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Abstract

We determine the exact value of the biclique covering number for all grid graphs.

Mathematics Subject Classifications: 05C70

1 Introduction

Let G be a graph. A biclique of G is a complete bipartite subgraph. The biclique covering
number of G, denoted bc(G), is the minimum number of bicliques of G required to cover
the edges of G. The biclique covering number is studied in fields as diverse as polyhedral
combinatorics [10, 2], biology [11], and communication complexity [12], where it is also
known as bipartite dimension or rectangle covering number.

Computing the biclique covering number is a classic NP-hard problem. Indeed, decid-
ing if bc(G) 6 k appears as problem GT18 in Garey and Johnson [7]. It is also NP-hard
to approximate within a factor of n1−ε, where n is the number of vertices of G (see [4]).

As such, there are very few classes of graphs for which we know the biclique covering
number exactly. For example, it is well-known that the biclique covering number of the
complete graph Kn is dlog2 ne (see [5] for a proof). Note that the minimum number of
bicliques that partition E(Kn) is n−1 by the Graham-Pollak theorem [9]. This result was
later extended to biclique coverings C of Kn such that each edge is in at most k bicliques
of C. Alon [1] showed that the minimum number of bicliques in such coverings is Θ(kn1/k).

Two more classes of graphs for which we know the biclique covering number exactly
are K−2n and K−n,n, which are the graphs obtained from K2n and Kn,n by deleting the edges
of a perfect matching. The biclique covering number of K−2n is dlog2 ne (see [13]) and the
biclique covering number of K−n,n is the smallest k for which n 6

(
k
bk/2c

)
(see [6, 3]).
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In this paper, we determine the biclique covering number for all grids. Let Gp,q be the
p × q grid. Recall that Gp,q has vertex set [q] × [p], where (a, b) is adjacent to (a′, b′) if
and only if |a− a′|+ |b− b′| = 1. The following is our main result.

Theorem 1. For all integers 1 6 p 6 q,

bc(Gp,q) =


pq
2
− 1, if p is even and q − 1 = k(p− 1) + 2` for some integers 0 6 ` < k;⌊

pq
2

⌋
, otherwise.

Since Gp,q ' Gq,p, our main result determines the biclique covering number of all grid
graphs. This settles an open problem raised by Denis Cornaz at the 9th Cargèse Workshop
on Combinatorial Optimization in 2018. Note that for p even and q > p(p−1), Theorem 1
implies that bc(Gp,q) = pq/2− 1.

2 Main result

Since we are only interested in biclique covers of minimum size, we may assume that
biclique covers only consist of maximal bicliques (under edge inclusion). For brevity,
we call such biclique covers simply covers. For Gp,q, this implies that covers consist of
elements which are isomorphic to K1,3, K1,4, or the 4-cycle. We first establish the following
upper bound.

Lemma 2. For all integers 1 6 p 6 q, bc(Gp,q) 6 bpq/2c.

Proof. Observe that Gp,q is a bipartite graph with bipartition (X, Y ) where |X| = bpq/2c
and |Y | = dpq/2e. Therefore taking the set of stars centered at vertices in X gives a cover
of size bpq/2c. See Figure 1.

Figure 1: The stars centered at black vertices are a cover.

We now establish the following lower bounds.

Lemma 3. For all integers 1 6 p 6 q,⌊
pq/2
⌋
6 bc(Gp,q), if p is odd.

pq/2− 1 6 bc(Gp,q), if p is even.
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Proof. Let 1 6 p 6 q. We define a special subset S(Gp,q) of edges of Gp,q inductively as
follows. If p ∈ {1, 2}, we let S(Gp,q) be the set of all horizontal edges of Gp,q. If p > 3,
let Out be the outer cycle of Gp,q and define S(Gp,q) = E(Out) ∪ S(Gp,q − V (Out)). See
Figure 2a and Figure 2b. An easy induction gives

(i) |S(Gp,q)| = pq − 1, if p is odd.

(ii) |S(Gp,q)| = pq − 2, if p is even.

(a) S(Gp,q) for p even. (b) S(Gp,q) for p odd.

Figure 2

On the other hand, every biclique of Gp,q contains at most 2 edges of S(Gp,q). Therefore,
bc(Gp,q) > d|S(Gp,q)|/2e, which completes the proof.

