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Abstract

We obtain results on the limiting distribution of the six-length of a random
functional graph, also called a functional digraph or random mapping, with given
in-degree sequence. The six-length of a vertex v ∈ V is defined from the associ-
ated mapping, f : V → V , to be the maximum integer i such that the elements
v, f(v), . . . , f i−1(v) are all distinct. This has relevance to the study of algorithms
for integer factorisation.

Mathematics Subject Classifications: 05C80, 12Y05, 05C05, 60C05

1 Introduction

We consider random directed graphs with all out-degrees equal to 1, which we call func-
tional graphs (see Section 2 for further notation) or random mappings. The motivation
in most of the related literature is a better understanding of Pollard’s ρ-algorithm [9]
for integer factorisation, or the improved version by Brent and Pollard [3]. The runtime
depends on the six-length (also called ρ-length) of a polynomial in Fp[x]. (Pollard’s first
version used x2 − 1.) Under the assumption that a polynomial mod p ‘behaves like’ a
random mapping (supported by some research listed below), we are interested in the six-
length of random mappings. Martins and Panario [8] studied polynomials in Fp[x], in
particular the six-length in several random models. They found significance in the six-
length of random polynomials with given in-degree sequence, and gave numerical results
for several random models. Our main aim is to derive results on the six-length of random
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functional graphs with given in-degree sequence, to give a baseline for comparison with
random polynomial models.

For standard models of random mappings, much is already known about random
variables such as the ones mentioned above. An early paper by Harris [6] studies four basic
models. Results pertinent to our study (i.e. with restrictions on the in-degree sequence)
were obtained by Arney and Bender [1], who were motivated by the study of random
shift registers. For a fixed set D, they considered a functional graph chosen uniformly
at random among those with in-degrees in D. They studied various properties such as
the in-degrees of vertices, tree size, tail length and six-length. They also obtained some
information on the number of origins (vertices of in-degree 0), stopping short of being able
to specify the number of origins. More recently, Hansen and Jaworski [4, 5] considered
a two-stage experiment: (1) choose random in-degrees D1, . . . , Dn from an exchangeable
probability distribution, (2) choose a functional graph at random among graphs with
in-degrees D1, . . . , Dn. They studied the number of cyclic vertices (vertices lying on a
cycle) and of components, and component sizes, and predecessors and successors. Our
model with specific in-degree frequencies can be cast into their general framework, however
specific asymptotic distributions are only obtained in [4, 5] for two special distributions,
relating to preferential and anti-preferential attachment.

Our main results are stated in Section 2 after some basic definitions. In particular we
give the limiting distribution of the six-length for functional graphs with given in-degree
sequence, and also asymptotics for the moments of the distribution, as well as the joint
distribution of the tail- and six-lengths. Proofs for the case that the second moment of the
in-degree sequence is “large” are given in Section 3, and for the remaining case (except
for some almost trivial cases) in Section 4. See also Konyagin, Luca, Mans, Mathieson,
Sha and Shparlinski [7] for a study of polynomials over finite fields considering similar
aspects, such as largest component and tree size of the associated functional digraphs.
Similar to [8], they observe, in [7, Section 4], that the in-degree sequence of these ran-
dom digraphs is distributed rather differently from that of uniformly random functional
digraphs.

2 Definitions, model and results

Functional Graphs. The functional graph of a function f : V → V is a directed graph
Gf with vertex set V and edge set {(v, f(v)) : v ∈ V }. Consider, for example, the vertex
set V = {0, . . . , 4} and the function f(x) = x2 (mod 5). Then Gf is given by

1 2 3 40

The six-length of a vertex in a functional graph is defined as follows: Let f : V → V
be a function and let id denote the identity function on V . Let fk denote the k-times
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v

(a) s(v) = 11

v

(b) t(v) = 3, c(v) = 8

Figure 1: An illustration of the six-, tail-, and cycle-length.

composition of f , that is f 0 = id and fk = fk−1 ◦ f for k > 1. The six-length of v ∈ V is
defined as

sf (v) = min
{
k ∈ N : fk(v) ∈ {f j(v) : 0 6 j 6 k − 1}

}
.

