Let n ∈ N, let τ be an S0-independent homomorphism from Sn onto N,
and let Q = {p ∈ βN : whenever S0 is finitely colored and B ∈ p, there exists w ∈ Sn
such that {w(~x) : ~x ∈ An} is monochromatic and τ(w) ∈ B}. Then Q is a compact
subsemigroup of βN containing all of the idempotents.

Proof. Let k = m = 1, let M = (1), and let F = {h~x : ~x ∈ An}. By Corollary
33, pick σ(1) ∈ {1, 2, . . . , n} such that τ = µσ(1). By Corollary 38, PM,F, σ is a compact
subsemigroup of βN containing all of the idempotents and by Theorem 40, Q = PM,F, σ.

Recall that a set of sets B is said to be partition regular if whenever F is a finite set
of sets and

⋃
F ∈ B, there exist A ∈ F and B ∈ B such that B ⊆ A.

Corollary 42. Let n ∈ N and let τ be an S0-independent homomorphism from Sn to N.
Let B = {B ⊆ N : whenever D is a piecewise syndetic subset of S0, there exists w ∈ Sn
such that {w(~x) : ~x ∈ An} ⊆ D and τ(w) ∈ B}. Then B is partition regular.

Proof. By Theorem 40, B = {B ⊆ N : whenever S0 is finitely colored, there exists w ∈ Sn
such that {w(~x) : x ∈ An} is monochromatic and τ(w) ∈ B}. It is routine to show that if
k ∈ N, Bi ⊆ N for each i ∈ {1, 2, . . . , k}, and

⋃k
i=1Bi has the property that whenever S0

is finitely colored, there exists w ∈ Sn such that {w(~x) : x ∈ An} is monochromatic and
τ(w) ∈

⋃k
i=1Bi, then some Bi ∈ B.

Since the intersection of any collection of compact semigroups having the finite inter-
section property is a compact semigroup, it follows that there exists a smallest compact
subsemigroup of (βN)k containing the idempotents of (βN)k.
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Question 43. Let k ∈ N, let M be the k × k identity matrix, and let σ be the identity
function on {1, 2, . . . , k}.

(a) If F = {h~x : ~x ∈ Ak}, is PM,F, σ the smallest compact subsemigroup of (βN)k

containing the idempotents of (βN)k?

(b) If not, does there exist a finite nonempty set F of S0-preserving homomorphisms
such that PM,F, σ is the smallest compact subsemigroup of (βN)k containing the
idempotents of (βN)k?

Question 44. Let k ∈ N and let M and N be k × k lower triangular matrices with
rational entries, positive diagonal entries, and nonpositive entries below the diagonal. Do
there exist a finite nonempty set F of S0-preserving homomorphisms from Sk to S0 and
a permutation σ of {1, 2, . . . , k} such that PM,F, σ 6= PN,F, σ?

Because of Question 43, we are interested in the smallest compact subsemigroup of
(βN)k containing the idempotents of (βN)k.

Given a compact right topological semigroup T , recall that we let E(T ) be the set of
idempotents in T and K(T ) is the smallest ideal of T . If I is a set and for each i ∈ I,
Ti is a compact right topological semigroup, then E(×i∈ITi) = ×i∈IE(Ti) because the
operation in×i∈ITi is coordinatewise. Also by [6, Theorem 2.23] K(×i∈ITi) =×i∈IK(Ti)
so that E

(
K(×i∈ITi)

)
=×i∈IE

(
K(Ti)

)
.

Definition 45. Let T be a compact right topological semigroup and let A ⊆ T . Then
JT (A) is the smallest compact subsemigroup of T containing A.

We next show that J(βN)k
(
E((βN)k)

)
=
(
JβN(E(βN))

)k
for k ∈ N and that a similar

result applies to the minimal idempotents. Notice that in general JT1×T2(A1 × A2) ⊆
JT1(A1)× JT2(A2). But equality need not always hold even in the case that T1 = T2 and
A1 = A2. For example, let A+ be the free semigroup on the alphabet A = {a, b}, and
T = βA+. Then, identifying the letters of A with the length one words so that A is
a subset of T , we have JT (A) × JT (A) = T × T while JT×T (A × A) = c`T×T{(u,w) ∈
A+ × A+ : |u| = |w|}.

Theorem 46. Let T1 and T2 be compact right topological semigroups and for i ∈ {1, 2}
let Ai be a nonempty subset of Ti with Ai ⊆ {ab : a, b ∈ Ai}. Then JT1×T2(A1 × A2) =
JT1(A1)× JT2(A2).

