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Abstract

We generalize the Tamari lattice by extending the notions of 231-avoiding per-
mutations, noncrossing set partitions, and nonnesting set partitions to parabolic
quotients of the symmetric group Sn. We show bijectively that these three ob-
jects are equinumerous. We show how to extend these constructions to parabolic
quotients of any finite Coxeter group. The main ingredient is a certain aligned con-
dition of inversion sets; a concept which can in fact be generalized to any reduced
expression of any element in any (not necessarily finite) Coxeter group.

Mathematics Subject Classifications: 20F55, 06A07, 52C35

1 Introduction

1.1 Parabolic Tamari Lattices

The Tamari lattice Tn was introduced by D. Tamari as a partial order encoding the
associativity of the Catalan-many binary bracketings of a word of length n+1 [31]. The
weak order Weak(Sn) on the group of permutations Sn is the oriented Cayley graph of Sn,
using the generating set S of adjacent transpositions. Rephrasing slightly, A. Björner and
M. Wachs realized Tn as a sublattice of Weak(Sn) by considering the subset Sn(231) ⊆ Sn

of 231-avoiding permutations, whose inversions sets they characterize as “compressed” [7,
Section 9]. N. Reading extended this result by noting that Tn was a lattice quotient of
Weak(Sn) [23].

∗HM was partially supported by a Public Grant overseen by the French National Research Agency
(ANR) as part of the “Investissements d’Avenir” Program (Reference: ANR-10-LABX-0098), and by
Digiteo project PAAGT (Nr. 2015-3161D).
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We generalize the Tamari lattice from the symmetric group to its parabolic quotients.
Any J ⊆ S defines the parabolic quotient SJ

n, consisting of those permutations w ∈ Sn

with descents only at positions not in J—that is, if w(i) > w(i+1), then si 6∈ J . Parabolic
quotients have a weak order Weak(SJ

n) inherited from Weak(Sn). We specify a subset
SJ
n(231) ⊆ SJ

n by introducing a generalized notion of 231-avoidance, dependent on J ,
which can again be seen as a “compressed” condition on inversion sets.

Theorem 1. Let n > 0. For J ⊆ S, the restriction Weak(SJ
n) to SJ

n(231) is a lattice,
which we denote T Jn . Although T Jn is not generally a sublattice of Weak(SJ

n), it is a lattice
quotient of Weak(SJ

n).

When J = ∅, we recover the Tamari lattice on 231-avoiding permutations, and we
therefore refer to T Jn as the parabolic Tamari lattice.1

1.2 Parabolic Catalan Objects

In recent years, many combinatorial families enumerated by the Catalan numbers have
been linked to the symmetric group. Two prototypical examples for this phenomenon
are the noncrossing set partitions—which are the elements in an interval in the absolute
order for Sn—and the nonnesting set partitions—which are order ideals in the root poset
of Sn. We propose new generalizations of noncrossing and nonnesting partitions to SJ

n,
and denote the resulting sets by NCJ

n and NNJ
n, respectively. For J = ∅, we recover the

classical noncrossing and nonnesting set partitions, respectively.
The well-known property that the 231-avoiding permutations, noncrossing and nonnest-

ing partitions are equinumerous, survives our generalization to parabolic quotients.

Theorem 2. For n > 0 and J ⊆ S, we have bijections

SJ
n(231) ' NCJ

n ' NNJ
n .

Although we no longer have a nice closed formula in general, the parabolic nonnesting
partitions enable us to write down a determinantal formula for the parabolic Catalan
numbers, see the end of Section 5.

1.3 Generalizations to Finite Coxeter Groups

A. Björner and M. Wachs’ observation that the Tamari lattice arises as a sublattice of
the weak order on Sn was the precursor to N. Reading’s definition of the Cambrian
lattices. Fixing a Coxeter element c, such a lattice may be described as the restriction
of the weak order of a finite Coxeter group to certain c-aligned elements, which—as with
231-avoiding permutations—are characterized by their inversion sets [23]. The Cambrian
lattices thus naturally generalize the Tamari lattice to any finite Coxeter group and any
Coxeter element.

1This nomenclature is slightly ambiguous, since it could refer to either parabolic quotients or parabolic
subgroups—but the Tamari lattice of a parabolic subgroup is a direct product of Tamari lattices, and so
deserves no special name.
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N. Reading’s aligned elements of a Coxeter group W have a surprisingly different
characterization using reduced words, and in the guise of sortable elements they provide a
bridge between two famous families of objects attached to a finite Coxeter group: the W -
noncrossing partitions and the W -clusters [24]. Remarkably, these objects are uniformly
enumerated by a simple product formula depending on the degrees of W [28, Remark 2].

In the second part of this article, we define analogues of the sets SJ
n(231), NCJ

n and
NNJ

n for all finite Coxeter groups, and we study in which cases we retain the property that
these sets are equinumerous. We present computational evidence that this is the case for
groups of “coincidental” type An, Bn, H3, and I2(m) (these are exactly those types for
which every wall of the Coxeter complex is again a Coxeter complex).

1.4 Further Generalizations

The key idea in the definition of parabolic alignment is a certain forcing of inversions
with respect to the root order of a particular reduced expression for the longest element
in the parabolic quotient. In the last part of this article we generalize this idea to any
reduced expression of any element of any (not necessarily finite) Coxeter group. This
generalization comes at the price of losing the lattice property.

1.5 Outline of the Paper

This article is structured as follows. We recall the basic notions for the symmetric group
and its parabolic quotients in Section 2. In Section 3 we define (J, 231)-avoiding permu-
tations and characterize them in terms of their inversion sets. We prove Theorem 1 in
Section 3.4. Sections 4 and 5 introduce noncrossing partitions and nonnesting partitions
for parabolic quotients of the symmetric group, and culminate in the proof of Theorem 2.
Section 6 is concerned with the generalization of 231-avoiding permutations, noncrossing
and nonnesting partitions to parabolic quotients of arbitrary finite Coxeter groups. We
also propose a definition of a parabolic Coxeter-Catalan number for the coincidental types
at the end of Section 6.6. In Section 6.7 we generalize the definition of alignment to any
reduced expression of any element in any (not-necessarily finite) Coxeter group.

2 The Symmetric Group

In this section, we recall the definitions of weak order, 231-avoiding permutations, and
parabolic quotients of the symmetric group.

2.1 Weak Order

The symmetric group Sn is the group of permutations of [n] := {1, 2, . . . , n}. Let S :=
{s1, s2, . . . , sn−1} denote the set of adjacent transpositions of Sn, i.e. si := (i, i+1) for
i ∈ [n − 1]. It is well known that Sn is isomorphic to the Coxeter group An−1, and so
admits a presentation of the form

Sn =
〈
S | s2

i = (sisj)
2 = (sisi+1)3 = e, for |i− j| > 1

〉
(1)
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where e denotes the identity permutation. We may specify a permutation w ∈ Sn using
one-line notation: w = w1w2 . . . wn, where wi = w(i) for i ∈ [n]. Its inversion set is
defined by

Inv(w) :=
{

(i, j) | 1 6 i < j 6 n and wi > wj
}
.

The (left) weak order is the partial order on Sn defined by u 6S v if and only if
Inv(u) ⊆ Inv(v); and we denote by Weak(Sn) the partially ordered set (Sn,6S). The
cover relations of Weak(Sn) are relations u 6S v such that Inv(v) \ Inv(u) =

{
(i, j)

}
with vi = vj + 1. We usually write u lS v in such a case. The poset Weak(Sn) is a
lattice [5, Theorem 3.2.1], so that any two elements have a greatest lower bound and a
least upper bound. In particular, there is a unique maximal element w◦ in Weak(Sn)
whose one-line notation is w◦ = n(n − 1) . . . 1. We refer the reader to [5, Section 3] for
more background on the weak order, in the broader context of Coxeter groups.

A permutation w ∈ Sn is 231-avoiding if there exists no triple i < j < k such
that wk < wi < wj. Let Sn(231) denote the set of 231-avoiding permutations of Sn.
Lemma 9.8 in [7] implies that the 231-avoiding permutations can be characterized by
their inversion sets. More precisely, w ∈ Sn is 231-avoiding if and only if its inversion set
is compressed, i.e. if i < j < k and (i, k) ∈ Inv(w), then (i, j) ∈ Inv(w).

Remark 3. Let w ∈ Sn and choose i < j < k. It is immediate to verify that when-
ever (i, k) ∈ Inv(w), then we also have (i, j) ∈ Inv(w) or (j, k) ∈ Inv(w) (or both). We
may interpret the property that Inv(w) is compressed as stating that Inv(w) is aligned
with respect to the lexicographic order on all transpositions. This perspective foreshad-
ows N. Reading’s definition of aligned elements in a Coxeter group [24, Section 4]. We
generalize this notion in Definitions 33 and 43.

The next result identifies the Tamari lattice Tn as the subposet of the weak order on
Sn induced by the 231-avoiding permutations. The reader may take this as the definition
of Tn.