This counts all successors of v, together with v. An example for the six-length in a
functional graph is given in Fig. 1(a). Note that sf (v) can be decomposed into the tail-
length tf (v) and the cycle-length cf (v) as indicated in Fig. 1(b). More formally, the
tail-length is the unique integer that satisfies

tf (v) < sf (v) and f sf (v)(v) = f tf (v)(v),

(and is also known as the height of v) and the cycle-length is given by cf (v) := sf (v)−tf (v),
i.e. the length of the cycle in the component of the graph containing v.

Random Model. Throughout the paper, a (finite) sequence dn = (dn,1, . . . , dn,n) is
called degree sequence if

n∑
j=1

dn,j = n and dn ∈ Nn
0 . (A0)

A random functional graph with degree sequence dn is a graph GF where F is drawn
uniformly at random from the set

F(dn) :=
{
f : [n]→ [n] : |f−1({i})| = dn,i for all i ∈ [n]

}
. (1)

Here and elsewhere, we use [n] := {1, . . . , n}. Note that technically what we call the
degree sequence is the in-degree sequence of the directed graph. This simplification is
sensible because all outdegrees are 1.

Now let {dn : n ∈ N} be a family of degree sequences. Let sn(v) and tn(v) be six-
and tail-length of a vertex v ∈ [n] in a random functional graph with degree sequence dn.
The aim of this paper is to investigate the asymptotic behaviour of (sn(v), tn(v)).
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We use the usual asymptotic notation such as O,Ω,Θ, o, ω,∼; in particular an = ω(bn)
if bn = o(an). Also, for any positive integers n, k ∈ N with k 6 n let

〈n〉k := n!/(n− k)! .

Degree sequences. For a degree sequence dn = (dn,1, . . . , dn,n) let

∆(dn) := max
j
dn,j, mk(dn) :=

n∑
j=1

dkn,j, σ2(dn) :=
m2(dn)

n
− 1. (2)

The parameter σ2(dn) is sometimes called the coalescence.
Throughout this section, let {dn : n ∈ N} be a family of degree sequences and let

{vn : n ∈ N} be a family of vertices with vn ∈ [n]. For the upcoming limit theorem for
sn(vn) we assume the following:

σ2(dn) = o(n) and σ2(dn) = ω
(
n−1
)
, (A1)

∆(dn) = o
(√

nσ2(dn)
)
, (A2)

Theorem 1. Assume (A0), (A1) and (A2). Then
(
sn(vn)/

√
n/σ2(dn)

)
n>1

converges

weakly to the standard Rayleigh distribution, that is

lim
n→∞

P
(
sn(vn) > x

√
n/σ2(dn)

)
= e−x

2/2, x > 0.

In fact the methods used to prove Theorem 1 also yield the convergence of all moments
for a wide range of degree sequences. More precisely, let

σ2(dn) = o

(
n

(log n)3

)
and σ2(dn) = ω

(
n−1
)
, (B1)

∆(dn) = o

(√
nσ2(dn)

(log n)3

)
. (B2)

Then the convergence in Theorem (1) also holds with respect to all moments, that is:

Theorem 2. Assume (A0), (B1) and (B2). Let X be standard Rayleigh distributed. Then

lim
n→∞

E

[(
sn(vn)√
n/σ2(dn)

)p]
= E[Xp], p > 1.

In particular, E[sn(vn)] ∼
√

πn
2σ2(dn)

and Var(sn(vn)) ∼ 4−π
2σ2(dn)

n.

Moreover, these assumptions also imply that the ratio between tail-length and six-
length is asymptotically uniformly distributed. More precisely:
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Theorem 3. Let X and U be independent, U be uniformly distributed on [0, 1], and X
be Rayleigh distributed. Assume (A0), (B1) and (B2). Then(

sn(vn)√
n/σ2(dn)

,
tn(vn)√
n/σ2(dn)

)
d−→ (X,UX).

Remark 4. A combination of Theorem 2 and Theorem 3 yields

E[tn(vn)] ∼
√

πn

8σ2(dn)
and E[cn(vn)] ∼

√
πn

8σ2(dn)
.

These results support a conjecture by Brent and Pollard [3, Section 3] on the typical tail-
and cycle-length of polynomials mod p.

3 Proofs for sequences with large coalescence

We first prove all Theorems under the additional assumption

σ2(dn) = ω

(
log n

n1/3

)
. (A+)

Cases with σ2(dn) = O
(
log n/n1/3

)
will be discussed in Section 4.

Throughout this section we omit the dependence on dn in the notation. In particular

∆ := ∆(dn), mj := mj(dn), σ2 := σ2(dn).