Proof. As JT1(A1) × JT2(A2) is a compact subsemigroup of T1 × T2 containing A1 × A2

we have immediately that JT1×T2(A1 × A2) ⊆ JT1(A1) × JT2(A2). So it remains to show
that JT1(A1) × JT2(A2) ⊆ JT1×T2(A1 × A2). Let Y = {q ∈ JT2(A2) : (p, q) ∈ JT1×T2(A1 ×
A2) for all p ∈ A1}. Then Y is compact and A2 ⊆ Y . Further, let q1, q2 ∈ Y and p ∈ A1,
and write p = p1p2 with p1, p2 ∈ A1. Then (p1, q1), (p2, q2) ∈ JT1×T2(A1 × A2) and hence
(p1, q1)(p2, q2) = (p, q1q2) ∈ JT1×T2(A1 × A2). Thus Y is a compact subsemigroup of
JT2(A2) containing A2 so Y = JT2(A2).
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Now let X = {x ∈ JT1(A1) : {x} × JT2(A2) ⊆ JT1×T2(A1 × A2)}. Then X is compact
and if p ∈ A1, then {p} × JT2(A2) = {p} × Y ⊆ JT1×T2(A1 × A2), so A1 ⊆ X. We next
claim that X is a semigroup. In fact, let x1, x2 ∈ X and set Z = {z ∈ JT2(A2) : (x1x2, z) ∈
JT1×T2(A1 × A2)}. Then Z is compact. Let q ∈ A2 and write q = q1q2 with q1, q2 ∈ A2.
Then (x1, q1), (x2, q2) ∈ JT1×T2(A1 × A2) and hence (x1x2, q) ∈ JT1×T2(A1 × A2). Thus Z
contains A2. Finally, let z1, z2 ∈ Z. Then since z1, z2 ∈ JT2(A2) and x1, x2 ∈ X we deduce
that (x1, z1), (x2, z2) ∈ JT1×T2(A1 ×A2) implying that (x1x2, z1z2) ∈ JT1×T2(A1 ×A2) and
hence z1z2 ∈ Z. Thus Z is a compact subsemigroup of JT2(A2) containing A2 and hence
Z = JT2(A2) from which it follows that x1x2 ∈ X. Having shown that X is compact
subsemigroup of JT1(A1) containing A1 we deduce that X = JT1(A1). In conclusion,
JT1(A1)× JT2(A2) = X × JT2(A2) ⊆ JT1×T2(A1 × A2) as required.

Notice in particular that if for i ∈ {1, 2}, Ai is a nonempty subset of E(Ti), then
Ai ⊆ {ab : a, b ∈ Ai}, so JT1×T2(A1 × A2) = JT1(A1)× JT2(A2).

Corollary 47. Let k ∈ N. The smallest compact subsemigroup of (βN)k containing the

idempotents of (βN)k is
(
JβN
(
E(βN)

))k
. The smallest compact subsemigroup of (βN)k

containing the minimal idempotents of (βN)k is
(
JβN
(
E(K(βN))

))k
.

Proof. By Theorem 46 and induction,

J(βN)k((E(βN))k) =
(
JβN
(
E(K(βN))

))k
and we already observed that the set of idempotents of (βN)k is

(
E(βN)

)k
. The second

conclusion is proved in the same way.

We note now that the version of Theorem 46 for infinite products is also valid.

Theorem 48. Let I be an infinite set. For each i ∈ I, let Ti be a compact right topological
semigroup and let Ai be a nonempty subset of Ti such that Ai ⊆ {ab : a, b ∈ Ai}. Then
J×i∈ITi(×i∈IAi) =×i∈IJTi(Ai).

Proof. Let Y = ×i∈ITi. For each i ∈ I, choose ei ∈ Ai. Given F ∈ Pf (I), let YF =
×i∈FTi, let ZF =×i∈I\FTi, let

XF = {~x ∈×i∈IJTi(Ai) : (∀i ∈ I \ F )(xi = ei)} ,
and let BF = {~x ∈×i∈IAi : (∀i ∈ I \ F )(xi = ei)}.

We shall show that for each F ∈ Pf (I), XF ⊆ JY (×i∈IAi). Let F ∈ Pf (I) be given.
Now XF is topologically and algebraically isomorphic to

×i∈FJTi(Ai)××i∈I\F{ei} ,
BF is topologically and algebraically isomorphic to ×i∈FAi××i∈I\F{ei}, and ×i∈I\F{ei}
⊆ JZF (×i∈I\F{ei}). So using Theorem 46 we have

XF ≈×i∈FJTi(Ai)××i∈I\F{ei}
⊆ JYF (×i∈FAi)× JZF (×i∈I\F{ei})
= JYF×ZF (×i∈FAi ××i∈I\F{ei})
≈ JY (BF )
⊆ JY (×i∈IAi) .
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Next we claim that ×i∈IJTi(Ai) ⊆ c`Y
⋃
F∈Pf (I)XF . To see this, let ~z ∈ ×i∈IJTi(Ai)

and let U be a neighborhood of ~z in Y . Pick F ∈ Pf (I) and for each i ∈ F , pick
a neighborhood Vi of zi in Ti such that

⋂
i∈F π

−1
i [Vi] ⊆ U . Define ~x ∈ Y by xi ={

zi if i ∈ F
ei if i ∈ I \ F . Then ~x ∈ U ∩ XF . Therefore ×i∈IJTi(Ai) ⊆ JY (×i∈IAi). Since

×i∈IJTi(Ai) is a compact semigroup containing×i∈IAi, the reverse inclusion is immediate.

