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Abstract

The distinguishing number D(G) of a graph G is the smallest number of colors
that is needed to color the vertices such that the only color-preserving automorphism
fixes all vertices. We give a complete classification for all connected graphs G of
maximum valence ∆(G) = 3 and distinguishing number D(G) = 3. As one of
the consequences we show that all infinite connected graphs with ∆(G) = 3 are
2-distinguishable.

Mathematics Subject Classifications: 05C07, 05C15, 05C63

1 Introduction

The distinguishing number of a group A acting faithfully on a set Ω is the least number of
colors needed to color the elements of Ω such that any color-preserving element of A fixes
all elements of Ω. We also call A k-distinguishable if the distinguishing number is at most
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k. If A is the automorphism group Aut(G) of a graph G, then the distinguishing number
D(G) of G is the distinguishing number of the action of A on the vertex set of G. Since
its introduction for graphs by Albertson and Collins [1] more than 20 years ago, there
has been an extensive literature on this topic (but see also the previous papers [2, 24])
The concept has had an independent history in the theory of permutation groups [7, 26],
unknown to graph theorists until recently [3].

The first motivation for this paper is a bound by Collins and Trenk [8] and, indepen-
dently, by Klavžar, Wong and Zhu [21]. They proved that for any finite connected graph
G of maximum valence ∆(G) = d, D(G) 6 d+ 1, with equality only if G is the complete
graph Kd+1, the complete bipartite graph Kd,d, or one of the cycles C3, C4, C5. For infinite
connected graphs the bound is the supremum of the valences, see Imrich, Klavžar and
Trofimov [16]. Hence, for infinite connected graphs, D(G) 6 d, if G has bounded valence
d. If one wishes to improve this bound, it is reasonable to begin with d = 3.

The second equally important motivation is the Infinite Motion Conjecture of Tucker
[28], who conjectured that each connected, locally finite infinite graph is 2-distinguishable,
if every automorphism that is not the identity moves infinitely many vertices. The
conjecture is still open, although it has been shown to be true for many classes of
graphs [9, 17, 27], in particular for graphs of subexponential growth [22], and thus for
all graphs of polynomial growth. For a long time it was not clear whether it holds for
graphs of maximal valence 3, and whether infinite motion was really needed. This was
first investigated under the additional condition of vertex transitivity [18].

It turns out that all finite or infinite connected, vertex transitive graphs of maximum
valence 3 are 2-distinguishable unless they are one of four exceptional graphs. Here the
result is extended to a complete classification of all finite or infinite connected graphs of
maximal valence 3 that are not 2-distinguishable.

We begin with a general observation about graphs of bounded valence. It is important
to note that the distinguishing number D(G) is highly dependent on the local structure of
the graph G, as well as on its global structure. For example, suppose G is a d-valent graph
with D(G) = 1, for d > 2. Take an edge and subdivide it with three vertices u, v, w (each
has valence 2 now). Then, take a disjoint copy of Kd−2 and add edges between u, v, w and
each vertex in Kd−2. Now u, v, w have valence 2+(d−2) = d and the vertices of the added
Kd−2 have valence (d− 3) + 3 = d. The resulting graph clearly has distinguishing number
D(G′) = d − 2. If d > 3, this procedure increases the distinguishing number. Thus, we
would expect that any classification of graphs with valence d > 3 would be complicated.
Local structures like the added copy of Kd−2 above — we will later call them ‘gadgets’ —
play an important role in this paper.

There are infinitely many graphs with ∆(G) = d and D(G) = d. Let T (n, d) be
the tree where all vertices have valence 1 or d and every vertex of valence 1 has the
same distance n from a root vertex v (which is the unique center of the graph). Clearly,
D(T (n, d)) > d − 1, and D(T (n, d)) = d − 1 if and only if D(T (n + 1, d)) = d − 1. But
T (1, d) = K1,d, so D(T (1, d)) = d and hence, D(T (n, d)) = d. For d = 3, we abbreviate
Tn = T (n, 3).

From now on we assume that all graphs have maximum valence 3, unless otherwise
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stated. We call a graph cubic if all vertices have valence 3 and subcubic if the maximum
valence is 3 but there are vertices of valence 1 or 2. We also assume that all graphs in this
paper are connected, since restricting valence will not restrict the distinguishing number,
if we allow enough disjoint copies of the same graph.

We say a coloring fixes a set of vertices, if any color-preserving automorphism acts as
the identity on all vertices of the set. Furthermore, we will draw our rooted trees from
the bottom up. This allows us to speak of up, down and cross neighbors, but we admit
that it may be counter-intuitive to some readers, in particular because of the terms ‘child’
and ‘sibling’ defined in the next section.

2 Main Theorem

In this section we introduce three types of gadgets which will be important throughout
the paper.

• Gadget of type 1 : A 4-cycle uxvy with x, y of valence 2.

x y

u v

• Gadget of type 2 : The same as the type 1 gadget but with an extra edge xy.

x y

u v

• Gadget of type 3 : A hexagon uxwvzy with edges xz, yw (it can be viewed as K2,2

with u additionally joined to one half and v to the other half, or as K3,3 − uv).

x y z w

u v

These gadgets will occur in different situations depending on the surrounding graph struc-
ture (indicated by the dotted lines above). To be more precise we first need some termi-
nology. We call a vertex of valence 1 a leaf. If vertices u and v have a common neighbor,
we say they are siblings or a sibling pair. Vertex v is an only-child of a vertex u, if v is
the only neighbor of u with valence 1.

In every figure accompanying the definition of a gadget above there are vertices u and
v. If u and v have valence 3 and are siblings (resp. not siblings), call the corresponding
gadget a sibling gadget (resp. non-sibling gadget). If either u or v has valence 2, call it an
only-child gadget. See Figure 1 for some examples.
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x y x y
sibling gadget: non-sibling gadget:

x y
only-child gadget:

x y

∼=
u

u u u
v

v v

v

Figure 1: Examples of a sibling gadget, a non-sibling gadget and an only-child gadget.

In the first part of the paper we mostly make use of sibling gadgets to introduce some
variations of Tn. The most obvious variation of Tn is simply to join each sibling pair
of leaves by an edge. Denote this graph R0

n. We do this only for n > 1 since T1 has
three sibling pairs of leaves. Adding all such edges would give K4. Note that we can also
think of R0

n as obtained from Tn by attaching a triangle to each leaf of Tn−1. Now, we
define three graphs, R1

n, R2
n and R3

n, by adding the respective sibling gadgets between
each sibling pair of leaves in the tree Tn. See Figure 2 for examples.

3

R1
3

3

R2
3

2

R3
2

Figure 2: R1
3 (top left), R2

3 (top right) and R3
2 (bottom).

Since Aut(R0
n) acts on its vertices the same way as Aut(Tn), we have D(R0

n) = 3. If
a distinguishing 2-coloring for one of the graphs R1

n, R2
n or R3

n exists, then it induces a
distinguishing 2-coloring of the associated Tn. Therefore, D(G) = 3 for G = R1

n, R
2
n, R

3
n.

Our classification of graphs with ∆(G) = 3 and D(G) = 3 is the following:

Theorem 1 (Main Theorem). Let G be a finite or infinite connected graph with ∆(G) = 3.
Then, D(G) = 3 if and only if G is either K1,3, K2,3, the cube Q, the Petersen graph P ,
or a member of one of the five families Tn, R0

n, R1
n, R2

n, R3
n for n > 1.