Moreover, we also omit the dependence on n in the notation of the degrees, that is

(d1, . . . , dn) := (dn,1, . . . , dn,n).

Unless stated otherwise, n is a positive integer and asymptotic results are as n→∞. Con-
dition (A0) is the only condition assumed throughout the section. All other assumptions
are stated in the lemmas separately.

3.1 Limit theorem for the six-length

This section contains the proof of Theorem 1 for degree sequences that additionally satisfy
(A+), that is we prove the following statement:

Proposition 5. Assume (A0), (A1), (A2) and (A+). Then

lim
n→∞

P
(
sn(vn) > x

√
n/σ2(dn)

)
= e−x

2/2, x > 0.

The proof of is based on the following explicit formula for the probabilities. In fact,
the formula below remains valid even without making any assumptions on the degree
sequence other than (A0). Note that our method for deriving these basic explicit results
on probabilitesis standard in random graph theory and similar to what was used for the
foundation results in similar studies such as [4, 5].
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Lemma 6. For every n > 2 and v ∈ [n]

P(sn(v) > k) =
1

〈n〉k

∑
(i1,...,ik)∈Jn,k(v)

k∏
j=1

dij , 1 6 k 6 n− 1,

with 〈n〉k =
∏k−1

j=0(n− j) and Jn,k(v) = {(j1, . . . , jk) ∈ ([n] \ {v})k : j` 6= jm for ` 6= m}.

Proof. Recall that F denotes a function drawn uniformly at random from the set F(dn)
defined in (1). Note that Jn,k(v) corresponds to the set of all possible non-self-intersecting
k-paths starting at v. Thus, we have

P(sn(v) > k) =
∑

J∈Jn,k(v)

P
((
F (v), . . . , F (k)(v)

)
= J

)
.

The probability on the right hand side can be derived by counting the functions in F(dn)
that lead to the path J . Since J determines the images of exactly k elements to be
i1, . . . , ik, there are

(n− k)!∏
`/∈{i1,...,ik} d`!

∏k
j=1(dij − 1)!

possible ways to choose the remaining images. The assertion follows after dividing by the
total number n!/

∏n
`=1 d`! of elements in F(dn).

Lemma 7. Let gn : [n]→ [0,∞) be defined as

gn(k) =
k!

〈n〉k

∑
i1<···<ik

k∏
j=1

dij

where the summation is taken over all (i1, . . . , ik) ∈ [n]k with i1 < · · · < ik. Then

P(sn(v) > k) = gn(k)− kdv
n− k + 1

P(sn(v) > k − 1), k > 2, v ∈ [n].

Proof. Let J̃k = {(j1, . . . , jk) ∈ [n]k : j` 6= jm for ` 6= m}. Lemma 6 implies

P(sn(v) > k) =
1

〈n〉k

∑
(i1,...,ik)∈J̃k

k∏
j=1

dij −
1

〈n〉k

∑
(i1,...,ik)∈J̃k\Jn,k(v)

k∏
j=1

dij . (3)

The first term equals gn(k) by matching vectors with equal order statistics. For the second
sum note that

J̃k \ Jn,k(v) =
k⋃
j=1

{
(i1, . . . , ik) ∈ [n]k : ij = v, (i1, . . . , ij−1, ij+1, . . . , ik) ∈ Jn,k−1(v)

}
.

the electronic journal of combinatorics 26(4) (2019), #P4.35 6



Hence,

∑
(i1,...,ik)∈J̃k\Jn,k(v)

k∏
j=1

dij = kdv
∑

(i1,...,ik−1)∈Jn,k−1(v)

k−1∏
j=1

dij

and the assertion follows from Lemma 6.

Note that the previous Lemma in particular yields the following bounds:

n− k
n− k + (k + 1)dv

gn(k + 1) 6 P(sn(v) > k) 6
n− k + 1

n− k + 1 + kdv
gn(k). (4)

Thus we can focus on the asymptotic behaviour of gn(k) for k = Θ(
√
n/σ2) instead.

However, since we need some large deviation bounds in later proofs, we formulate the
following lemmas so as to cover a wider range for k than necessary for Theorem 5.

The first step is to transform the sum in gn(k) into a probability that is covered by
Poission approximation. To this end let

α = α(n, k) =
k

n
.

Then gn(k) can be rewritten as follows:

gn(k) =
k!