The curious reader may wonder what the situation is with respect to the smallest
semigroup containing a given set. Given a semigroup T and a nonempty subset A of T , let
J ′T (A) be the smallest subsemigroup of T containing A, that is the set of all finite products
of members of A in any order allowing repetition. If T1 and T2 are any semigroups and
A1 and A2 are nonempty subsets of T1 and T2 respectively such that Ai ⊆ {ab : a, b ∈ Ai}
for i ∈ {1, 2}, then J ′T1×T2(A1 × A2) = J ′T1(A1)× J ′T2(A2). This follows from the proof of
Theorem 46 by omitting all references to the topology.

However, the analogue of Theorem 48 need not hold. To see this, let T be the set
of words over the alphabet {an : n ∈ N} that have no adjacent occurrences of the same
letter. Given u,w ∈ T , then let u · w be ordinary concatenation unless u = xan and
w = any for some n ∈ N and some x, y ∈ T ∪ {∅}, in which case u · w = xany. Let A be
the set of idempotents in T , that is A is the set of length one words. Then J ′T (A) = T but
{~x ∈ ×∞n=1T : {|xn| : n ∈ N} is bounded} is a proper subsemigroup of ×∞n=1T containing
the idempotents.

5 Compact ideals of (βS)k

In this section we deal with results related to the Hales-Jewett Theorem and its extensions.
The first result here is motivated by the following known result that characterizes image
partition regular matrices.

Theorem 49. Let k,m ∈ N and let M be a k × m matrix with entries from Q. The
following statements are equivalent.

(a) M is image partition regular over N.

(b) For every central subset D of N, there exists ~x ∈ Nm such that M~x ∈ Dk.

(c) For every central subset D of N, {~x ∈ Nm : M~x ∈ Dk} is central in Nm.

Proof. These are statements (a), (h), and (i) of [6, Theorem 15.24].

We now investigate ideals related to the extensions of the Hales-Jewett Theorem.

Definition 50. For n ∈ N,

Rn = {p ∈ βS0 : (∀B ∈ p)(∃w ∈ Sn)({w(~x) : ~x ∈ An} ⊆ B)} .
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There are numerous ways to use known results to show that each Rn 6= ∅. From the
point of view of this paper, probably the easiest way is to invoke Theorem 17 as discussed
above.

Theorem 51. Let n ∈ N. Then Rn is a compact two sided ideal of βS0.

Proof. We have that Rn 6= ∅ and it is trivially compact. Let p ∈ Rn and let q ∈ βS0. To
see that Rn is a left ideal, let B ∈ qp. Pick u ∈ S0 such that u−1B ∈ p and pick w ∈ Sn
such that {w(~x) : ~x ∈ An} ⊆ u−1B. Then uw ∈ Sn and {(uw)(~x) : ~x ∈ An} ⊆ B.

To see that Rn is a right ideal, let B ∈ pq. Pick w ∈ Sn such that {w(~x) : ~x ∈ An} ⊆
{u ∈ S0 : u−1B ∈ q}. Pick u ∈

⋂
~x∈An w(~x)−1B. Then wu ∈ Sn and {(wu)(~x) : ~x ∈ An} ⊆

B.

Theorem 52. Let n ∈ N. Then Rn+1 ⊆ Rn.

Proof. Let p ∈ Rn+1 and let B ∈ p. Pick w ∈ Sn+1 such that {w(~x) : ~x ∈ An+1} ⊆ B. De-
fine u ∈ Sn by u = w(v1, v2, . . . , vn, vn). Then given ~x ∈ An, u(~x) = w(x1, x2, . . . , xn, xn) ∈
B.

Lemma 53. For each r, n ∈ N there exists m ∈ N such that for all k > m, if S
(k

0

)
is

r-colored, then there exists w ∈ S
(k
n

)
such that {w(~x) : ~x ∈ An} is monochromatic.