We note that clearly D(K4) = D(K3,3) = 4 and D(K1,3) = D(K2,3) = 3. It is an
exercise to verify that D(Q) = 3 (or see [28]). It is slightly more work to show D(P ) = 3;
we will sketch a proof in Section 3.

The proof that the graphs of the Main Theorem are the only graphs G with maximum
valence d = 3 and D(G) = 3 occupies most of the rest of this paper. One of the key
ideas will be to show that all graphs (different from the Ri

n’s) that contain a sibling, non-
sibling or only-child gadget have distinguishing number 2. In Section 3, we first give some
Corollaries that may shed some light on the general problem when d > 3. In Section 4, we
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introduce a 2-coloring which either is distinguishing or leads to restrictions on the local
structure of G. This coloring is then used throughout the rest of the paper. In Section 5,
we show that if G has leaves, then D(G) 6 2 unless G = Tn. The goal of Section 6 is to
reduce to the case of edge transitive graphs by analyzing how the stabilizer Autv(G) of a
vertex v acts on the neighbors of v. In Section 7, we show that any cubic graph G with
girth at least 6 has D(G) 6 2; this proof does not use edge transitivity. This completes
the proof of the Main Theorem, since the five edge transitive cubic graphs of girth less
than 6 are easily analyzed. In Section 8, we pose a variety of questions. Figure 3 gives an
overview of the proof strategy we use to show our Main Theorem 1.

∆(G) = 3

cubicsubcubic

If ∃ val(v) = 1

If ∃ val(v) = 2, type 1

If ∃ val(v) = 2, type 2

If ∃ type 1

If girth 3

If girth 4

If girth 5

If girth > 6

If girth 6

→ Thm. 5.1

→ Thm. 6.1

→ Thm. 6.4

→ Thm. 6.3

→ Thm. 6.5

→ Thm. 6.7
& Intro. of Sec. 7

→ Thm. 6.8
& Intro. of Sec. 7

→ Thm. 7.2

→ Thm. 7.1

Figure 3: Overview of the case decomposition of maximal valence 3 graphs used to proof
the Main Theorem 1. Note that the definition of vertex types is given at the beginning
of Section 6.

3 Corollaries for Distinguishability and Graph Structure

We list some corollaries of the Main Theorem, mostly just observations about our list
of graphs with D(G) = 3. Each gives some insight into the relationship between distin-
guishing number and graph structure. Each suggests ways one might generalize the case
of maximum valence 3 to graphs of higher valence. For each Corollary, G is a connected
graph with ∆(G) = 3.

Corollary 2. If G is infinite, then D(G) 6 2.

A graph G is vertex transitive, if for any two vertices u, v of G there exists an automor-
phism α ∈ Aut(G) such that α(u) = v. For the definition of edge transitivity, we observe
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that each automorphism of a graph G naturally acts on E(G), because automorphisms
preserve adjacencies. We then define G to be edge transitive, if to any pair of edges e, f
there exists an automorphism β ∈ Aut(G) such the β(e) = f . For a detailed introduction
to edge transitive graphs consider, for example, [14].

Corollary 3. If G is vertex transitive, then D(G) 6 2 except for K3,3, K4, Q and P .

Corollary 4. If G is edge transitive but not vertex transitive, then D(G) 6 2 except for
K1,3 and K2,3.

Corollary 5. If G is 2-connected, then D(G) 6 2, except for K2,3, K3,3, K4, Q and P .

Corollary 6. If D(G) > 2, then G is planar with the exception of K3,3, P and R3
n for

n > 1, which have minimum genus 1, 1 and 3n, respectively.

The length of the shortest cycle in G is its girth (the girth of a tree is 0).

Corollary 7. Suppose that D(G) = 3 and G 6= P . Then, the girth of G is at most 4. If
the girth is 4, then G = Q, R1

n, R3
n, K2,3. If the girth is 3, then G = R0

n, R2
n.

The motion of a group A acting on a set Ω is the smallest integer m such that some
non-identity element of A moves exactly m points. The motion of a graph G, which we
denote m(G), is the motion of Aut(G) acting on the vertex set. The Motion Lemma [9, 25]
states that if m > 2 log2(|A|), then the action has distinguishing number 2; the proof is
elementary and short. Thus, large enough motion gives 2-distinguishability. For graphs
of maximum valence 3, large enough means 3 or more, except for Q and P , since it is
easily checked that all other graphs in our Main Theorem have motion 2. In the cases of
Q and P , it is easily verified that m(Q) = 4 and D(Q) = 3 (for further details see [28]),
and, by Proposition 25, m(P ) = 6 and D(P ) = 3.

Corollary 8. If m(G) > 2, then D(G) 6 2 with the exception of Q and P .

In fact, if D(G) = 3 and G is not Q or P , we can isolate an automorphism of motion 2
using a 2-coloring of G.

Corollary 9. If D(G) = 3 and G is not Q or P , then G admits a 2-coloring that fixes
all vertices except two siblings.

Proof. Clearly, such a 2-coloring exists for K1,3 and K2,3. All other graphs that satisfy
the assumptions of the lemma have a root vertex, say v0, corresponding to the root of Tn.
The Tn are the only graphs in the class with leaves and they all come in sibling pairs. We
first construct the desired coloring for Tn.

We begin with a 2-coloring of T1: we color v0 black, two of its neighbors white and
one black. Clearly, this coloring fixes all vertices except for one pair of interchangeable
siblings. To color Tn we color its subgraph T1 as before, and continue inductively by
assigning different colors to any two vertices of distance k > 1 from v0, if they have a
common neighbor of distance k − 1 from v0. If k = n, we make an exception for a single
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sibling pair of vertices whose shortest paths to v0 contain a white neighbor of v0. Both
vertices in that pair are colored white. It is easy to see that this coloring fixes all vertices
not in this pair. The same coloring works for R0

n.
For R1

n, R2
n we proceed analogously, and let the vertices which are labeled x, y in the

figures of the gadgets play the role of the sibling pairs in Tn. For R3
n we assign different

colors to all gadget vertices z, w, but treat the pairs x, y as before. Again, our coloring
fixes all vertices except the ones in the white (x, y)-pair.

4 Canonical 2-colorings rooted at a subgraph

Let G be a cubic or subcubic graph and K be a vertex-induced, connected subgraph with
at least two vertices. Define Sn(K) as the set of vertices of distance n from K; one might
call it the sphere of radius n around K. Thus, S0(K) = K and S1(K) is the set of vertices
not in K but adjacent to some vertex in K. Let Bn(K) denote all vertices of distance
at most n from K (the ball of radius n around K). For a vertex v in Sn(K), we call
its neighbors in Sn+1(K), Sn(K), Sn−1(K), respectively, its up, cross, down neighbors.
Notice that all vertices have at most two up neighbors (possibly none) and vertices not
in K have at least one down neighbor. We call a vertex of K internal, if all its neighbors
are in K.