Theorem 4 ([7, Theorem 9.6(ii)]). For n > 0 the poset Weak
(
Sn(231)

)
is isomorphic to

the Tamari lattice Tn.

2.2 Parabolic Quotients

Any subset J ⊆ S naturally generates a subgroup of Sn isomorphic to a direct product
of symmetric groups of smaller rank. We call such a subgroup parabolic, and we denote
it by (Sn)J . We define the parabolic quotient of Sn with respect to J by

SJ
n := {w ∈ Sn | w <S ws for all s ∈ J}.

The set SJ
n thus consists of the minimal length representatives of the right cosets of the

corresponding parabolic subgroup. By [5, Proposition 2.4.4], any permutation w ∈ Sn can
be uniquely written as w = wJ ·wJ , for some wJ ∈ SJ

n and wJ ∈ (Sn)J . In particular, the
maximal element w◦ ∈ Sn is written as w◦ = wJ◦ · (w◦)J , where wJ◦ is the longest element
of SJ

n and (w◦)J is the longest element of (Sn)J .
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Since any element of SJ
n is itself a permutation, we may consider Weak(SJ

n)—the
restriction of the weak order on Sn to the parabolic quotient. It follows from [6, Theo-
rem 4.1] that this poset is isomorphic to the weak order interval [e, wJ◦ ], and is therefore
a lattice.

3 Tamari Lattices for Parabolic Quotients of Sn

In this section, we define the set SJ
n(231) of 231-avoiding permutations of the parabolic

quotient SJ
n. We characterize the inversion sets of the permutations in SJ

n(231) and prove
that Weak

(
SJ
n(231)

)
is a lattice.

3.1 231-Avoidance

Let J := S \ {sj1 , sj2 , . . . , sjr}, and let B(J) be the set partition of [n] given by the parts{
{1, . . . , j1}, {j1 + 1, . . . , j2}, . . . , {jr−1 + 1, . . . , jr}, {jr + 1, . . . , n}

}
.

We call the parts of B(J) the J-regions. We indicate the parts of B(J) occuring in the
one-line notation of a permutation w ∈ SJ

n by vertical bars.

Lemma 5. If w ∈ SJ
n, then the one-line notation of w has the form

w = w1 < · · · < wj1 | wj1+1 < · · · < wj2 | · · · | wjr+1 < · · · < wn.

Proof. If this were not the case, then there would be some index i ∈ [n] such that wi >
wi+1, and jl + 1 < i < jl+1 − 1 for some l ∈ {0, 1, . . . , r}, where j0 = 1 and jr+1 = n.
It follows that (i, i + 1) ∈ Inv(w) and (i, i + 1) /∈ Inv(wsi). By definition, it follows that
wsi <S w, which contradicts the assumption that w ∈ SJ

n, since si ∈ J .

Definition 6. A permutation w ∈ SJ
n contains a (J ,231)-pattern if there exist three

indices i < j < k, all of which lie in different J-regions, such that wk < wi < wj and
wi = wk + 1. We say that w is (J ,231)-avoiding if it does not contain a (J ,231)-pattern;
and we denote the set of all (J ,231)-avoiding permutations of SJ

n by SJ
n(231).

Example 7. The left image in Figure 1 shows Weak
(
S
{s2}
4

)
, where the

(
{s2},231

)
-

avoiding permutations have been shaded in gray. Notice that the longest permutation
4|23|1 is not 231-avoiding, since it contains the subsequence 231. However, since the 2
and the 3 lie in the same {s2}-region, this sequence does not form an

(
{s2},231

)
-pattern.

The following Theorem 8 shows that Definition 6 is a generalization of 231-avoiding
permutations by showing that S∅n(231) = Sn(231).

Proposition 8. If w ∈ Sn has a 231-pattern, then there exist indices i < j < k such that
wk < wi < wj and wi = wk + 1. Consequently, S∅n(231) = Sn(231).
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1|23|4

2|13|4 1|24|3

3|12|4 2|14|3 1|34|2

4|12|3 3|14|2 2|34|1

4|13|2 3|24|1

4|23|1

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

Figure 1: The parabolic Tamari lattice T {s2}4 . The poset on the left has every permutation

of the parabolic quotient S
{s2}
4 with the

(
{s2},231

)
-avoiding elements marked in gray; the

posets in the middle and on the right are labeled by the {s2}-noncrossing partitions and
the {s2}-nonnesting partitions of a four-element set, respectively.

Proof. Let i < j < k be indices such that wk < wi < wj, and choose them in such a way
that wi − wk is minimal. We claim that in this case wi = wk + 1. Assume the opposite.
Then there is some d ∈ [n] with wk < wd < wi. If d < j, then (d, j, k) forms a 231-pattern
in w. But wd − wk < wi − wk, which contradicts the choice of (i, j, k). If d > j, then
(i, j, d) forms a 231-pattern in w. But wi − wd < wi − wk, which again contradicts the
choice of (i, j, k).

Remark 9. After an extended abstract of this paper appeared in [19], R. Proctor and
M. Willis gave a different definition of parabolic pattern avoidance [22]. More precisely,
if R = {j1, j2, . . . , jr}, then they say that w ∈ SJ

n is R-312-containing if there exists
h ∈ [r − 1] and indices a, b, c ∈ [n] with a 6 jh < b 6 jh+1 < c such that wb <
wc < wa. Any element of SJ

n that is not R-312-containing is R-312-avoiding. They
suggested the term “parabolic Catalan number” for the cardinality of the set of all R-
312-avoiding permutations, and exhibit several combinatorial objects associated with SJ

n

that are enumerated by these numbers [20–22].
It is straightforward to define R-231-avoiding permutations in the sense of R. Proctor

and M. Willis, but this definition is more restrictive than our Definition 6. For example,
the permutation 3|24|1 ∈ S

{s2}
4 is {1, 3}-231-containing, since the ‘3’, the ‘4’, and the ‘1’

form a parabolic 231-pattern. However, the ‘3’ and the ‘1’ do not form a descent, and
this permutation turns out to be ({s2}, 231)-avoiding.

the electronic journal of combinatorics 26(4) (2019), #P4.34 6



3.2 Compressed Inversion Sets

We now generalize A. Björner and M. Wachs’ definition of compressed inversion sets to
parabolic quotients. Define the descent set of w by

Des(w) :=
{

(i, j) ∈ Inv(w) | wi = wj + 1
}
.

Definition 10. An inversion set Inv(w) for a permutation w ∈ SJ
n is J-compressed if

whenever there are three indices i < j < k, each in different J-regions and such that
(i, k) ∈ Des(w), it follows that (i, j) ∈ Inv(w).

Lemma 11. A permutation w ∈ SJ
n is (J ,231)-avoiding if and only if Inv(w) is J-

compressed.

Proof. Suppose first that w ∈ SJ
n is not (J ,231)-avoiding. By definition there exist indices

i < j < k each in different J-regions such that wk < wi < wj as well as wi = wk + 1.
This means that (i, k) ∈ Des(w) but (i, j) /∈ Inv(w), which implies that Inv(w) is not
J-compressed.

On the other hand, suppose that w is (J ,231)-avoiding, and choose three indices
i < j < k, each in different J-regions and such that (i, k) ∈ Des(w). Since w does not
contain a (J ,231)-pattern we must have wj < wi, which implies (i, j) ∈ Inv(w). Hence
Inv(w) is J-compressed.

3.3 Tamari Lattices for Parabolic Quotients

Write Weak
(
SJ
n(231)

)
for the restriction of the weak order on the parabolic quotient SJ

n

to the (J, 231)-avoiding permutations. We now prove the first part of Theorem 1—that
Weak

(
SJ
n(231)

)
is a lattice. The proof follows from the next lemma, which is modeled

after [23, Lemma 5.6] for the case J = ∅.

Lemma 12. For every w ∈ SJ
n, there is a unique w′ ∈ SJ

n(231) such that Inv(w′) is the
maximal set under containment among all J-compressed inversion sets Inv(u) ⊆ Inv(w).

Proof. We proceed by induction on the cardinality of Inv(w). If Inv(w) = ∅, then Inv(w)
is J-compressed and the claim holds trivially. Suppose that

∣∣Inv(w)
∣∣ = r, and that the

claim is true for all x ∈ SJ
n with

∣∣Inv(x)
∣∣ < r.

If Inv(w) is already J-compressed, then we set w′ = w and we are done. Other-
wise, Lemma 11 implies that w contains an instance of a (J ,231)-pattern, which means
that there are indices i < j < k that all lie in different J-regions such that wk < wi < wj
and wi = wk + 1. Consider the lower cover u of w in which wi and wk are exchanged. In
particular, we have Inv(w) = Inv(u) ∪

{
(i, k)

}
. By the induction hypothesis, there exists

some u′ ∈ SJ
n such that Inv(u′) is the unique maximal J-compressed inversion set that is

contained in Inv(u). We claim that w′ = u′.
In order to prove this claim, we choose some element v ∈ SJ

n such that Inv(v) is
J-compressed and Inv(v) ⊆ Inv(w). By construction, we have (i, j) /∈ Inv(w), and hence
(i, j) /∈ Inv(v). Since Inv(v) is J-compressed it follows by definition that vi 6= vk + 1.
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We want to show that Inv(v) ⊆ Inv(u), which amounts to showing that (i, k) /∈ Inv(v)
because Inv(w) \ Inv(u) =

{
(i, k)

}
.