Proof. Let r, n ∈ N. By Theorem 3, whenever S0 is r-colored, there exists w ∈ Sn such
that {w(~x) : ~x ∈ An} is monochromatic. As in the proof of Theorem 40, pick m ∈ N such

that whenever S
(m

0

)
is r-colored, there exists w ∈ S

(m
n

)
such that {w(~x) : ~x ∈ An}

is monochromatic. Let k > m and pick c ∈ A. Let ϕ : S
(k

0

)
→ {1, 2, . . . , r} and

define ψ : S
(m

0

)
→ {1, 2, . . . , r} by ψ(u) = ϕ(uck−m). Pick w ∈ S

(m
n

)
such that ψ is

constant on {w(~x) : ~x ∈ An}. Define u ∈ S
(k
n

)
by u = wck−m. Then ϕ is constant on

{u(~x) : ~x ∈ An}.

Theorem 54. c`K(βS0) (
⋂∞
n=1Rn.

Proof. That c`K(βS0) ⊆
⋂∞
n=1Rn is an immediate consequence of Theorem 51.

Let B =
⋃∞
k=1 S

(k!
0

)
. We claim first that B is not piecewise syndetic, so that B ∩

c`K(βS0) = ∅. We need to show that there is no G ∈ Pf (S0) such that for all F ∈ Pf (S0)
there exists x ∈ S0 such that Fx ⊆

⋃
t∈G t

−1B. Suppose we have such G and let m =
max{|t| : t ∈ G}, let r = m!, pick b ∈ A, and let F = {br, b2r}. Pick t, s ∈ G and x ∈ S0

such that tbrx ∈ B and sb2rx ∈ B. Then |tbrx| = n! for some n > m and |sb2rx| = k! for
some k. Now k! = |sb2rx| = |sbr|+n!−|t| > n! so k! > (n+1)! so |sbr|+n!−|t| > (n+1)!.
Thus n · n! = (n+ 1)!− n! < |sbr| = |s|+ r 6 m+m! < n+ n!, a contradiction.
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Now let n ∈ N. We will show that B ∩ Rn 6= ∅. Let R = {D ⊆ S0 : whenever D is
finitely colored, there exists w ∈ Sn such that {w(~x) : ~x ∈ An} is monochromatic}. Notice
that R is partition regular. It suffices to show that B ∈ R, for then by [6, Theorem 3.11]
there exists p ∈ βS0 such that B ∈ p and p ⊆ R so that p ∈ B ∩ Rn. So let r ∈ N and
let ϕ : B → {1, 2, . . . , r}. Pick m as guaranteed by Lemma 53 for r and n. The ϕ is an

r-coloring of S
(m!

0

)
so pick w ∈ S

(m!
n

)
such that {w(~x) : ~x ∈ An} is monochromatic.

Since {B∩Rn : n ∈ N} is a collection of closed sets with the finite intersection property,
we have that B ∩

⋂∞
n=1Rn 6= ∅.

We will need the following result.

Theorem 55 (Deuber, Prömel, Rothschild, and Voigt). Let n, r ∈ N. There exist m ∈ N

and Cn,r ⊆ S
(m

0

)
such that

(1) there does not exist w ∈ S
( m
n+ 1

)
with {w(~x) : ~x ∈ An+1} ⊆ Cn,r and

(2) whenever Cn,r is r-colored, there exists w ∈ S
(m
n

)
such that {w(~x) : ~x ∈ An} is

monochromatic.

Proof. This is the “main theorem” of [3].

Theorem 56. Let n ∈ N. Then Rn+1 ( Rn.

Proof. For each r ∈ N pick m(r) and Cn,r as guaranteed for r and n by Theorem 55.
Choose an increasing sequence 〈ri〉∞i=1 such that the sequence 〈m(ri)〉∞i=1 is strictly in-
creasing and let Di = Cn,ri for each i. Let E =

⋃∞
i=1Di. There does not exist w ∈ Sn+1

such that {w(~x) : ~x ∈ An+1} ⊆ E because any such w would have to have length m(ri)
for some i, and then one would have {w(~x) : ~x ∈ An+1} ⊆ Cn,ri . Thus E ∩Rn+1 = ∅.

As in the proof of Theorem 54, let R = {D ⊆ S0 : whenever D is finitely colored,
there exists w ∈ Sn such that {w(~x) : ~x ∈ An} is monochromatic}. It suffices to show
that E ∈ R so let k ∈ N and let ϕ : E → {1, 2, . . . , k}. Pick i such that ri > k. Then

ϕ|Di : Di → {1, 2, . . . , ri} so pick w ∈ S
(m(ri)

n

)
such that ϕ is constant on {w(~x) : ~x ∈

An}.

6 A simpler proof of an infinitary extension

We set out in this section to provide a proof of [2, Theorem 2.12] applied to the simpler
description of n-variable words which we have been using. As defined in this paper, what
is called the set of n-variable words in [2], is what we call the set of strong n-variable
words where we take D = E = {e} in [2], take the function Te to be the identity, and
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let vn = (e, νn) for n ∈ N. As we remarked earlier, in [2, Theorem 5.1] it was shown
that the version of the Graham-Rothschild that we are using here is sufficient to derive
the full original version as used in [2] and [4]. Using that simplified notion, Corollary 69
implies [2, Theorem 2.12] and has a vastly simpler proof. Because of the different, and
more complicated, notation used in [2], we don’t feel that it is appropriate to state [2,
Theorem 2.12] here. It reads essentially like Corollary 69 below.

