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Abstract

For a graph G, a fractional [a, b]-factor is a real valued function h : E(G)→ [0, 1]
that satisfies a 6

∑
e∈EG(v) h(e) 6 b for all v ∈ V (G), where a and b are real

numbers and EG(v) denotes the set of edges incident with v. In this paper, we
prove that the condition iso(G − S) 6 (k + 1

2)|S| is equivalent to the existence of
fractional [1, k+ 1

2 ]-factors, where iso(G−S) denotes the number of isolated vertices
in G− S. Using fractional factors as a tool, we construct component factors under
the given isolated conditions. Namely, (i) a graph G has a {P2, C3, P5, T (3)}-factor if
and only if iso(G−S) 6 3

2 |S| for all S ⊂ V (G); (ii) a graph G has a {K1,1,K1,2, . . . ,
K1,k, T (2k + 1)}-factor (k > 2) if and only if iso(G − S) 6 (k + 1

2)|S| for all
S ⊂ V (G),where T (3) and T (2k + 1) are two special families of trees.
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1 Introduction

In this paper, we mainly consider finite simple graphs, which have neither loops nor
multiple edges. A graph that may have multiple edges but has no loops is referred to
as a multigraph. When defining notation and definitions, we often call a multigraph as a
graph for convenience. Given a graph G, let V (G) and E(G) be its vertex set and edge
set, respectively. The number of vertices of G is called its order and is denoted by |G|.
On the other hand, the number of edges in G is called its size and is denoted by ||G||.

For a set X, the cardinality of X is denoted by |X|. For a vertex v of a graph G, the
degree of v in G is denoted by degG(v) and the set of edges of G incident with v is denoted
by EG(v). For two vertices x and y, an edge joining them is denoted by xy or yx. We
denote by Iso(G) the set of isolated vertices of G, and by iso(G) the number of isolated
vertices in G. Thus iso(G) = |Iso(G)|. For two disjoint vertex sets X and Y of G, the set
of edges of G joining X to Y is written as EG(X, Y ) and eG(X, Y ) := |EG(X, Y )|. Pn and
Cn are the path and the cycle of order n, respectively. The set of non-negative integers is
denoted by Z∗ = {0} ∪ Z+.

Let G be a graph, and let g, f : V (G)→ Z∗ be two integer-valued functions with g 6 f ,
that is, 0 6 g(x) 6 f(x) for all x ∈ V (G). Then a spanning subgraph F of G is called a
(g, f)-factor of G if g(x) 6 degF (x) 6 f(x) for all x ∈ V (G). For real-valued functions
g, f : V (G)→ R with g 6 f , a fractional (g, f)-factor is a function h : E(G)→ [0, 1] that
satisfies the following condition:

g(v) 6 degh(v) :=
∑

e∈EG(v)

h(e) 6 f(v) for all v ∈ V (G), (1)

where degh(v) is called the h-degree of v and h(e) is a real number between 0 and 1
inclusive. If the values of h are 0 and 1 only, then a fractional (g, f)-factor becomes a
(g, f)-factor. Many results on fractional factors of graphs can be found in [9].

To study fractional factors, Yang, Ma and Liu [8] introduced a parameter, isolated
toughness of a graph G, denoted by I(G), which is defined as

I(G) = min
{ |S|
iso(G− S)

: S ⊆ V (G), iso(G− S) > 2
}
,

if G is not complete; otherwise, I(G) = ∞. A graph G is called isolated t-tough if
I(G) > t, where t > 0 is a real number.

For a set S of connected graphs, a spanning subgraph F of G is called an S-factor
or a component factor if each component of F is isomorphic to an element of S (see (1)
of Figure 1). For a set S of positive integers, a spanning subgraph F of G is called an
S-factor of G if degF (x) ∈ S for all vertices x of G. For an integer k > 0, the set of vertices
of G with degree k is denoted by Vk(G), namely, Vk(G) = {v ∈ V (G) : degG(v) = k}.

For a tree T , the set of leaves is denoted by Leaf (T ), that is, V1(T ). An edge of T
incident with a leaf is called a pendant edge. In particular, the number of leaves of T is
equal to that of pendant edges of T .
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(1) (3)(2)

Figure 1: (1) A {P2, C3, P5, T (3)}-factor that contains no P5-components; (2) A {1, 3}-tree
R; (3) The resulting {1, 2, 3}-tree TR obtained from R.