We assume the opposite, and in view of the argument above it follows that vi > vk+1.
Let d be the index such that vd = vk + 1, and let e be the index such that vi = ve + 1.
Since wi = wk + 1, we observe the following:

either wd < wk or wi < wd, and (D)

either we < wk or wi < we. (E)

We have the following relations:

vj > vi > ve > vd > vk.

(If vj < vi, then (i, j) ∈ Inv(v) ⊆ Inv(w), which is a contradiction.) We now distinguish
five cases.

(i) Let d < i < k. Then (d, k) ∈ Des(v) ⊆ Inv(w). It follows that wd > wk, and (D)
implies wd > wi. Lemma 5 implies that d and i lie in different J-regions. Since Inv(v)
is J-compressed, we conclude (d, i) ∈ Inv(v). Hence vi < vd = vk + 1 < vi, which is a
contradiction.

(ii) Let i < d < k. Then (i, d), (d, k) ∈ Inv(v) ⊆ Inv(w). It follows that wi > wd > wk,
which contradicts (i, k) ∈ Des(w).

(iii) Let i < e < k. Then (i, e), (e, k) ∈ Inv(v) ⊆ Inv(w). It follows that wi > we > wk,
which contradicts (i, k) ∈ Des(w).

(iv) Let i < k < e. Then (i, e) ∈ Des(v) ⊆ Inv(w). It follows that wi > we, and (E)
implies we < wk. Lemma 5 implies that k and e lie in different J-regions. Since Inv(v) is
J-compressed, we conclude (k, e) ∈ Inv(v). Hence vi = ve + 1 < vk + 1 < vi, which is a
contradiction.

(v) Let e < i < k < d, which in particular implies that (e, d) ∈ Inv(v) ⊆ Inv(w).
Moreover, (e, k), (i, d) ∈ Des(v) ⊆ Inv(w). It follows that wi > wd as well as we > wk.
Now (D) and (E) imply wd < wk and we > wi, respectively. Lemma 5 implies that e, i, k
and d all lie in different J-regions.

Let e′ be the smallest element in the J-region of e such that ve′ > vd, and let d′ be
the largest element in the J-region of d such that vd′ < ve′ . We record that e′ 6 e <
i < j < k < d 6 d′, and we proceed by induction on ve′ − vd′ . If ve′ = vd′ + 1, then
(e′, i), (e′, j) ∈ Inv(v), since Inv(v) is J-compressed. Lemma 5 implies that ve > ve′ >
vj > vi = ve + 1, which is a contradiction. If ve′ > vd′ + 1, then there must be some index
f with ve′ > vf > vd′ + 1. By construction we have vi = ve + 1 > ve > ve′ > vf .

If f < i and they do not lie in the same J-region, then we can consider the triple
(f, i, d′), and obtain a contradiction by induction, since vf − vd′ < ve′ − vd′ . If f > i and
they do not lie in the same J-region, then we can consider the triple (e′, i, f), and obtain
a contradiction by induction, since ve′ − vf < ve′ − vd′ . If f and i lie in the same J-region,
then we have f < i. We can consider the triple (f, j, d′), and obtain a contradiction by
induction, since vf − vd′ < ve′ − vd′ .

We have thus shown that (i, k) /∈ Inv(v), which implies Inv(v) ⊆ Inv(u). By the
induction assumption it follows that Inv(v) ⊆ Inv(u′), which proves w′ = u′.
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Using Lemma 11, we may reformulate Lemma 12: for every w ∈ SJ
n, there exists a

unique maximal (J ,231)-avoiding permutation w′ with w′ 6S w. The following definition
gives us notation to refer to w′.

Definition 13. We define the projection

ΠJ
↓ : SJ

n → SJ
n(231), w 7→ w′,

where w′ is the unique maximal (J ,231)-avoiding permutation below w.

Proposition 14. The poset Weak
(
SJ
n(231)

)
is a lattice.

Proof. Let w1, w2 ∈ SJ
n(231). Lemma 12 implies that there exists a unique maximal

element u′ ∈ SJ
n(231) with u′ 6S w1, w2, which necessarily must be the meet of w1 and w2

in Weak
(
SJ
n(231)

)
. Since Inv(wJ◦ ) contains all possible inversions, we have ΠJ

↓ (w
J
◦ ) = wJ◦ .

We have thus established that Weak
(
SJ
n(231)

)
is a finite meet-semilattice with greatest

element wJ◦ . It is a classical lattice-theoretic result (see for instance [12, Exercise 1.27])
that this suffices to show that Weak

(
SJ
n(231)

)
is a lattice.

Theorem 8 implies that the set S∅n(231) coincides with the set of all classical 231-
avoiding permutations of Sn, and Theorem 4 states that Weak

(
S∅n(231)

)
is isomorphic

to the Tamari lattice Tn. In view of Proposition 14, we denote the poset Weak
(
SJ
n(231)

)
by T Jn , and call it the parabolic Tamari lattice.

Remark 15. Consider the parabolic subgroup (Sn)J , and let (w◦)J denote the longest
permutation in this subgroup. The poset of all 231-avoiding permutations in the interval
[e, (w◦)J ] is just an interval in the Tamari lattice Tn.

If we consider instead parabolic quotients, then even though the elements in SJ
n form

the interval [e, wJ◦ ], the lattice T Jn is not an interval in Tn. For example, T {s2}4 is depicted

in Figure 1. Observe that the maximal element w
{s2}
◦ = 4|23|1 is not 231-avoiding.

Remark 16. The lattice T Jn is not generally a sublattice of [e, wJ◦ ]. Consider again the
case when n = 4 and J = {s2}. Then the meet of w1 = 4|13|2 and w2 = 3|24|1 in weak

order is 3|14|2, while their meet in T {s2}4 is 2|14|3.
In certain special cases—for example, when J = ∅ or for certain J = S \ {s}—we do

obtain sublattices.

3.4 Parabolic Tamari Lattices are Lattice Quotients

In this section, we prove that T Jn is a lattice quotient of Weak(SJ
n), completing the proof

of Theorem 1. Recall for instance from [23, Section 3] that an equivalence relation Θ on
a lattice is a lattice congruence if and only if all equivalence classes are intervals, and the
projections that map an element to the least or greatest element in its equivalence class,
respectively, are both order-preserving.

Using the map ΠJ
↓ from Definition 13, we define a binary relation Θ on SJ

n by

(w,w′) ∈ Θ if and only if ΠJ
↓ (w) = ΠJ

↓ (w
′). (2)
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It is immediate that Θ is an equivalence relation and ΠJ
↓ maps w ∈ SJ

n to the least element
in its equivalence class.

Lemma 17. The fibers of ΠJ
↓ are order-convex, i.e. if u 6S x 6S v and ΠJ

↓ (u) = ΠJ
↓ (v),

then ΠJ
↓ (u) = ΠJ

↓ (x).

Proof. Let u′ = ΠJ
↓ (u) = ΠJ

↓ (v) and x′ = ΠJ
↓ (x). Since x′ 6S x 6S v, Lemma 12 implies

x′ 6S u
′. Moreover, since u′ 6S u 6S x, Lemma 12 implies u′ 6S x

′.

We claim that every equivalence class of Θ has a greatest element. In view of Lemma 17
this would imply that the equivalence classes of Θ are intervals in Weak(SJ

n). In order to
describe these greatest elements, we say that a permutation w ∈ SJ

n has a (J ,132)-pattern
if there are indices i < j < k each in different J-regions such that wi < wk < wj and
wk = wi + 1. We say w ∈ SJ

n is (J ,132)-avoiding if it does not have a (J ,132)-pattern.
The proof of the following result is almost identical to the proof of Lemma 12.

Lemma 18. For any w ∈ SJ
n, there is a unique minimal (J ,132)-avoiding permutation

w′ with w 6S w
′.

We therefore obtain a map ΠJ
↑ : Sn → SJ

n(132) that maps w to the unique minimal
(J ,132)-avoiding permutation w′ above w.

Lemma 19. The maps ΠJ
↓ and ΠJ

↑ are order-preserving.

Proof. We only prove this property for ΠJ
↓ , since the result for ΠJ

↑ follows analogously.
Let u, v ∈ SJ

n with u 6S v. Lemma 12 states that ΠJ
↓ (u) 6S u 6S v. Since ΠJ

↓ (v)
is maximal among all elements below v with J-compressed inversion sets, it follows that
ΠJ
↓ (u) 6S ΠJ

↓ (v).