The first few results apply to an arbitrary nonempty alphabet A. For the results of
this section, except for Corollary 70, we do not need to assume that A is finite.

Definition 57. For n ∈ N, Tn is the free semigroup over A∪{v1, v2, . . . , vn}. Also we set
T0 = S0 and T =

⋃
i∈ω Ti.

Clearly T is a semigroup. Note that for n ∈ N, the set Sn of n-variable words is a
proper subset of Tn and that Tn ⊆ Tn+1.

For u = l1l2 · · · lm ∈ T with |u| = m we define hu : T → T by stating that hu(w) is the
result of replacing each occurrence of vi in w by li for i ∈ {1, 2, . . . ,m}. (Thus, if w ∈ Sm,
hu(w) = w(u) as defined in Definition 2.) Denote also by hu the continuous extension of

hu taking βT to βT . Observe that, if u ∈ S̃
(m
k

)
, then hu[Tm] ⊆ Tk.

Definition 58. For α ∈ N ∪ {ω}, a reductive sequence of height α over A is a sequence
of minimal idempotents 〈pt〉t<α with pt ∈ E

(
K(βSt)

)
such that for each i, j ∈ ω with

0 6 j < i < α one has pi 6 pj and hu(pi) = pj for each u ∈ S̃
( i
j

)
.

It is a consequence of Corollary 68 below that reductive sequences of arbitrary height
exist.

Lemma 59. Let i ∈ ω. Then K(βSi) = K(βTi).

Proof. We have that Si is an ideal of Ti so by [6, Corollary 4.18] βSi is an ideal of βTi.
Therefore K(βTi) ⊆ βSi so that by [6, Theorem 1.65] K(βSi) = K(βTi).

Lemma 60. Let k,m ∈ ω with k < m and let p ∈ E(βSk). There exists q ∈ E
(
K(βSm)

)
such that q < p.

Proof. We have βSm ∪ βSk ⊆ βTm. Pick q ∈ E
(
K(βTm)

)
such that q 6 p. By Lemma

59, q ∈ K(βSm) and since βSk ∩ βSm = ∅, q 6= p.

Lemma 61. Let α ∈ N ∪ {ω} and let 〈pt〉t<α be a reductive sequence of height α. For

each t < α, pt ∈ E
(
K(βS̃t)

)
.

Proof. Since each pt is an idempotent, it suffices to show that pt ∈ K(βS̃t). Given t < α,

S̃t is a right ideal of St so βS̃t is a right ideal of βSt and thus K(βS̃t)∩K(βSt) 6= ∅ so that

by [6, Theorem 1.65], K(βS̃t) = βS̃t∩K(βSt). Thus it suffices to show that each pt ∈ βS̃t.
We proceed by induction on t. For t = 0, we have p0 ∈ βS0 = βS̃0. Now assume that
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t+ 1 < α and pt ∈ βS̃t. We need to show that S̃t+1 ∈ pt+1. We begin by observing that if
w ∈ S̃t then St+1 ⊆ w−1S̃t+1 from which it follows that S̃t ⊆ {w ∈ Tt+1 : w−1S̃t+1 ∈ pt+1}.
Now since S̃t ∈ pt we have that {w ∈ Tt+1 : w−1S̃t+1 ∈ pt+1} ∈ pt or equivalently that

S̃t+1 ∈ ptpt+1. The result now follows from the fact that pt+1 6 pt and hence in particular
pt+1 = ptpt+1.

We now introduce some new notation. We fix a nonempty (possibly infinite) alphabet
A together with an infinite sequence of symbols {x1, x2, x3, . . .} each of which is not a
member of A ∪ {vi : i ∈ N}. We let A(0) = A and for m ∈ N, we let A(m) = A ∪
{x1, x2, . . . , xm}. For each m ∈ ω we let S(m) denote the free semigroup over A(m). For

each i ∈ N we let S
(m)
i denote the set of all i-variable words over the alphabet A(m) and

let S̃
(m)
i denote the set of all strong i-variable words over A(m). T

(j)
i will denote the free

semigroup of all words over the alphabet A(j) ∪ {v1, v2, . . . , vi}. Also, for each j ∈ ω, let

S
(j)
0 = S̃

(j)
0 = T

(j)
0 = S(j), and let T (j) =

⋃∞
i=1 T

(j)
i . Then T (j) is the set of all words over

A(j) ∪ {vi : i ∈ N}.
To each u = u1u2 · · ·um ∈ T (j) with |u| = m we associate a morphism hu :

