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Abstract

We give an upper bound for the maximum number of edges in an n-vertex 2-
connected r-uniform hypergraph with no Berge cycle of length k or greater, where
n > k > 4r > 12. For n large with respect to r and k, this bound is sharp and is
significantly stronger than the bound without restrictions on connectivity. It turned
out that it is simpler to prove the bound for the broader class of Sperner families
where the size of each set is at most r. For such families, our bound is sharp for all
n > k > r > 3.

Mathematics Subject Classifications: 05D05, 05C65, 05C38, 05C35

0.1 Basic definitions

The upper rank of a hypergraph H is the size of a largest edge. For brevity, instead of
saying “a hypergraph of upper rank r” we will say “an r−-graph”. When every edge has
size r, i.e., H is r-uniform, we call H an “r-graph”.
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A hypergraph H is Sperner if no edge of H is contained in another edge. In particular,
a Sperner hypergraph has no multiple edges, and all simple uniform hypergraphs are
Sperner.

Definition 1. A Berge cycle of length ` in a hypergraph is a set of ` distinct vertices
{v1, . . . , v`} and ` distinct edges {e1, . . . , e`} such that {vi, vi+1} ⊆ ei with indices taken
modulo `. The vertices {v1, . . . , v`} are called base vertices of the Berge cycle.
A Berge path of length ` in a hypergraph is a set of `+ 1 distinct vertices {v1, . . . , v`+1}
and ` distinct hyperedges {e1, . . . , e`} such that {vi, vi+1} ⊆ ei for all 1 6 i 6 `. The
vertices {v1, . . . , v`+1} are called base vertices of the Berge path.

Definition 2. The incidence bigraph of a hypergraph H is the bipartite graph I(H) =
(A, Y ;E) such that A = E(H), Y = V (H) and for a ∈ A, y ∈ Y , ay ∈ E(I(H)) if and
only if y ∈ a in H.

A cycle C of length 2` in I(H) corresponds to a Berge cycle of length ` in H with the
set of base vertices C ∩Y and the set of edges C ∩A. Similarly, a path P of length 2`+ 1
(vertices) in I(H) with endpoints in Y corresponds to a Berge path of length ` in H with
the set of base vertices P ∩ Y and the set of edges C ∩ A.

Definition 3. A hypergraph H is called 2-connected if its incidence bigraph is I(H) is
2-connected.

A block in a graph G is a maximal connected subgraph G′ with no cut vertices (of G′).
SoH is 2-connected if it is connected and has neither cut vertex (i.e., a vertex v ∈ V (H)

for which there is a partition of V (H) = {v} ∪ V1 ∪ V2, |Vi| > 1, such that every edge is
contained in either {v} ∪ V1 or {v} ∪ V2), nor a cut edge (i.e., an edge e ∈ H for which
there is a partition of V (H) = V1 ∪ V2, |Vi| > 1, such that every edge f 6= e is contained
in either V1 or in V2).

LetH be a hypergraph and p be an integer. The p-shadow, ∂pH, is the collection of the
p-sets that lie in some edge of H. In particular, we will often consider the 2-shadow ∂2H
of an r-uniform hypergraph H. Each edge e of H yields in ∂2H a clique on |e| vertices.
Note that if a hypergraph is 2-connected, then its 2-shadow is a 2-connected graph. The
converse is not always true.

0.2 Graphs without long cycles

The classic Turán-type result on graphs without long cycles is:

Theorem 4 (Erdős and Gallai [1]). Let k > 3 and let G be an n-vertex graph with more
than 1

2
(k − 1)(n− 1) edges. Then G contains a cycle of length at least k.

This bound is sharp for infinitely many n: when k−2 divides n−1, the circumference
of each connected n-vertex graph whose blocks (maximal connected subgraphs with no
cut vertices) are cliques of order k − 1 is only k − 1.
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There have been several alternate proofs and sharpenings of the Erdős-Gallai theorem
including results by Woodall [18], Lewin [16], Faudree and Schelp [5, 6], and Kopylov [14];
see [10] for further details.

The strongest version was that of Kopylov who improved the Erdős–Gallai bound
for 2-connected graphs. To state the theorem, we first introduce the family of extremal
graphs.

Construction 5. Fix k > 4, n > k, k
2
> a > 1. Define the n-vertex graph Hn,k,a as

follows. The vertex set of Hn,k,a is partitioned into three sets A,B,C such that |A| = a,
|B| = n−k+a and |C| = k−2a and the edge set of Hn,k,a consists of all edges connecting
A with B and all edges in A ∪ C.

Note that when a > 2, Hn,k,a is 2-connected, has no cycle of length k or longer, and
e(Hn,k,a) =

(
k−a
2

)
+ (n− k + a)a.

Figure 1: H14,11,3

Theorem 6 (Kopylov [14]). Let n > k > 5 and let t = bk−1
2
c. If G is a 2-connected

n-vertex graph with
e(G) > max{e(Hn,k,2), e(Hn,k,t)},

then G has a cycle of length at least k.

Furthermore, Kopylov’s proof yields that the only sharpness examples are the graphs
Gn,k,t and Gn,k,2; see [10] for details.

0.3 Hypergraphs without long Berge cycles

Recently, several interesting results were obtained for Berge paths and cycles. Notably,
the results depend on the relationship between k and r.

Theorem 7 (Győri, Katona, and Lemons [11]). Let H be an n-vertex r-graph with no

Berge path of length k. If r > k > 3, then e(H) 6 (k−1)n
r+1

. If k > r + 1 > 3, then

e(H) 6 n
k

(
k
r

)
.

Later, the remaining case k = r + 1 was resolved by Davoodi, Győri, Methuku, and
Tompkins [2]. Furthermore, the bounds in Theorem 7 and in [2] are sharp for each k and
r for infinitely many n.
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Győri, Methuku, Salia, Tompkins, and Vizer [13] proved an asymptotic version of the
Erdős–Gallai theorem for Berge paths in connected hypergraphs whenever r is fixed and
n and k tend to infinity.

Theorem 8 (Győri, Methuku, Salia, Tompkins, and Vizer [13]). Let r be given. Let Hn,k

be a largest r-uniform connected n-vertex hypergraph with no Berge path of length k. Then

lim
k→∞

(
lim
n→∞

e(Hn,k)

kr−1n

)
=

1

2r−1(r − 1)!
.

For Berge cycles, the exact result for k > r + 3 was obtained in [7]:

Theorem 9 (Füredi, Kostochka and Luo [7]). Let k > r+3 > 6, and let H be an n-vertex
r-graph with no Berge cycles of length k or longer. Then e(H) 6 n−1

k−2

(
k−1
r

)
.

This theorem is a hypergraph version of Theorem 4 for k > r+3. The case of k 6 r−1
was resolved by Kostochka and Luo [15].

Theorem 10 (Kostochka and Luo [15]). Let k > 4, r > k + 1, and let H be an n-vertex

r-graph with no Berge cycles of length k or longer. Then e(H) 6 (k−1)(n−1)
r

.

Recently, Ergemlidze, Győri, Methuku, Salia, Thompkins, and Zamora [4] extended
the results to k ∈ {r+ 1, r+ 2}, and Győri, Lemons, Salia, and Zamora [12] extended the
results to k = r.

Theorem 11 (Ergemlidze et al. [4]). If k > 4 and H is an n-vertex r-graph with no
Berge cycles of length k or longer, then k = r + 1 and e(H) 6 n − 1, or k = r + 2 and
e(H) 6 n−1

k−2

(
k−1
r

)
.

Theorem 12 (Győri et al. [12]). If r > 3 and H is an n-vertex r-graph with no Berge
cycles of length r or longer, then e(H) 6 max{bn−1

r
c(r − 1), n− r + 1}.

Theorems 9 and 10 are sharp for each k and r for infinitely many n. Furthermore, the
present authors also proved in [8] exact bounds for all n when k > r + 4.

For r > k + 1, bounds for 2-connected hypergraphs stronger than for the general case
were found in [15], although they are not known to be sharp.

Theorem 13 (Kostochka and Luo [15]). Let k > 4, r > k + 1, and let H be an n-
vertex 2-connected, r-uniform hypergraph with no Berge cycle of length k or longer. Then
e(H) 6 max{k − 1, k

2r−k+2
(n− 1)}.

In this paper, we find sharp bounds on the maximum number of edges in a 2-connected
r-uniform hypergraph without Berge cycle of length k or longer in the case k > 4r for
n > k2r. We do this by proving a more general sharp bound for Sperner r−-graphs.
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1 Results

1.1 Results on 2-connected hypergraphs with no long Berge cycles

Our goal is to prove a version of Kopylov’s theorem for hypergraphs, i.e., to find the
maximum number of edges in a 2-connected hypergraph with no Berge cycle of length k
or greater.

Define

f(n, k, r, a) :=

(
k − a

min{r, bk−a
2
c}

)
+ (n− k + a)

(
a

min{r − 1, ba/2c}

)
.

Also define

f ∗(n, k, r, a) :=

(
k − a
r

)
+ (n− k + a)

(
a

r − 1

)
.

Note that f(n, k, r, a) = f ∗(n, k, r, a) whenever r 6 b(k − a)/2c and r − 1 6 ba/2c. Our
main result is:

Theorem 14. Let n > k > r > 3. If H is an n-vertex Sperner 2-connected r−-
hypergraph with no Berge cycle of length k or longer, then e(H) 6 max{f(n, k, r, b(k −
1)/2c), f(n, k, r, 2)}.

This bound is sharp. To see this, we construct a series of hypergraphs (not necessarily
uniform). The following can be viewed as a hypergraph version of Construction 5.

Construction 15. For n > k > r, 1 6 a 6 b(k − 1)/2c, let Hn,k,r,a be the hypergraph
with vertex set A ∪ B ∪ C such that |A| = k − 2a, |B| = a, |C| = n − (k − a). The edge
set of Hn,k,r,a is the family

{e ⊆ A∪B : |e| = min{r, b(k−a)/2c}}∪{c∪ e′ : c ∈ C, e′ ⊆ B, |e′| = min{r− 1, ba/2c}}.

For a > 2, Hn,k,r,a is 2-connected and contains no Berge cycle of length k or longer. We
have that |E(Hn,k,r,a)| = f(n, k, r, a), which is maximized when a = b(k − 1)/2c or a = 2
by the convexity of f (as a function of a, see Claim 67 in the appendix). Furthermore,
when r 6 b(k − a)/2c and r − 1 6 ba/2c, Hn,k,r,a is r-uniform with f ∗(n, k, r, a) edges.

For integers k > r, let nk,r be the smallest positive integer n such that f(n, k, r, b(k−
1)/2c) > f(n, k, r, 2). Asymptotically nk,r is about 2r−1k/r. Then as a corollary of
Theorem 14 we obtain the following result for r-graphs.

Theorem 16. Let n > nk,r > k > 4r > 12. If H is an n-vertex 2-connected r-graph with
no Berge cycle of length k or longer, then e(H) 6 f(n, k, r, b(k−1)/2c) = f ∗(n, k, r, b(k−
1)/2c).

For n large, this bound is almost 2r−1/r stronger than the (exact) bound in Theorem 9
with no restriction on connectivity. Again we have sharpness example Hn,k,r,b(k−1)/2c.
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1.2 Connected hypergraphs with no long Berge path

We also obtain a result for connected graphs with no Berge path of length k.

Theorem 17. Let n > k > r > 3. If H is an n-vertex Sperner connected r−-graph with
no Berge path of length k, then e(H) 6 max{f(n, k, r, b(k − 1)/2c), f(n, k, r, 1)}.

For integers k > r, let n′k,r be the smallest positive integer n such that f(n, k, r, b(k−
1)/2c) > f(n, k, r, 1). Then we obtain the following result for r-uniform graphs with no
Berge path of length k as a corollary of Corollary 17. This improves Theorem 8.

Theorem 18. Let n > n′k,r > k > 4r > 12. If H is an n-vertex connected r-graph with
no Berge path of length k, then e(H) 6 f(n, k, r, b(k − 1)/2c) = f ∗(n, k, r, b(k − 1)/2c).

The family Hn,k,r,b(k−1)/2c again shows sharpness of our bounds.

2 Proof outline

The basic idea of the proof is to consider instead of the family of r-graphs the larger
family of Sperner r−-graphs. Then we can in some situations shrink some edges keeping
the r−-graph Sperner.

We start with a dense Sperner r−-graph H. By definition, each edge e in H yields a
clique of order |e| in the 2-shadow of H. If H contains a long Berge cycle C, then ∂2H
contains a cycle of the same length. However, the converse is not always true. So, our
first goal is to reduce H to a smaller dense Sperner r−-graph H′ for which we know that
the existence of a long cycle in ∂2H′ implies the existence of a long cycle in H′ itself.