Lemma 20. Let u, v ∈ SJ
n with ulS v. The following are equivalent.

(i) There are indices i < j < k, each in different J-regions, such that vk < vi < vj,
vi = vk + 1, and Inv(v) \ Inv(u) =

{
(i, k)

}
.

(ii) ΠJ
↓ (u) = ΠJ

↓ (v).

(iii) ΠJ
↑ (u) = ΠJ

↑ (v).

Proof. Let u lS v. By definition we have Inv(v) \ Inv(u) =
{

(i, k)
}

with vi = vk + 1.
Observe that i < k implies that i and k belong to different J-regions.

Suppose that (i) holds. By assumption there is a (J ,231)-pattern in v, which is induced
by the indices i < j < k. In view of Lemma 11 we conclude that Inv(v) is not J-
compressed. By construction u is the lower cover of v which has vi and vk exchanged.
The proof that ΠJ

↓ (u) = ΠJ
↓ (v) now proceeds as in Lemma 12. This proves that (i) implies

(ii). An analogous argument using Lemma 18 proves that (i) implies (iii).
Now suppose that (i) does not hold. In other words, assume that for any j ∈ [n] which

satisfies i < j < k and does not belong to the same J-region as i or k we have vj < vi.
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In particular, i and k do not participate in any (J ,231)-pattern of v, and the maximality
of ΠJ

↓ (v) implies that (i, k) ∈ Inv
(
ΠJ
↓ (v)

)
. On the other hand, since (i, k) /∈ Inv(u) we

conclude (i, k) /∈ Inv
(
ΠJ
↓ (u)

)
. Hence ΠJ

↓ (u) <S ΠJ
↓ (v). This proves that (ii) implies (i).

We also see that i and k do not participate in any (J ,132)-pattern of u, and the minimality
of ΠJ

↑ (u) implies (i, k) /∈ Inv
(
ΠJ
↑ (u)

)
. On the other hand (i, k) ∈ Inv(v) ⊆ Inv

(
ΠJ
↑ (v)

)
.

Hence ΠJ
↑ (u) <S ΠJ

↑ (v). This proves that (iii) implies (i) and the proof is complete.

Lemma 21. If ΠJ
↓ (u) = ΠJ

↓ (v) for some u, v ∈ SJ
n, then ΠJ

↑ (u) = ΠJ
↑ (v).

Proof. Assume that u 6S v. If ulS v, then the claim follows from Lemma 20. If u <S v
do not form a cover relation, we find the desired equality by repeated application of
Lemma 20 using Lemma 17.

Otherwise, suppose that u and v are incomparable. Then, ΠJ
↓ (u ∧ v) = ΠJ

↓ (u), since
ΠJ
↓ (u) = ΠJ

↓ (v) is the unique maximal (J ,231)-avoiding permutation below both u and
v. Since u ∧ v 6S u and u ∧ v 6S v, we conclude ΠJ

↑ (u) = ΠJ
↑ (u ∧ v) = ΠJ

↑ (v) using the
argument above.

Proposition 22. The equivalence relation Θ from (2) is in fact a lattice congruence on
[e, wJ◦ ], and the corresponding quotient lattice is T Jn .

Proof. Lemma 12 implies that the equivalence classes of Θ have a least element, and these
minimal elements are precisely the elements of SJ

n(231). Lemma 21 implies together with
Lemma 18 that equivalence classes have a greatest element, and Lemma 17 implies that
the equivalence class [w]Θ is in fact equal to the interval

[
ΠJ
↓ (w),ΠJ

↑ (w)
]
. Lemma 19 now

completes the proof.

Proof of Theorem 1. This follows from Propositions 14 and 22.

4 Parabolic Noncrossing Partitions

In this section, we define the set NCJ
n of noncrossing partitions for parabolic quotients,

and give an explicit bijection between NCJ
n and SJ

n(231).
Recall that a set partition of [n] is a collection P = {P1, P2, . . . , Ps} of pairwise disjoint,

nonempty subsets of [n] with the property that their union is [n]. The elements Pi of P
are called the parts of P. A pair (a, b) is a bump of P if a, b ∈ Pi for some i ∈ [s] and
there is no c ∈ Pi with a < c < b. Classically, a set partition is noncrossing if it does not
contain two bumps (i1, j1) and (i2, j2) such that i1 < i2 < j1 < j2 [16]. We introduce the
following generalization.

Definition 23. A partition P of [n] is J-noncrossing if it satisfies the following three
conditions.

(NC1) If i and j lie in the same J-region, then they are not contained in the same part
of P.
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1 2 3 4 5 6 7 8 9 10

↓
1

↓
7

↓
9

↓
10|
↓
2

↓
5 |
↓
3 |
↓
4

↓
6 |
↓
8 {1} {2, 9} {3, 10} {4}

{5} {6, 8}

{7}

Figure 2: The noncrossing partition P =
{
{1}, {2, 9}, {3, 10}, {4}, {5}, {6, 8}, {7}

}
with

respect to n = 10 and J = {s1, s2, s3, s5, s8}, the corresponding partially ordered set ~OP,
and the (J, 231)-avoiding permutation constructed from P.

(NC2) If two distinct bumps (i1, i2) and (j1, j2) of P satisfy i1 < j1 < i2 < j2, then
either i1 and j1 lie in the same J-region or i2 and j1 lie in the same J-region.

(NC3) If two distinct bumps (i1, i2) and (j1, j2) of P satisfy i1 < j1 < j2 < i2, then i1
and j1 lie in different J-regions.

We denote the set of all J-noncrossing set partitions of [n] by NCJ
n. If J = ∅, then we

recover the classical noncrossing set partitions. We now introduce a combinatorial model
for the J-noncrossing partitions. We draw n dots, labeled by the numbers 1, 2, . . . , n, on
a straight line, and highlight the J-regions by grouping the corresponding dots together.
For any bump (i, j) in P ∈ NCJ

n, we draw an arc connecting the dots corresponding to i
and j, respectively, that passes below all dots corresponding to indices k > i that lie in
the same J-region as i, and above all other dots between i and j. See the bottom left of
Figure 4 for an illustration.

Let P ∈ NCJ
n and define a binary relation ~RP on the parts of P by setting (B,B′) ∈ ~RP

if there exists a bump (i1, i2) of P with i1, i2 ∈ B such that i1 < minB′ < i2. This relation
is certainly acyclic, and can therefore be extended to an order relation by taking reflexive
and transitive closures. Let ~OP be the partially ordered set whose ground sets are the
parts of P, and whose order relation is the reflexive and transitive closure of ~RP.

Figure 2 illustrates this construction in the case n = 10 and J = {s1, s2, s3, s5, s8}.
We may now prove the following theorem.

Theorem 24. For n > 0 and J ⊆ S, there is a bijection SJ
n(231) ' NCJ

n.

Proof. Let w ∈ SJ
n(231). We construct a set partition P of [n] by associating a bump

(i, j) with every descent (i, j) ∈ Des(w). If (i, j) is a bump of P, then (i, j) ∈ Des(w),
and Lemma 5 implies that i and j lie in different J-regions. This establishes condition
(NC1). Suppose (i1, i2) and (j1, j2) are two different bumps of P with i1 < j1 < i2 < j2,
but neither i1, j1 nor i2, j1 are in the same J-region. If wi1 < wj1 , then (i1, j1, i2) is a
(J ,231)-pattern in w, which is a contradiction. If wi1 > wj1 , it follows that wj1 < wi2 ,
and then (j1, i2, j2) is a (J ,231)-pattern in w, which is a contradiction. Hence (NC2)
is satisfied. Finally, suppose that (i1, i2) and (j1, j2) are two different bumps of P with
i1 < j1 < j2 < i2 such that i1 and j1 are in the same J-region. Lemma 5 implies wi1 < wj1 .
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It follows that (i1, j1, i2) is a (J ,231)-pattern in w, which is a contradiction. Hence (NC3)
is satisfied, and so P ∈ NCJ

n.

Conversely, let P ∈ NCJ
n. We construct a permutation w ∈ SJ

n(231) where every
bump (i, j) of P corresponds to a descent (i, j) ∈ Des(w). We proceed by induction on
n, with the case n = 1 being trivial. Suppose that for any n′ < n we can construct
a (J ′,231)-avoiding permutation of SJ ′

n′ from a given J ′-noncrossing set partition of [n′],
where J ′ is the restriction of J to [n′].

Let ~OP be the partially ordered set on the parts of P that we have defined just before
this theorem. Let P̄ be the unique part of P containing 1, and let X be the set of all
integers that belong to parts in the order filter generated by P̄ . We set w(1) = |X|.