⋃
j∈ω T

(j) →⋃
j∈ω T

(j) where for each w ∈
⋃
j∈ω T

(j), hu(w) is obtained from w by replacing each
occurrence of vi in w by ui for each i ∈ {1, 2, . . . ,m}. We also denote by hu its continuous
extension taking β(

⋃
j∈ω T

(j)) to β(
⋃
j∈ω T

(j)). Also, for each i, j ∈ N we define the

morphism, τ
(j)
i : T (j) → T (j−1) where τ

(j)
i (w) is the word obtained from w by replacing

every occurrence of xj by vi and leaving all other symbols unchanged. We also denote

by τ
(j)
i the continuous extension of τ

(j)
i taking βT (j) to βT (j−1). Note that τ

(j)
i [T

(j)
i−1] =

T
(j−1)
i and the restriction of τ

(j)
i to T

(j)
i−1 is an isomorphism onto T

(j−1)
i . Consequently the

restriction of τ
(j)
i to βT

(j)
i−1 is an isomorphism onto βT

(j−1)
i .

Lemma 62. Let m ∈ ω, let i ∈ N \ {1}, and assume that p
(m)
i−1 ∈ βS

(m)
i−1 and p

(m+1)
i−1 ∈

K(βS
(m+1)
i−1 ). Then

G
(m)
i = p

(m)
i−1τ

(m+1)
i (p

(m+1)
i−1 )βS

(m)
i ∩ βS(m)

i τ
(m+1)
i (p

(m+1)
i−1 )p

(m)
i−1

is a group contained in K(βS
(m)
i ).

Proof. We will show that G
(m)
i is the intersection of a minimal right ideal and a minimal

left ideal of βS
(m)
i and hence by [6, Theorem 1.61], G

(m)
i is a group contained in K(βS

(m)
i ).

Notice first that βS
(m)
i−1 ∪ βS

(m)
i ⊆ βT

(m)
i so that the products p

(m)
i−1τ

(m+1)
i (p

(m+1)
i−1 ) and

τ
(m+1)
i (p

(m+1)
i−1 )p

(m)
i−1 are computed in βT

(m)
i .

Since τ
(m+1)
i is an isomorphism on βT

(m+1)
i−1 , we have τ

(m+1)
i [K(βT

(m+1)
i−1 )]

= K(βT
(m)
i ). Since p

(m+1)
i−1 ∈ K(βS

(m+1)
i−1 ) and K(βS

(m+1)
i−1 ) = K(βT

(m+1)
i−1 ) (by Lemma

59 with the underlying alphabet taken to be A(m+1)), it follows that τ
(m+1)
i (p

(m+1)
i−1 ) ∈

K(βT
(m)
i ). Since p

(m)
i−1 ∈ βT

(m)
i−1 ⊆ βT

(m)
i , we have that p

(m)
i−1τ

(m+1)
i (p

(m+1)
i−1 ) ∈ K(βT

(m)
i ) =

K(βS
(m)
i ) so that p

(m)
i−1τ

(m+1)
i (p

(m+1)
i−1 )βS

(m)
i is a minimal right ideal of βS

(m)
i . Similarly

βS
(m)
i τ

(m+1)
i (p

(m+1)
i−1 )p

(m)
i−1 is a minimal left ideal of βS

(m)
i .
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Definition 63. For α ∈ N ∪ {ω}, a reductive array of height α over A is an α× ω array

of minimal idempotents 〈p(m)
i 〉m<ωi<α with p

(m)
i ∈ E

(
K(βS

(m)
i )

)
satisfying the following

conditions:

1. For each m ∈ ω the sequence 〈p(m)
i 〉i<α is a reductive sequence of height α over A(m).

2. τ
(m)
1 (p

(m)
0 ) = p

(m−1)
1 for each m ∈ N.

3. For each m ∈ ω and i < α with i > 2, p
(m)
i is the identity of the group

G
(m)
i = p

(m)
i−1τ

(m+1)
i (p

(m+1)
i−1 )βS

(m)
i ∩ βS(m)

i τ
(m+1)
i (p

(m+1)
i−1 )p

(m)
i−1 .

Definition 64. Let i, j,m ∈ ω, with j < i. X
(m)
i,j will denote the set of words in S̃(m)

( i
j

)
in which vj occurs only as the last letter.

Lemma 65. Let m,n ∈ N and let ~p = 〈p0, p1, p2, . . . , pn〉 be a reductive sequence of height

n + 1 over A(m). Let pn+1 be a minimal idempotent in βS
(m)
n+1 for which pn+1 6 pn. Let

j ∈ ω with j 6 n and let u = u1u2 · · ·un+1 ∈ S̃(m)
(n+ 1

j

)
.

(1) If u /∈ X(m)
n+1,j, then hu(pn+1) = pj.