Our second goal is to give an upper bound on the maximum size of a Sperner family
of cliques of order at most r in the shadow ∂2H′ that does not have long cycles. This
automatically yields a bound on |H′|.

We systematically consider incidence graphs of r−-graphs instead of the r−-graphs
themselves, because we find the language of 2-connected bipartite graphs convenient for
our goals.

In Section 4, we prove two results for the maximum number of cliques in graphs
without long cycles or paths which will later be applied to the 2-shadows of r−-graphs.
Specifically, we give upper bounds for the size of Sperner families of cliques of size at
most r in graphs with bounded circumference and graphs that do not contain long paths
between every pair of vertices.

In Sections 5 and 6, we prove that our hypergraph can be reduced to dense subhy-
pergraph with no long cycles in its 2-shadow. We use the language of incidence bigraphs
in Section 5 and the language of hypergraphs in Section 6. In Section 7, we combine the
results from Sections 4-6 to prove Theorem 14. Finally, in Section 8 we prove Theorem 17
for Berge paths in connected hypergraphs.
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3 Sperner cliques in graphs

A set family H is called Sperner if no element of H is contained in another element of
H. In particular, every uniform family is Sperner. The classic proof of LYM Inequality
yields also the following result.

Theorem 19. Let H be a set of h elements. Let C be a Sperner family of subsets of H
such that |C| 6 r for each C ∈ C. Then |C| 6

(
h

min{r,bh/2c}

)
.

3.1 Cliques in graphs with bounded circumference

In [17], Luo proved an upper bound for the maximum number of cliques in a 2-connected
graph with bounded circumference.

Theorem 20 (Luo [17]). Let n > k > 5, r > 2 be positive integers. Let G be an n-vertex
2-connected graph with no cycle of length k or longer. Then the number of copies of Kr

in G is at most

max

{(
k − 2

r

)
+ (n− k + 2)

(
2

r − 1

)
,

(
d(k + 1)/2e

r

)
+ (n− d(k + 1)/2e)

(
b(k − 1)/2c

r − 1

)}
.

We will prove a version of Theorem 20 for Sperner families of cliques. Recall

f(n, k, r, a) :=

(
k − a

min{r, bk−a
2
c}

)
+ (n− k + a)

(
a

min{r − 1, ba/2c}

)
.

For fixed positive integers n > k > r, f(n, k, r, a) is convex over integers a in [0, b(k−
1)/2c] (see the appendix for a proof). Thus the value of f(n, k, r, a) is maximized at one
of the endpoints of the domain. For a graph G and a positive integer r, let NSp(G, r)
denote the maximum size of a Sperner family C of subsets of V (G) such that for each
C ∈ C, G[C] is a clique of size at most r.

Theorem 21. Let n > k > 5, r > 2 be positive integers. Let G be an n-vertex 2-connected
graph with no cycle of length k or longer. Then

NSp(G, r) 6 max{f(n, k, r, 2), f(n, k, r, b(k − 1)/2c)}.

To prove Theorem 21, we use a structural theorem by Kopylov for 2-connected graphs
without long cycles.

Definition 22. For a positive integer α and a graph G, the α-disintegration of a graph G
is the process of iteratively removing from G the vertices with degree at most α until the
resulting graph has minimum degree at least α + 1 or is empty. This resulting subgraph
H(G,α) is called the (α+1)-core of G. It is well known (and easy) that H(G,α) is unique
and does not depend on the order of vertex deletion. If H(G,α) is the empty graph, then
we say that G is α-disintegrable.
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Theorem 23 (Kopylov [14]). Let n > k > 5 and let t = bk−1
2
c. Suppose that G is a

2-connected n-vertex graph with no cycle of length at least k.
Then either

(23.1) the t-core H(G, t) is empty, the graph G is t-disintegrable; or

(23.2) |H(G, t)| = s for some t+ 2 6 s 6 k − 2, and H(G, t) = H(G, k − s), i.e., the rest
of the vertices can be removed by a (k − s)-disintegration.

Proof of Theorem 21. Set t := b(k− 1)/2c. Let G be an n-vertex 2-connected graph with
no cycle of length k or longer. Let C be a Sperner family of subsets of V (G) that are cliques
of size at most r with |C| = NSp(G, r). Apply Theorem 23 to G. If (23.1) holds, then every
vertex is deleted in the t-disintegration. At the time of its deletion, each vertex v has at
most t neighbors and by Theorem 19, is contained in at most

(
t

min{r−1,bt/2c}

)
cliques of C

(since each clique containing v has at most r− 1 other vertices). After n− k + t steps in
the disintegration process, the remaining k − t vertices contain at most

(
k−t

min{b((k−t)/2)c,r}

)
elements of C. Therefore |C| 6 NSp(G, r) 6 f(n, k, r, t).

Now suppose (23.2) holds. Then we consecutively delete vertices of degree at most
k−s until we arrive at the core H(G, t) of size s. As in the previous case, when deleting a
vertex v of degree at most k−s, we remove at most

(
k−s

min{(k−s)/2,r−1}

)
cliques of C containing

v. Since H(G, t) contains at most
(

s
min{s/2,r}

)
=
(

k−(k−s)
min{(k−(k−s))/2c,r}

)
cliques in C, we obtain

|C| = NSp(G, r) 6 f(n, k, k − s) 6 max{f(n, k, r, 2), f(n, k, r, t)}.

The last inequality holds by the convexity of f .

3.2 k-path connected graphs

A graph G is `-hamiltonian if for each linear forest L with ` edges (and no isolated vertex)
on the vertex set V (G) there is a hamiltonian cycle in G ∪ L that contains L.

A graph G is k-path connected if for each pair of vertices x, y ∈ V (G), G contains an
x, y-path with k or more vertices. In particular, every n-vertex 1-hamiltonian graph is
n-path connected. The following theorem will be helpful for us.

Theorem 24 (Enomoto [3]). Let G be a 3-connected graph on n vertices such that for
every pair of vertices u, v such that uv /∈ E(G), d(u) + d(v) > t. Then G is k-path
connected where k = min{n, 2t− 1}.

Define the function

hSp(n, `, r, d) :=

(
n− d+ `

min{r, bn−d+`
2
c}

)
+ (d− `)

(
d

min{r − 1, bd/2c}

)
.

Note that hSp(n, `, r, d) = f(n, n+ `, r, d). So Claim 67 implies (in the appendix) that for
given positive n, r, and ` > 0, the function hSp(n, `, r, d) is convex for ` 6 d 6 n.
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Theorem 25. Let n, d, r, ` be integers with 0 6 ` < d 6
⌊
n+`−1

2

⌋
. If G is an n-vertex

graph with minimum degree δ(G) > d, and G is not `-hamiltonian, then

NSp(G, r) 6 max

{
hSp(n, `, r, d), hSp(n, `, r, bn+ `− 1

2
c)
}
.

Proof. Let C be a Sperner family of cliques of size at most r in G. Suppose that
NSp(G,Kr) > hSp(n, `, r, b(n+ `− 1)/2c). By a generalization of Pósa’s theorem (Lemma
8 in [9]), there exists some ` < k < b(n + ` − 1)/2c such that V (G) contains a subset D
of k − ` vertices with degree at most k (and so k > δ(G) > d).

For each vertex v ∈ D, v is contained in at most
(

k
min{k/2,r−1}

)
cliques of C, and G−D

contains at most
(

n−k+`
min{b(n−k+`)/2c,r}

)
cliques of C. Hence |C| 6 NSp(G, r) 6 hSp(n, `, r, k) 6

hSp(n, `, r, d).

Our new result is:

Theorem 26. Let n, k > 4. Let G be an n-vertex 2-connected graph. If

NSp(G, r) >
n− 2

k − 3

(
k − 1

min{r, b(k − 1)/2c}

)
, (1)

then G is k-path connected.

Proof of Theorem 26. We use induction on n. If n 6 k − 1, then by Theorem 19,

NSp(G, r) 6

(
n

min{r, bn/2c

)
=
n− 2

k − 3

(
k − 3

n− 2

(
n

min{r, bn/2c}

))
.

And for n 6 k − 1,

k − 3

n− 2

(
n

min{r, bn/2c}

)
6

k − 3

(k − 1)− 2

(
k − 1

min{r, b(k − 1)/2c}

)
=

(
k − 1

min{r, b(k − 1)/2c}

)
.

Hence (1) does not hold.
If n = k, consider any x, y ∈ V (G) such that there is no hamiltonian x, y-path in G.

If xy ∈ E(G), then G is not 1-hamiltonian, then by Theorem 25 with d = 2 (since G is
2-connected),

NSp(G, r) 6 max{hSp(n, 1, r, 2), hSp(n, 1, r, bn/2c))
= hSp(n, 1, r, 2)

=

(
k − 1

min{r, b(k − 1)/2c}

)
+ 2

6

(
k − 1

min{r, b(k − 1)/2c}

)
k − 2

k − 3
=

(
k − 1

min{r, b(k − 1)/2c}

)
n− 2

k − 3
,

and (1) again does not hold. If xy /∈ E(G), then the graph G′ := G ∪ xy satisfies
NSp(G′, r) > NSp(G, r), and G′ is not 1-hamiltonian. So again we obtain NSp(G, r) 6
NSp(G′, r) 6

(
k−1

min{r,b(k−1)/2c}

)
n−2
k−3 .

Thus from now on we may assume n > k + 1.
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Claim 27. G is 3-connected.

Proof. Suppose {v1, v2} is a separating set. Let C1 be the vertex set of a component of
G−{v1, v2} and C2 = V (G)−{v1, v2}−C1. For i = 1, 2, let Gi be obtained from G−C3−i
by adding edge v1v2 if it is not in G. Let ni = |V (Gi)|. By construction, each of G1 and
G2 is 2-connected. Also,

n1 + n2 = n+ 2 and NSp(G, r) 6 NSp(G1, r) +NSp(2, r). (2)

By (2), some of Gi satisfies (1). By symmetry, suppose G2 does. If x, y ∈ V (G2), then
we are done by induction. Suppose neither of x and y is in V (G2). Then by induction,
G2 has a v1, v2-path P with at least k vertices. Also, the 2-connected graph G1 has two
disjoint paths P1 and P2 from {x, y} to {v1, v2}. Then P1∪P ∪P2 forms a long x, y-path.

Finally, suppose x ∈ V (G2) and y /∈ V (G2). Again by induction, G2 has a v1, x-path
P with at least k vertices. Also, the 2-connected graph G1 has a v1, y-path P1 that avoids
v2. Then P ∪ P1 is what we need.

Claim 28. δ(G) > k+1
2

.

Proof. Suppose v1 ∈ V (G) and d(v1) 6 k/2. Since G is 3-connected, we can choose a
neighbor v2 of v1 so that v2 /∈ {x, y}. Let G′ be obtained from G by contracting v1 and v2
into a new vertex that we again will call v1. Since G was 3-connected, G′ is 2-connected.

Let SG be a maximum Sperner family of cliques of size at most r in G. We construct
a family S ′ of cliques of size at most r in G′ from SG by
(a) deleting from SG all cliques containing v1; and
(b) replacing each clique S ∈ SG with v2 ∈ S and v1 /∈ S with the clique S − v2 + v1.

We claim that S ′ is Sperner. Indeed, suppose S1, S2 ∈ S ′ and S1 ⊂ S2. Since SG was
Sperner, v1 ∈ S2 − S1. But then S2 − v1 + v2 ∈ SG and S1 ⊂ S2 − v1 + v2.

By construction and Theorem 19,

|SG| − |S ′| 6
(

d(v1)

min{r − 1, bd(v1)/2c}

)
6

(
bk/2c

min{r, bk/4c}

)
.

But (
bk/2c

min{r, bk/4c}

)
6

1

k − 3

(
k − 1

min{r, b(k − 1)/2c}

)
,

and hence G′ satisfies (1). So by the minimality of G, graph G′ has a long x, y-path. But
then G also does.

Applying Theorem 24 completes the proof of our theorem.
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4 Constructing happy incidence bigraphs

4.1 Language of layered r−-bigraphs

A layered bigraph is a bigraph G = (A, Y ;E) in which parts A and Y are ordered. An
r−-bigraph is a layered bigraph G = (A, Y ;E) with d(a) 6 r for each a ∈ A. Given a
layered bigraph G = (A, Y ;E), its shadow ∂(G) is the graph F with vertex set Y such
that xy ∈ E(F ) iff there is a ∈ A with {x, y} ⊆ N(a). A layered bigraph G = (A, Y ;E)
is Sperner if the family {N(a) : a ∈ A} is Sperner. By definition, if N(a) = {v, u} in a
Sperner bigraph, then the codegree of the pair vu is 1. In particular, the incidence graph
GH of an r−-graph H is a Sperner r−-bigraph if and only if H is Sperner.