If we remove P̄ from P, then we obtain two smaller partitions from the remaining
parts. The elements in X \ P̄ form a left partition Pl, and the elements in [n] \X form a
right partition Pr. Both Pl and Pr can be seen as parabolic noncrossing set partitions of
[nl] and [nr], respectively, where nl, nr < n. By induction we can create (J, 231)-avoiding

permutations w(l) and w(r) from these partitions (and we may reuse ~OP for that). Now

we obtain the value wj for j /∈ P̄ as follows. If j ∈ Pl, then wj = w
(l)
j′ if j is the (j′)th

largest value in Pl. If j ∈ Pr, then wj = w
(r)
j′ + |X| if j is the (j′)th largest value in Pr.

Since all bumps in P occur only between elements in P̄ , in Pl, or in Pr, it follows that
w ∈ SJ

n(231).

Example 25. Let J = {s1, s2, s3, s5, s8}. Consider P ∈ NCJ
10 given by the bumps

(2, 9), (3, 10), (6, 8). This partition is displayed in the top-left part of Figure 2, the corre-

sponding poset ~OP on the right. Since no bump starts in 1, we obtain w1 = 1, and the cor-
responding right partition is the restriction of P to {2, 3, . . . , 10}. Here we have P̄ = {2, 9},
and we have X = {2, 5, 6, 7, 8, 9}. Hence we obtain w2 = 7 and w9 = 6. The corre-
sponding left partition is Pl =

{
{5}, {6, 8}, {7}

}
and the corresponding right partition is

Pr =
{
{3, 10}, {4}

}
. By induction, we conclude that w(l) = 1 4 | 2 | 3 and w(r) = 2 3 | 1.

We fashion them together to form the permutation w = 1 7 9 10 | 2 5 | 3 | 4 6 | 8, which
is indeed contained in SJ

10(231). By construction,
{

(2, 9), (3, 10), (6, 8)
}

are the descents
of w, and are precisely the bumps of P.

Remark 26. When restricted to the (J ,231)-sortable elements, one can check that the
bijection of Theorem 24 is identical to the bijection given in [27] between elements of
the symmetric group and certain noncrossing arc diagrams. Theorem 24 was discovered
independently, and appeared in [32].

5 Parabolic Nonnesting Partitions

The nonnesting set partitions are a second important subset of the set partitions of [n].
Nonnesting set partitions are characterized as not containing two bumps (i1, i2) and (j1, j2)
such that i1 < j1 < j2 < i2. These were introduced by A. Postnikov uniformly for
all crystallographic Coxeter groups as order ideals in the corresponding root poset [28,
Remark 2]. It turns out that (for any crystallographic Coxeter group) noncrossing and
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nonnesting partitions are equinumerous. Moreover, they are also equidistributed by part
size [3]. We introduce the following generalization.

Definition 27. A partition P of [n] is J-nonnesting if it satisfies the following two con-
ditions.

(NN1) If i and j lie in the same J-region, then they are not contained in the same part
of P.

(NN2) If (i1, i2) and (j1, j2) are two distinct bumps of P, then it is not the case that
i1 < j1 < j2 < i2.

We denote the set of all J-nonnesting partitions of [n] by NNJ
n. If J = ∅, then we

recover the classical nonnesting set partitions.
Recall that the root poset of Sn is the poset Φ+ = (T,6), where T is the set of all

transpositions of Sn, and we have (i1, i2) 6 (j1, j2) if and only if i1 > j1 and i2 6 j2.
The parabolic root poset of Sn, denoted by ΦJ

+, is the order filter of Φ+ generated by the
adjacent transpositions not in J .

We first observe that J-nonnesting partitions of [n] are in bijection with order ideals
in this parabolic root poset. See Figure 3 for an illustration.

Lemma 28. For n > 0 and J ⊆ S, there is a bijection from J-nonnesting partitions to
order ideals in ΦJ

+.

Proof. Let I be an order ideal of ΦJ
+, and let M denote the set of minimal elements in

the complement of I. In particular, M is an antichain, i.e. no two elements of M are
comparable. Thus if (i1, i2), (j1, j2) ∈M and i1 < j1, then i2 ∈ {j1, j1 +1, . . . , j2−1} (and
accordingly if j1 < i1). Hence, (NN2) is satisfied. If there are two distinct elements i0 and
ik which belong to the same J-region and to the same part B of P, then there must be a
sequence of bumps (i0, i1), (i1, i2), . . ., (ik−1, ik), which belong to this J-region and to B
as well. This contradicts the definition of ΦJ

+, because we have specifically excluded pairs
of the form (a, b) with a and b both belonging to the same J-region. This contradiction
shows that (NN1) is satisfied.

Conversely, let P ∈ NNJ
n, and let M be the set of bumps of P. By (NN1) we see that

M ⊆ ΦJ
+. If there exist (i1, i2), (j1, j2) ∈ M which are comparable in ΦJ

+, then without
loss of generality we may assume that i1 > j1 and i2 6 j2. Since naturally i1 < i2 we
obtain a contradiction to (NN2).

We now prove that J-nonnesting and J-noncrossing partitions are also in bijection.
See Figure 4 for an example.

Theorem 29. For n > 0 and J ⊆ S, there is a bijection NNJ
n ' NCJ

n.

Proof. We begin with the construction of a bijection from NNJ
n to NCJ

n for the case of
maximal parabolic quotients, i.e. where J = S\{sk} for k ∈ [n]. We label the transposition
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1 2 3 4 5 6 7 8 9 10

Figure 3: The parabolic root poset of S10 with respect to J = {s1, s2, s3, s5, s8}.
The shaded region is an order ideal, and the minimal elements of the com-
plement are marked in black. The corresponding J-nonnesting partition is{
{1}, {2, 5, 9}, {3, 6}, {4}, {7}, {8}, {10}

}
.

(i, j) in ΦJ
+ by the arc (k+ 1− i, n+ 1− j + k), which yields the following labeling of ΦJ

+

(under a suitable rotation):(
k, (k + 1)

)
· · ·

(
k, (n− 1)

) (
k, n
)

...
...

...
...(

2, (k + 1)
)
· · ·

(
2, (n− 1)

) (
2, n
)(

1, (k + 1)
)
· · ·

(
1, (n− 1)

) (
1, n
)

The J-nonnesting set partition corresponding to an order ideal in ΦJ
+ is the one whose

bumps are the labels of the minimal elements not in the order ideal. Since B(J) ={
{1, 2, . . . , k}, {k + 1, k + 2, . . . , n}

}
, condition (NC3) ensures that every J-noncrossing

partition is also J-nonnesting and vice versa.
Now suppose that J = S \ {sk1 , sk2 , . . . , skr}, and let I be an order ideal of ΦJ

+. We
construct a noncrossing partition P ∈ NCJ

n inductively starting from the partition with
no parts. First we break I in two pieces, A and B: A contains all the transpositions in
I that lie above sk1 in ΦJ

+, and B contains all the other transpositions in I. Then B is

an order ideal in Φ
J\{sk1}
+ , and we can construct a

(
J \ {sk1}

)
-noncrossing set partition

of {k1 + 1, k1 + 2, . . . , n} by induction. Now we choose all those columns in piece A that
either lie outside the order filter generated by sk2 , . . . , skr or that have an element of I in
piece B directly below them. (We thus pick the columns of A that are “supported” by
B.)

Let l1, l2, . . . , lr denote the column labels from the inductive step of the part of B that
supports A. Any bump starting in {1, 2, . . . , k1} can end either in {k1 + 1, k1 + 2, . . . , k2}
or in {l1, l2, . . . , lr}, in order not to cross any existing bumps. We label the transpositions
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Piece A

Piece B

(4, 5)

•

•
•

1 2 3 4 5 6 7 8 9 10

Piece A

(4, 5)

•
•

1 2 3 4 5 6 7 8 9 10

Piece B

•

1 2 3 4 5 6 7 8 9 10

Figure 4: Figure illustrating how to combine pieces A and B.

in the chosen part of A as follows:(
k1, (k1 + 1)

) (
k1, (k1 + 2)

)
· · ·

(
k1, k2

) (
k, l1

) (
k, l2

)
· · ·

(
k, lr

)
...

...
...

...
...

...
...

...(
2, (k1 + 1)

) (
2, (k1 + 2)

)
· · ·

(
2, k2

) (
2, l1

) (
2, l2

)
· · ·

(
2, lr

)(
1, (k1 + 1)

) (
1, (k1 + 2)

)
· · ·

(
1, k2

) (
1, l1

) (
1, l2

)
· · ·

(
1, lr

)
The labels corresponding to the minimal transpositions that are not in I within these
chosen columns then yield the remaining bumps. By construction, the resulting partition
is J-noncrossing.

The inverse map is constructed by temporarily forgetting about the bumps from the
first J-region, and then using the smaller J-noncrossing partition to construct the B piece
of the order ideal inductively. From there, we can again identify the “supported” columns
in the A piece, and the bumps starting in the first J-region then give the remaining
elements of the order ideal.

Example 30. Consider the J-nonnesting set partition of [10] shown at the top left of
Figure 4 indicated by the dark gray region. The construction of the smaller parabolic
noncrossing partitions is shown in the middle and right part of that figure, and the
resulting J-noncrossing partition is shown at the bottom left.