We define a special class of trees T (3): for any {1, 3}-tree R, which is a tree with vertex
degrees 1 or 3 only, a new tree TR is obtained from R by inserting a new vertex of degree
2 into every edge of R, and by adding a new pendant edge to every leaf of R (see (2) and
(3) of Figure 1). Then the tree TR is a {1, 2, 3}-tree having ||R|| + |Leaf (R)| vertices of
degree 2 and has the same number of leaves as R. Also there is one-to-one correspondence
between V3(R) and V3(TR). The collection of such {1, 2, 3}-trees TR generated from all
{1, 3}-trees R is denoted by T (3). A more general class of trees, T (2k + 1) (k > 2), will
be defined in Section 2.

Tutte [7] established a relationship between isolated 1-tough graphs and {K2, Cn : n >
3}-factors.

Theorem 1 (Tutte [7]). A graph G has a {K2, Cn : n > 3}-factor if and only if

iso(G− S) 6 |S| for all S ⊂ V (G).

Amahashi and Kano [2] extended Theorem 1 and gave a characterization for isolated
1/k-tough graphs in terms of star factors.

Theorem 2 (Amahashi and Kano [2]). Let k > 2 be an integer. A graph G has a
{K1,j : 1 6 j 6 k}-factor if and only if

iso(G− S) 6 k|S| for all S ⊂ V (G).

Kano, Lu and Yu [5] obtained a sufficient condition for isolated 2-tough graphs to have
component factors.

Theorem 3 (Kano, Lu and Yu [5]). A graph G has a {K1,2, K1,3, K5}-factor if

iso(G− S) 6
|S|
2

for all S ⊂ V (G).

Kano and Saito [6] as well as Zhang, Yan and Kano [10] used isolated k-toughness to
ensure the existence of special classes of component factors.
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Theorem 4 (Kano and Saito [6]). Let k > 2 be an integer. A graph G has a {K1,j : k 6
j 6 2k}-factor if

iso(G− S) 6
|S|
k

for all S ⊂ V (G).

Theorem 5 (Zhang, Yan and Kano [10]). Let k > 2 be an integer. A graph G has a
{K1,j, K2k : k 6 j 6 2k − 1}-factor if

iso(G− S) 6
|S|
k

for all S ⊂ V (G).

In this paper, we carry on the investigations along the same direction mentioned above
and obtain the factor characterizations of I(G) = 2

3
and I(G) = 2

2k+1
(k > 2):

Theorem 6. A graph G has a {P2, C3, P5, T (3)}-factor if and only if

iso(G− S) 6
3

2
|S| for all S ⊂ V (G). (2)

Theorem 7. Let k > 2 be an integer. Then a graph G has a {K1,1, K1,2, . . . , K1,k, T (2k+
1)}-factor if and only if

iso(G− S) 6
(
k +

1

2

)
|S| for all S ⊂ V (G). (3)

2 Proofs of Theorems 6 and 7

For a function f : V (G)→ Z∗ and a set X of vertices of G, we write

f(X) :=
∑
x∈X

f(x), in particular, degG(X) =
∑
x∈X

degG(x).

The tools for proving Theorems 6 and 7 are fractional factors. We first describe the
condition (3) in terms of fractional [1, k + 1

2
]-factors (Theorem 9), and then show that

the minimal fractional factors are the desired component factors. In establishing the link
between the condition (3) and fractional factors, we need the following result.

Theorem 8 (Anstee [3], Heinrich et al. [4]). Let G be a multigraph and g, f : V (G)→ Z∗

with 0 6 g(x) < f(x) for all x ∈ V (G). Then G has a (g, f)-factor if and only if

g(T )− degG−S(T ) 6 f(S) for all S ⊂ V (G), (4)

where T = {v ∈ V (G)− S : degG−S(v) < g(v)}.

If two functions g, f : V (G)→ R take constant real values g(x) = a and f(x) = b for
every vertex x, then fractional (g, f)-factors are called fractional [a, b]-factors.
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Theorem 9. Let k > 1 be an integer and let G be a graph. Then G has a fractional
[1, k + 1

2
]-factor h with values in {0, 1

2
, 1} if and only if

iso(G− S) 6
(
k +

1

2

)
|S| for all S ⊂ V (G). (5)

Proof. Assume that G satisfies (5). Let G∗ denote the multigraph obtained from G by
replacing each edge e of G by two parallel edges e(1) and e(2). Then V (G∗) = V (G), and
degG∗(v) = 2 degG(v) for every v ∈ V (G∗). Define two functions g, f : V (G∗)→ Z∗ as

g(x) = 2 and f(x) = 2k + 1 for all x ∈ V (G∗).