A vertex a ∈ A of a layered bigraph G = (A, Y ;E) is happy, if the the codegree d(x, y)
of each pair {x, y} ⊆ N(a) is at least d(a)−1 (and unhappy otherwise). A layered bigraph
G = (A, Y ;E) is happy if every vertex a ∈ A is happy.

Below we will show a useful property of happy graphs. We first prove a simple corollary
of Hall’s Theorem.

Lemma 29 (Folklore). Let G = (A,B;E) be a bipartite graph with no isolated vertices
such that for each a ∈ A and every b ∈ N(A), d(a) > d(b). Then G has a matching
covering A.

Proof. Suppose that G has no matching covering A. By Hall’s Theorem, there is S ⊆ A
with |S| > |N(S)|. Choose a minimum such S, say S = {a1, . . . , as}. By the minimality
of S, G has a matching M covering S ′ := S − as, say M = {aibi : 1 6 i 6 s − 1}. Since
|N(S)| 6 s− 1, we have N(S) = {b1, . . . , bs−1}. So,

d(a1) + . . .+ d(as−1) + d(as) = e(S,N(S)) = dS(b1) + . . .+ dS(bs−1) 6 d(a1) + . . . d(as−1),

a contradiction.

Lemma 30. Let r > 3. If G = (A, Y ;E) is a happy Sperner r−-bigraph and ∂(G)
contains a cycle of length ` > r, then G contains a cycle of length 2`.

Proof. Let C = x1, . . . , x` be a cycle of length ` > r in ∂(G). Let F be the bipartite
graph with parts Q = E(C) and A such that a pair (xixi+1, a) is an edge in F if and
only if {xixi+1} ⊆ N(a). If ` > r + 1, then since each a ∈ A has degree less than `, a is
adjacent to at most d(a)− 1 pairs xixi+1. On the other hand, for each edge (xixi+1, a) in
F , dF ({xixi+1}) > d(a)−1 since G is happy. So by the previous lemma, F has a matching
that covers E(C), say with xixi+1 matched to f(xixi+1) ∈ A. Then we obtain the cycle
x1, f(x1x2), x2, f(x2x3), . . . , x`, f(x`x1), x1 of length 2` in G.

Now suppose ` = r. If for every a ∈ A, NG(a) 6= {x1, . . . , xr}, then dF (a) 6 d(a)− 1,
and we are done as in the previous case. So suppose there exists an a such that NG(a) =
{x1, . . . , xr}. Then because G is Sperner, each a′ ∈ A − a is adjacent to at most r − 1
vertices in {x1, . . . , xr}, and hence dF (a′) 6 (r − 1) − 1. Consider the graph F − a. For
a′ ∈ A− a,

dF−a(a
′) = dF (a′) 6 min{r − 2, d(a′)− 1}.
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If some vertex xixi+1 was adjacent to a in F , then dF (xixi+1) > d(a) − 1 = r − 1 and
so dF−a(xixi+1) > r − 2. Otherwise, for each xixi+1 not adjacent to a in F , and each
a′ ∈ NF (xi, xi+1), dF−a(xixi+1) = dF (xixi+1) > d(a′)− 1, so we are finished as in the first
case.

The same proof also yields the following Lemma for paths of any length.

Lemma 31. Let G = (A, Y ;E) be a happy r−-bigraph. If ∂(G) contains a path with `
vertices, then G contains a path with 2`− 1 vertices with endpoints in Y .

A vertex y ∈ Y of degree 2 in is special, if each of the two neighbors is either unhappy
or also has degree 2.

Vertices x, y ∈ Y and a ∈ A form a special triple if x and y are special (in particular
they have degree 2), N(a) = {x, y}, and the other neighbors of x and y are unhappy.

For each graph H, the circumference, c(H), is the length of a longest cycle in H.
We will often use the following known property of 2-connected graphs.

Lemma 32. Let G be a 2-connected graph, xy ∈ E(G) and S ⊂ V (G) with |S| 6
|V (G)| − 2.

(1) G− xy is 2-connected iff G− xy has a cycle containing x and y;

(2) the graph G/S obtained by gluing the vertices of S into one vertex s∗ is 2-connected
iff s∗ is not a cut vertex of G/S.

4.2 Unhappy r−-bigraphs

Definition 33. Let G = (A, Y ;E) be a Sperner layered 2-connected r−-bigraph G =
(A, Y ;E). A shrinking of G is one of the following operations:

1. deleting an edge of G incident to an unhappy vertex,

2. deleting a special vertex y ∈ Y and all neighbors b ∈ N(y) with d(b) = 2,

3. deleting a special triple x, y ∈ Y and a ∈ A, or

4. gluing together all but one of the neighbors of some unhappy vertex a ∈ A.

We will say that an unhappy Sperner layered 2-connected r−-bigraphG with c(G) < 2k
admits a shrinking if after a shrinking of G the resulting graph G′ satisfies all the
properties (S1)–(S5) below:

(S1) G′ is 2-connected;

(S2) |E ′| 6 |E|, |Y ′| 6 |Y |, and |E ′|+ |Y ′| < |E|+ |Y |;

(S3) G′ is Sperner;
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(S4) |A| − |A′| 6 |Y | − |Y ′|; and

(S5) c(G′) < 2k.

The goal of this subsection is to prove that each unhappy Sperner layered 2-connected
r−-bigraph either admits a shrinking or has a special structure and high maximum average
degree. The main result of the subsection is the following lemma.

Lemma 34. Suppose k > r > 3 are integers. Let G = (A, Y ;E) be a Sperner layered 2-
connected r−-bigraph with c(G) < 2k. If G is not happy, then either G admits a shrinking
or for every unhappy vertex a ∈ A, there exist three vertices y1, y2, y3 ∈ N(a) and three
subgraphs B1, B2, B3 of G such that for i ∈ {1, 2, 3}:

(B1) yi ∈ V (Bi), a /∈ V (Bi), and yi is the only neighbor of a in Bi;

(B2) Bi is 2-connected and Sperner;

(B3) there exists a xi ∈ Y such that {a, xi} separates Bi from G−Bi;

(B4) G− (Bi − xi)− a is Sperner and 2-connected; and

(B5) for j ∈ {1, 2, 3} − {i}, |V (Bi) ∩ V (Bj)| 6 1 with equality if and only if xi = xj.

Proof. Suppose, G = (A, Y ;E) is a Sperner layered 2-connected r−-bigraph with c(G) <
2k that is not happy. Then it has an unhappy vertex a ∈ A. Let NG(a) = {y1, . . . , yt}.
Since a is unhappy, t > 3. We derive a series of properties of such G.

A vertex yi ∈ N(a) is an a-menace, if there is a vertex m(a, yi) ∈ A − a such that
N(a)− yi ⊆ N(m(a, yi)). Since G is Sperner,

G− ayi is Sperner if and only if yi is not an a-menace. (3)

For brevity, we call pairs of vertices in Y of codegree 1 thin and of codegree at least 2
— thick.

Claim 35. If every pair in N(a) is thick, then for some i, the graph G − ayi satisfies
(S1)-(S5). In particular, G admits a shrinking of type (1).

Proof. For each yi ∈ N(a), the graph Gi := G − ayi trivially satisfies (S2), (S4), and
(S5) in the definition of shrinking. We will show that every Gi is also 2-connected, i.e.,
it satisfies (S1). Let yj, yk ∈ N(a)− yi. Because every pair of N(a) is thick, there exists
distinct vertices bij, bik 6= a such that {yi, yj} ∈ N(bij) and {yi, yk} ∈ N(bik). Applying
Lemma 32 with the cycle yibijyjaykbikyi certifies that Gi is 2-connected.

If for some 1 6 i 6 t, the graph Gi is Sperner, i.e., satisfies (S3), then we are done.
Assume not. Because a is the only vertex with a changed neighborhood in Gi, for all i
there exists a vertex bi in G such that {y1, . . . , yt}−{yi} ⊂ N(bi). Furthermore, for i 6= j,
bi 6= bj, otherwise some N(bi) contains N(a), contradicting the fact that G is Sperner.

In particular, each pair in N(a) belongs in the neighborhoods of a and d(a) − 2
additional vertices, contradicting that a is unhappy.
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Claim 36. If G does not admit a shrinking of type (1), then no two thick pairs in N(a)
share a vertex.

Proof. Suppose none of the graphs G−ayi satisfies (S1)-(S5). By Claim 35, N(a) contains
a thin pair. First we show that there exist some thick pairs {yi∗ , yj∗}, {yi∗ , yk∗} and a thin
pair {ys∗ , yt∗} such that s∗, t∗ 6= i∗. Let {yi, yj} and {yi, yk} be some intersecting thick
pairs and {ys, yt} be a thin pair in N(a), where without loss of generality, ys /∈ {yi, yj}.
If yt 6= yi then we are done. If not then consider instead the pair {ys, yj}. If it is thin,
then we take this pair instead of {ys, yt}. If it is thick, then we let {yi, yj}, {ys, yj} be our
intersecting thick pairs with yj playing the role of yi∗ and {ys, yt} = {ys, yi} be the thin
pair.

Now consider the graph G − ayi∗ . As in the previous claim, it satisfies (S2), (S4),
and (S5) as well as (S1) in the definition of shrinking where we define vertices bi∗j∗ , bi∗k∗
similarly. Since no other vertex contains the pair {ys∗ , yt∗} in its neighborhood, G− ayi∗
is Sperner, a contradiction.

Claim 37. If G does not admit a shrinking of type (1), then the codegree of each pair in
N(a) is at most 2.

Proof. Suppose G does not admit a shrinking of type (1), but there exist distinct vertices
b1, b2 6= a both adjacent to y1 and y2. Since {y1, y2} is a thick pair, by Claim 36, {y1, y3}
and {y2, y3} are thin. Let P be a shortest path in G− a from y3 to {y1, y2}. Note that if
P contains b1 or b2, then by the minimality of |P |, either y1 or y2 follows directly after.
Therefore we may assume by symmetry that y1 ∈ P and b2 /∈ P . Consider the graph
G−ay1. Trivially it satisfies (S2), (S4), and (S5). Because {y2, y3} is thin, it also satisfies
(S3). Finally, the cycle y3Py1b2y2ay3 certifies that (S1) is satisfied.

Claim 38. If G does not admit a shrinking of type (1) and a proper subset S of N(a) is
a separating set in G, then S contains an a-menace.

Proof. Suppose G does not admit a shrinking of type (1) but the claim does not hold.
Choose a smallest separating subset S = {y1, . . . , ys} of N(a) not containing a-menaces.
Since S is a proper subset of N(a), s < t. Let D1 and D2 be components of G−S, where
D1 contains a. By the minimality of S,

each yi ∈ S has a neighbor in D2. (4)

Since G is 2-connected, there are two yt, S-paths P1 and P2 sharing only yt. By symmetry
we may assume that P1 avoids a. Let y1 be the end of P1 in S. By (4), there is a y1, y2-path
P3 all whose internal vertices are in D2.

Consider G − ay1. Properties (S2), (S4) and (S5) hold by definition. Since y1 is not
an a-menace, by (3), G − ay1 is Sperner, i.e. (S3) holds. Cycle y2aytP1y1P3y2 together
with Lemma 32 show that G−ay1 is 2-connected. Thus, G−ay1 satisfies the lemma.

Claim 39. Suppose G admits no shrinkings of types (1) and (2). Then N(a) has no thick
pairs.
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Proof. Suppose pair y1y2 is thick. By Claims 36 and 37, d(y1y2) = 2, and the com-
mon neighbor b ∈ A − a of y1 and y2 has no other neighbors in N(a). Let N(b) =
{y1, y2, z1, . . . , zs}. Since G is Sperner, s > 1.

By Claim 36, neither of y1 and y2 is an a-menace. So, by Claim 38, G−y1−y2 contains
an a, b-path P1. We may assume that yt is the second and z1 is the second to last vertices
of P1. Since d(y1y2) = 2, by Claim 36, z1 /∈ N(a). So yt 6= y1.

Case 1: d(y1) = 2. Then d(y1z1) = 1 and hence b is unhappy. So, since d(y1y2) = 2, by
Claim 36, d(y2z1) = 1. Consider G′ = G − y1. As in the proof of Claim 38, (S2), (S4)
and (S5) hold for G′ by definition. Cycle y2ay2P1by2 together with Lemma 32 certify that
G′ is 2-connected, i.e., (S1) holds. Only the neighborhoods of a and b in A′ are distinct
from those in A. So the fact that d(y2z1) = d(y2yt) = 1 shows that G′ is Sperner. Thus,
deleting y1 is a shrinking of type 2. This proves Case 1.