The idea of the following construction is to color the spheres around K inductively on
n, after coloring all vertices of K. So fix an arbitrary coloring of K. Note that in some
proofs the coloring of K is important and will be mentioned explicitly. For the general
definition, however, it does not matter. Our objective now is to obtain a 2-coloring of G
such that the only color-preserving automorphism among those fixing the vertices of K
is the identity. Thus, at stage n we have:

Goal Assume Bn(K), n > 0, has been 2-colored so that any automorphism of G fixing
the vertices of K and preserving the coloring of Bn(K) is the identity on Bn(K). Then,
extend this to a 2-coloring of Sn+1(K) that has the same property on Bn+1(K).

The plan for extending the coloring to Sn+1(K) is simple enough: if a vertex v in
Sn(K) has a single up neighbor, color it white, and if v has two up neighbors that can be
switched by an automorphism of G that fixes Sn(K), color one white and one black. The
problem is that the up neighbors of v may have already been colored when we colored the
up neighbors of a different vertex. In the following three paragraphs we will make this
procedure more precise.

Assume we have colored the graph up to the sphere Sn(K). Let V be the set of vertices
of Sn(K) and U be the set of vertices of Sn+1(K). Moreover, let H be the subgraph of
G determined by all edges between vertices of V and U . These edges are exactly the up
edges from V . Note that for the moment we do not care about possible cross edges in U
or V . We are interested in coloring the vertices of U such that any automorphism of G
which fixes the vertices of Bn(K) and preserves the coloring of U also fixes the vertices
of U .
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All vertices in V have valence at most 2 in H. Suppose that x ∈ U has valence 3 in
H. If there is another vertex y ∈ U adjacent to the same vertices in V as x, color x black
and y white. If there is no such vertex y, color x white. Note that there is at most one
such y, because all vertices in V have valence at most 2 in H.

Now, consider the subgraph H ′ of H obtained by removing all valence 3 vertices of U in
H, (which have already been colored). The remaining subgraph H ′ contains only vertices
which are of valence 1 or 2, so it is a union of paths and/or cycles such that the vertices
in each component alternate between U and V . See Figure 4 for some examples. By
assumption the vertices of V are fixed. Therefore, any component of H ′ is fixed except for
two configurations. One is a 2-path, which consists of three vertices such that the middle
vertex is in V , and the other one is a quadrilateral, see Figure 4. For all other possible
components of H ′ there is no automorphism of G fixing Bn(K) but acting non trivially
on that component. Thus, we color all vertices in U which are neither in a 2-path nor in a
quadrilateral white. For the remaining pairs x, y ∈ U in a 2-path or quadrilateral, choose
a coloring using black the fewest times such that any automorphism of G fixing Bn(K)
also fixes these remaining pairs. Note that we know there are such colorings because we
could simply color each such pair black-white. We call this a canonical 2-coloring of G
rooted at K.

V

U

H ′
edge in G

2-path quadrilateral 2-path with two
white vertices

Figure 4: Possible configurations in H ′ used in the description of the canonical coloring.

In what follows, we use subscripts to denote which sphere a vertex is in: so un, vn, xn, . . .
are vertices in Sn(K). We also restrict the notion of siblings as we have defined it in
Section 1 by calling two (distinct) vertices un, vn siblings if they have a common down
neighbor.

We make the following observations about the resulting coloring:

Proposition 10 (White Up). If a vertex vn, n > 0, has an up neighbor, it has a white
up neighbor. (Note that for n = 0 no internal vertex of K has an up neighbor.)

Proposition 11 (Black-white Siblings). If a vertex vn, n > 1, is black, it has a white
sibling un and there is an automorphism of G interchanging vn and un that fixes all vertices
of Bn−1(K) and all black vertices of Sn(K).

Proof. Suppose there was no such automorphism. Then, we could color vn white, contra-
dicting the minimality in the use of black.
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Proposition 12 (Black Cross). Suppose n > 1. If the vertices un and vn are both black
and adjacent, then there is a quadrilateral unvnxnyn, where xn is a white sibling of un and
yn a white sibling of vn, that is, they form a gadget of type 3.

Proof. Since vn is black, by Proposition Black-white Siblings (11), it has a white sibling
yn with an automorphism interchanging vn and yn but fixing un (since it is black) forcing
an edge unyn. Similarly, since un is also black there is a white vertex xn and edge vnxn.
Since the interchange of vn and yn also leaves xn fixed, which is adjacent to vn, we have
yn adjacent to xn.

Call a vertex of a canonical coloring kiwi, if it is black and all its neighbors are black.

Proposition 13 (All Black). The only kiwi vertices v with val(v) > 1 in a canonical col-
oring rooted at K are in B1(K). Moreover, any kiwi vertex in S1(K) has all its neighbors
in K.

Proof. Let vn be a kiwi vertex with valence val(vn) > 1. By Propositions White Up (10)
and Black Cross (12), all neighbors of vn are down neighbors. So, for n = 1 all neighbors
of vn are in K. Now, assume that n > 1. Since vn is black, it has a white sibling un (with
the same valence) and an automorphism interchanging un and vn. Since all the neighbors
of vn are down neighbors, un has the same neighbors as vn. Let xn−1 be one of the common
neighbors and yn−1 be another one which exists since val(vn) > 1. Because they are black
and n > 1, there is an automorphism ϕ interchanging xn−1 with a white vertex zn−1 and
fixing all other black vertices of Sn−1(K). In particular, ϕ fixes yn−1, because it is black.
Moreover, the vertices un, vn are the only up neighbors of yn−1, as n > 1. Thus, ϕ can
only interchange them within themselves. This forces edges from both un and vn to the
white vertex zn−1, contradicting vn being kiwi and eventually having maximal valence 3.
See Figure 5.

We conclude that n 6 1 which means that vn ∈ K ∪ S1(K).

un vn

xn−1 zn−1yn−1

Figure 5: The vertex vn is a kiwi vertex. Therefore, there cannot be an edge between vn
and zn−1.

Proposition 14. Suppose G has no vertices of valence 1 and we are given a canonical
coloring of G rooted at K with all vertices of K black. Then the only non-identity color-
preserving automorphism takes a kiwi vertex of K to either another kiwi vertex of K or
to a kiwi vertex of S1(K) all of whose neighbors are in K.
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5 Graphs with at least one leaf

When dealing with infinite graphs, we will need the notion of rays: a ray is an infinite
connected graph where one vertex has valence 1 and all the others have valence 2, and a
double ray is a connected infinite graph where all vertices have valence 2. We recommend
the book [11] for results on rays in infinite trees.

We first show that the only graphs G with D(G) = 3 that have a leaf are the trees Tn.

Theorem 15. If the connected subcubic graph G has a leaf, then D(G) 6 2 or G = Tn
for some n > 1.

Proof. The smallest two subcubic graphs with a leaf have four vertices: either T1 or a
triangle where one of the three vertices has a further neighbor. For these two graphs the
theorem holds. Consider now a graph G with more than four vertices. Suppose some leaf
v in G is an only-child of u. The canonical coloring rooted at K = uv with u, v black
breaks all automorphisms in Autv(G), since any automorphism fixing v fixes u as well.
Since all only-children other than v are colored white in a canonical coloring, there is no
automorphism moving v, so the canonical coloring is distinguishing.