Then g < f , and for any S ⊂ V (G∗), we have

T = {v ∈ V (G∗)− S : degG∗−S(v) < g(v) = 2}
= {v ∈ V (G∗)− S : degG∗−S(v) = 0}.
= Iso(G− S).

Thus it follows from the above equality and (5) that

g(T )− degG∗−S(T ) = 2 · iso(G− S)− 0

6 2 ·
(
k +

1

2

)
|S| = (2k + 1)|S| = f(S).

Hence by Theorem 8, G∗ has a (g, f)-factor F . Now we construct a fractional [1, k + 1
2
]-

factor h : E(G) → {0, 1
2
, 1} as follows: for an edge e of G, (i) if F contains both edges

e(1) and e(2) of G∗, then define h(e) = 1; (ii) if F contains exactly one of e(1) and e(2),
then define h(e) = 1

2
; (iii) otherwise, let h(e) = 0. It is easy to see that h is the desired

fractional [1, k + 1
2
]-factor with values in {0, 1

2
, 1}.

Next assume that G has a fractional [1, k + 1
2
]-factor h with values in {0, 1

2
, 1}. Let

S ⊂ V (G), and let F be the spanning subgraph of G induced by {e ∈ E(G) : h(e) ∈
{1
2
, 1}}. Clearly, the neighbors of each isolated vertex u of G− S are contained in S and

degh(u) > 1, thus we have

iso(G− S) 6
∑

e∈EF (Iso(G−S),S)

h(e)

6
∑
x∈S

degh(x) 6
(
k +

1

2

)
|S|.

Hence iso(G− S) 6 (k + 1
2
)|S|, or (5) holds. �

Proof of Theorem 6. We first show that every tree T ∈ T (3) satisfies the condition (2).
Define a function h : E(T ) → {1

2
, 1} as follows: for every pendant edge e1 of T , let

h(e1) = 1 and for any other edge e2, let h(e2) = 1
2
. Since T is a {1, 2, 3}-tree and no
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pendant edge is incident with a vertex of degree 3, h is a fractional [1, 3
2
]-factor. Hence,

by Theorem 9, T satisfies the condition (2).
Assume that G has a {P2, C3, P5, T (3)}-factor F . Let D1, D2, . . . , Dm be the compo-

nents of F . Then each Di is P2, C3, P5 or a tree in T (3), and thus iso(Di −Xi) 6 3
2
|Xi|

for every Xi ⊂ V (Di). Then for any S ⊂ V (G), we have

iso(G− S) 6 iso(F − S) =
m∑
i=1

iso
(
Di − (S ∩ V (Di))

)
6

m∑
i=1

3

2
|S ∩ V (Di)| =

3

2
|S|.

Hence the necessity is proved.

Next we prove the sufficiency. By Theorem 9, G has a fractional [1, 3
2
]-factor h with

values in {0, 1
2
, 1}. We call an edge e1 with h(e1) = 1 a red edge and an edge e2 with

h(e2) = 1
2

a blue edge. Let F be the subgraph of G induced by the set of all red and blue
edges. Namely, F is obtained from G by removing all the edges e3 with h(e3) = 0. Since
h is a fractional [1, 3

2
]-factor, F is a spanning subgraph of G, and for every vertex v of G,

one of the following two statements holds:

(i) no red edge is incident with v and two or three blue edges are incident with v; or
(ii) exactly one red edge is incident with v and at most one blue edge is incident with v.

Choose a fractional [1, 3
2
]-factor h so that the number of edges in F is as small as possible.

For the convenience, we also call F a fractional [1, 3
2
]-factor. It is clear that degF (v) ∈

{1, 2, 3}. On the other hand, the degree degh(v) of v in h is 1 or 3
2
.

Claim 1. Every cycle of F is a C3-component in F .

Proof. Assume that F contains a cycle C. First assume that C is of even order. Take a
perfect matching M of C, and recolor all the edges of M red, and remove all the edges in
C −M . Then the resulting subgraph is a new fractional [1, 3

2
]-factor with red and blue

edges, but its size is a smaller than F , which contradicts the choice of F . Hence C is of
odd order.