Case 2: d(y1) > 3. Let c ∈ N(y1) − a − b, where if possible we choose c to be adjacent
to z1. Since G is 2-connected, G− y1 has a shortest path P2 from c to V (P1) ∪ {y2}. Let
x be the end of P2 in V (P1) ∪ {y2}.
Case 2.1: x 6= b. Consider G′ = G − ay1. As above, (S2), (S4) and (S5) trivially
hold for G′. Since only the neighborhood of a in A′ is distinct from those in A and
d(y2yt) = 1, G′ is Sperner. We need now only to show that G′ is 2-connected. If x = y2,
then cycle cP2y2aP1by1c certifies this. If x ∈ V (P1) − b, then our certificate is cycle
cy1by2aP1(a, x)xP2c, where P1(a, x) denotes the subpath of P1 from a to x.

Case 2.2: x = b. Note that because x 6= z1, by the choice of c and the choice of P2,
z1 /∈ N(c) for any c ∈ N(y1) − a − b. In particular, d(y1z1) = 1, and so b is unhappy.
The second to last vertex of P2 is none of z1, y1, y2, so we may assume it is z2. Consider
G′ = G−by1. Cycle cP2by2ay1c shows thatG′ is 2-connected. As above, (S2), (S4) and (S5)
trivially hold for G′. Thus if G′ is Sperner, then the claim is proved. If G′ is not Sperner,
then y1 is a b-menace, and there is a vertex g ∈ A− b such that N(g) ⊃ {y2, z1, z2}. Since
z1a /∈ E, g 6= a. But then instead of the path P2, we can consider the path P2(c, z2)z2gz1,
and will have Case 2.1.

Claim 40. Suppose all pairs in N(a) are thin. Let Gt be obtained from G by gluing all
vertices in N(a)− yt into one vertex y∗. If G′ is Sperner, then Gt satisfies (S1)-(S5). In
particular, G admits a shrinking of type (4).

Proof. (S2) holds for Gt trivially. When gluing the vertices, we lose edges only if some
pair yi, yj ∈ N(a) have a common neighbor. But because {yi, yj} is thin, they have no
common neighbors other than a. Hence |E ′| = |E|−(t−2) and |Y ′| = |Y |−(t−2) so (S4)
holds. Property (S5) is less clear but still is true: If Gt has a cycle C of length at least
2k, then it must go through y∗. Furthermore, if C does not go through a, then either C
is present in G with y∗ replaced by some yi, or it can be extended through a connecting
some yi and yj. If C does through a, then it uses edges ayt and ay∗; we can modify C in
G to a cycle of the same length. Thus, (S5) also holds.

Since all pairs in N(a) are thin, none of yi is an a-menace. So by Claim 38 and
Lemma 32, Gt is 2-connected hence satisfies (S1).
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Assume Gt is not Sperner but all pairs in N(a) are thin. Then NGt(a) is not contained
in any other neighborhood. By symmetry there are b1, b2 ∈ A−a such that NG(b2)−y2 ⊂
NG(b1) and y1b1 ∈ E. Note that each of b1 and b2 has exactly one neighbor in N(a) (y1
and y2 respectively), and there is x ∈ N(b1) ∩N(b2) such that x /∈ N(a).

Claim 41. If d(b2) > 3, then G − ay2 satisfies (S1)-(S5). In particular, G admits a
shrinking of type (1).

Proof. Suppose N(b2) ⊇ {y2, x1, x2}. Then by the definition of b1, N(b1) ⊇ {y1, x1, x2}.
So by Claim 39 applied to b1 and b2, because the pair {x1, x2} is thick, both b1 and
b2 are happy. Since G is 2-connected, G − a has a shortest path P from yt to Z =
{y1, y2, b1, b2, x1, x2}. Let z be the last vertex of P . By symmetry, we may assume z ∈
{y2, b2, x2}. Consider G−ay2. As before, (S2),(S4) and (S5) hold. Since all pairs in N(a)
are thin, G−ay2 is Sperner. If z = y2, then the cycle aytPy2b2x2b1y1a shows that G−ay2
is 2-connected.

So suppose z ∈ {b2, x2}. Since b2 is happy, there is another b3 adjacent to y2 and x2.
By definition, it is distinct from b1 and a. So if z = x2 and P does not pass through b3,
then we have cycle aytPx2b3y2b2x1b1y1a. Similarly, if z = b2 and P does not pass through
b3, then we have cycle aytPb2y2b3x1b1y1a. Finally, if P passes through b3, then we have
cycle aytP (a, b3)b3y2b2x1b1y1a.

So assume d(b2) = 2. Recall x = N(b1) ∩N(b2).

Claim 42. Suppose d(y2) = 2. Then either G− b2 − y2 or G− ay1 satisfies (S1)-(S5), b1
is unhappy and G− b1x satisfies (S1)-(S5), or d(x) = 2, both neighbors of x are unhappy,
and G− b2 − y2 − x satisfy (S1)-(S5). In particular, G admits a shrinking either of type
(1), type (2), or type (3).

Proof. Assume N(y2) = {a, b2}. By Claim 38, G − y1 − y2 has an a, x-path P . We can
choose a shortest such path. Let c be the second to last vertex in P .

Case 1: c 6= b1. Consider G′ = G − b2 − y2. As before, (S2),(S4) and (S5) hold for
G′. Since all pairs in N(a) are thin, G′ is Sperner. The cycle aPxb1y1a shows that G′ is
2-connected.

Case 2: c = b1. Let z be the previous to c vertex of P . Since all pairs in N(a) are thin,
z 6= yt. If b1 is happy, then there exists a vertex b3 6= b1 with {y1, x} ⊆ N(b3). Then b3
can play the role of b1 in the definition of b1 and b2. In this case, we get Case 1 and are
done. Thus, b1 is unhappy. Hence all pairs in N(b1) are thin.

If d(x) = 2, consider G′ = G − b2 − y2 − x. As before, (S2),(S4) and (S5) hold for
G′. Since all pairs in N(a) and in N(b1) are thin, G′ is Sperner. The cycle aP (a, b1)b1y1a
shows that G′ is 2-connected.

So suppose b4 ∈ N(x) − b1 − b2. Since G is 2-connected, G − x has an a, b4-path P1.
If P1 does not intersect {b1, y1}, then we have Case 1 with P = aP1b4x. So, suppose u is
the first vertex in {b1, y1} that is hit by P1. Note that if P1 meets P − u before u, then
we can modify it to avoid intersecting with {b1, y1}. Thus we assume below that this is
not the case.
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If u = y1, consider G′ = G− ay1. As before, (S2),(S4) and (S5) hold for G′. Since all
pairs in N(a) are thin, G′ is Sperner. The cycle aP (a, b1)b1y1P1(y1, b4)xb2y2a shows that
G′ is 2-connected. Finally, if u = b1, consider G′ = G − b1x. As before, (S2),(S4)
and (S5) hold for G′. Since all pairs in N(b1) are thin, G′ is Sperner. The cycle
aP (a, b1)b1P1(b1, b4)xb2y2a shows that G′ is 2-connected.

We now assume d(y2) > 3.

Claim 43. Suppose the set {x, y1, y2} does not separate a from b1. Then either G − ay1
satisfies (S1)-(S5), b1 is unhappy and G − b1y1 satisfies (S1)-(S5), or d(y1) = 2, both
neighbors of y1 are unhappy, and G − y1 satisfies (S1)-(S5). In particular, G admits a
shrinking either of type (1) or type (2).

Proof. We may find in G − {x, y1, y2} an a, b1-path P . Note that b2 /∈ P since N(b2) =
{x, y2}. Let the second vertex of P be yt.

If b1 is happy, then there is b3 ∈ A− b1 with N(b3) ⊇ {y1, x}. Consider G′ = G− ay1.
As before, (S2),(S4) and (S5) hold for G′. Since all pairs in N(a) are thin, G′ is Sperner.
We need to show that G′ is 2-connected. If b3 ∈ P , then the cycle aP (a, b3)b3y1b1xb2y2a
certifies this. Otherwise, the cycle aPb1y1b3xb2y2a certifies this.

So, b1 is unhappy, and all pairs in N(b1) are thin. If d(y1) = 2, consider G′ = G− y1.
As before, (S2),(S4) and (S5) hold for G′. Since all pairs in N(b1) and in N(a) are thin,
G′ is Sperner. The cycle aPb1xb2y2a shows that G′ is 2-connected.

Thus, d(y1) > 3. Let c ∈ N(y1)−a− b1. Let P1 be a shortest path in G− y1 from c to
V (P ) ∪ {x, y2}. Let z be the last vertex of P1. If z ∈ V (P )− b1, consider G′ = G− ay1.
As before, (S2),(S4) and (S5) hold for G′. Since all pairs in N(a) are thin, G′ is Sperner.
The cycle aP (a, z)zP1cy1b1xb2y2a certifies that G′ is 2-connected.

If z ∈ {b1, x, y2}, consider G′ = G − b1y1. As before, (S2),(S4) and (S5) hold for G′.
Since all pairs in N(b1) are thin, G′ is Sperner. Let P2 denote the path ay2b2xb1. Then
the cycle ay1cP1zP2(z, b1)b1Pa certifies that G′ is 2-connected.

Therefore we assume {x, y1, y2} separates a and b1.

Claim 44. Suppose {x, a} does not separate y2 from N(a) − y2. Then G − ay2 satisfies
(S1)-(S5). In particular, G admits a shrinking of type (1).

Proof. Let P be a shortest a, x-path in G− y1− y2. By Claim 43, P does not go through
b1. Let the second vertex of P be yt. Let P1 be a shortest path in G − a − x from y2 to
(N(a)−y2)∪V (P ). Let z be the last vertex of P1. If b1 ∈ V (P ), then we can take z = y1.
Consider G′ = G− ay2. As before, (S2),(S4) and (S5) hold for G′. Since all pairs in N(a)
are thin, G′ is Sperner. If z ∈ N(a)− yt then the cycle y2P1zaPxb2y2 certifies that G′ is
2-connected. Otherwise, the cycle y2P1zP (z, a)ay1b1xb2y2 does it.

So suppose {x, a} separates y2 from the rest of N(a). Let C2 be the vertex set of
the component of G − a − x containing y2 and let G2 = G[C2 ∪ {a, x}]. By Claim 44,
C2 ∩ N(a) = {y2}. If x has no neighbors in C2 − b2, then by Claim 44, y2 would be a
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cut vertex, a contradiction. Thus, in view of b2, no vertex in G2 − a separates x from y2.
Since no vertex in G2 − a may separate {y2, x} from any other vertex, we conclude

G2 − a is 2-connected and the unique neighbor of a in C2 is y2. (5)

Claim 45. Suppose {x, a} does not separate y1 from N(a)−y1. Then one of the following
occurs: G−ay1 satisfies (S1)-(S5), b1 is unhappy and for some y ∈ N(b1) G−b1y satisfies
(S1)-(S5), or d(y1) = 2, both neighbors of y1 are unhappy, and G− y1 satisfies (S1)-(S5).
In particular, G admits a shrinking either of type (1) or type(2).

Proof. If d(b1) = 2, then by symmetry of b1 and b2 and the previous claim, we are done.
So d(b1) > 3. Let x′ ∈ N(b1)− y1 − x. Let P be a shortest a, x-path in G− y1 − y2. By
Claim 44, P does not go through b2. Let the second vertex of P be yt.

Let P1 be a minimal path in G− a− x from {y1, b1} to V (P ) ∪ (N(a)− y1 − y2). Let
z1 be the first vertex of P1 and z2 — the last. If z1 = y1, consider G′ = G − ay1. As
above, (S2),(S4) and (S5) hold for G′. Since all pairs in N(a) are thin, G′ is Sperner. If
z2 ∈ N(a)−yt then the cycle y1P1z2ay2b2xb1y1 certifies that G′ is 2-connected. Otherwise,
the cycle y1P1z2P (z2, a)ay2b2xb1y1 does it.

So suppose z1 = b1.

Case 1: b1 is unhappy. If z2 ∈ V (P ), then we consider G′ = G−xb1. As above, (S2),(S4)
and (S5) hold for G′. Since b1 is unhappy, all pairs in N(b1) are thin, and hence G′ is
Sperner. The cycle b1P1z2P (z2, x)xb2y2ay1b1 certifies that G′ is 2-connected. So below we
assume z2 = y3 and t > 4.