Proof of Theorem 2. This follows from Theorems 24 and 29.

Recall that a Ferrers shape is a sequence λ = (λ1, λ2, . . . , λk) of positive integers with
λ1 > λ2 > · · · > λk. Another Ferrers shape (λ′1, λ

′
2, . . . , λ

′
k) fits inside λ if λ′i 6 λi for all

i ∈ [k].
The parabolic root poset — when rotated by 45 degrees counterclockwise — can be

viewed as a bounding Ferrers shape

λJn := (jn−jrr , . . . , jj3−j22 , jj2−j11 )
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and the complements of the order ideals in this poset correspond precisely to the Ferrers
shapes that fit inside λJn. In our running example we obtain λ

{s1,s2,s3,s5,s8}
10 = (9, 7, 7, 6, 4, 4)

as can quickly be verified in Figure 3. The enumeration of Ferrers shapes fitting into λJn
now follows from the next result due to G. Kreweras, and allows for computing the
parabolic Catalan numbers.

Theorem 31 ([15, Section 2.3.7]). If λ = (λ1, λ2, . . . , λk) is a Ferrers shape, then the
number of Ferrers shapes that fits inside λ is given by the determinant of the k×k-matrix
whose entry in row i and column j is

(
λj+1
j−i+1

)
.

6 Generalization to Coxeter Groups

In recent years, 231-avoiding permutations, noncrossing set partitions, and nonnesting
set partitions have each been generalized from the symmetric group to finite Coxeter
groups—see [25], [4, 8], and [28, Remark 2], respectively. These generalizations allow for
further parametrization by a Coxeter element (a product of the simple reflections in some
order). In this section, we describe a generalization of our parabolic versions of these
objects in a similar fashion.

6.1 Coxeter Groups

We first recall some background on Coxeter groups. For more details see [5,13]. A Coxeter
system is a pair (W,S), where W is a group and S = {s1, s2, . . . , sn} ⊆ W is a generating
set such that W admits the presentation

W =
〈
s1, s2, . . . , sn | (sisj)mi,j = e for i, j ∈ [n]

〉
, (3)

where e denotes the identity of W . The parameters mi,j are positive integers or the formal
symbol ∞, where mi,j = 1 if and only if i = j. If mi,j = ∞, then there is no relation
between the generators si and sj. In this situation we call W a Coxeter group and the
cardinality n = |S| the rank of W . For geometric reasons we call the elements of S the
simple reflections, and define the set of all reflections by T = {wsw−1 | w ∈ W, s ∈ S}.

Since S generates W , every w ∈ W can be written as a product of the elements in S.
A reduced expression for w is such a product of minimal length, and this length is called
the Coxeter length of w; denoted by `S(w). The (right) weak order on W is the partial
order 6S defined by u 6S v if and only if `S(v) = `S(u) + `S(u−1v). We write Weak(W )
for the partially ordered set (W,6S).

Remark 32. In Section 2.1 we defined a left weak order on the symmetric group Sn, which
may be generalized to Coxeter groups via the condition `S(v) = `S(u) + `S(vu−1). The
map w 7→ w−1 is a poset isomorphism from left to right weak order, so that the results
from Section 3 could be phrased equally well in terms of right weak order.

In general, Weak(W ) is a meet-semilattice—if W is finite, then Weak(W ) has a unique
longest element w◦, which implies that Weak(W ) is in fact a lattice [5, Theorem 3.2.1].
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Any J ⊆ S naturally generates a (parabolic) subgroupWJ ofW , and the set of minimal
length representatives of the right cosets of W by WJ forms the parabolic quotient W J of
W with respect to J . Proposition 2.4.4 in [5] implies that any w ∈ W can be factorized
uniquely as w = wJ · wJ , where wJ ∈ W J and wJ ∈ WJ . The weak order on W gives a
partial order on W J , and Weak(W J) is isomorphic to the weak order ideal [e, wJ◦ ] when
W is finite [6, Theorem 4.1].

Comparing the presentations (1) and (3), we see that the symmetric group with the
generating set of all adjacent transpositions forms a Coxeter system, and the reflections are
all conjugates of the adjacent transpositions. We use this correspondence to generalize the
notion of an inversion from the symmetric group to all Coxeter groups. A (left) inversion of
W is a reflection t ∈ T such that `S(tw) < `S(w). The set of all inversions of w is denoted
by Inv(w). Analogously to the symmetric group, we can give an equivalent definition of
the weak order by setting u 6S v if and only if Inv(u) ⊆ Inv(v) [5, Proposition 3.1.3].

We want to emphasize a special subset of the inversions. A cover reflection of w is
an inversion t ∈ Inv(w) such that there exists some s ∈ S with tw = ws. The name
comes from the fact that multiplying some element by a simple reflection produces a
cover relation in the weak order, and the cover reflection is then the conjugate of this
simple reflection by the larger element in this cover. The set of cover reflections of w is
denoted by Cov(w).

Now fix a reduced expression w = a1a2 · · · ak. The inversion sequence of w is the
sequence r1, r2, . . . , rk, where ri = a1a2 · · · ai−1aiai−1 · · · a2a1. It is clear by construction
that Inv(w) = {r1, r2, . . . , rk}. Observe, however, that the inversion sequence equips
Inv(w) with a linear order; the inversion order r1 < r2 < · · · < rk. This order will be
denoted by Inv(w).

Since the elements of T geometrically act as reflections on a Euclidean vector space,
we can associate two normal vectors to the corresponding reflecting hyperplane. The
collection of all these normal vectors is a root system of W , and it can be partitioned into
positive and negative roots. It follows that there is a bijection from T to the set Φ+ of
all positive roots. Given α ∈ Φ+, let tα ∈ T be the corresponding reflection. It follows
from [10, Lemma 4.1(iv)] that whenever we have a reflection taα+bβ ∈ Inv(w) for some
α, β ∈ Φ+ and some positive integers a, b, then at least one of tα and tβ are in Inv(w)
as well. We refer the interested reader to [13] for more background on the geometric
realization of Coxeter groups.

Finally, we recall the existence of some special, well-behaved reduced expressions for
any element ofW . A Coxeter element of (W,S) is an element that has a reduced expression
which is a permutation of all simple reflections. Fix such a Coxeter element c ∈ W .
Clearly, any reduced expression of w ∈ W appears as a subword of the half-infinite word
c∞ (which is the infinite concatenation of a fixed reduced expression for c). The c-sorting
word of w is the reduced expression for w which appears leftmost in c∞, and will be
denoted by w(c).
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6.2 Aligned Elements for Parabolic Quotients

In [24, Section 4], N. Reading defined a notion of c-alignment for the elements of a finite
Coxeter group W with respect to some Coxeter element c ∈ W . More precisely, an
element w of W is c-aligned if whenever we have tα < taα+bβ < tβ in the inversion order
Inv(w◦(c)), where α, β ∈ Φ+ and a, b are positive integers, then taα+bβ ∈ Inv(w) implies
tα ∈ Inv(w). For W = Sn and c = sn−1 · · · s2s1 the linear Coxeter element, the c-aligned
elements are precisely the 231-avoiding permutations.

We now propose a definition of c-aligned elements for parabolic quotients.

Definition 33. Let (W,S) be a finite Coxeter system, let J ⊆ S, and let c ∈ W be
a Coxeter element. An element w ∈ W J is (W J , c)-aligned if, whenever we have tα <
taα+bβ < tβ in Inv(wJ

◦ (c)), where α, β ∈ Φ+ and a, b are positive integers, then taα+bβ ∈
Cov(w) implies tα ∈ Inv(w).

We denote the set of all (W J , c)-aligned elements of W by Align(W J , c).
There is a subtlety in Definition 33—we only require the root taα+bβ to correspond

to a cover reflection of w, rather than to an arbitrary inversion. It was shown in
[23, Lemma 5.5] and follows from [24, Lemmas 4.9 and 4.11] that our parabolic aligned
condition for J = ∅ is indeed equivalent to the original aligned condition for Coxeter
groups of type A,B, and D. This equivalence is trivial for the dihedral groups, and it was
checked by computer for the groups H3, H4, and F4. The remaining exceptional groups
E6, E7, and E8 have not been checked by computer. See also [32, Remark 5.1.8].

The following lemma states that our parabolic pattern avoidance condition from Def-
inition 6 is equivalent to Definition 33 in the case of the symmetric group and the linear
Coxeter element c = s1s2 · · · sn−1, where si = (i, i+ 1).

Lemma 34. Let W = Sn, c = s1s2 · · · sn−1, and choose J ⊆ S. An element w ∈ SJ
n is

(W J , c)-aligned if and only if w−1 is (J ,231)-avoiding.

Proof. By definition, cover reflections of w ∈ Sn correspond to descents of w−1 so that
Definition 33 agrees with Definition 10 after taking inverses. Lemma 11 then implies that
w ∈ SJ

n is (W J , c)-aligned if and only if w−1 is (J ,231)-avoiding.