Assume that C has two adjacent vertices u1 and u2 with degree 3 in F . Then F −u1u2

is a new fractional [1, 3
2
]-factor with fewer edges than F , which contradicts the choice of

F . Hence if a vertex v of C has degree 3 in F , then the two neighbors of v in C have
degree 2 in F . Assume that C has a vertex v with degF (v) = 3. Let u1 and u2 be the two
neighbors of v in C. Take a perfect matching M of C − v. Recolor the edges of M red,
and remove all the edges of (C − v)−M and vu2. Since vu1 and vu2 are both blue edges,
we obtain a new fractional [1, 3

2
]-factor with fewer edges than F , which is a contradiction.

Hence C is a component in F .
Moreover, it is easy to see that an odd cycle of C order at least 5 has a {P2, P5}-factor

FC . Remove all the edges of C not contained in FC , recolor the edges contained in P2 of FC

red, and two pendant edges of P5 of FC red and the remaining two edges of P5 of FC blue.
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Then we obtain a new fractional [1, 3
2
]-factor with fewer edges than F , a contradiction.

Therefore every cycle contained in F is C3. Consequently Claim 1 is proved.

For the simplicity of statements, in the rest of the proof, we will use “a smaller
fractional [1, 3

2
]-factor” to substitute the phase “a new fractional [1, 3

2
]-factor with fewer

edges than F”.

Claim 2. Every non-cycle component of F is P2, P5 or a tree of T (3).

Proof. Let x and y be two vertices of degree 3 in F such that they are adjacent or
connected by a path whose inner vertices all have degree 2 in F . If x and y are adjacent
in F , then F − xy is a smaller fractional [1, 3

2
]-factor, a contradiction. Assume that x

and y are connected by a path (x, u1, u2, . . . , un, y) of length at least 3 (n > 2) such that
every ui has degree 2 in F . We remove uny, recolor un−1un red, and recolor all remaining
edges of the path blue. Then the resulting subgraph is a smaller fractional [1, 3

2
]-factor, a

contradiction. Therefore,

(a) if two vertices of F with degree 3 are connected by a path in F whose inner vertices
all have degree 2 in F , then the length of the path is 2.

Let z be a leaf of F and let x be a vertex of degree 3 in F . If z and x are adjacent,
then the edge xz is red and so degh(x) > 2, which is impossible. Hence z and x are
not adjacent. Assume that z and x are connected by a path (z, u1, u2, . . . , un, x) with
degF (ui) = 2 for every i. Then zu1 is red. First assume that n > 3. Then remove unx,
recolor un−1un red, and recolor all the remaining edges of the path except zu1 blue. Then
the resulting subgraph is a smaller fractional [1, 3

2
]-factor, a contradiction. Next assume

n = 1. Then by removing u1x, we obtain a smaller fractional [1, 3
2
]-factor, a contradiction

again. Therefore,

(b) if a leaf z is contained in a component D of F with ∆(D) > 3, then there is a path
(z, u1, u2, x) in F such that degF (ui) = 2 and degF (x) = 3.

Consequently, if a component D of F contains at least two vertices of degree 3, then by
(a) and (b), D is a tree of T (3). If D has exactly one vertex of degree 3, then by (b), D
is also a tree of T (3). If D has no vertex of degree 3, then D is a path. It is obvious that
P3 has no fractional [1, 3

2
]-factors, and so D is not P3. If D is a path of even order, then

D has a P2-factor, and so it contradicts the minimality of F . If D is a path Pn of odd
order with n > 7, then D has a {P2, P5}-factor and thus contradicts the minimality of F .
Hence Claim 2 holds.

Clearly, Claims 1 and 2 imply the sufficiency. �

To state Theorem 7, we need a new class of trees T (2k + 1). Let k > 2 be an integer
and let R be a tree that satisfies the following conditions: for every vertex v ∈ V (R),

(i) degR−Leaf(R)(v) ∈ {1, 3, . . . , 2k + 1}, and

(ii) 2·(the number of leaves adjacent to v in R) + degR−Leaf(R)(v) 6 2k + 1 in R. (6)
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(1) (3)(2)R R - Leaf(R) TR

Figure 2: (1) A tree R that satisfies (6) with k = 4; (2) The tree R − Leaf(R); (3) The
tree TR obtained from R, where all red edges e1 have value h(e1) = 1 and all other edges
e2 have value h(e2) = 1

2
.