If d(y1) = 2, then we consider G′ = G − y1. As above, (S2),(S4) and (S5) hold for
G′. Since all pairs in N(a) and N(b1) are thin, G′ is Sperner. The cycle b1P1y3ay2b2xb1
certifies that G′ is 2-connected.

Thus there is b0 ∈ N(y1)− a− b1. If G− b1 − y1 has a path P0 from b0 to N(a)− y1,
then we have a case similar to z1 = y1 above (by taking either the path y1b0P0 or a portion
of it with an endpoint in P . Hence there is no such path. But then G−V (P )−N(a) has
a b0, b1-path P2. In this case, we consider G′ = G − y1b1. As above, (S2),(S4) and (S5)
hold for G′. Since all pairs in N(b1) are thin, G′ is Sperner. The cycle y1b0P2b1xb2y2ay1
certifies that G′ is 2-connected.

Case 2: b1 is happy. Then there is another common neighbor b′1 of x and y1. Again,
consider G′ = G−ay1. As above, (S2),(S4) and (S5) hold for G′. Since all pairs in N(a) are
thin, G′ is Sperner. If b′1 /∈ P1 and z2 ∈ N(a)−yt then the cycle b1P1z2ay2b2xb

′
1y1b1 certifies

that G′ is 2-connected. If b′1 /∈ P1 and z2 ∈ V (P ) then the cycle b1P1z2P (z2, a)ay2b2xb
′
1y1b1

does it. If b′1 ∈ P1, then we switch the roles of b1 and b′1: consider the path P ′1 =
P1(b

′
1, z2).

So, below we assume {x, a} separates y1 from the rest of N(a).

Claim 46. Vertex a has only one neighbor (namely, y1) in the component C1 of G−x−a
containing y1 and b1.

Proof. Otherwise, {x, a} would not separate y1 from N(a)− y1.
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Similarly to the definition of G2, let C1 be the vertex set of the component of G−a−x
containing y1 and let G1 = G[C1 ∪ {a, x}]. By Claim 46, C1 ∩N(a) = {y1}.

Claim 47. If G1 − a is not 2-connected, then b1 is unhappy and for some y ∈ N(b1),
G− b1y satisfies (S1)-(S5). In particular, G admits a shrinking of type (1).

Proof.
Case 1: G− a− b1 has an x, y1-path P . Then P + b1 forms a cycle in G1 − a containing
x and y1. Since G is 2-connected and {y1, x} is a separating set in G1, this finishes the
case.

Case 2: d(b1) = 2. Then y1 can play the role of y2, and we are done by (5).

Case 3: Vertex b1 separates y1 from x in G1− a, and b1 has a neighbor y′ /∈ {x, y1}. If b1
were happy, there would be b′ 6= b1 adjacent to x and y1 and we would have Case 1. So,
b1 is unhappy. Let P1 be a shortest path from y′ to {a, x} in G − b1. and z be the last
vertex on P1.

Suppose first that z = a. Then by Claim 46, the second to last vertex of P1 is y1.
Consider G′ = G − y1b1. As above, (S2),(S4) and (S5) hold for G′. Since b1 is unhappy,
all pairs in N(b1) are thin. Thus G′ is Sperner. The cycle y′P1ay2b2xb1y

′ certifies that G′

is 2-connected.
Suppose now that z = x. Since Case 1 does not hold, y1 /∈ P1. Consider G′ = G−xb1.

As above, (S2),(S4) and (S5) hold for G′. Since all pairs in N(b1) are thin, G′ is Sperner.
The cycle y′P1xb2y2ay1b1y

′ certifies that G′ is 2-connected.

Claim 48. G− C1 and G− C2 are 2-connected Sperner r−-graphs.

Proof. Let P be a shortest y3, x-path in G−a. By Claim 44 and 45, P avoids C1∪C2. For
i = 1, 2, the cycle y3Pxb3−iy3−iay3 certifies that G−Ci is 2-connected. Since the degrees
of the vertices in G − C1 and G − C2 are dominated by those in G, G − C1 and G − C2

are r−-graphs. Since a is the only vertex in A∩ V (G−Ci) whose degree decreased w.r.t.
G and all pairs in N(a) are thin, G− C1 and G− C2 are Sperner.

Now set B1 = G1−a, B2 = G2−a, and x1 = x2 = x. Note that the choice of yt in the
construction of Gt was arbitrary. So we may repeat the proof instead taking G′′ to be the
graph obtained by gluing N(a) − y1 into a single vertex y∗∗. If G′′ satisfies (S1) - (S5),
then we are done. Otherwise we find some vertices y′1, y

′
2 ∈ N(a)− y1 which play the role

of y1 and y2. We may assume that y′1 /∈ {y1, y2} and it is coupled with some vertex x′

which plays the role of x.
Again, repeating the previous proofs for Claims 41-48 with y′1 and y′2, we obtain that

either G admits a shrinking, or we can define G′1 similarly to play the role of G1 (defined
after Claim 46) for y′1. Let B3 = G′1 − a, y3 = y′1, and x3 = x′. We now show that (B1) -
(B5) hold.

(B1) and (B3) are trivial. Since G was Sperner each vertex of A∩ V (Bi) has the sane
neighborhood in Bi, Bi is also Sperner. Hence together with (5) and Claim (47), we get
(B2). Claim 48 proves (B4). Claims 44 and 45 imply that V (B1) ∩ V (B2) = {x}, and
y′1(= y3) is contained in a component of G−{a, x} not containing y1 and y2. In particular,
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B3 is disjoint from B1 and B2 except possibly at x′ if x′ = x. This proves (B5) and thus
Lemma 34.

4.3 Consequences of Lemma 34

This technical lemma implies the following more applicable fact.

Lemma 49. Suppose k > 5, r > 3 are integers with k > r. Set t = b(k − 1)/2c. Let
G = (A, Y ;E) be a Sperner layered 2-connected r−-bigraph with c(G) < 2k that is not
happy. Then either G admits a shrinking such that the resulting graph satisfies (S1) -
(S5), or there exists an unhappy vertex a∗ ∈ A and corresponding subgraphs B∗1 , B

∗
2 , B

∗
3

satisfying (B1) - (B5) such that B∗1 is happy and |A∩B∗1 | 6
(

t
min{r−1,bt/2c}

)
(|Y ∩B∗1 | − 2).

Proof. Suppose G does not admit any shrinking. By Lemma 34, for each unhappy vertex
a we obtain some {yi, xi, Bi} for i ∈ {1, 2, 3} satisfying (B1) - (B5).

Claim 50. For each unhappy a, at most one Bi has a (xi, yi)-path of length k or longer.

Proof. Suppose without loss of generality that for i ∈ {1, 2}, there exists a (yi, xi)-path Pi
in Bi of length at least k. Recall that y1, y2 ∈ N(a). Let P3 be a (x1, x2)-path internally
disjoint from V (B1) ∪ V (B2) (where P3 may be a singleton). Then P1 ∪ P3 ∪ P2 ∪ a is a
cycle of length at least 2k − 1, i.e., length at least 2k.

Among all vertices in A that are not happy, choose a and a corresponding 2-connected
graph B1 from Lemma 34 so that (a) B1 does not have a (xi, yi)-path of length k or longer,
and (b) subject to (a), |V (B1)| is minimized.

Suppose first that B1 contains an unhappy vertex a′. By Lemma 34, there exists
{x′i, y′i, B′i} for i ∈ {1, 2, 3} satisfying (B1)-(B5) with a′.

Claim 51. At most one j ∈ {1, 2, 3} satisfies V (B′j) 6⊆ V (B1).

Proof. Suppose without loss of generality V (B′2) 6⊆ V (B1) and V (B′3) 6⊆ V (B1). Then
since {x1, a} separates B1 from G−(B1−x)−a, and B′2 and B′3 are 2-connected, {x1, a} ⊆
V (B′2) and {x1, a} ⊆ V (B′3). But this violates (B5).

Therefore we may assume V (B′1), V (B′2) ⊆ V (B1). By Claim 50, we can also assume
that V (B′1) has no (x′1, y

′
1)-path of length k or longer. Furthermore, since a′ ∈ V (B1) −

V (B′1), |V (B′1)| < |V (B1)|. But this contradicts the choice of a and B1. Thus B1 cannot
have any unhappy vertices, i.e., B1 is happy.

Consider the shadow ∂(B1) of B1. By Lemma 31, ∂(B1) is not d(k + 1)/2e-path
connected, otherwise B1 would contain an (x1, y1)-path of length at least 2d(k+1)/2e−1 >
k, a contradiction.

Let α = d(k − 1)/2e, β = b(k − 1)/2c.

Claim 52. 1
α−2

(
α

min{r,bα/2c}

)
6
(

β
min{r−1,bβ/2c}

)
.
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Proof. First suppose α = β, i.e., k is odd. Then the case min{r, bα/2c} = α/2 is trivial.
Otherwise 1

α−2

(
α
r

)
= 1

α−2
α−r+1

r

(
β
r−1

)
6
(
β
r−1

)
. So assume α = β + 1. If min{r, bα/2c} = r

(so min{r − 1, bβ/2c = r − 1), then we have 1
α−2

(
α
r

)
= 1

β−1
β+1
r

(
β
r−1

)
6
(
β
r−1

)
. Otherwise

if bα/2c < r, then bβ/2c 6 r − 1, and

1

α− 2

(
α

bα/2c

)
=

1

β − 1

(
β + 1

b(β + 1)/2c

)
=

1

β − 1

β + 1

b(β + 1)/2c

(
β

b(β + 1)/2c − 1

)
6

(
β

bβ/2c

)
.

Therefore because ∂(B1) is not (α+1)-path connected, by Theorem 26 and the previous
claim,

|A ∩B1| 6 NSp(∂(B1), r)

6
|Y ∩B1| − 2

α− 2

(
α

min{r, bα/2c}

)
6 (|Y ∩B1| − 2)

(
β

min{r − 1, bβ/2c}

)
.

5 Constructing happy r−-graphs

In this section, we translate Lemma 34 into the language of r−-graphs. We also refine it.

5.1 Unhappy r−-graphs

A Sperner r−-graph H is happy if its layered incidence bigraph I(H) is happy, and is
unhappy otherwise. The happy and unhappy vertices in I(H) correspond to happy and
unhappy edges in H.

For an unhappy edge e in an unhappy r−-graph H and a vertex v ∈ e, let F (H, e, v)
denote the r−-graph obtained from H by replacing e with e− v.

A vertex v of degree 2 in an unhappy r−-graph H is special if each of the two incident
edges, say e1 and e2, is either unhappy or a graph edge (i.e., contains exactly two vertices).
If v is special and incident with e1 and e2, then F (H, v, e1, e2) is the r−-graph obtained
from H by deleting v and for i = 1, 2 deleting ei if |ei| = 2 and replacing ei with ei − v
otherwise.

A graph edge vu in an unhappy r−-graph H is special if both v and u are special, and
both adjacent to vu edges are unhappy. If vu is special and adjacent to e1 and e2, then
F (H, vu) is the r−-graph obtained from H by deleting v and u, replacing e1 with e1 − v,
and replacing e2 with e2 − u.

A 2-block in a 2-connected H is a 2-connected H′ ⊂ H such that only two vertices of
H′ have neighbors outside of H′. These two vertices will be called outer vertices of H′.

the electronic journal of combinatorics 26(4) (2019), #P4.31 21



A 2-block H′ with outer vertices x and y in an unhappy Sperner r−-graph H is special
if
H′ is happy and there is exactly one edge, say a, in G−E(H′) containing y, and this edge
does not contain x.

Given a special 2-blockH′ with outer vertices x and y in an unhappy Sperner r−-graph
H, the r−-graph F (H,H′, x, y) is obtained from H by deleting all vertices of H′ − x − y
together with the edges containing them and adding edge {x, y} if it is not in H.

Translating from the language of incidence bipartite graphs to hypergraphs, we obtain
the following versions of Lemmas 30 and 31 about Berge cycles and Berge paths.

Lemma 53. Let r > 3. Let H be a happy r−-graph. If the 2-shadow ∂2H contains a cycle
of length ` > r + 1, then H contains a Berge cycle of length ` on the same base vertices.
Furthermore, if ∂2H contains a path, then H contains a Berge path with the same base
vertices.

For simplicity, for an r−-graph H, denote
∑
|E(H)| :=

∑
e∈E(H) |e|. For example, if

H is r-uniform, then
∑
|E(H)| = r|E(H)|. We also obtain the following as a corollary of

Lemma 34 (particularly following Claims 35-47) and Lemma 49.