〈n〉kαk
n∏
j=1

(αdj + 1)
∑

i1<...<ik

k∏
j=1

αdij
αdij + 1

∏
`∈[n]\{i1,...,ik}

1

αd` + 1
. (5)

Now let Bn be binomially B(n, α) distributed. Moreover, let X1, . . . , Xn be independent,
Bernoulli distributed random variables with P(Xi = 1) = αdij/(αdij + 1) and let Sn =
X1 + · · ·+Xn. Then (5) yields

gn(k) = (1− α)n−k
n∏
j=1

(αdj + 1)
P(Sn = k)

P(Bn = k)
. (6)

Lemma 8. Let λ = E[Sn], that is

λ =
n∑
j=1

αdj
αdj + 1

with α = k/n. Moreover, let x ∧ y = min{x, y}. Then

λ = k − k2m2

n2
+ O

(
k3m3

n3
∧ k

2m2

n2

)
.

In particular, λ− k = O (k2m2/n
2).
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Proof. Note that for x > 0

x

x+ 1
= x− x2 +

x3

x+ 1
= x− x2 + O(x3 ∧ x2).

Using this bound in the definition of λ yields the assertion.

Next we apply Chen-Stein Poisson approximation to obtain the following result:

Lemma 9. Let λ be as in the previous lemma. Then, for k = o
(

(n2/m2)
2/3
)

,

gn(k) = (1− α)n−k

(
n∏
j=1

(αdj + 1)

)
ek−λ

(
λ

k

)k (
1 + O

(
k3/2m2

n2

))
.

Proof. A standard Chen-Stein bound for Poisson approximation, such as in Barbour,
Holst and Janson [2, Equation (1.23)], implies∣∣∣∣P(Sn = k)− e−λ

λk

k!

∣∣∣∣ 6 1

λ

n∑
j=1

(
αdj

αdj + 1

)2

6
α2m2

λ
=
k2m2

λn2
,∣∣∣∣P(Bn = k)− e−k

kk

k!

∣∣∣∣ 6 n

k
α2 =

k

n
.

It only remains to transform these into relative error bounds. Note that Stirling’s approx-
imation yields

e−k
kk

k!
= Θ

(
1√
k

)
, e−λ

λk

k!
= Θ

(
ek−λ√
k

(
λ

k

)k)
.

As formally shown in Lemma 10 below, ek−λ(λ/k)k = 1 + o(1). Hence, since Lemma 8
implies λ ∼ k,

P(Sn = k) = e−λ
λk

k!

(
1 + O

(
k3/2m2

n2

))
,

P(Bn = k) = e−k
kk

k!

(
1 + O

(
k3/2

n

))
.

Therefore (6) implies the assertion.

Lemma 10. Let k = o
(

(n2/m2)
2/3
)

. Then ek−λ (λ/k)k = 1 + O (k3m2
2/n

4).

Proof. First note that k− λ = O(k2m2/n
2) by Lemma 8. In particular k− λ = o(

√
k) by

assumption on k. Hence, since log(1− x) = −x+ O(x2) as x→ 0,

λ

k
= exp

(
−k − λ

k
+ O

(
(k − λ)2

k2

))
.
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Thus

ek−λ
(
λ

k

)k
= exp

(
O

(
(k − λ)2

k

))
and the assertion follows using the above bound on k − λ.

Lemma 11. Assume k = o
(
(n2/m2)

2/3 ∧ (n3/m3)
1/3
)
. Then

gn(k) = exp

(
−k

2σ2

2n

)(
1 + O

(
k3/2m2

n2
+
k3m3

n3

))
.

Proof. First note that Lemmas 9 and 10 yield

gn(k) = (1− α)n−k

(
n∏
j=1

(αdj + 1)

)(
1 + O

(
k3/2m2

n2

))
. (7)

By expanding log(1 + x) and using α = k/n we find

(1− α)n−k = exp

(
−α(n− k)− α2(n− k)

2
+ O

(
α3n

))
= exp

(
−k +

k2

2n
+ O

(
k3

n2

))
and

n∏
j=1

(αdj + 1) = exp

(
k − k2m2

2n2
+ O

(
k3m3

n3

))
.

Hence the assertion follows from (7) and σ2 = m2/n− 1, noting that the error term tends
to 0.