For such a tree R, we obtain a new tree TR as follows:

(iii) insert a new vertex of degree 2 into each edge of R− Leaf(R), and
(iv) for each vertex v of R−Leaf(R) with degR−Leaf(R)(v) = 2r+1 < 2k+1 in R, add

k−r− (the number of leaves adjacent to v in R) pendant edges to v (see (3) of Figure 2).

Then the resulting tree TR has a fractional [1, k + 1
2
]-factor h such that every pendant

edge e1 of TR has h(e1) = 1, all other edges e2 have h(e2) = 1
2
. Moreover, this fractional

[1, k + 1
2
]-factor h satisfies that every vertex v of R − Leaf(R) has degh(v) = k + 1

2
, and

every leaf x of TR and every inserted vertex y of degree 2 have degh(x) = degh(y) = 1
(see (3) of Figure 2). The set of such trees TR for all trees R satisfying (6) is denoted
by T (2k + 1). Note that the construction of T (3) and that of T (2k + 1) with k > 2 are
similar, but adding pendant edges to some vertices of R − Leaf(R) is not defined in the
construction of T (3).

Proof of Theorem 7. For any tree T ∈ T (2k + 1), since T has a fractional [1, k + 1
2
]-factor

h of values {1
2
, 1}, T satisfies (3) by Theorem 9.

Assume that G has a {K1,1, K1,2, . . . , K1,k, T (2k + 1)}-factor F . Let D1, D2, . . . , Dm

be the components of F . Then each Di is K1,s for some 1 6 s 6 k, or a tree in T (2k+ 1).
Thus iso(Di −Xi) 6 (k + 1

2
)|Xi| for every Xi ⊂ V (Di). Then, for S ⊂ V (G), we have

iso(G− S) 6 iso(F − S) =
m∑
i=1

iso
(
Di − (S ∩ V (Di))

)
6

m∑
i=1

(
k +

1

2

)
|S ∩ V (Di)| =

(
k +

1

2

)
|S|.

Hence the necessity is proved.

Next we prove the sufficiency. Assume that G satisfies (3). By Theorem 9, G has a
fractional [1, k + 1

2
]-factor h with values in {0, 1

2
, 1}. We call an edge e1 with h(e1) = 1 a
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red edge and an edge e2 with h(e2) = 1
2

a blue edge. Let F be the subgraph of G induced
by the set of all red and blue edges. Namely, F is obtained from G by removing all the
edges e3 with h(e3) = 0, and since h is a fractional [1, k + 1

2
]-factor, F is a spanning

subgraph. Choose a fractional [1, k + 1
2
]-factor h of G so that the number of edges in F

is as small as possible. It is clear that 1 6 degF (v) 6 2k + 1. On the other hand, the
h-degree of v can be expressed as degh(v) = 1 + 1

2
t for some integer t, 0 6 t 6 2k − 1.

Claim 1. F contains no cycles, and thus F is a forest.

Proof. Suppose that F contains a cycle C. First assume that C is of even order. Take a
perfect matching M of C, and recolor all edges of M red, and remove all edges in C−M .
Then the resulting subgraph is a new fractional [1, k + 1

2
]-factor of G, but its size is a

smaller than F , a contradiction. Hence C is of odd order.
As in the proof of Theorem 6, we substitute “a new fractional [1, k + 1

2
]-factor with

less edges than F” by “a smaller fractional factor” for the simplicity in the rest of the
proof.

Assume that C has two adjacent vertices v1 and v2 with degrees at least 3 in F . Then
F −v1v2 is a smaller fractional factor, a contradiction. Hence if a vertex v of C has degree
at least 3 in F , then the two neighbors of v in C have degree 2 in F . Assume that C has a
vertex v with degF (v) > 3. Let u1 and u2 be the two neighbors of v in C. Take a perfect
matching M of C−v, and recolor all edges of M red, and remove all edges of (C−v)−M
and the edge vu2. Then we obtain a smaller fractional factor, a contradiction. Hence C
is a component of F .

It is easy to see that C has a {P2, P3}-factor FC . We recolor all edges of P2-components
and P3-components of FC red, and remove all other edges of C. Then we obtain a smaller
fractional factor, a contradiction. Therefore F has no cycles, and the claim is proved.

Claim 2. Let x and y be two vertices of degrees at least 3 in F . Then x and y are not
adjacent in F . If x and y are connected by a path whose inner vertices all have degree 2
in F , then the length of the path is 2, and degh(x) = degh(y) = k + 1

2
and the two edges

in the path are blue edges.