Lemma 54. Suppose k > r > 3 are integers, and set t = b(k−1)/2c. Let H be a Sperner
2-connected r−-graph with c(H) < k that is not happy. Then we can obtain a Sperner
2-connected r−-graph H′ such that

(i)
∑
|E(H′)| 6

∑
|E(H)|, |V (H′)| 6 |V (H)|, and

∑
|E(H′)|+ |V (H′)| <

∑
|E(H)|+

|V (H)|;

(ii) |E(H)| − |E(H′)| 6
(

t
min{r−1,bt/2c}

)
(|V (H)| − |V (H′)|); and

(iii) c(H′) < k

using one of the following transformations:

(T1) for an unhappy edge e and v ∈ e, replacing H with F (H, e, v);

(T2) for a special vertex v with incident edges e1 and e2, replace H with F (H, v, e1, e2);

(T3) for a special edge vu, replace H with F (H, vu);

(T4) glue together all but one vertices of an unhappy edge;

(T5) for a special 2-block H ′ with outer vertices say x, y, replace H with F (H,H ′, x, y).

Furthermore, if (T5) is not applied, then instead of (ii), we obtain |E(H)| − |E(H′)| 6
(|V (H)| − |V (H′)|).
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5.2 A refinement of Lemma 54

Suppose we start from a Sperner 2-connected unhappy r−-graph H with at least k vertices
and c(H) < k. Lemma 54 provides that we can obtain from H a happy Sperner 2-
connected r−-graph in several steps using the following rule at each step:

if possible, apply (T1); if not then try (T2), then (T3) and so on. (6)

We may think that we have started from H = H0 and after Step i obtain Hi from
Hi−1 using one of (T1)–(T5).

Claims 36– 37 in the proof of Lemma 54 yield that following Rule (6), at each Step i,

if (T1) is not applied on Step i+ 1, then in each unhappy edge a of Hi, thick pairs
are disjoint,

(7)

and

if neither (T1) nor (T2) is applied on Step i + 1, then all pairs of vertices in each
unhappy edge a of Hi are thin.

(8)

Claim 55. If (T2) was applied on Step i, then (T1) cannot be applied on Step i+ 1.

Proof. Suppose Hi = F (Hi−1, v, e1, e2) and Hi+1 = F (Hi, e0, w).

Case 1: Edge e0 is neither e1 − v nor e2 − v. We want to show that in this case, e0 is
unhappy in Hi−1 and H′ = F (Hi−1, e0, w) is a Sperner 2-connected r−-graph satisfying
(i)–(iii) with Hi−1 in place of H. That would contradict Rule (6).

To prove the first part (that e0 is unhappy in Hi−1), recall that e0 is unhappy in Hi.
But the codegree in Hi of each pair in V (Hi) is the same as in Hi−1.

To prove the second part, we use the fact that H′ can be obtained from Hi+1 by adding
back vertex v and for j = 1, 2 constructing ej either by adding v to ej − v ∈ Hi+1 when
|ej| > 3 or adding edge ej when |ej| = 2. Since the incidence graph I(Hi+1) is 2-connected
and this operation corresponds to adding a vertex of degree 2 or an ear to I(Hi+1), I(H′)
also is 2-connected. Since Hi+1 is Sperner, and H′ differs from it only e1, e2 and v, H ′ is
also Sperner: new edges are not contained in any old edge because of v, and no old edge
can be contained in ej, since otherwise it would be contained in ej−v in Hi+1. Properties
(i)–(iii) are trivial.

Case 2: e0 = e1− v. In this case, we know that e1 is unhappy in Hi−1 and want to show
that H′ = F (Hi−1, e1, w) is a Sperner 2-connected r−-graph satisfying (i)–(iii) with Hi−1
in place of H. Now H′ can be obtained from Hi+1 by adding back vertex v, adding v to
e0 − w and constructing e2 either by adding v to e2 − v ∈ Hi+1 when |e2| > 3 or adding
edge e2 when |e2| = 2. The rest is as in Case 1.

Practically the same proof yields the following similar claim.

Claim 56. If (T3) was applied on Step i, then (T1) cannot be applied on Step i+ 1.

The proof of the next claim is somewhat different.
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Claim 57. If (T4) was applied on Step i, then (T1) cannot be applied on Step i+ 1.

Proof. Suppose Hi−1 has an unhappy edge a = {y1, . . . , yt} such that Hi is obtained from
Hi−1 by gluing {y1, . . . , yt−1} into a new vertex y∗, and Hi+1 = F (Hi, e, w). By (8),

all pairs of vertices in each unhappy edge of Hi−1 are thin. In particular, the size of
each edge in Hi apart from the edge y∗yt is the same as in Hi−1.

(9)

Case 1: w 6= y∗. By (9), in Hi−1, |e ∩ a| 6 1. So, since e is unhappy in Hi, it is also
unhappy in Hi−1. We want to show that H′ = F (Hi−1, e, w) is a Sperner 2-connected
r−-graph satisfying (i)–(iii). Since each pair in e is thin, H′ is Sperner. Properties (i)–(iii)
are evident, so we need to check that H′ is 2-connected.

By construction, H′ can be obtained from the 2-connected Hi+1 by blowing up vertex
y∗ into vertices y1, . . . , yt−1 (each of a positive degree) and replacing edge y∗yt with a. In
terms of the incidence graphs, in the 2-connected I(Hi+1), we split y∗ into t− 1 vertices
of degree at least 1, delete vertex y∗ and add vertex a adjacent to y1, . . . , yt. It is easy to
check that the new graph is 2-connected.

Case 2: w = y∗. By (9), there is a unique v1 ∈ a− yt such that e′ = e− y∗ + v1 ∈ Hi−1.
Since e is unhappy in Hi, it has a pair xy of codegree at most |e| − 2. If y∗ /∈ {x, y}, then
the codegree of xy in Hi−1 also is at most |e| − 2. And if y∗ = y, then the codegree of y1x
in Hi−1 is at most |e| − 2. Thus e′ is unhappy in Hi−1. The rest is as in Case 1.

5.3 Stopping at k − 1 vertices

Lemma 58. Suppose r > 3 and k > r are integers. Let H be a Sperner 2-connected r−-
graph with |V (H)| > k and c(H) < k that is not happy. Suppose H = H0, . . . ,Hi,Hi+1 is
a sequence of r−-graphs obtained by iteratively applying Lemma 54 following Rule (6) to
H until Hi+1 is happy. If (T5) was never applied and |V (Hi+1)| = k−1, then |E(Hi+1)| 6(

k−2
min{r,b(k−2)/2c}

)
+ 2.

Proof. Since (T1) does not change the number of vertices and H0 has at least k vertices,
one of (T2), (T3), or (T4) was applied. Moreover, by Claims 55–57, one of (T2), (T3), or
(T4) was applied to Hi to obtain the happy r−-graph Hi+1. For short, denote H′ = Hi+1.

If H′ has a vertex of degree at most 3, then the number of edges in H′ is at most(
k−2

min{r,b(k−2)/2c}

)
+
(

2
min{r−1,1}

)
, and we are done. Hence

δ(H′) > 3. (10)

In the following, for any r−-graph A and any vertex v ∈ V (A), we use A−v to denote
the r−-graph obtained by removing vertex v and shrinking any edge e that contains v to
the edge e− v, unless |e| = 2, in which case we simply delete e in A− v. Note that A− v
need not be Sperner, even if A is Sperner.

Case 1: (T4) was the last applied operation. Let a = {y1, . . . , yt} be the unhappy edge
such that H′ is obtained from Hi by gluing {y1, . . . , yt−1} into a new vertex y∗. Since
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H′ is happy, Hi − a is happy. The r−-graph F (Hi, a, yt) satisfies (i)-(iii) and is Sperner
by (9). So if F (H′, a, yt) is 2-connected, then we would have applied (T1) to Hi instead
of (T4), a contradiction to Rule (6). Therefore

the incidence graph I(Hi − a) has a vertex xt separating yt from {y1, . . . , yt−1}.
(11)

If xt corresponds to an edge b in Hi − a, then some pair of its vertices is thin. So, since
Hi − a is happy, |b| = 2. Then instead of xt, we can choose as a vertex x′t separating yt
from {y1, . . . , yt−1} the neighbor of xt that is farther from yt. Thus we may assume that
xt corresponds to a vertex in Hi − a.

If xt /∈ {y1, . . . , yt−1}, then yt and y∗ are also separated by xt in H′− y∗yt. Since there
are at least 2 components in H′ − y∗yt − xt, the largest block of H′ − y∗yt has at most
|V (H′)− 1| = k − 2 vertices.

We have that

|E(H′)| = |E(H′−y∗yt)|+1 6

(
k − 2

min{r, b(k − 2)/2c}

)
+1+1 =

(
k − 2

min{r, b(k − 2)/2c}

)
+2.

If xt ∈ {y1, . . . , yt−1}, then let C be a component of (Hi − a) − xt which does not
contain yt. Then C contains a vertex y /∈ {y1, . . . , yt−1}, otherwise every edge of C + xt in
Hi would be a subset of the edge a, contradicting that Hi is Sperner. Thus in H′ − y∗yt,
y and yt are in different blocks. Hence we again get |E(H′)| 6

(
k−2

min{r,b(k−2)/2c}

)
+ 2.

Case 2: Hi+1 = F (Hi, v, e1, e2) for some special vertex v. By (7), if |e1| > 4, then some
pair in e1− v is thin, and hence e1− v is unhappy in Hi+1, a contradiction the happiness
of Hi+1. Thus |e1|, |e2| 6 3. Since Hi was unhappy, we may assume that |e1| = 3, say
e1 = {v, v′, v′′}. By (7), either vv′ or vv′′ is a thin pair in Hi. Suppose vv′′ is thin.
Consider H′′ = F (Hi, e1, v

′). Since vv′′ is thin, H′′ is Sperner. If H′′ is 2-connected,
we get a contradiction to Rule (6). Thus the incidence graph I(H′′) has a cut vertex x
separating v′ from {v, v′′}. We claim that

we can choose x corresponding to a vertex in H′′ distinct from v. (We allow x = v′′.)
(12)

Indeed, if v separates v′ from v′′ in I(H′′), then vertex e1 in the incidence graph I(Hi)
separates v′ from v′′, a contradiction to the 2-connectedness of Hi. If x corresponds to an
edge in I(Hi), then again x contains thin pairs. If |x| > 3. Then x is unhappy. By the
choice Hi+1, the only unhappy edge in H′′ could be e2. Recall that in this case, |e2| = 3,
say x = e2 = {v, w, w′}. But in this case, one of v, w and w′ also separates v′ from v′′, and
we know that it is not v. Recall that vv′′ is a thin pair, and so v′′ /∈ {w,w′}. Otherwise
if |x| = 2, then both of its vertices are cut vertices. This proves (12).

Recall that |V (H′′)| = |V (Hi)| = k and e(H′′) = e(Hi) 6 e(Hi+1) + 1. Suppose first
that each component of H′′ − x has at least 3 vertices. Since H′′ − x has k − 1 vertices
and at least 2 connected components, k > 7, and the largest component of H′′− x has at
most k − 4 vertices. Therefore we obtain

e(Hi+1) 6 e(H′′) 6
(

k − 3

min{r, b(k − 3)/2c}

)
+

(
4

2

)
6

(
k − 2

min{r, b(k − 2)/2c}

)
+ 2.
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Now suppose that some component C of H′′ − x contains at most 2 vertices. By (10),
|C| = 2 and each of the two vertices in C either has degree in H′′ less than in Hi+1 or is
v. But the only vertex having degree in H′′ less than in Hi+1 is v′, and the vertices v and
v′ are in distinct components of H′′ − x.

Case 3: Hi+1 = F (Hi, vu) for some special edge vu. Let e1 be the unhappy edge incident
to v and e2 be the unhappy edge incident to u. By (8), all pairs in e1 and e2 are thin.
So since Hi+1 is happy, |e1| = |e2| = 3. Let e1 = {v, v′, v′′} and e2 = {u, u′, u′′}, where
possibly v′ = u′. As in Case 2, consider H′′ = F (Hi, e1, v

′). Since vv′′ is thin, H′′ is
Sperner. If H′′ is 2-connected, we get a contradiction to Rule (6). Thus the incidence
graph I(H′′) has a cut vertex x separating v′ from {v, v′′}.

Similarly to the proof of (12), we derive

we can choose x corresponding to a vertex in H′′ distinct from v and u. (We
allow x = v′′.)

(13)

Furthermore, x /∈ {u′, u′′}. Now |V (H′′)| = |V (Hi)| = k + 1 and e(H′′) = e(Hi) =
e(Hi+1) + 1.