Now suppose that all leaves of G come in sibling pairs and assume first that G is finite.
Prune all such sibling pairs in G. Since ∆(G) = 3, there is at least one leaf in the new
graph. We have two cases. The new graph has again only sibling pairs. Then, prune
again all sibling pairs and continue like this inductively until you get either T1 or a graph
with an only-child. If we end with T1, we know that G = Tn for some n. Otherwise we
have a graph G′ with an only-child, which is either subcubic or has maximal valence 2
or 1. In either case, as explained above or as mentioned in the introduction [8, 21], we
can give G′ a distinguishing 2-coloring and color all previously deleted sibling pairs: one
sibling black and the other one white. Any automorphism ϕ of G takes G′ to G′, so if
ϕ is color-preserving, ϕ is the identity on G′. But then ϕ is the identity on G since all
successive removed sibling pairs are colored black-white.

Now assume that G is infinite. As before, if G has an only-child leaf, then D(G) 6 2.
Suppose instead all leaves come in sibling pairs. We wish to prune all such pairs to form
a graph G′. First assume that G has a cycle C. Now we can induct on the distance s
from C to the closest leaf. If s = 1, the closest leaf is an only-child, since the parent has
valence 2 on the cycle C, so D(G) 6 2. Assume D(G) 6 2 for all infinite graphs with
a leaf at distance s = n from a cycle. Then, for s = n + 1, either G has an only-child
leaf, or pruning all sibling pairs at distance s gives a graph G′ with s = n. In either case,
D(G) 6 2.

The same argument applies, if we replace cycles by double rays. Thus, it only remains
to consider infinite trees without double rays (this case is also studied in [24] ). Let G be
such a tree. By assumption G has a leaf, say v0, and by by König’s Lemma every vertex
of an infinite, connected locally finite graph is the origin of a ray, see e.g. [11]. Let R
be a ray with origin v0. We observe that if v ∈ S1(R), adjacent to u ∈ R, and Tv is the
component of G− uv containing v, then Tv must be finite: otherwise there is a ray in Tv
beginning at v which combined with uv and the ray in R forms a double ray.
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Take a canonical coloring rooted at K = B1(R), with all vertices in R black and all
vertices in S1(R) white. For each v ∈ S1(R), this coloring distinguishes Tv. Let ϕ be any
color-preserving automorphism. Then ϕ(v0) cannot be in Tv for any v ∈ S1(R), because
Tv is finite and the all black ray ϕ(R) must exit Tv through the white vertex v. Since all
vertices in R other than v0 have valence at least two, we conclude that ϕ(v0) = v0. Since
all vertices of S1(R) are white, ϕ must fix all of R. Thus ϕ is the identity on G, since
every vertex in S1(R) has only one down neighbor in R. We conclude that this canonical
coloring is distinguishing.

We conclude the section with the following lemma.

Lemma 16. If a connected subcubic graph G has adjacent sibling vertices of valence 2,
then D(G) 6 2 or G = R0

n, for some n > 2. If G has a sibling gadget of type 1, 2 or 3,
then D(G) = 2 or G = R1

n, K2,3, or R2
n, or R3

n, respectively, for some n > 2.

Proof. Suppose that G has adjacent siblings of valence 2. Thus, we know that G cannot
be Tn. If G has a leaf, then D(G) 6 2 by Theorem 15. Otherwise, let G′ be the graph
obtained by removing all edges between sibling pairs of valence 2. Note that G cannot
be just a triangle, because it is subcubic. Therefore, this procedure is possible. Then,
Aut(G) is a subgroup of Aut(G′). Thus, if D(G′) 6 2, we have D(G) 6 2.

Suppose that D(G′) = 3. Then, G′ = Tn by Theorem 15, because G′ has vertices of
valence 1. Since G has no vertex of valence 1, every leaf in G′ comes from the removal
of an edge between a sibling pair in G, making G = R0

n. We cannot have n = 1 here,
since that would yield two adjacent triangles and thus no two adjacent siblings of valence
2. The proof for sibling gadgets of type 1, 2 or 3 is the same, where G′ is obtained by
removing all sibling gadgets of one type, creating vertices of valence 1, if G does not only
consist of a gadget. Any distinguishing 2-coloring of G′ extends to one of G by coloring
u, v and x, y black-white, and for sibling gadgets of type 3, z, w black-white, where v, u,
x, y, z and w are the vertices as in the Figures in Section 2. Otherwise, G = R1

n, R
2
n, R

3
n.

If the graph only consists of a gadget, we have either G = K2,3 or D(G) = 2.

From this point on, we assume that none of our graphs have a vertex of valence 1. So,
we do not consider graphs with leaves anymore.

6 Vertex types

Recall that the stabilizer Autv(G) of a vertex v is the set of all automorphisms of G that
fix v. The general plan is to understand distinguishability of cubic or subcubic graphs by
looking at the way Autv(G) acts on the edges incident to v. We note that Autv(G) defines
a permutation group A on the neighbors of v. If that local action is trivial, call v type 1.
If the action interchanges two edges but leaves the other edge (if it exists) fixed, call it
type 2. This action is described by the cyclic group C2. We are left with the case where a
vertex v has valence 3 and Autv(G) does not fix any edge. If in this case, Autv(G) = C3,
call it type 3, and otherwise, if Autv(G) is the symmetric group S3, call it type 6. Note
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that the type is the same as the order of A. Vertices of valence 2 can only be of type 1
or 2. Vertices of valence 1 can only be of type 1, but now our graphs have no vertices of
valence 1. See Figure 6 for examples.

v

type 1 type 2

v

v

type 3

v

type 6

Figure 6: Examples of the different types of vertices.

Observation 1 In each of the five families Tn, R
0
n, R

1
n, R

2
n, R

3
n, the root vertex is type 6

and all other vertices of valence 3 are type 2. For R0
n, the valence 2 vertices are type 1.

For R1
n, the valence 2 vertices are type 2.

We recall that a graph is edge transitive if for any two edges e,f of the graph there
exists an automorphism mapping e into f .

Observation 2 For a connected graph G of maximal valence at most 3, adjacent vertices
of type at least 3 imply G is edge transitive and that all vertices have type at least 3.
Adjacent type 2 vertices of valence 2 imply that every vertex in G is of valence 2, and
thus that G is a cycle or a double ray.

6.1 Vertices of type 1

Theorem 17. If a connected subcubic graph G without leaves has a valence 2 vertex of
type 1, then either D(G) 6 2 or G = R0

n for some n > 1.

Proof. Let v be a valence 2 vertex of type 1 in G. Take a canonical coloring with K the
graph spanned by v and its two neighbors u and w. Color all vertices of K black. By
Proposition White Up (10), any non-identity, color-preserving automorphism must move
v to another valence 2 vertex x, which is either internal to K (that is, all its neighbors
are in K) or a kiwi vertex of S1(K). Note that if v is fixed, then K is fixed automatically,
because v is of type 1.

Suppose x is internal. Without loss of generality we can assume that x = u. Then, u
has valence 2 and its neighbor that is different from v is inside K and therefore equal to
w. So, K must be a triangle with two vertices of valence 2 and by Lemma 16, we are done.
Suppose instead that x is a kiwi vertex in S1(K). Then, by Proposition All Black (13),
the neighbors of x are u and w. But x would only be black, if there is an automorphism
fixing u,w and interchanging x with some other white vertex z. Then, z has valence 2
as well and is adjacent to u,w, forcing G = K2,3, as v, x, z have valence 2 and are each
adjacent to both u and w. But then, v is not a type 1 vertex.
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Corollary 18. If a connected subcubic graph G contains a non-sibling or only-child gadget,
then D(G) = 2.