It is an intriguing question whether the statement of Theorem 1 survives this gener-
alization, and computer experiments have led us to formulate the following conjecture.

Conjecture 35. For any finite Coxeter system (W,S), any J ⊆ S, and any Coxeter
element c ∈ W , the poset Weak

(
Align(W J , c)

)
is a lattice. Moreover, it is a lattice

quotient of Weak(W J).

Conjecture 35 holds in two interesting cases—when J = ∅ [25, Theorem 1.1], and when
J = S \ {s} is chosen such that wJ◦ is fully commutative, i.e. any two reduced expressions
for wJ◦ differ only by commutations. In the latter case, we simply have Align

(
W J , c

)
= W J

for any c, and the lattice property follows from the fact that (W J ,6S) is an interval in the
weak order on W [32, Section 5.2]. See [30] for more background on fully commutative
elements, and a characterization of the sets J = S\{s} such that wJ◦ is fully commutative.
The remaining cases, however, are wide open.
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6.3 Noncrossing Partitions for Parabolic Quotients

Let us continue with the generalization of noncrossing set partitions to parabolic quotients
of finite Coxeter groups. Recall that the original definition of noncrossing partitions
associated with a pair (W, c) is in terms of elements below c in a certain partial order
depending on all reflections of W [4,8]. It was observed by N. Reading in [24, Theorem 6.1]
that the (W, c)-noncrossing partitions are determined bijectively by the cover reflections
of the c-aligned elements of W . The next definition is a straightforward generalization of
this correspondence. For w ∈ W J , and suppose that Cov(w) = {r1, r2, . . . , rk}, where the
order of the cover reflections comes from Inv(wJ

o(c)). Let ψ(w) = r1r2 · · · rk.

Definition 36. Let (W,S) be a finite Coxeter system, let J ⊆ S, and let c ∈ W be a
Coxeter element. The (W J , c)-noncrossing partitions are the elements in the image of ψ
restricted to Align

(
W J , c

)
.

We denote the set of (W J , c)-noncrossing partitions by NC
(
W J , c

)
. It follows from

Theorem 24 that this definition coincides with Definition 23 when we consider the sym-
metric group and the linear Coxeter element.

6.4 Nonnesting Partitions for Parabolic Quotients

We now generalize the nonnesting set partitions to parabolic quotients of finite Coxeter
groups. In the classical setting, nonnesting partitions are defined as follows for any finite
irreducible Coxeter group that is not isomorphic to H4. If W is an irreducible crystal-
lographic Coxeter group, i.e. we have mij ∈ {1, 2, 3, 4, 6} in (3), then we can partially
order the positive roots of W by α 6 β if and only if β − α can be expressed as a linear
combination of the simple roots with only positive coefficients. This partial order yields
the root poset of W . Root posets for the remaining finite irreducible Coxeter groups other
than H4 were suggested in [1, Figure 5.15]. The W -nonnesting partitions of W are then
the order ideals in the root poset. In particular, they do not depend on a Coxeter element.
Recall that the parabolic root poset of W with respect to J is defined to be the order filter
in the root poset of W induced by the simple reflections not in J .

Definition 37. Let (W,S) be a finite Coxeter system, with W 6= H4, and let J ⊆ S.
The W J-nonnesting partitions are the order ideals in the parabolic root poset of W with
respect to J .

We denote the set of W J -nonnesting partitions by NN
(
W J
)
. It is clear that this

definition coincides with Definition 27 when we consider the symmetric group.

6.5 Subword Complexes for Parabolic Quotients

However, this is not the end of the story. There is yet another family of combinatorial
objects that seems to fit nicely into the presented framework. Let (W,S) be a finite
Coxeter system, let Q be a word on the alphabet S, and let w ∈ W . The subword complex
SW(Q,w) is the pure simplicial complex whose facets are the subwords Q− P such that
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P is a reduced expression for w [14]. For our purpose, the following subword complex
shall be emphasized.

Definition 38. Let (W,S) be a finite Coxeter system, let J ⊆ S, and let c ∈ W be a
Coxeter element. The (W J , c)-cluster complex is the subword complex SW

(
cw◦(c), wJ◦

)
.

We denote the (W J , c)-cluster complex by SW(W J , c), and denote its number of facets
by
∣∣SW(W J , c)

∣∣. The next result states that
∣∣SW(SJ

n, c)
∣∣, where c is the linear Coxeter

element, equals the number appearing (implicitly) in Theorem 2.

Proposition 39. Let n > 0, let S be the set of adjacent transpositions, and let c be the
linear Coxeter element. For J ⊆ S, we have

∣∣SW(SJ , c)
∣∣ =

∣∣NNJ
n

∣∣.
Proof. Recall from Section 5 that the elements in NNJ

n are order ideals in the parabolic
root poset of SJ

n, and this poset can be interpreted as the Ferrers shape λJn.
For any Ferrers shape λ = (λ1, λ2, . . . , λt) we may consider the permutation

w(λ) :=
t∏
i=1

λ1+1−i∏
j=λ1+2−i−λi

sj.

It is straightforward to verify that in the case where λ = λJn describes the shape of
the parabolic root poset of SJ

n the element w(λ) is precisely wJ◦ . The result follows then
from [29, Theorem 1.1]. See also [32, Remark 4.5.8].

Since SW(W J , c) is a subword complex, there is a natural poset structure on its
facets. More generally, let F, F ′ be two facets of a subword complex SW(Q,w) such
that F −{i} = F ′−{j} for some i ∈ F , and some j ∈ F ′. If i < j, then we call F → F ′ a
flip, and the facets of SW(Q,w) together with the set of flips forms an acyclic graph, and
therefore its reflexive and transitive closure is the flip poset of SW(Q,w) [14, Remark 4.5].

Conjecture 40. For any finite Coxeter system (W,S), any J ⊆ S, and any Coxeter
element c ∈ W , the restriction of the weak order to (W J , c)-aligned elements is isomorphic
to the flip poset of SW(W J , c).

6.6 Numerology

In this section we describe how the objects defined in Sections 6.2 to 6.5 conjecturally fit
together from an enumerative point of view. It is well known that for any finite Coxeter
group W and any Coxeter element c ∈ W we have∣∣∣Align

(
W ∅, c

)∣∣∣ =
∣∣∣NC

(
W ∅, c

)∣∣∣ =
∣∣∣NN

(
W ∅)∣∣∣ =

∣∣∣SW(W ∅, c)
∣∣∣,

see for instance [25, Theorem 6.1] and [2], and this cardinality is given by the well-known
W -Catalan number [28, Remark 2]. We have shown in Theorem 2 and Proposition 39
that this statement can be generalized to parabolic quotients of the symmetric group and
the linear Coxeter element. It turns out, however, that this statement does not hold in
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general for any parabolic quotient of any Coxeter group and any Coxeter element. Take
for instance W = D4, J = {s1, s2}, and c = s3s2s1s4, where s2 is the simple reflection
that does not commute with any of the other simple reflections. In this case we have∣∣Align

(
W J , c

)∣∣ = 21, but
∣∣NN

(
W J
)∣∣ = 22.

Another related question is, whether the cardinality of the sets Align
(
W J , c

)
and

NC
(
W J , c

)
is independent of the choice of c. This property is known for J = ∅, see

for instance [24, Theorem 9.1], but it turns out once more that it does not hold for any
parabolic quotient of any Coxeter group and any Coxeter element. Take again W = D4,
J = {s1, s2}, c = s3s2s1s4 as above and take c′ = s2s3s4s1. We then have

∣∣Align
(
W J , c)

∣∣ =
21 and

∣∣Align
(
W J , c′)

∣∣ = 22.
As a consequence we conclude that, in general, there is no well-defined parabolic

Coxeter-Catalan number Cat(W J). See Figures 1 to 5 for more data.∣∣Align(AJ4 )
∣∣ =

∣∣NC(AJ4 )
∣∣ ∣∣Align(BJ

4 )
∣∣ =

∣∣NC(BJ
4 )
∣∣

J =
∣∣SW(AJ4 )

∣∣ =
∣∣SW(BJ

4 )
∣∣

=
∣∣NN(AJ4 )

∣∣ =
∣∣NN(BJ

4 )
∣∣

{} 42 70
{s1} 28 50
{s2} 32 58
{s3} 32 60
{s4} 28 56
{s1, s2} 14 30
{s1, s3} 22 44
{s1, s4} 19 41
{s2, s3} 17 40
{s2, s4} 22 48
{s3, s4} 14 28
{s1, s2, s3} 5 16
{s1, s2, s4} 10 26
{s1, s3, s4} 10 22
{s2, s3, s4} 5 8
{s1, s2, s3, s4} 1 1

Table 1: The numbers Cat(W J) for W ∈ {A4, B4}. For B4 the noncommuting simple
reflections satisfy (s1s2)3 = (s2s3)3 = (s3s4)4 = e. We have suppressed the dependence of∣∣Align(W J , c)

∣∣, ∣∣NC(W J , c)
∣∣ and

∣∣SW(W J , c)
∣∣ on c, as they agree for all Coxeter elements.