Note that there cannot be any isolated vertices in H′′ − x since by (10), δ(H′′) > 3.
Also, as in the previous case, there cannot be a component of H′′ − x with exactly 2
vertices. So we may assume that each component of H′′ − x has at least 3 vertices.

Let C be the component of H′′ − x that contains v. Then C must also contain u and
at least two of the vertices in {v′′, u′, u′′}. Therefore |C| > 4. In particular, since H′′ − x
contains exactly k vertices and at least 2 connected components, k > |C|+ 3 > 7.

As in Case 2, if the largest component of H′′ − x has at most k − 4 vertices (so k > 8
since |C| > 4), then

e(Hi+1) 6 e(H′′) 6
(

k − 3

min{r, b(k − 3)/2c}

)
+

(
5

2

)
6

(
k − 2

min{r, b(k − 2)/2c}

)
+ 2,

a contradiction.
Now suppose a component C ′ of H′′ − x has k − 3 or k − 2 vertices. If C ′ contains v,

(i.e., C ′ = C), then since C contains u as well, and u and v are incident to exactly 3 edges
(vu, e1, and e2),

e(H′′[C + x]) 6

(
|C ′| − 2 + 1

min{r, b(|C ′| − 2 + 1)/2c}

)
+ 3.

For |C ′| = k − 3 we get

e(H′′) 6
(

k − 4

min{r, b(k − 3)/2c}

)
+ 3 +

(
4

2

)
6

(
k − 2

min{r, b(k − 2)/2c}

)
+ 2,

and for |C ′| = k − 2 we get

e(H′′) 6
(

k − 3

min{r, b(k − 3)/2c}

)
+ 3 +

(
3

2

)
6

(
k − 2

min{r, b(k − 2)/2c}

)
+ 2.

So C ′ 6= C. But since |C| > 4, we have |V (H′′)| > |C ′|+ |C|+ 1 > 4 + (k − 3) + 1 = k + 2,
a contradiction.
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6 Proof of Theorem 14

Proof. Apply Lemma 54 repeatedly to H following Rule (6) to obtain an r−-hypergraph
H′ that is happy. By Lemma 53, ∂2H′ has no cycle of length k or longer. Note that every
2-connected graph has a cycle of length at least 4, so we may assume k > 5. Also, because
H′ is a 2-connected hypergraph, ∂2H′ is a 2-connected graph.

Set t = b(k − 1)/2c, and let nS and mS be the number of vertices and r−-edges
respectively that were deleted going from H to H′ by applying operations (T1)-(T4), and
let nB and mB be the number of vertices and r−-edges respectively that were deleted from
applying operation (T5). So n = |V (H′)|+nS+nB and |E(H)| 6 NSp(∂2H′, r)+mS+mB.
If |V (H′)| > k, then by Theorem 21 (applied to ∂2H′) and Lemma 53, we have

|E(H)| 6 NSp(∂2H′, r) +mS +mS

6 max{f(|V (H′)|, k, r, 2), f(|V (H′)|, k, r, t)}+ nS +

(
t

min{r − 1, bt/2c}

)
nB (14)

First suppose that nB = 0, i.e., (T5) was never applied. Examining the coefficient of nS
we see 1 6 min{2,

(
t

min{r−1,bt/2c}

)
}. So in the case |V (H′)| > k, from (14), we get

|E(H)| 6 max{f(n, r, k, 2), f(n, r, k, t)},

as desired. Otherwise, if |V (H′)| 6 k − 1, then either

|E(H′)| 6
(

k − 2

min{r, b(k − 2)/2c}

)
+ 2 = f(k − 1, k, r, 2)

by Lemma 58, or |V (H′)| 6 k − 2 and

|E(H′)| 6
(

|V (H′)|
min{r, b|V (H′)|/2c}

)
6 f(|V (H′)|, k, r, 2).

Either way we obtain |E(H)| 6 f(n, k, r, 2).
So we may assume that at least one application of (T5) was required to obtain H′.
Denote H ′ := ∂2H′. Let Q be the t-core of H ′ (that is, the resulting graph from

applying t-disintegration toH ′). IfH ′ is t-disintegrable, i.e., Q is empty, thenNSp(H ′, r) 6
f(|V (H ′)|, k, r, t) and so by (14), we get |E(H)| 6 f(n, k, r, t). So we may assume that Q
is non-empty. In particular, since δ(Q) > t+ 1, |V (Q)| > t+ 2.

Claim 59. The graph Q is 1-hamiltonian.

Proof. First note that |V (Q)| 6 k − 1: the case for |V (H ′)| 6 k − 1 is trivial, and if
|V (H ′)| > k, then by applying Kopylov’s Theorem (Theorem 23), we obtain |V (Q)| 6
k − 2.

Next, we claim that Q is 3-connected. If not, then there exists a cut set {x, y} ⊂ V (Q)
and at least two components in H ′ − {x, y}. Since δ(Q) > t + 1, for each of these
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components C, |C ∪ {x, y}| > t+ 2. Hence |V (Q)| > 2(t+ 2)− 2 > k, a contradiction to
|V (Q)| 6 k − 1.

Therefore Q is 3-connected. By Enomoto’s Theorem (Theorem 24), Q is s-path con-
nected where s = min{|V (Q)|, 2(t+ 1)} = |V (Q)|. I.e., Q is 1-hamiltonian.

Let q := |V (Q)|. Let B be a special (in particular, happy) block that was removed in
some application of (T5), and set B = ∂2B. Let xB and aB be the vertex-edge cut pair
corresponding to B, where some vertex yB ∈ V (B) \ V (H′) is contained in aB.

Claim 60. Suppose H ′ is s-path connected. There does not exist a (xB, yB)-path of length
at least k − s+ 1 in B.

Proof. Since H is 2-connected, its incidence bigraph contains two shortest disjoint paths
P1, P2 from {xB, aB} to V (H′) (where possibly |V (P1)| = 1 or |V (P2)| = 1). Note that
these paths are internally disjoint from V (H′)∪V (B). In H, P1 and P2 yield Berge paths
P1 and a ∪ P2 from xB to V (H′) and yB to V (H′) respectively. Say Pi has endpoint
vi ∈ V (H′).

Now suppose there exists a path of length at least k − s + 1 from xB to yB. By
Lemma 31, this yields a Berge path P3 from xB to yB with at least k− s+ 1 base vertices
such that all edges of P3 are contained in V (B). Similarly, we find a Berge path P4 from
v1 to v2 with at least s base vertices such that all edges of P4 are contained in V (H′).

Then P1 ∪P3 ∪ a∪P2 ∪P4 is a Berge cycle of length at least (k− s+ 1) + s− 1 = k,
a contradiction.

Claim 61. If H ′ contains a subgraph S that is s-path connected, then H ′ is also s-path
connected.

Proof. Let {x, y} ⊂ V (H ′). We will show that there exists an (x, y)-path in H ′ with at
least s vertices. Let Px, Py be two disjoint shortest paths from {x, y} to V (S), say with
endpoints vx and vy respectively (where possibly one or both paths are singletons). Such
paths exist because H ′ is 2-connected. Let PS be a (vx, vy)-path in S of length at least S.
Then Px ∪ PS ∪ Py has length at least s.

Therefore the previous claim shows that H ′ is q-path connected. Applying Claim 60
and Theorem 26, we get

e(B) 6 NSp(B, r) 6
|V (B)| − 2

k − q − 2

(
k − q

min{r, b(k − q)/2c}

)
. (15)

Summing up over all blocks deleted via big cuts, we obtain

mB 6 nB

(
1

k − q − 2

(
k − q

min{r, b(k − q)/2c}

))
(16)

Claim 62. For each integer s > 3, 1
s−2

(
s

min{r,bs/2c}

)
6
(

s
min{r−1,bs/2c}

)
.

Proof. The case for min{r, bs/2c} = bs/2c is trivial. So we may assume s > 2r + 2. We
have 1

s−2

(
s
r

)
= 1

s−2
s−r+1
r

(
s
r−1

)
6
(
s
r−1

)
.
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So first suppose that |V (H′)| > k. By Kopylov’s theorem, t + 2 6 q 6 k − 2, and
V (H ′)− V (Q) can be removed via (k − s)-disintegration. Therefore

e(H′) 6
(

q

min{r, bq/2c}

)
+ (|V (H′)| − q)

(
k − q

min{r − 1, b(k − q)/2c}

)
,

and hence by (16) and the previous claim,

e(H) = e(H′) + mB + mS 6

(
q

min{r, bq/2c}

)
+ (|V (H′)| − q)

(
k − q

min{r − 1, b(k − q)/2c}

)
+nB

(
1

k − q − 2

(
k − q

min{r, b(k − q)/2c}

))
+ nS

6

(
q

min{r, bq/2c}

)
+ (n− q)

(
k − q

min{r − 1, b(k − q)/2c}

)
6 max{f(n, k, r, t), f(n, k, r, 2)},

where the last inequality follows from the convexity of the function f . So from now on
we may assume |V (H ′)| 6 k − 1.

Claim 63. Let S be a 1-hamiltonian subgraph of H ′ with s := |V (S)| and t+2 6 s 6 k−2.
Let S ′ be the result of (k− s)-disintegration applied to H ′. Then S ′ is also 1-hamiltonian.

Proof. We will show a stronger statement: S ′ is (k − |V (S ′)|)-hamiltonian. Suppose not.
Set s′ := |V (S ′)|. Applying Theorem 25 with d = k − s (so d 6 2t+ 2− (t+ 2) = t) and
` = k − s′, we get

NSp(S ′, r) 6 max{hSp(s′, k − s′, r, k − s), hSp(s′, k − s′, r, bs′/2c, )}.

If hSp(q′, k − s′, r, k − s) > hSp(s′, k − s′, r, bs′/2c), then

NSp(S ′, r) 6 hSp(s′, k − s′, r, k − s)

=

(
s

min{r, bs/2c}

)
+ (s′ − s)

(
k − s

min{r − 1, b(k − s)/2c}

)
= f(s′, k, r, k − s),

Recall that since S is 1-hamiltonian, H ′ is s-path connected. Hence for each B deleted
in an application of (T5), ∂2B is not (k − s+ 1)-path connected.

It follows that
e(H) 6 NSp(H ′, r) +mB +mS

6 f(s′, k, r, k−s)+(|V (H ′)|−s′+nB)

(
k − s

min{r − 1, b(k − s)/2c}

)
+nS 6 f(n, k, r, k−s).

So by the convexity of the function f , we are done.
Next suppose hSp(s′, k − s′, r, k − s) 6 hSp(s′, k − s′, r, bs′/2c). For simplicity, let

a := bs′/2c. We have that 2 6 a 6 b(k − 1)/2c = t.
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NSp(S ′, r) 6 hSp(s′, k − s′, r, a)

=

(
s′ − (a− k + s′)

min{r, b(s′ − (a− k + s′))/2c}

)
+ (a− k + s′)

(
a

min{r − 1, ba/2c}

)
=

(
k − a

min{r, b(k − a)/2c}

)
+ (s′ − (k − a))

(
a

min{r − 1, ba/2c}

)
6 f(s′, k, r, a) 6 f(s′, k, r, t).

Therefore

e(H) 6 f(s′, k, r, t)+(|V (H ′)|−s′+nB)

(
k − s

min{r − 1, b(k − s)/2c}

)
+nS 6 f(n, k, r, t).

Starting from the 1-hamiltonian subgraph Q of H ′, we obtain a sequence of graphs Q =
Q0 ⊂ Q1 ⊂ . . . ⊂ Qq such that Qi is the resulting 1-hamiltonian subgraph obtained from
(k − |V (Qi−1)|)-disintegration applied to H ′. The sequence ends when either the graph
Qq+1 resulting from the (k−|V (Qq)|)-disintegration of H ′ is exactly Qq, or |V (Qq)| = k−1.
In the former case, we have that |V (Qq+1)| = |V (Qq)| =: q′. Then

e(H) 6 NSp(H ′, r) +mB +mS

6 f(q′, k, r, k−q′)+(|V (H ′)|−q′+nB)

(
k − q′

min{r − 1, b(k − q′)/2c}

)
+nS 6 f(n, k, r, k−q′).

Finally suppose that |V (Qq)| = k − 1. Then H ′ is (k − 1)-path connected. Because
H′ is 2-connected, we can complete a Berge path in H′ with at least k − 1 vertices to a
Berge cycle of length at least k. This proves the theorem.

7 Proof of Theorem 17 for paths

Proof. Let H be a counterexample of Theorem 17 with minimum
∑

e∈E(H) |e| on at least
k + 1 vertices. If H contains a Berge cycle of length k + 1 or longer, then removing
any edge from this Berge cycle yields a Berge path with at least k + 1 base vertices, a
contradiction. If H contains a Berge cycle of length exactly k, then we use the following
Lemma which contradicts that n := |V (H)| > k + 1.