As a last step before proving Proposition 5, note the following:

Lemma 12. Assumptions (A2) and (A+) imply m3(dn) = o
(
(nσ2(dn))3/2

)
.

Proof. First note that

∆nσ2 >
∑
v∈[n]

dv(dv − 1)2 = m3 − 2m2 + n = m3 − 2nσ2 − n. (8)

Now (A2) yields (∆ + 2)nσ2 = o
(
(nσ2)3/2

)
, whereas (A+) ensures n = o

(
(nσ2)3/2

)
.

Therefore, (8) implies the assertion.

Proof of Theorem 5. Let x > 0 and let k = bx
√
n/σ2c. Note that Assumption (A2)

combined with (4) yields

P(sn(vn) > x
√
n/σ2) = gn(k) + o(1).

Moreover, note that Theorem 12 implies k = o
(
(n3/m3)

1/3
)
, whereas (A1) and (A+)

imply k = o
(
(n2/m2)

2/3
)
. Therefore Theorem 11 yields the assertion.
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3.2 Moment convergence.

Next up is the proof of Theorem 2 under assumption (A+), that is:

Proposition 13. Assume (A0), (B1), (B2) and (A+). Let X be standard Rayleigh
distributed. Then

lim
n→∞

E

[(
sn(vn)√
n/σ2(dn)

)p]
= E[Xp], p > 1.

In particular, E[sn(vn)] ∼
√

πn
2σ2(dn)

and Var(sn(vn)) ∼ 4−π
2σ2(dn)

n.

In preparation for the proof of Theorem 13, we note the following.

Lemma 14. Assumptions (B2) and (A+) imply m3(dn) = o
(

(nσ2(dn)/ log n)
3/2
)

.

Proof. Same as for Theorem 12 up to some obvious changes.

Proof of Theorem 13. Let Xn = sn(vn)/
√
n/σ2 and let X be standard Rayleigh dis-

tributed. First note that if Xn converges in distribution to X and

sup
n∈N

E[Xp
n] <∞ for all p > 1 (9)

then E[Xp
n] → E[X], since (9) and Markov’s inequality imply that (Xp

n)n>0 is uniformly
integrable. Hence, by Theorem 5 it is sufficient to show (9).

To this end, note that (4) and Lemma 11 imply for every C > 0

P (Xn > x) 6 C ′ exp

(
−x

2

2

)
, x ∈

[
0, C

√
log n

]
, (10)

for some constant C ′ which only depends on C. In particular, since Xn 6 n,

E
[
Xp
n1{Xn>Cp

√
logn}

]
6 npP

(
Xn > Cp

√
log n

)
= O(1)

for Cp =
√

2p. Therefore

E [Xp
n] =

∫ Cp
√
logn

0

P (Xp
n > x) dx+ O(1),

which yields the assertion by (10).
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3.3 Joint limit for tail- and six-length

In this section we prove Theorem 3 under the additional assumption (A+), that is:

Proposition 15. Let X and U be independent, U be uniformly distributed on [0, 1], and
X be Rayleigh distributed. Assume (A0), (B1), (B2) and (A+). Then(

sn(vn)√
n/σ2(dn)

,
tn(vn)√
n/σ2(dn)

)
d−→ (X,UX).

The joint limit of tail- and six-length will be established in two steps:

• Show that, conditioned on tn(v) > 0 and sn(v) = k, tn(v) is uniformly distributed
on [k − 1].

• Show P(tn(v) > 0)→ 1 as n→∞.

The first observation is true for every degree sequence:

Lemma 16. Let dn be any degree sequence with (A0). Let v be such that P(tn(v) > 0) > 0
(i.e. dw > 1 for some w 6= v). Then, for every k > 2,

P(tn(v) = j|sn(v) = k, tn(v) > 0) =
1

k − 1
, j ∈ [k − 1].

Proof. The assertion is obviously true for k = 2, since tn(v) 6 sn(v)− 1 and thus tn(v) ∈
{0, 1} if sn(v) = 2.

Now let k > 3. It is sufficient to prove

P(tn(v) = i, sn(v) = k) = P(tn(v) = i+ 1, sn(v) = k), i ∈ [k − 2], (11)

since this implies P(tn(v) = x|sn(v) = k, tn(v) > 0) = P(tn(v) = y|sn(v) = k, tn(v) > 0)
for all x, y 6 k − 1, yielding an uniform distribution on [k − 1].