Next, we give values of p and q for which bc(Gp,q) = bpq/2c − 1.

Lemma 4. bc(Gp,q) = pq/2 − 1 if p is even and q − 1 = k(p − 1) + 2` for some integers
0 6 ` < k.

Proof. By Lemma 3, it suffices to construct a cover C of size pq/2 − 1. Since q − 1 =
k(p− 1) + 2` for some integers 0 6 ` < k, we can decompose Gp,q as k copies of Gp,p and
` copies of Gp,3 such that each of the ` copies of Gp,3 is between two copies of Gp,p. Since
p is even, Gp,p has two covers of size p2/2− 1, whose set of 4-cycles are the 4-cycles of the
two diagonals of Gp,p, respectively. See Figure 3 for the case p = 6.

The cover C is constructed as follows. For every two consecutive copies of Gp,p, we use
one cover from Figure 3 on one copy and the other cover from Figure 3 on the other copy.
Note that this results in p/2− 1 bicliques that are in both copies. For every copy of Gp,3

between two copies of Gp,p we again use the two covers of size p2/2−1 on the two copies of
Gp,p, and then we use p/2 + 1 bicliques in Gp,3 to cover the remaining edges, see Figure 4.
The total construction when p = 6 and q = 25 is given in Figure 5. Observe that:

|C| = k
(p2

2
−1
)

+ `
(p

2
+ 1
)
− (k− `−1)

(p
2
−1
)

=
p

2

(
k(p−1) +2`+1

)
−1 =

pq

2
−1 .

We now establish that we may choose a cover with special properties, before completing
the proof of the main theorem. Recall that Out is the outer cycle of Gp,q. Let C be a
cover of Gp,q. A boundary element of C is an element of C containing at least one edge of
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(a) (b)

Figure 3: Two covers of G6,6 of size 17.

G8,8 G8,3 G8,8

Figure 4: Cover of G8,17 of size 67.

G6,6 G6,3G6,6G6,3 G6,6 G6,6

Figure 5: Cover of G6,25 of size 74.

Out. A boundary 4-cycle is a boundary element that is a 4-cycle and a boundary star is
a boundary element that is a star.

Lemma 5. For every cover of Gp,q, there exists a cover C of the same size with the following
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properties:

(i) all boundary stars of C are pairwise edge-disjoint;

(ii) no edge is contained in both a boundary 4-cycle and a boundary star of C.

Proof. If two boundary stars meet in an edge, we replace them with a star and a 4-cycle
which cover a superset of edges, as in Figure 6. If a boundary 4-cycle and a boundary
star are not edge-disjoint, then we replace them with two 4-cycles which cover a superset
of edges, as in Figure 7.

(a) (b)

Figure 6

(a) (b)

Figure 7

By repeatedly performing these two replacement rules, we eventually obtain a cover
C satisfying (i) and (ii).

We now complete the proof of Theorem 1 by establishing the following converse to
Lemma 4.

Lemma 6. Let 1 6 p 6 q, with p even. If Gp,q has a cover of size pq/2 − 1, then q − 1 =
k(p− 1) + 2` for some integers 0 6 ` < k.

Proof. The lemma clearly holds if p = 2, so we may assume p > 4. Let C be a cover of
Gp,q of size pq/2− 1 satisfying properties (i) and (ii) of Lemma 5.

We begin by defining some objects required for the proof. Let Out be the outer cycle
of Gp,q. The corners of Gp,q are the vertices (1, 1), (1, p), (q, 1), and (q, p). Let H be
the subgraph of Gp,q induced by the edges of the boundary 4-cycles of C. A fence is a
connected component of H. The size of a fence is the number of boundary 4-cycles it
contains. A link is a connected component of Out \E(H) containing at least two vertices
and no corners. See Figure 8 for an illustration of fences and links.

Suppose L is a link contained on the topmost path of Gp,q. Let Lleft be the path
starting from the left end of L by first proceeding down twice and then alternating between
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proceeding right and down. We define Lright by interchanging left and right in the definition
of Lleft. The staircase generated by L is the subgraph of Gp,q contained in the region
bounded by L, Lleft, Lright, and (possibly) a subpath of the bottommost path of Gp,q, see
Figure 9a and Figure 9b. Staircases for links contained in the leftmost, rightmost, and
bottommost paths of Gp,q are defined by rotating Gp,q so that the link is on the topmost
path, applying the above definition, and then rotating back.