Lemma 64 (Győri, Katona, and Lemons [11]). Let H be a connected hypergraph with no
Berge path of length k. If there is a Berge cycle of length k on the vertices v1, . . . , vk then
these vertices constitute a component of H.

Therefore H contains no Berge cycle of length k or longer. If H is 2-connected, then
by Theorem 14, e(H) 6 max{f(n, k, r, 2), f(n, k, r, b(k − 1)/2c)}, and we are done.

Now suppose H is not 2-connected. Then the incidence bigraph IH of H contains a
set of cut vertices. If a cut vertex x of IH corresponds to an edge in H, then we say x is
a cut edge of H. Otherwise, we say x is a cut vertex of H.
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Suppose H has an cut-edge e. We claim that for each component C of H \ e,

|V (C) ∩ e| 6 1. (17)

Indeed suppose that some component C of H \ e contains at least 2 vertices in e. Let
H′ be the r−-graph obtained by shrinking e to remove all but one vertex in C from e.
Then H′ is still connected and Sperner (since e is a cut edge of H). Furthermore, after
this operation, the length of a longest path cannot increase. This contradicts the choice
of H.

Now supposeH contains a cut edge e. By (17), e intersects every component ofH\e in
at most one vertex. LetH′ be the r−-graph obtained by contracting two vertices of e into a
single vertex (and then deleting e if it now contains only one vertex). The new r−-graphH′
is Sperner, contains no Berge Pk, and is connected. If |V (H′)| > k+ 2, we obtain that H′
contradicts the choice ofH (note that e(H′) > e(H)−1 > max{f(n, k, r, 1), f(n, k, r, b(k−
1)/2c)} − 1 > max{f(n− 1, k, r, 1), f(n− 1, k, r, b(k − 1)/2c)}).

Iterating this process, we may assume that H contains no cut edges, unless n = k+ 1.
Case 1: H does not have a cut edge.
Since H is not 2-connected, it contains at least one cut vertex. Call a subhypergraph

B of H a block if the incidence bigraph of B, IB, is a maximal 2-connected subgraph of H.
In particular, B is a Sperner 2-connected r−-graph. Let B1, . . . ,Bp be the blocks of H.
For each i, let si be the length of a longest Berge cycle in Bi. Without loss of generality,
we may assume s1 > . . . > sp.

Claim 65. For all i > 2, s1 + si 6 k + 1.

In particular, si 6 (k + 1)/2 for all i > 2.

Proof. Suppose s1 + si > k + 2. Let C1 be a Berge cycle of B1 of length s1 and let Ci be
a Berge cycle of Bi of length si. Let P be a shortest Berge path from V (B1) to V (Bi).
Note that P contains at most one edge from each Berge cycle. Then removing an edge
from each Berge cycle, we obtain together with P a Berge path whose base vertices cover
V (C1)∪ V (Ci). Since |V (C1)∩ V (Ci)| 6 1, this path has at least s1 + si− 1 > k+ 1 base
vertices.

For each block Bi, let ni := |V (Bi)|. If ni = si, then

e(Bi) 6
(

si
min{r, bsi/2c}

)
6 (ni − 1)

(
si − 1

min{r − 1, b(si − 1)/2c}

)
.

If ni > si + 1, then we apply Theorem 14 to Bi with cycle length si + 1. We obtain

e(Bi) 6 max{f(ni, si + 1, r, 2), f(ni, si + 1, bsi/2c}.

Furthermore,
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f(ni, si + 1, r, 2) =

(
si − 1

min{r, b(si − 1)/2c}

)
+ 2(ni − si + 1)

6 (si − 1)

(
si − 2

min{r − 1, b(si − 2)/2c}

)
+(ni − si)

(
si − 2

min{r − 1, b(si − 2)/2c}

)
= (ni − 1)

(
si − 2

min{r − 1, b(si − 2)/2c}

)
.

And f(ni, si + 1, r, bsi/2c) 6 (ni − 1)
(

si−1
min{r−1,b(si−1)/2c}

)
.

In all cases we get

e(Bi) 6 (ni − 1)

(
si − 1

min{r − 1, b(si − 1)/2c}

)
. (18)

For B1, if n1 = s1 then e(B1) 6
(

s1
min{r,bs1/2c}

)
and so by (18),

e(H) 6

(
s1

min{r, bs1/2c}

)
+

p∑
i=2

(ni − 1)

(
si − 1

min{r − 1, b(si − 2)/2c}

)
. (19)

If s1 > d(k + 1)/2e, then from (19) we obtain

e(H) 6

(
s1

min{r, bs1/2c}

)
+

p∑
i=2

(ni − 1)

(
k − s1

min{r − 1, b(k − s1)/2c}

)
6 f(n, k, r, k − s1)

6 max{f(n, k, r, 1), f(n, k, r, b(k − 1)/2c}).
Otherwise,

e(H) 6

(
s1

min{r, bs1/2c}

)
+

p∑
i=2

(ni − 1)

(
s1 − 1

min{r − 1, b(s1 − 1)/2c}

)
6 f(n, k, r, b(k − 1)/2c).

If n1 > s1 + 1, then we get

e(B1) 6 max{f(n1, s1 + 1, r, 2), f(n1, s1 + 1, r, bs1/2c}).

If f(n1, s1 + 1, r, bs1/2c) > f(n1, s1 + 1, r, 2), then together with (18), we get

e(H) 6 f(n1, s1 + 1, r, bs1/2c) +

p∑
i=2

(ni− 1)

( bk−1
2
c

min{r − 1, bk−1
4
c}

)
6 f(n, k, r, b(k− 1)/2c).
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If f(n1, s1 + 1, r, bs1/2c) < f(n1, s1 + 1, r, 2), then

f(n1, s1+1, r, 2) =

(
s1 − 1

min{r, b(s1 − 1)/2c}

)
+2(n1−s1+1) 6

(
s1

min{r, bs1/2c}

)
+2(n1−s1).

Thus we obtain

e(H) 6

(
s1

min{r, bs1/2c}

)
+ 2(n1 − s1) +

p∑
i=2

(ni − 1)

(
si − 1

min{r − 1, b(si − 1)/2c}

)
,

and we are done as in the the case for (19).
Case 2: n = k + 1 and H contains a cut edge.
Let e be a cut edge of H. By (17), each component C of H \ e contains only at

most one vertex of e. If |e| > 3, then e(H \ e) 6
(

k+1−2
min{r,b(k+1−2)/2c}

)
. Hence e(H) 6(

k−1
min{r,b(k−1)/2c}

)
+ 1 < f(n, k, r, 1).

So we may assume |e| = 2. Suppose first that H \ e contains a component C with
2 6 |V (C)| 6 k − 1.

Then

e(H) 6 1 +

(
|V (C)|

min{r, b|V (C)|/2c}

)
+

(
(k + 1)− |V (C)|

min{r, b((k + 1)− |V (C)|)/2c}

)
6 1 +

(
k − 1

min{r, b(k − 1)/2c}

)
+ 1

= f(n, r, k, 1).

Thus H \ e must consist of one component of size k and one of size 1. The same
also holds for every other cut edge e′ of H. This together with (17) implies that if
H has two cut edges e, e′, then e′ is a cut edge of H \ e, and vice versa. Therefore
e(H) 6

(
k−1

min{r,b(k−1)/2c}

)
+ 2 = f(n, k, r, 1).

So we may assume that e is the only cut edge of H. Let C be the component of H
of size k. This component cannot contain a Berge cycle of length k, otherwise with e we
would obtain Berge path with of length k.

If C is 2-connected, then by Theorem 14,

e(H) = e(C) + 1 6 max{f(k, k, r, 2), f(k, k, r, b(k − 1)/2c)} < f(n, k, r, 1).

Otherwise C has a cut vertex v and a block B with 2 6 |V (B)| 6 k − 1. Therefore

e(C) 6

(
|V (B)|

min{r, b|V (B)|/2c}

)
+

(
k − |V (B)|+ 1

min{r, b(k − |V (B)|+ 1)/2c}

)
6

(
k − 1

min{r, b(k − 1)/2c}

)
+ 1,

so we get e(H) = e(C) + 1 6 f(n, k, r, 1). This proves the theorem.
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8 Concluding remarks

1. As it is mentioned in Theorem 16, if k > 4r and n is asymptotically larger than 2r−1

r
k,

then our bound is also exact for r-graphs: a sharpness example is Hn,k,r,b(k−1)/2c. We
think that for smaller n, our bound for r-graphs is not exact. It would be interesting
and challenging to find exact bounds for the number of edges in n-vertex 2-connected
r-graphs with no cycles of length k or longer for k > r and k 6 n < 2r−1

r
k.

2. When r is large, k > 4r and n is polynomial in k, then Hn,k,r,2 has not much
more than

(
k−2
r

)
edges. Also Hn,k,r,2 is not uniform whenever r > 4. The following

construction of 2-connected r-uniform hypergraphs also has more than
(
k−2
r

)
edges

in this case, although fewer edges than Hn,k,r,2 has (and it works only for n such
that n− k + 2 is divisible by r − 1).

Construction 66. Fix k > 4r > 12, s > 1, n = k − 2 + s(r − 1). Define the
n-vertex r-graph Fn,k,r,s as follows. The vertex set of Fn,k,r,s is partitioned into s+ 1
sets A1, . . . , As, C such that |C| = k − 2 and |Ai| = r − 1 for all i ∈ [s]. We fix two
special vertices c1, c2 ∈ C. The edge set of Fn,k,r,s consists of all edges contained in
C and of the 2(r − 1) edges of the form Ai ∪ {cj} for i ∈ [s] and j ∈ [2].

We do not currently know of any uniform hypergraphs with more edges and no
Berge cycles of length k or longer.

3. Note that here we use r−-graphs to prove a bound for r-graphs when k > r and
in [15] we used r+-graphs (i.e. hypergraphs with the lower rank at least r) in the
case k < r.

Acknowledgment. We thank a referee for helpful comments.
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Appendix

Claim 67. For fixed positive integers n, k, and r, the function

f(n, k, r, a) =

(
k − a

min{r, bk−a
2
c}

)
+ (n− k + a)

(
a

min{r − 1, ba/2c}

)
is convex over integers max{0, k − n} 6 a 6 k.

In particular, if we consider f(n, k, r, a) over a domain of integers, say {c, . . . , d} where
c, d ∈ Z, max{0, k−n} 6 c 6 d 6 k then f(n, r, k, a) attains its maximum at either a = c
or a = d.

Proof. Since we only consider integer values of a, we may view f(n, k, r, a) as a sequence
of numbers.

We say a sequence of real numbers (fi)
v
i=u is convex if fi−1+fi+1 > 2fi for all u < i < v.

Fact 68. Let u < v < w be integers. Suppose (fi)
v+1
i=u and (gi)

w
i=v are convex sequences of

real numbers such that fv = gv and fv+1 = gv+1. Then the sequence (hi)
w
i=u where

hi :=

{
fi, u 6 i 6 v + 1
gi, v 6 i 6 w

is convex.

Indeed for any u < i < w, either (hi−1, hi, hi+1) = (fi−1, fi, fi+1) or (hi−1, hi, hi+1) =
(gi−1, gi, gi+1).

The following two facts are easy to check.

Fact 69. The sequence (xi)
∞
i=0 where xi :=

(
i
bi/2c

)
is convex.

Fact 70. For any fixed positive integer r, the sequence (yi)
∞
i=0 where yi =

(
i
r

)
is convex.

By Facts 9.3–9.5, function g1(a) :=
(

k−a
min{b k−a

2
c,r}

)
is convex for integers 0 6 a 6 k, and

g2(a) :=
(

a
min{r−1,ba/2c}

)
is convex for integers a > 0. Here we use that g1(a) =

(
k−a
r

)
when

a 6 k− 2r and g1(a) =
(

k−a
b(k−a)/2c

)
when a > k− 2r− 1. One can show similar cut-offs for

g2(a).
Note that g2(a) is non-decreasing. We also show that (n− k + a) · g2(a) is convex for

integers a > max{0, k − n}:

(n− k + (a− 1)) · g2(a− 1) + (n− k + (a+ 1)) · g2(a+ 1)

= (n− k + a) · (g2(a− 1) + g2(a+ 1))− g2(a− 1) + g2(a+ 1)

> (n− k + a) · (2g2(a)) + 0

= 2(n− k + a) · g2(a).

Since the sum of two convex sequences is also convex, function g1(a)+(n−k+a) ·g2(a) =
f(n, k, r, a) is also convex for integers max{0, k− n} 6 a 6 k. This proves the claim.
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