Proof. First, we observe, that if G contains a gadget, then D(G) > 2. In other words,
in every gadget, at least two vertices are interchangeable without coloring. Moreover,
we observe that if G is finite with two non-sibling adjacent vertices which are both of
valence 2, then D(G) 6 2. The reason is that, by Observation 2, at least one of the
vertices is type 1 and, by Theorem 17, we have D(G) 6 2, since R0

n has no non-sibling
adjacent valence 2 vertices.

First suppose that G has a non-sibling gadget. Replace an appearance of a non-sibling
gadget by an edge. That means, labeling a gadget as in the figures of Section 2, we delete
the vertices x and y and connect u and v by an edge to create a graph G′, with adjacent
vertices of valence 2 that are not siblings.

If either u or v is of type 1 in G′, G′ finite or infinite, then, as above, D(G′) 6 2. One
easily extends a distinguishing 2-coloring from G′ to G, by coloring x, y black-white for
a gadget of type 1 or 2 and by coloring z, w black-white for a type 3 gadget (with the
notation as in the pictures of the gadgets in Section 2). If both u and v are of type 2 in
G′, then, by Observation 2, G′ is a double ray or a cycle Cn with n > 4. If G′ is a double
ray or n > 5, we have D(G′) = 2. Now assume G′ is a cycle Cn with n = 4 or 5. Color
the endpoints of the edge replacing the gadget black-white and all other vertices of the
cycle white. We can extend this coloring of G′ to G as explained above, which then is
distinguishing in G.

For an only-child gadget, prune from G all appearance of this only-child gadget to
form a graph G′. Then, G′ has at least one vertex of valence 1 and by Theorem 15, either
D(G′) 6 2 or G′ = Tn. If D(G′) 6 2, we can easily extend a distinguishing 2-coloring of
G′ to G. Note that if we only remove one such only-child, we may have D(G′) = 2 but
extending that to a distinguishing 2-coloring may require specifying a particular coloring
of the other only-child gadgets.

Thus, assume that G′ = Tn. Call its center vertex x. Each only-child gadget has one
vertex that has valence 2 in G and any automorphism of G can only interchange such
vertices within themselves. Color one such vertex black and all the others white. This
will fix one neighbor y of the center x, so that all we need to distinguish are elements of
Aut(G) that fix y (since x is the center, Autx(G) = Aut(G)). This is done by coloring
y any color, and all other up-going siblings in G′ = Tn black-white. Moreover, we color
all up neighbors that do not have siblings white. See Figure 7 for type 2 gadgets. The
picture for type 3 gadgets is similar.

Theorem 19. If a connected subcubic graph G has a type 1 vertex v of valence 3, then
D(G) 6 2.

Proof. Choose a canonical 2-coloring, where K is spanned by v and its three neighbors
u,w, z. Color all vertices of K black. This breaks all automorphisms in Autv(G). Thus,
the only color-preserving automorphisms left must move v to a kiwi vertex x of valence 3.
If no other kiwi vertex exists, then D(G) 6 2. Otherwise, by Proposition White Up 10,
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x

y

Figure 7: Example of a coloring of a graph with only-child gadgets of type 2 as described
in the proof of Corollary 18.

either x is internal to K (that is, all it neighbors are within K) or x ∈ S1(K) and its
neighbors are u,w, z.

Suppose that x is internal to K, say x = u. Then, u, v have valence 3 in K and are
both kiwi vertices. Moreover, by definition, the neighbors of u have to be v, w and z. If
w, z both have valence 3, then G = K4 or K is a sibling or non-sibling type 2 gadget.
Thus, D(G) = 2 or G = R2

n by Corollary 18 and Lemma 16. If G = K4 or R2
n, then v is

not type 1, a contradiction. If w, z both have valence 2, then G = K and again v is not
type 1. If one of w, z has valence 2 and the other valence 3, we have an only-child gadget
of type 2, so D(G) = 2 by Corollary 18.

Suppose instead that x ∈ S1(K), which forces its down neighbors to be u,w, z. But
x would only be black if there was an automorphism fixing K and interchanging x with
another y ∈ S1(K). This forces G to be the bipartite graph K3,3, with v, x, y in one
partition and u,w, z in the other one. This contradicts that v has type 1.

From this point on, we assume that G has no vertices of type 1.

6.2 Type 2 vertices of valence 2

Theorem 20. If the connected subcubic graph G has no type 1 vertices, but a type 2
vertex of valence 2, then D(G) = 2 or G = K2,3 or G = R1

n.

Proof. There cannot be adjacent valence 2 vertices of type 2, because then G would be a
cycle or double ray (both are not subcubic).

Let G′ be the cubic graph obtained by smoothing over all valence 2 vertices, that is,
each valence 2 vertex is removed and replaced by an edge between its neighbors. Thus, G
is obtained from G′ by inserting a valence 2 vertex in some of its edges. If G′ has multi-
edges, then G contains either a triangle with one valence 2 and two valence 3 vertices, or
a sibling or non-sibling type 1 gadget. In the latter case, D(G) = 2, G = R1

n, or G = K2,3

by Lemma 16 and Corollary 18, (see Figure 8). Thus, assume that G contains a triangle
with two valence 3 vertices u, w and one valence 2 vertex v. Let K be the edge vw. Color
v and w black and the remaining vertices with a canonical coloring rooted in K. Then,
u has to be white and any non-trivial color-preserving automorphism ϕ has to move v
outside of K. Assume such a ϕ exists. By Proposition 10, ϕ(u) and ϕ(w) cannot both
be down neighbors of ϕ(v) and therefore, either ϕ(u) or ϕ(w) is a cross neighbor of ϕ(v).
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But in both cases this cross neighbor is the only sibling of ϕ(v), with whom it cannot be
interchanged. This means that ϕ(v) cannot be black by Proposition 11. Thus, ϕ does not
exist and G is fixed.

G′ G

K2,3

non-sibling gadget
of type 1

sibling gadget
of type 1

Figure 8: Left: Possibilities of multi-edges in G′. Right: Origin of those multi-edges in G.

Assume now that G′ does not have multiple edges. Note that G′ is cubic. Let w be one
of the valence 2 vertices of G. Color w black and color white all other valence 2 vertices
in G. The only automorphisms preserving the coloring so far are in Autw(G). Let u, v be
the valence 3 neighbors of w (that are adjacent vertices in G′), see Figure 9. Color v black
and u white so that they are fixed. Now the only automorphisms preserving the coloring
so far are in Autv(G). We now proceed with a canonical coloring of the cubic graph G′

rooted at K = uv to distinguish Autv(G
′). Since u and v are fixed in G by the coloring

of the valence 2 vertex w, there are no color-preserving automorphisms moving v.

u w v

G

u

v
fixed by w

in G

canonical coloring

G′

Figure 9: Coloring process in the proof of Theorem 20.