In order to prove (11), let Fk,i := {f ∈ F(dn) : sf (v) = k, tf (v) = i}. Then (11) is
equivalent to

|Fk,i| = |Fk,i+1|, i ∈ [k − 2],

since the underlying random function F is drawn uniformly at random from F(dn). We
prove the equality above by finding bijections φi : Fk,i → Fk,i+1. First consider the case
i = k − 2: For f ∈ Fk,k−2 let φk−2(f) = g where g is the function given by

g(x) =


f (k−1)(v), if x = f (k−3)(v),

f (k−2)(v), if x = f (k−2)(v),

f(x), otherwise.

the electronic journal of combinatorics 26(4) (2019), #P4.35 11



v v

φk−2

(a) Bijection φk−2

v v

φi

(b) Bijection φi for i < k − 2

Figure 2: Bijections between Fk,i and Fk,i+1.

The effect of φk−2 on a functional graph is illustrated in Fig. 2(a). It is not hard to check
that φk−2(Fk,k−2) ⊆ Fk,k−1 Note that φk−2 is invertible by choosing φ−1k−2(g) := h,

h(x) =


g(k−1)(v), if x = g(k−3)(v),

g(k−2)(v), if x = g(k−1)(v),

g(x), otherwise.

Thus φk−2 is a bijection and (11) follows for i = k − 2. A similar bijection works for
i < k − 2, as schematically shown in Fig. 2(b). Details are left to the reader.

In order to obtain P(tn(v) > 0)→ 1, we first establish the following bound:

Lemma 17. For every v ∈ [n], as n→∞,

P(tn(v) = 0) = O (dvE [sn(v)/n] + dvnP(sn(v) > n/2)) .

Proof. Note that P(tn(v) = 0) =
∑n−1

k=0 P(tn(v) = 0, sn(v) = k + 1) where

P(tn(v) = 0, sn(v) = k + 1) =
∑

(v1,...,vk)∈Jn,k(v)

(
k∏
j=1

dvj
n− j + 1

)
dv

n− k

=
dv

n− k
P(sn(v) > k).

For k 6 n/2 we get, uniformly in k, P(tn(v) = 0, sn(v) = k + 1) = O(dv/n)P(sn(v) > k).
For k > n/2 use dv

n−kP(sn(v) > k) 6 dvP(sn(v) > n/2). Combining these bounds with∑
k P(sn(v) > k) = E[sn(v)] yields the assertion.

Corollary 18. Assume (A0), (B1), (B2) and (A+). Then lim
n→∞

P(tn(vn) = 0) = 0.

Proof. Theorem 13 and assumption (B2) imply dvE[sn(v)/n] → 0. Moreover, by Theo-
rem 13 and Markov’s inequality

P(sn(v) > n/2) = O
(
(nσ2)−p/2

)
, p > 1.

Thus condition (A+) implies dvnP(sn(v) > n/2) → 0. Therefore Theorem 17 yields the
assertion.
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Proof of Theorem 15. Let U be a uniformly on [0, 1] distributed random variable that is
independent of (sn(v))n>1. Moreover, let γn =

√
n/σ2(dn). Then, by Lemma 16,

P(sn(v) > xγn, tn(v) > yγn|tn(v) > 0)

= P(sn(v) > xγn, dU(sn(v)− 1)e > yγn|tn(v) > 0).

Moreover, by Lemma 18 and since γn →∞,

P(sn(v) > xγn, dU(sn(v)− 1)e > yγn|tn(v) > 0)

= P(sn(v) > xγn, Usn(v) > yγn) + o(1).

Finally, Theorem 1 and the independent choice of U yield

P(sn(v) > xγn, Usn(v) > yγn)→ P(X > x,UX > y),

which implies the joint convergence as claimed.

4 An extension to cases with small coalescence

In this section we discuss how to extend Theorem 1 to degree sequences with small coales-
cence, that is sequences with σ2(dn) = O(n−1/3 log n) and nσ2(dn)→∞. The key idea is
to contract edges incident to vertices with degree 1 until we obtain a reduced graph that
satisfies (A+). The six-length of this reduced graph converges to a standard Rayleigh
distribution by Theorem 5. Finally, a concentration argument will allow us to deduce a
limit theorem for the original graph.