The length of a path is its number of edges, and the length of a staircase is the length
of the link that generates it. An edge is thick if it is covered by at least two bicliques in C.
A pyramid P is a staircase of length 2p− 4 containing a size-2 fence B such that the thick
edge in B is the only thick edge in P, see Figure 10. We call B the tip of the pyramid.

Figure 8: Fences are shaded. Links are shown in blue.

(a) The staircase generated by a link of length 10 is shown in
blue. In this case, the staircase includes part of the bottom-
most path of the grid.

(b) The staircase generated
by a link of length 4 is shown
in blue.

Figure 9

Claim 7. Every staircase contains at least one thick edge.

Proof. Let L be a link of length k connecting two fences B and B′ (see Figure 11a) and let
S be the staircase generated by L. Towards a contradiction, suppose S does not contain a
thick edge. Since C satisfies properties (i) and (ii) of Lemma 5, k is even and P is covered
by exactly k/2 boundary stars as in Figure 11b. Let E1 be the set of edges in S with one
end on L and not covered by a boundary element of C (blue edges in Figure 11b). Each
edge e in E1 must be covered by a K1,4, else e is thick, see Figure 11c. Let e1 and e2 be the
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Figure 10: A pyramid and its tip (in dark blue). The red edge is the only thick edge.

two horizontal edges of S which intersect (V (B)∪V (B′))\V (L) (blue edges in Figure 11c).
Since neither e1 nor e2 are thick, they must be covered by 4-cycles as in Figure 11d. By
repeating this argument, we either find a thick edge (red edge in Figure 11e), or we reach
the bottommost path of Gp,q. Let F be the set of edges f ∈ E(S) such that f is covered
by a K1,4 of C and f has exactly one endpoint on the bottommost path of Gp,q. By the
above argument, F is non-empty. Moreover, each edge in F is thick (see Figure 11f). �

B B′L

(a) (b) (c)

(d) (e) (f)

Figure 11

A double staircase is a pair (S, S′), where S and S′ are distinct staircases such that
there is exactly one thick edge in S ∪ S′. Suppose S has length 2a and S′ has length 2b.
Observe that either a+ b = p− 2 or a+ b = p and C must cover S ∪ S′ as in Figures 12a
and 12b, respectively.
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(a) (b)

Figure 12: Examples of double staircases. The red edge is the only thick edge.

We define the waste of C to be

w(C) := 4|C| − |E(Gp,q)|. (1)

Let τ be the number of copies of K1,3 that appear in C and ti be the number of edges of
Gp,q that are covered exactly i times by C. By double counting, we obtain:

w(C) = τ + t2 + 2t3 + 3t4. (2)

Since |C| = pq/2− 1 and |E(Gp,q)| = 2pq − p− q, (1) immediately gives the following:

w(C) = p+ q − 4 . (3)

Note that a fence can have size at most N := 2p + 2q − 8. For i ∈ [N ], let bi be the
number of fences of size i of C.
Claim 8. bN = 0.

Proof. If bN = 1, then C contains 2p+ 2q−8 boundary 4-cycles. These boundary 4-cycles
cover 6p + 6q − 24 edges of Gp,q. Thus, 2pq − 7p − 7q + 24 edges are not covered by
boundary 4-cycles. It follows that

|C| > 2p+ 2q − 8 +
2pq − 7p− 7q + 24

4
=
pq

2
+
p

4
+
q

4
− 2 >

pq

2
,

where the last inequality follows since 4 6 p 6 q. However, this contradicts |C| =
pq/2− 1. �

Let β be the number of edges that are covered twice by boundary 4-cycles of C, and
let c ∈ [4] be the number of corners of Gp,q covered by the set of fences. We now provide
a lower bound on the waste of C.

Claim 9. w(C) > β + τ = p+ q − 2− c

2
− b1

2
+

N−1∑
i=3

( i
2
− 1
)
bi.