6.3 Type 2 vertices of valence 3, girth at most 5

At this point we have completed the classification for subcubic graphs, since any such
graph has a leaf or a valence 2 vertex of type 1 or 2. We now consider cubic graphs with
a vertex of type 2. For this proof, we use the girth of G, namely the length of a shortest
cycle in G. In the next section, we show that if G has girth at least 6, then D(G) 6 2,
with no restriction on vertex types. In that section we also observe that the only edge
transitive cubic graphs of girth at most 5 are K4, K3,3, Q, P and the dodecahedron. By
Observation 2, adjacent vertices of type 3 or 6 imply edge transitivity. We still assume
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that the following graphs do not contain type 1 vertices, and therefore any cycle in a
graph that is not edge transitive has a type 2 vertex.

Theorem 21. Let G be a connected cubic graph with girth 3 and no type 1 vertex. If
G contains triangles sharing an edge, then G is K4, R

2
n or D(G) 6 2. If G contains a

triangle not sharing an edge with another triangle, then D(G) 6 2.

Proof. If two triangles of G share an edge, then G contains a sibling or non-sibling type 2
gadget, or G = K4. In the first two cases cases, G = R2

n or D(G) = 2 by Lemma 16 and
Corollary 18, see Figure 10.

sibling gadget
of type 2

non-sibling gadget
of type 2

K4

(1) (2) (3)

Figure 10: Two triangles sharing an edge in a cubic graph.

Assume now that there is a triangle uvw in G where the vertices u′, v′, w′ adjacent to
u, v and w respectively are distinct. Each of the vertices u, v, w is of type 2: none is of
type 1 and if some were of type 3 or 6, the triangle uvw would share an edge with another
triangle. Thus, Aut(G) contains a subgroup acting transitively on the vertices u, v, w.

We claim that there is no automorphism taking v to v′. If there was, there would also
be automorphisms taking u to u′ and w to w′, so each of u′, v′, w′ lies on triangles like
uvw whose vertices Aut(G) acts on transitively. Continuing this way, we get that G is
vertex transitive and each vertex lies on a triangle like uvw. Let G′ be the cubic graph
obtained by contracting each of these triangles to a single vertex. Since each such vertex
is of type 3 we have: If G′ has multiple edges, then G is a 3-prism in which case D(G) = 2.
Otherwise, there is a 4-coloring of G′ that is distinguishing. There are also four different
ways the triangles can be colored with two colors (none, one, two, or three vertices can be
colored white). Thus, G has a 2-coloring which fixes all triangles. But any such coloring
also fixes all vertices, since any automorphism moving, say, u to v, must also move the
triangles at u′ and v′. Therefore, we conclude that D(G) = 2.

Now we take a canonical coloring rooted at the graph K induced by u, v, w, u′, v′, w′,
where u′, w are white and v, v′, u, w′ are black. This coloring distinguishes Autv(G), since
any automorphism fixing v also fixes all vertices in K and hence all vertices of G. Suppose
that ϕ is a non-identity color-preserving automorphism. Then ϕ(v) 6= v. If ϕ(v) ∈ K, the
only possibility is ϕ(v) = v′, but we have already shown: If there is such an automorphism,
then D(G) = 2.

We conclude that ϕ(v) 6∈ K. Now, we show that there is no color-preserving automor-
phism ϕ such that ϕ(v) 6∈ K.

Assume that such an automorphism ϕ exists. Since all neighbors of ϕ(w) have to be
black ϕ(w) = wn, n > 1, has no up neighbor by Proposition 13. Therefore, ϕ(u), ϕ(v)
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and ϕ(w′) are either also at level n, or are at level n− 1. First assume that ϕ(u) = un−1,
ϕ(v) = vn−1 and also ϕ(w′) = w′n−1. Because w′n−1 is black, there exists an automorphism
interchanging w′n−1 with another vertex zn−1 but fixing all other black vertices at level
n− 1 by Proposition 11. Thus, since un−1 and vn−1 are fixed, there has to exist an extra
edge from wn to zn−1, contradicting the valence of wn. See (1) in Figure 11.

Suppose instead that ϕ(w′) = w′n. Now w′n can be interchanged by some automorphism
either with wn or with another vertex zn. In the first case, since un−1 and vn−1 are still
fixed by Proposition 11, this forces the existence of edges from w′n to un−1 and vn−1. This
leads to a K4, see (3) in Figure 11. But K4 contains triangles sharing edges which is a
contradiction to our assumption. In the second case, there has to exist an extra edge from
zn to wn, since un−1 and vn−1 are still fixed, see (2) of Figure 11. This contradicts the
valence of wn.

un−1 vn−1 w′n−1

wn

un−1 vn−1

w′n

wn

un−1 vn−1

w′nwn(1) (2) (3)

zn−1

zn

Figure 11: Possible neighborhoods of wn as described in the proof of Theorem 21. The
dotted lines indicate necessary edges leading to a contradiction.

Consider now the situation where ϕ(u) and ϕ(v) are at different levels, say ϕ(u) = un−1
and ϕ(v) = vn. As before, since vn is black, there is an automorphism interchanging vn
with a white sibling xn, but fixing un−1. If xn 6= wn, this forces an extra edge to un−1. If
xn = wn, the automorphism also fixes ϕ(w′), forcing an edge between vn and ϕ(w′). This
leads to adjacent triangles, whether ϕ(w′) = w′n or ϕ(w′) = w′n−1, see Figure 12.

xn vn wn

un−1v′n−1

vn wn

un−1

φ(w′)
(1) (2)

Figure 12: Possible neighborhoods of wn as described in the proof of Theorem 21. The
dotted lines indicate necessary edges leading to a contradiction.

The remaining situation to study is when ϕ(u) = un and ϕ(v) = vn are both on level
n. Then, ϕ(w′) = w′n−1 has to be at level n − 1, because ϕ(w) = wn needs a down
neighbor. Note that there is no edge between v and w′ and therefore none between vn
and w′n−1. So, vn and wn cannot be siblings. Then, again, using the same arguments as
in the precedent cases, since vn is black, it has a white sibling zn with an edge to wn. So,
we have a contradiction to the valence of wn.

Thus, we conclude that ϕ does not exist.

Corollary 22. If the connected cubic graph G contains an edge-induced K2,3, then G =
K3,3, R

2
n, R

3
n or D(G) = 2.
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Proof. Let u, v, w, x, y be vertices of an edge-induced K2,3 where u, v, w are one part and
x, y the other part. If there is also an edge between, say, u and v, then we have a sibling
type 2 gadget, see Figure 13 (1). So G = R2

n or D(G) = 2 by Lemma 16. If u, v have a
common neighbor z, then u, v, w, x, y, z form a type 3 gadget (either sibling, non-sibling
or only-child, see Figure 13 (2)), so G = K3,3 if w and z are also adjacent, or otherwise
R3

n or D(G) = 2 by Lemma 16.

u

v

w

x

y

(1)

v u

xy

w

∼ =

u

v

w

x

y

z
(2)

wz

u v x y

∼ =

u

v
x

yw

u′

v′

w′

(3)

Figure 13: Possible neighborhoods of u and v in K2,3. Cases (1) and (2) form two types
of gadgets.