Definition 19. Let dn be a degree sequence and let n̂ = b(nσ2(dn))4/3c. Let w be a
vertex. The w-reduction of a functional graph G is the graph Gw obtained as follows: If
n̂ > n let Gw = G. Otherwise, Gw is obtained as follows: Let k = n − n̂. Let v1, . . . , vk
be k of the degree 1 vertices in [n] \ {w}, chosen using any canonical method. (Note
that there are more than k vertices with degree 1 by the choice of k and the fact that
nσ2 =

∑
j(dj − 1)2 > n−#{j : dj = 1}.) Then do the following for i = 1, . . . , k:

(i) If vivi is an edge in the graph, then delete vivi. Otherwise, replace the two edges
xvi and viy incident to vi by a single edge xy;

(ii) Delete the vertex vi from the graph.

Let Vw = [n] \ {v1, . . . , vk}. Finally, let dn,w denote the degree sequence of Gw, that is
dn,w = (dv)v∈Vw .

Remark 20. Note that 4/3 in the definition of n̂ is somewhat arbitrary; the proof works
equally well for a range of similar numbers. Also note that n̂ = o(n) for degree sequences
with σ2(dn) = o

(
n−1/4

)
. Finally, note that n̂ → ∞ as n → ∞ for any degree sequence

with (A1).
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Remark 21. Suppose dn is a degree sequence with (A1) and (A2) (or (B1) and (B2)
respectively), which does not satisfy (A+). Note that Gw is a functional graph with n̂
vertices and with

n̂σ2(dn,w) =
∑

v∈[n]\Vw

(dv − 1)2 =
∑
v∈[n]

(dv − 1)2 = nσ2(dn). (12)

In particular, σ2(dn,w) ∼ n̂−1/4 by the choice of n̂ and therefore dn,w satisfies (A+).
Moreover (12) and ∆(dn,w) = ∆(dn) imply that dn,w also satisfies (A1) and (A2) (or (B1)
and (B2) respectively).

Definition 22. Let V ′ ⊂ [n] and let G = (V ′, E ′) be a functional graph. An n-extension
of G is a graph H with vertex set [n] which is generated according to the following
procedure:

(1) Start with V0 = V ′ and E0 = E ′ and i = 0.

(2) Let w be the smallest element in [n] \ Vi. Let Xw = 1 with probability 1/(|Ei|+ 1)
and let Xw = 0 otherwise. Then do the following:

(a) If Xw = 1, add w to the graph as an isolated vertex with a single loop, that is
Vi+1 = Vi ∪ {w} and Ei+1 = Ei ∪ {ww}.

(b) If Xw = 0, choose an edge xy ∈ Ei uniformly at random. Set Vi+1 = Vi ∪ {w}
and Ei+1 = (Ei \ {xy}) ∪ {xv, vw}.

(3) If Vi = [n] set H = (Vi, Ei). Otherwise, increase i by one and return to step 2.

Lemma 23. Let dn be a degree sequence, w ∈ [n], and let dn,w be as in Definition 19. If
Gw is a random functional graph with degree sequence dn,w, then an n-extension of Gw is
a random functional graph with degree sequence dn.

Proof. Let H be any functional graph with degree sequence dn and let H denote the
n-extension of Gw. The claim is that P(H = H) = 1/|F(dn)|.

Since H can only be an n-extension of Gw if Gw = Hw, it is sufficient to show that all
possible n-extensions of a graph G are equally likely. But since there is exactly one way
of choosing edges in (2) throughout the procedure that leads to a particular graph H, we
have

P(H = H|Gw = Hw) =
n−nw∏
j=1

1

nw + j

and the assertion follows.

Definition 24. A classical (a, b)-Pólya urn scheme is an urn initialized with a red and b
blue balls which evolves in discrete time as follows: In each time step n draw a ball from
the urn at random and put it back together with another ball of the same colour.

Let R(n, a, b) denote the number of red balls after adding n balls to the urn.
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Corollary 25. Let dn,w be as in Definition 19 and let sn,w(w) be the six-length of w in a
random functional graph with degree sequence dn,w. Then

sn(w)
d
= R(n− n̂, sn,w(w), n̂+ 1− sn,w(w)),

where {R(n, a, b) : a, b, n ∈ N0} is independent of sn,w(w) and distributed as in Defini-
tion 24.