(2) If u ∈ X(m)
n+1,j, then for w ∈ T (m+1)

n , hu
(
τ
(m+1)
n+1 (w)

)
= τ

(m+1)
j

(
hu(w)

)
.

Proof. (1) Assume u /∈ X(m)
n+1,j. We have that hu(pn+1) and hu(pn) are both idempotents in

βS
(m)
j and hu(pn+1) 6 hu(pn) because hu is a homomorphism. Assume first that j < n and

let s = u1u2 · · ·un. Then s ∈ S̃(m)
(n
j

)
so hs(pn) = pj and since hs and hu agree on S

(m)
n ,

hu(pn) = pj. If j = n, then u = v1v2 · · · vnun+1 so hu is the identity on S
(m)
n and again

hu(pn) = pj. Consequently, hu(pn+1) 6 pj and pj is minimal in βS
(m)
j so hu(pn+1) = pj.

(2) It suffices to show that hu
(
τ
(m+1)
n+1 (l)

)
= τ

(m+1)
j

(
hu(l)

)
for each l ∈ A(m+1) ∪

{v1, v2, . . . , vn}. Now hu
(
τ
(m+1)
n+1 (xm+1)

)
= hu(vn+1) = un+1 = vj and τ

(m+1)
j

(
hu(xm+1)

)
=

τ
(m+1)
j (xm+1) = vj. If l ∈ A(m), then both sides leave l fixed. Finally if i ∈ {1, 2, . . . , n},

then hu
(
τ
(m+1)
n+1 (vi)

)
= hu(vi) = ui and τ

(m+1)
j

(
hu(vi)

)
= τ

(m+1)
n+1 (ui) = ui because ui 6=

xm+1.

Lemma 66. Let q ∈ E
(
K(βS0)

)
and let r ∈ E

(
K(βS1)

)
such that r < q. There is a

reductive array 〈p(m)
i 〉m<ωi<2 of height 2 over A such that p

(0)
0 = q and p

(0)
1 = r.

Proof. Let p
(0)
0 = q and p

(0)
1 = r. Let m ∈ N and assume that we have chosen 〈p(t)i 〉t<mi<2

such that for each t < m and each i ∈ {0, 1}, p(t)i ∈ E
(
K(βS

(t)
i )
)

and p
(t)
1 < p

(t)
0 . By

Lemma 59, p
(m−1)
1 ∈ K(βT

(m−1)
1 ). Since τ

(m)
1 is an isomorphism from βT

(m)
0 onto βT

(m−1)
1 ,
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we may let p
(m)
0 be the unique member of E

(
K(βT

(m)
0 )

)
such that τ

(m)
1 (p

(m)
0 ) = p

(m−1)
1 .

By Lemma 60, we may pick p
(m)
1 ∈ E

(
K(βS

(m)
1 )

)
such that p

(m)
1 < p

(m)
0 .

We need to show that for each u ∈ S̃(m)
(1

0

)
, hu(p

(m)
1 ) = p

(m)
0 so let u ∈ S̃(m)

(1
0

)
. Now

p
(m)
0 and p

(m)
1 are in βT

(m)
1 , p

(m)
1 6 p

(m)
0 , and hu is a homomorphism so hu(p

(m)
1 ) 6 hu(p

(m)
0 ).

Since hu is the identity on βT
(m)
0 , hu(p

(m)
0 ) = p

(m)
0 so hu(p

(m)
1 ) 6 p

(m)
0 . Since p

(m)
0 is minimal

in βT
(m)
0 , hu(p

(m)
1 ) = p

(m)
0 as required.

Theorem 67. Let n ∈ N and assume that 〈p(m)
i 〉m<ωi<n+1 is a reductive array of height n+ 1

over A. There exist unique p
(m)
n+1 for each m < ω such that 〈p(m)

i 〉m<ωi<n+2 is a reductive array
of height n+ 2 over A.

Proof. For each m < ω, let p
(m)
n+1 be the identity of the group G

(m)
n+1. This is required by

Definition 63(3), so the uniqueness is satisfied. Let m < ω be given. We need to show

that 〈p(m)
i 〉i<n+2 is a reductive sequence over A(m). Since G

(m)
n+1 ⊆ p

(m)
n βS

(m)
n+1 ∩ βS

(m)
n+1p

(m)
n

we have that p
(m)
n+1 6 p

(m)
n . And by Lemma 62 we have that p

(m)
n+1 ∈ E

(
K(βS

(m)
n+1)

)
.

Now let 0 6 j < i < n+2 and let u ∈ S̃(m)
( i
j

)
. We need to show that hu(p

(m)
i ) = p

(m)
j .

If i < n+ 1, this holds by assumption, so assume that i = n+ 1 so that u ∈ S̃(m)
(n+ 1

j

)
.