We therefore assume that the third neighbors u′, v′, w′ of u, v, w, respectively, are
distinct. In particular, all edge-induced copies of K2,3 are disjoint (share no vertices). Let
G′ be the graph obtained by replacing each K2,3 in the orbit1 of u, v, w, x, y under Aut(G)
by a triangle uvw, see Figure 14.

u

v
x

yw

u′

v′

w′

u

v

w

u′

v′

w′

Figure 14: Substitution of K2,3 by a triangle as in the proof of Corollary 22.

Every automorphism of G gives an automorphism of G′. By Theorem 21, we have
D(G′) = 2. We can then extend any distinguishing 2-coloring of G′ to one for G by
coloring all pairs of vertices in the orbit of x, y black-white.

Theorem 23. Let G be a connected cubic graph with no type 1 vertex. If the girth of G
is 4 and G contains a type 2 vertex, then D(G) = 2 or G = R3

n.

Proof. As mentioned at the beginning of the section, any cycle in G has to contain a
type 2 vertex, because G is neither edge transitive nor does it contain a type 1 vertex.
Let v be a type 2 vertex which lies on a quadrilateral C. It has three neighbors u1, v1 and
w1, because G is cubic. Assume without loss of generality that v1 is fixed by Autv(G) and

1 The orbit of a vertex v consists of all images of v under the action of Aut(G).
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that u1 and w1 can be interchanged. There are two possibilities: either the fixed edge vv1
lies on C or it does not. We will now show that in both cases the result holds.

First assume that vv1 lies in C. We can then suppose without loss of generality, that
u1 also lies in C. Therefore, C is of the form v1vu1u2. But we know that u1 and w1 can
be interchanged, so w1 has to be in a quadrilateral v1vw1w2. If u2 = w2, then the vertices
form a K2,3 and by Corollary 22, D(G) = 2 or G = R3

n, because the girth is 4 and K3,3

has no type 2 vertices. Thus, assume that u2 6= w2. Let x2 be the third neighbor of u1. If
x2 = w1, we would have a triangle, which is not possible. If x2 = w2, we would also need
an edge between w1 and u2, in order to still be able to interchange u1 and w1. But then,
the vertices form a K3,3, contradicting v being of type 2. Thus, x2 6= w2. If there is an
edge between u2 and w1, we have again a K2,3 as subgraph. Therefore, the only possible
configuration in this case is as shown on the left of Figure 15. The dotted edges x2w2

and x2w1 might exists or not (depending on the further structure of the neighborhoods of
the vertices which have not yet valence 3). However, they do not interfere the remaining
arguments of the proof. Let K be this induced subgraph (i.e. the graph shown on the left
of Figure 15). Color v, v1, u1, w1, u2 black and x2, w2 white. Then, color the remaining
vertices in G with a canonical coloring rooted in K. Within K the vertices are clearly
fixed by Autv(G), even if there is an edge between x2 and w1. Moreover, u2 has only one
up neighbor in S1(K), which has to be white by Proposition 10. Therefore, v is the only
kiwi vertex in K and a non-trivial color-preserving automorphism would have to move v
outside of K. By Proposition 13 this has to be another kiwi vertex in S1(K). But such
a vertex would have all of its neighbors in K, which is clearly not possible in this case.
Thus, G is fixed.

Now assume that the edge vv1 does not lie in C. If vv1 lies in another quadrilateral,
then we can define the latter as C and go back to case 1. So, assume that vv1 does not
lie in any quadrilateral. Then, C has to be of the form u1vw1x2. Because vv1 does not lie
in any quadrilateral, the neighbors v2 and v′2 of v1, different from v, are distinct from the
neighbors of u1 and w1. Let u2 be the third neighbor of u1 and w2 be the third neighbor
of w1. If u2 = w2, then G contains again a K2,3 as a subgraph and by Corollary 22
D(G) = 2 or G = R3

n. Therefore, the only possible configuration is pictured on the right
of Figure 15, again with some possible additional edges, which do not interfere with the
remaining proof. Let K be this induced subgraph and color it as shown in the Figure.
Now color the remaining vertices in G with a canonical coloring rooted in K. As in the
previous case, we see that v is the only kiwi vertex in K and thus, by the same arguments
as above, we conclude that G is fixed.

Theorem 24. Let G be a connected cubic graph with no type 1 vertex. If the girth of G
is 5 and G contains a type 2 vertex, then D(G) = 2.

Proof. The proof is similar to the proof of the precedent Theorem 23 about graphs of
girth 4. Again, we know that any cycle in G has to contain a type 2 vertex. Let v be a
type 2 vertex which lies on a pentagon C. It has three neighbors u1, v1 and w1, because
G is cubic. Assume without loss of generality that v1 is fixed by Autv(G) and that u1 and
w1 can be interchanged. There are two possibilities: either the fixed edge vv1 lies on C
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v

w1v1u1

w2u2x2

(1)

v

u1 v1 w1

u2 w2x2v2 v′2

(2)

Figure 15: Subgraphs rooted in v as described in the proof of Theorem 23. The dotted
edges can be omitted.

or it does not. We will now show that in both cases the result holds.
First assume that vv1 lies in C. We can then suppose without loss of generality, that

u1 also lies in C. Therefore, C is of the form v1vu1u
′
2u2. But we know that u1 and w1 can

be interchanged, so w1 has to lie in a pentagon v1vw1w
′
2w2. Let x2 be the third neighbor

of u1 and y2 be the third neighbor of w1. Because the girth of G is 5, the vertices u1,
v1, w1 only share one common neighbor, namely v. Thus, x2, y2, u

′
2, u2, w

′
2 and w2 are

pairwise distinct. The configuration is shown on the left of Figure 16. Let K be the
subgraph induced by these vertices. Note that for simplicity we do not indicate possible
cross edges here, in contrast to the previous proof. In particular, they would not interfere
with the following arguments. Color K as shown in Figure 16 on the left. Then, color
the remaining vertices of G with a canonical coloring rooted in K. Because the edge vv1
is fixed by Autv(G), the vertex u2 could only be interchanged with w2. Therefore, their
black-white coloring fixes the cycles which contain them and thus also fixes u1 and w1.
So, K is fixed by the coloring and in particular G is fixed in Autv(G). It remains to
verify that v cannot be mapped to another kiwi vertex. In K, every vertex has at least
one white neighbor, even y2: there cannot be any edge between y2 and w2, because it
would contradict the assumption of girth 5, so, by Proposition 10, y2 has at least one
white neighbor. Therefore, any non-identity color-preserving automorphism of G has to
move the vertex v to a kiwi vertex in S1(K) by Proposition 13. Assume there exists a
kiwi vertex x in S1(K). Then, its neighbors have to lie in K, again by Proposition 13.
Thus, they are u′2, w2 and y2. But the only possible up neighbor of u′2 has to be white by
Proposition 10, and therefore x cannot exist. We conclude that G is fixed by the coloring.

Now we assume that vv1 does not lie in C. Similar arguments as used above verify
Figure 16 (2). Again, G will be fixed by a canonical coloring rooted in the presented
subgraph.

v

w1v1u1

y2w′
2u′

2x2

(1)

v

u1 v1 w1

u2 w2x2v2 v′2

(2)

u2 w2 x′
2

Figure 16: Subgraphs rooted in v as described in the proof of Theorem 24.
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7 Edge Transitive Graphs and Graphs of Girth at most 5

There remain only the case where all vertices have type 3 or 6, and the case where G has
a vertex of type 2 with girth at least 6. Note that G must be edge transitive in the first
case by Observation 2. Our analysis falls into two parts:

(1) cubic edge transitive graphs of girth at most 5, and

(2) cubic graphs of girth at least 6.