Proof. Identify edges contributing to the six-length sn,w(w) with red balls and all other
edges (including a ’phantom’ edge for step 2a in Definition 22) with blue balls in a Pólya
urn. Then the dynamics described in Definition 22 is equivalent to the procedure of
drawing from a Pólya urn. Therefore Lemma 23 implies the assertion.

Lemma 26. Let R(n, a, b) be as in Definition 24 and let µ(n, a, b) = a(1 + n/(a + b)).
Then

P (|R(n, a, b)− µ(n, a, b)| > tµ(n, a, b)) 6 2 exp

(
− t2a2

8(a+ b)

)
.

Proof. Let

Mk :=
R(k, a, b)

k + a+ b
, k > 0.

It is not hard to check that (Mk)k>0 is a martingale. Since |R(k+ 1, a, b)−R(k, a, b)| 6 1
and R(k, a, b) 6 a+ k, one obtains

|Mk+1 −Mk| 6
2

k + 1 + a+ b
.

Therefore, the Azuma-Hoeffding inequality yields the assertion.

We end the section with the missing proofs for Theorems 1, 2, and 3. Note that we
may assume w.l.o.g. that

σ2(dn) = O
(
n−1/3 log2 n

)
, (A-)

since the other case is covered by the proofs in Section 3.

Proof of Theorem 1. Let Xn := sn(vn)/
√
n/σ2(dn) and let X be standard Rayleigh dis-

tributed. The claim is that Xn converges in distribution to X. By Theorem 5 this holds
for degree sequences with (A+) and thus, we may assume (A-).

Let w = vn. Let sn,w(w) and R(n− n̂, sn,w(w), n̂+ 1− sn,w(w)) be as in Corollary 25.
Moreover, let Xn,w = sn,w(w)/

√
n̂/σ2(dn,w). Note that

(a) Xn,w converges in distribution to X by Theorem 5 and Remark 21;
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(b) (sn,w(w))2/n̂→∞ in probability by (a) and σ2(dn,w) ∼ n̂−1/4. Hence, using the tail
bound in Lemma 26 with arbitrary constant t > 0,

R(n− n̂, sn,w(w), n̂+ 1− sn,w(w))

sn,w(w)(n+ 1)/(n̂+ 1)

P−→ 1,

where
P−→ denotes convergence in probability.

Moreover, Corollary 25 and nσ2(dn) = n̂σ2(dn,w) (see Remark 21) imply

Xn
d
=
R(n− n̂, sn,w(w), n̂+ 1− sn,w(w))

sn,w(w)(n+ 1)/(n̂+ 1)
Xn,w (1 + o(1)) , (13)

where
d
= denotes equality in distribution. It is not hard to check, e.g. with Slutsky’s

Theorem, that (13), (a) and (b) imply the assertion. Details are left to the reader.

Proof of Theorem 2. Let Xn, Xn,w and X be as in the previous proof. As in the proof of
Theorem 13 it is sufficient to show that

sup
n∈N

E[Xp
n] <∞, p > 1, (14)

since this bound combined with Theorem 1 implies E[Xp
n] → E[Xp] for all p > 1. Note

that supn E[Xp
n,w] <∞ by Theorem 13 and Remark 21.

Now let An := {sn,w(w) >
√
n̂+ 1}. With the coupling in Theorem 25 it is not hard

to check that

E[Xp
n|Acn] 6 E[Xp

n|An], p > 1.

Thus, since P(An)→ 1 by Theorem 1, it is sufficient to show

sup
n∈N

E [Xp
n1An ] <∞, p > 1.

Moreover, by (13) and supn E[Xp
n,w] <∞ it is sufficient to show that

sup
n∈N

E
[(
R(n− n̂, sn,w(w), n̂+ 1− sn,w(w))

sn,w(w)(n+ 1)/(n̂+ 1)

)p
1An

]
<∞, p > 1,

which is a consequence of the tail bound in Theorem 26. Therefore (14) holds and the
convergence of all moments follows.

Proof of Theorem 3. Once again, we may assume w.l.o.g. that (A-) holds. Note that we
may copy the proof of Theorem 15 provided we establish

P(tn(vn) = 0)→ 0. (15)

Now let w = vn and let tn,w(w) denote the tail-length of w in the w-reduction of the
functional graph. Note that tn(w) = 0 if and only if tn,w(w) = 0. Since P(tn,w(w) = 0)→ 0
by Theorem 18, we obtain (15). Therefore, the assertion follows using the same proof
strategy as for Theorem 15.
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