In studying these tables, we observe that for the groups A4, B4, H3 (and trivially for
the dihedral groups) there seem to exist well-defined parabolic Coxeter-Catalan numbers.
Further computer experiments suggest the following conjecture.

Conjecture 41. Let (W,S) be a Coxeter system with W ∈
{
An, Bn, H3, I2(m)

}
, and

let J ⊆ S. For any Coxeter element c ∈ W the cardinalities of the sets Align
(
W J , c

)
,

NC
(
W J , c

)
, SW

(
W J , c

)
, and NN

(
W J
)

are equal, and hence do not depend on the choice
of c.
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J
∣∣Align(DJ

4 , c)
∣∣ =

∣∣NC(DJ
4 , c)

∣∣ =
∣∣SW(DJ

4 , c)
∣∣ ∣∣NN(DJ

4 )
∣∣

s2s3s4s1 s1s2s3s4 s3s2s1s4 s4s2s3s1

{} 50 50
{s1} 36 36
{s2} 42 42
{s3} 36 36
{s4} 36 36
{s1, s2} 22 22 21 21 22
{s1, s3} 27 27
{s1, s4} 27 27
{s2, s3} 22 21 22 21 22
{s2, s4} 22 21 21 22 22
{s3, s4} 27 27
{s1, s2, s3} 8 8
{s1, s2, s4} 8 8
{s1, s3, s4} 21 21
{s2, s3, s4} 8 8
{s1, s2, s3, s4} 1 1

Table 2: The various numbers Cat(DJ
4 ). Here s2 is the unique simple reflection that

does not commute with the other simple reflections. The values of
∣∣Align(DJ

4 , c)
∣∣ =∣∣NC(DJ

4 , c)
∣∣ =

∣∣SW(DJ
4 , c)

∣∣ are equal for c and c−1.

The groups appearing in Conjecture 41 are sometimes called “coincidental types”,
because they share remarkable features that distinguish them from the other finite Coxeter
groups. Some of these features are listed in [11, Theorems 8.5 and 10.2], [17, Theorem 14],
[18, Theorem 2], [26], and [32, Remark 3.1.26]. Since the families of parabolic aligned
elements, parabolic noncrossing and nonnesting partitions are equinumerous for these
groups, we are tempted to define a parabolic Coxeter-Catalan number as follows.

Definition 42. Let (W,S) be a Coxeter system with W ∈ {An, Bn, H3, I2(m)}, and let
J ⊆ S. Define the parabolic Coxeter-Catalan number by

Cat(W J) =
∣∣NN(W J)

∣∣.
6.7 Aligned Elements for Arbitrary Reduced Expressions

Observe that the definition of the (W J , c)-aligned elements from Definition 33 does not so
much depend on the fact that we consider a parabolic quotient of a Coxeter group, rather
than on the particular reduced expression of wJ◦ we have chosen. More precisely, the
alignment property depends on the inversion order Inv(wJ

◦ ). This suggests the following
definition.
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J
∣∣Align(HJ

3 )
∣∣ =

∣∣NC(HJ
3 )
∣∣ =

∣∣SW(HJ
3 )
∣∣ =

∣∣NN(HJ
3 )
∣∣

{} 32
{s1} 27
{s2} 28
{s3} 25
{s1, s2} 12
{s1, s3} 22
{s2, s3} 18
{s1, s2, s3} 1

Table 3: The numbers Cat(HJ
3 ), where the noncommuting simple reflections satisfy

(s1s2)5 = (s2s3)3 = e. As in Figure 1, we have suppressed the dependence of∣∣Align(HJ
3 , c)

∣∣, ∣∣NC(HJ
3 , c)

∣∣ and
∣∣SW(HJ

3 , c)
∣∣ on c.

Definition 43. Let (W,S) be a Coxeter system, let w ∈ W , and fix a reduced expression
w for w. An element x 6S w is w-aligned if whenever we have tα < taα+bβ < tβ in the
inversion order Inv(w) for a, b positive integers, then taα+bβ ∈ Cov(x) implies tα ∈ Inv(x).

In particular, this definition requires that tα, taα+bβ, tβ ∈ Inv(w). Let Align(W,w)
denote the set of all w-aligned elements of W . Note that at this level of generality we
do not even need to require that W is finite, and we can pick any element w ∈ W . It is
immediate that if W is finite and c ∈ W is a Coxeter element, then x ∈ W is c-aligned if
and only if it is w◦(c)-aligned. Let us illustrate Definition 43 with an example.

Example 44. Let W = Ã3 be the affine symmetric group of rank 4. Denote its simple
reflections by s0, s1, s2, s3 such that the following Coxeter relations hold:

(s0s1)3 = (s1s2)3 = (s2s3)3 = (s0s3)3 = (s0s2)2 = (s1s3)2 = e.

Pick w ∈ Ã3 given by the reduced expression w = s0s1s0s3s0s1s2. The weak order interval
[e, w] is shown in Figure 5. The inversion order Inv(w) is given by

s0 < s0s1s0 < s1 < s1s0s3s0s1 < s0s3s0 < s3 < s1s0s3s0s1s2s1s0s3s0s1.

Let us denote these reflections by t1, t2, t3, t4, t5, t6, t7 in that order; and let βi be the
positive root corresponding to ti for i ∈ [7]. The roots β1, β3, β6 are simple; and we have
the following decompositions:

β2 = β1 + β3, β4 = β2 + β6 = β3 + β5, β5 = β1 + β6.

The root β7 is not simple, but cannot be written as a (nontrivial) linear combination of
any of the βi’s. In view of Definition 43 an element x 6S w is w-aligned if whenever
it has t2, or t4, or t5 as a cover reflection, then it needs to have t1, or t2 and t3, or
t1, respectively, as inversions. This is satisfied for the elements in Figure 5 highlighted
in gray. If we consider x = s1s0s3s0, then we can check that Cov(x) = {t2, t6} and
Inv(x) = {t2, t3, t4, t6}. Therefore, x is not w-aligned.

the electronic journal of combinatorics 26(4) (2019), #P4.34 24



J
∣∣Align(HJ

4 )
∣∣ =

∣∣NC(HJ
4 )
∣∣ =

∣∣SW(HJ
4 )
∣∣ ∣∣NN(HJ

4 )
∣∣

{} 280 280
{s1} 266 266
{s2} 270 270
{s3} 266 266
{s4} 248 248
{s1, s2} 209 210
{s1, s3} 256 256
{s1, s4} 239 239
{s2, s3} 245 245
{s2, s4} 242 242
{s3, s4} 216 216
{s1, s2, s3} 95 106
{s1, s2, s4} 197 198
{s1, s3, s4} 212 212
{s2, s3, s4} 191 191
{s1, s2, s3, s4} 1 1

Table 4: The various numbers Cat(HJ
4 ), where the noncommuting simple reflections sat-

isfy (s1s2)5 = (s2s3)3 = (s3s4)3 = e. As in Figure 1, we have suppressed the dependence
of
∣∣Align(HJ

4 , c)
∣∣, ∣∣NC(HJ

4 , c)
∣∣ and

∣∣SW(HJ
4 , c)

∣∣ on c. The values for
∣∣NN(HJ

4 )
∣∣ were com-

puted using the four candidate “root posets” in Figure 5 of [9], all of which gave the same
numbers.

It is tempting to conjecture that the weak order on w-aligned elements always forms a
lattice (and therefore to extend Conjecture 35 to the more general setting of Definition 43).
However, this turns out to be false, even in finite type. If we take W = A4 and w ∈ W
given by the reduced expression w = s2s1s2s3s4s2s1, then there are twenty w-aligned
elements, but Weak

(
Align(A4,w)

)
is not a lattice. So far, Example 44 shows the smallest

poset of w-aligned elements known to us that is not a lattice under weak order. (Note that
the elements s0s1s0s3s0s1 and s1s0s3s0s1s2 have two maximal w-aligned lower bounds,
namely s1s0s3 and s1s3.)

We have not been able to determine necessary and sufficient conditions on W and
w such that Weak

(
Align(W,w)

)
is a lattice. It turns out that the next best candidate,

namely the conjecture that Weak
(
Align(W,w(c))

)
for some Coxeter element c is always

a lattice, is also wrong. Consider again W = A4 and w = s3s4s1s3s2s1s3s4. This is a
s3s4s2s1-sorting word, but the corresponding weak order poset is not a lattice.

We are, however, not aware of any counterexamples in rank 3.
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J
∣∣Align(F J

4 , c)
∣∣ =

∣∣NC(F J
4 , c)

∣∣ =
∣∣SW(F J

4 , c)
∣∣ |NN(F J

4 )|
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∣∣ are equal for c and c−1.
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