Proof. If x and y are adjacent in F , then F −xy is a smaller fractional factor, a contradic-
tion. Assume that x and y are connected by a path (x, u1, u2, . . . , un, y) with degF (ui) = 2
(1 6 i 6 n). If n > 2, then by removing uny and recoloring un−1un red and all the re-
maining edges of the path blue, the resulting subgraph is a smaller fractional factor, a
contradiction. Therefore n = 1, and the path is (x, u1, y).

If degh(x) < k + 1
2
, then by removing u1y and recoloring xu1 red, we obtain a smaller

fractional factor, a contradiction. Hence degh(x) = degh(y) = k + 1
2

by the symmetry.
If xu1 is red, then removing u1y we obtain a smaller fractional factor, a contradiction.
Therefore xu1 and yu1 are blue edges, and the claim holds.

Claim 3. A leaf z in F is either contained in a star component, or adjacent to a vertex
x with degF (x) > 3 and degh(x) = k + 1

2
.
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Proof. Let z be a leaf of F , and D be the component of F containing z. Assume that
D is a path (z, u1, u2, . . . , un, y) such that degF (ui)= 2 (1 6 i 6 n) and degF (y) = 1.
If n > 2, then by removing u1u2 and recoloring u2u3 red, we obtain a smaller fractional
factor, a contradiction. If n = 1, then D = P3 = K1,2, which is a star.

Next assume that F contains a path (z, u1, u2, . . . , un, x) such that degF (ui) = 2
(1 6 i 6 n) and x has degree at least 3 in F . If n > 2, then by removing unx, and
recoloring un−1un and zu1 red, and recoloring all other remaining edges (if any) of the
path blue, we obtain a smaller fractional factor, a contradiction. If n = 1, then F − u1x
is a smaller fractional [1, k + 1

2
]-factor, a contradiction. Therefore z and x are adjacent.

Moreover, if D contains exactly one vertex x of degree at least 3, by the same argument
given above, we see that every leaf of D is adjacent to x and thus D is a star; otherwise,
D contains another vertex y of degree at least 3, then by Claim 2, degh(x) = k + 1

2
. Thus

the claim is proved.

Claim 4. (i) If uv is an edge such that degF (u) > 3 and degF (v) = 2, then degh(u) = k+ 1
2

and uv is a blue edge. (ii) If xy is a red edge, then one of x and y is a leaf of F .

Proof. Let uv be an edge of F such that degF (u) > 3, degF (v) = 2 and degh(u) < k + 1
2
.

Let z1 be a vertex adjacent to v. If degF (z1) > 3, then by Claim 2, we have degh(u) = k+ 1
2
,

a contradiction. If degF (z1) = 1, then it contradicts Claim 3. Hence degF (z1) = 2. By
removing uv and recoloring vz1 red, we obtain a smaller fractional factor, a contradiction.
Hence if uv is an edge with degF (u) > 3 and degF (v) = 2, then degh(u) = k + 1

2
. It is

sufficient to prove (ii) to deduce that uv is a blue edge.
Assume to the contrary that xy is a red edge and neither x nor y is a leaf. If degF (x) >

3 and degF (y) > 3, then F − xy is a smaller fractional factor, a contradiction. Hence, by
symmetry, we may assume that degF (x) = 2 and degF (y) > 3. Let z1 be another vertex
adjacent to x. If degF (z1) > 3, then F − xz1 is a smaller fractional factor since xy is
a red edge, a contradiction. By Claim 3, degF (z1) = 2. From Claim 2, F has no path
connecting two vertices of degrees at least 3 and passing through (z1, x, y). Hence we
may assume that there is a path (z, u1, . . . , un = z1, x, y) with degF (z) = 1, degF (ui) = 2
(1 6 i 6 n) and degF (x) = 2. By Claim 3, u1 = x, which is a contradiction since
un = z1 6= x. Therefore Claim 4 holds.

Claim 5. Every component D of F is isomorphic to a graph in {K1,1, K1,2, . . . , K1,k,
T (2k + 1)}.

Proof. If D is a star with center u, then degh(u) 6 k+ 1
2
, which implies degD(u) 6 k since

every pendant edge of D is red. So we may assume that D is not a star, which implies
that D has at least two vertices of degrees at least 3 by Claim 3.

Let v be a vertex of degree at least 3. If xv is a red edge, then x is a leaf and vice
versa. If vy is a blue edge, then degF (y) = 2 and vice versa. Consequently, D is a tree in
T (2k + 1).

With Claim 5, we complete the proof. �
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