Proof. The inequality follows immediately from (2). For the equality, first observe β =∑N−1
i=1 (i − 1)bi. Next, because each boundary star covers two edges of Out, each edge of

Out not covered by a fence contributes 1/2 to τ . Since Out contains 2p+ 2q− 4 edges and
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the set of fences cover c+
∑N−1

i=1 ibi edges of Out, we have

β + τ =
N−1∑
i=1

(i− 1)bi +
1

2

(
2p+ 2q − 4− c−

N−1∑
i=1

ibi

)
= p+ q − 2− c

2
− b1

2
+

N−1∑
i=3

( i
2
− 1
)
bi,

as desired. �

Claim 10. The set of staircases of C can be enumerated as P1, . . . ,Pn, S1, S
′
1, . . . , Sm, S

′
m

such that Pi is a pyramid for all i ∈ [n] and (Sj, S
′
j) is a double staircase for all j ∈ [m].

Moreover, b2 = n, bi = 0 for all i > 3, and w(C) = τ + n+m.

Proof. The number of staircases of C is at least
∑N−1

i=1 bi + c−4. At most b2 fences can be

the tips of pyramids, so at least b1 +
∑N−1

i=3 bi + c− 4 staircases are not pyramids. Each of
these staircases contains a thick edge by Claim 7, and each thick edge can be in at most
2 staircases. Therefore, these staircases contribute at least (b1 +

∑N−1
i=3 bi + c − 4)/2 to

the waste of C which is not counted in β + τ . By Claim 9,

w(C) > p+ q − 2− c

2
− b1

2
+

N−1∑
i=3

( i
2
− 1
)
bi +

1

2

(
b1 +

N−1∑
i=3

bi + c− 4

)
= p+ q − 4 +

N−1∑
i=3

(i− 1

2

)
bi.

By (3), w(C) = p+q−4. Hence, we must have bi = 0 for i > 3 and equality throughout the
above argument. In particular, there are exactly b2 pyramids. The remaining staircases
each contain exactly one thick edge, and each of these thick edges is in exactly two
staircases. This gives the required enumeration of the staircases of C and implies w(C) =
τ + n+m. �

Claim 11. q − 1 = k(p− 1) + 2` for some integers 0 6 ` < k.

Proof. Let L be the leftmost path of Gp,q. Since q > p, no link contained in L can generate
a pyramid or be part of a double staircase. By Claim 10, no link is contained in L. It
follows that L intersects at most one fence. Since p is even, it follows that L intersects
exactly one fence Bleft. Since all fences are of size 1 or 2 and p is even, Bleft is of size 1 and
L \E(Bleft) is the disjoint union of two even-length paths Pa and Pb. We assume that Pa

is above Pb and that Pa and Pb have lengths a and b, respectively. By the same argument,
the rightmost path of Gp,q intersects exactly one fence Bright.

We first consider the case when Bleft is a fence that does not contain a corner. Suppose
L1 is the first link along the topmost path of Gp,q and S1 is the staircase generated by
L1. By Claim 10, there are no thick edges outside of staircases. Therefore, Bleft and the
boundary stars force the leftmost portion of Gp,q to be covered by C as in Figure 13a.
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Bleft

(a)

Bright

(b)

Figure 13

This forces S1 to be in a double staircase (S1, S
′
1), where S1 has length 2b and S′1 has

length 2a (see Figures 14a and 14b), or S1 has length 2b+ 2 and S′1 has length 2a+ 2 (see
Figures 14c and 14d).

(a) (b)

(c) (d)
Figure 14

Suppose L2 is the next link along the topmost path of Gp,q. Because of the previous
double staircase (S1, S

′
1), S2 must be in a double staircase (S2, S

′
2), where S2 has length

2a and S′2 has length 2b (see Figures 14a and 14c), or S2 has length 2a + 2 and S′2 has
length 2b+2 (see Figures 14b and 14d). Repeating the argument, we obtain a sequence of
double staircases (S1, S

′
1), . . . , (Sk−1, S

′
k−1), where (Sk−1, S

′
k−1) is the last double staircase.

Note that it is possible that this sequence is empty, corresponding to the case that there
are no staircases and k − 1 = 0.

Again, because there are no thick edges outside of staircases, the fence Bright and the
boundary stars force the rightmost portion of Gp,q to be covered as in Figure 13b. For all
i ∈ [k − 1], let `i and `′i be the lengths of Si and S′i respectively. Let ` be the number of
times that {`i, `′i} = {2a+ 2, 2b+ 2}. It follows that q − 1 = k(p− 1) + 2`, as required.

The case when Bleft contains a corner is treated exactly as above, resulting in the
construction from Figure 5. �

This completes the entire proof.
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