If j = 0, then hu is the identity on βS
(m)
0 so hu(p

(m)
n+1) 6 hu(p

(m)
0 ) = p

(m)
0 and hu(p

(m)
n+1) ∈

βS
(m)
0 so hu(p

(m)
n+1) = p

(m)
0 . So assume that j > 1. If u /∈ X

(m)
n+1,j, then by Lemma 65,

hu(p
(m)
n+1) = p

(m)
j .

So we assume that u = u1u2 · · ·un+1 ∈ X
(m)
n+1,j and let s = u1u2 · · ·un. Then we

have that s ∈ S̃(m)
( n
j − 1

)
⊆ S̃(m+1)

( n
j − 1

)
and hence hu(p

(m)
n ) = hs(p

(m)
n ) = p

(m)
j−1 and

hu(p
(m+1)
n ) = hs(p

(m+1)
n ) = p

(m+1)
j−1 .

Combined with Lemma 65, we have that

hu
(
τ
(m+1)
n+1 (p(m+1)

n )
)

= τ
(m+1)
j

(
hu(p

(m+1)
n )

)
= τ

(m+1)
j

(
p
(m+1)
j−1

)
.

So as p
(m)
n+1 ∈ G

(m)
n+1 = p

(m)
n τ

(m+1)
n+1 (p

(m+1)
n )βS

(m)
n+1 ∩ βS

(m)
n+1τ

(m+1)
n+1 (p

(m+1)
n )p

(m)
n we deduce that

hu(p
(m)
n+1) ∈ p

(m)
j−1τ

(m+1)
j (p

(m+1)
j−1 )βS

(m)
j ∩ βS(m)

j τ
(m+1)
j (p

(m+1)
j−1 )p

(m)
j−1 . If j > 2, this says that

hu(p
(m)
n+1) is an idempotent in G

(m)
j and p

(m)
j is the identity of G

(m)
j so hu(p

(m)
n+1) = p

(m)
j as

required.
Finally, assume that j = 1. Then

hu(p
(m)
n+1) ∈ p

(m)
0 τ

(m+1)
1 (p

(m+1)
0 )βS

(m)
1 ∩ βS(m)

1 τ
(m+1)
1 (p

(m+1)
0 )p

(m)
0

= p
(m)
0 p

(m)
1 βS

(m)
1 ∩ βS(m)

1 p
(m)
1 p

(m)
0

= p
(m)
1 βS

(m)
1 ∩ βS(m)

1 p
(m)
1 .

Since p
(m)
1 is minimal in βS

(m)
1 , p

(m)
1 βS

(m)
1 ∩ βS(m)

1 p
(m)
1 is a group with identity p

(m)
1 , so

hu(p
(m)
n+1) = p

(m)
1 .
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Combining Lemma 66 and Theorem 67 we obtain:

Corollary 68. For each p ∈ E
(
K(βS0)

)
there is a reductive array 〈p(m)

i 〉m<ωi<ω of height ω

such that p
(0)
0 = p. Morever p

(0)
1 may be taken to be any minimal idempotent of βS1 such

that p
(0)
1 6 p.

Corollary 69. Let p be a minimal idempotent in βS0. There is a sequence 〈pn〉∞n=0 such
that

(1) p0 = p ;

(2) for each n ∈ N, pn is a minimal idempotent of βS̃n;

(3) for each n ∈ N, pn 6 pn−1;

(4) for each n ∈ N, each j ∈ {0, 1, . . . , n− 1}, and each u ∈ S̃
(n
j

)
, hu(pn) = pj.

Further, p1 can be any minimal idempotent of βS1 such that p1 6 p0.

Proof. Let 〈p(m)
i 〉m<ωi<ω be as guaranteed by Corollary 68 and for each i < ω let pi = p

(0)
i .

By Lemma 61 each pn ∈ E
(
K(βS̃n)

)
.

For several stronger combinatorial consequences of Corollary 69, see Sections 3 and 4
of [2].

To derive the following extension of Theorem 4, we need to restrict to a finite alphabet.

Corollary 70. Assume that A is finite and for each m < ω, let ϕm be a finite coloring
of S̃m. For each m < ω, there exists a central subset Cm of S̃m such that

(1) ϕm is constant on Cm and

(2) whenever n ∈ N, the set of all w ∈ S̃n such that for each m < n,

{w(u) : u ∈ S̃
( n
m

)
} ⊆ Cm is central in S̃n

Proof. Pick 〈pm〉m<ω as guaranteed by Corollary 69 and for each m < ω pick Cm ∈ pm
with Cm ⊆ S̃m such that ϕm is constant on Cm. Let n ∈ N be given. For each m < n

and each u ∈ S̃
( n
m

)
, hu(pn) = pm. Let D =

⋂
m<n

⋂
(h−1u [Cm] : u ∈ S̃

( n
m

)
). Then

D ∈ pn.
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