Theorem 21 already covers the case of maximal girth 3, but one can still easily verify
directly that the only edge transitive cubic graph of girth 3 is K4, and that K3,3 and the
cube Q are the only edge transitive graphs of girth 4. We know D(K4) = D(K3,3) = 4
and D(Q) = 3. (For a concise overview of edge transitive graphs we refer to [14].)

For girth 5, we observe that an edge transitive graph G that is not vertex transitive
must be bipartite: There are at most two vertex orbits for Aut(G), and if there are two,
then adjacent vertices are in different orbits. Hence, all edge transitive graphs of odd
girth are also vertex transitive. But there are only two vertex transitive cubic graphs
of girth 5, the dodecahedron H and the Petersen graph [13]. Note that D(H) = 2. To
find a 2-distinguishing coloring of H, color black a vertex and its three neighbors. Then,
color also black a vertex adjacent to one of those neighbors and the remaining in white.
However, D(P ) = 3, as will be shown in the following proposition.

Proposition 25. For the Petersen graph P , D(P ) = 3 and m(P ) = 6.

Proof. For the proof we take up a remark of Lehner2. He observed that P is the com-
plement of the line graph of K5. As the line graph L(G) of a graph has as its vertex
set the set of edges of G, where any two incident edges e, f are adjacent in L(G), it is
clear that any automorphism of G induces an automorphism of L(G). For small graphs
Aut(L(G)) may be larger than Aut(G), but if |V (G)| > 4, then each automorphism of
L(G) corresponds to exactly one of G, see [19, 10].

Hence, D(L(K5)) is the distinguishing number of the complement of P , and because
the automorphism group of a graph is the same (as a permutation of the set of vertices)
as that of its complement, D(P ) = D(L(K5)).

We use this to show that D(P ) > 2. Let c be any 2-coloring of P and let W be the set
of white vertices. We consider it as a set of (white) edges of K5. Together with their end
vertices they form a graph, say Gw. Because the smallest asymmetric non-trivial graph
has six vertices, see [12], Gw has at least one non-trivial automorphism. It is a non-trivial
permutation of a subset of V (K5). We extend it to a permutation of V (K5) by fixing
all elements V (K5) \ V (Gw). Because every permutation of V (K5) is an automorphism
of K5 we thus obtain a non-trivial automorphism of K5. It corresponds to a non-trivial
automorphism of P , which is color-preserving by its definition. Hence, D(P ) > 2.

To show that D(P ) = 3 it hence suffices to present a distinguishing 3-coloring. To this
end we consider an arbitrary path of length 4 in K5, color the first edge red, the other

2Private communication.
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two edges black, and all other edges of K5 white. Then, the only automorphism of K5

that preserves the edge colors is the identity, and thus D(P ) = 3.
To show that m(P ) = 6 it suffices to show that each non-trivial automorphism of K5

moves at least six edges. Suppose α ∈ Aut(K5), α(u) = v 6= u and α(v) = w. If u, v,
and w are distinct, then there are six edges in K5 with exactly one endpoint in {u, v, w}.
They are all moved by α. If α interchanges u and v, then there are six edges in K5 with
exactly one endpoint in {u, v}. Again, they are all moved by α.

Thus, we are left with (2), cubic graphs of girth at least 6. We cannot continue with
methods used for girth at most 5, because those methods depend on using small girth
to analyze the structure of S2(v). Instead, we return to the motivation for graph distin-
guishing in [1]: the Necklace Problem, that is, that D(Cn) = 2 for n > 6.

Theorem 26. If G is a connected cubic graph with girth > 6, then D(G) 6 2.

Proof. Let s be the girth of G and C a cycle of length s. Since s > 6, each vertex
in S1(C) is adjacent to only one vertex in C. Moreover, if two vertices in S1(C) are
adjacent, then they can be used to form a path of length three between two vertices in C
of distance at most s

2
, contradicting the minimality of s. Let the vertices of C be denoted

by 1, 2, 3, . . . , s. Let K be C together with the whiskers at vertices 1 and 4 as well as
6, . . . , s; see Figure 17 for an example.

1

2

3

4

5

6

7

8

K

Figure 17: The set K for s = 8. The vertices 1 and 4 together with 6, 7 and 8 are the
kiwi vertices.

Choose a canonical 2-coloring rooted at K with all vertices in K colored black. By
Proposition All Black (13) and Black-white Sibling (11), any kiwi vertex outside K must
have its three neighbors in K and a white sibling with the same three neighbors. But
this would create a cycle of length 4, contradicting s > 6. Thus, there is no kiwi vertex
outside K. So any color-preserving automorphism ϕ must leave invariant the kiwi ver-
tices 1, 4, 6, . . . , s. The graph spanned by these vertices consists of an isolated vertex 4
and a path 6, . . . , s, 1. Thus, ϕ fixes 4, and either leaves the path fixed or reverses it
(interchanging vertices 1, 6). In the first case, ϕ fixes 5, since s > 4, and ϕ fixes 2, 3 since
1, ϕ(2), ϕ(3), 4 provides another path of length 3 between 1 and 4, contradicting s > 6. In
the second case, 4, ϕ(5), ϕ(6) = 1 provides a path of length 2 from 4 to 1, contradicting
s > 5. We conclude that ϕ fixes all vertices of C and hence, all vertices of K, so ϕ is the
identity.
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For girth s = 6, we also have D(G) 6 2 but the argument is slightly more complex.

Theorem 27. Let G be a connected cubic graph with girth s = 6. Then, D(G) 6 2.

Proof. We note that the above proof of Theorem 26 for girth s > 6 only uses s 6=
6 to insure that for a cycle C of length s, the graph K obtained from C with its
whiskers 1′, 4′, 6′, . . . , s′ has no edges between the whiskers 1′ and 4′. The rest of the
proof only requires s > 5. In a cycle C of length 6, any pair of “antipodal” vertices (two
vertices of distance 3 from each other in C) can play the role of 1 and 4. Therefore, if
we assume that there is a pair i, j of antipodal vertices in C, such that there is no edge
between their whiskers i′ and j′, then we can use the same arguments as above to show
that D(G) 6 2 by labeling i = 1 and j = 4. So, we only have to study the case, where
there is an edge between all whiskers of antipodal vertices in any 6-cycle in G.

Let C be the cycle 123456, where each vertex i ∈ {1, . . . , 6} has a whisker i′, and
there is an edge between 1′ and 4′, 2′ and 5′, and between 3′ and 6′; see the middle part
of Figure 19. In particular, those are the only edges between two whiskers, because any
other such edge would create a cycle of length strictly less than 6. Now, if we look at the
cycle 1′12344′, with respective whiskers 7, 6, 2′, 3′, 5 and 8, see the left graph of Figure 18,
then there is an edge between its whiskers 5 and 6. Moreover, there have to be the edges
3′7 and 2′8 by assumption. The same holds for the 6-cycle 1′16544′, compare the right
graph of Figure 18, where the edges 5′7 and 6′8 have to exist.

1

2

3

4

5

6

1′ 2′

3′

4′5′

6′

7

8

1

2

3

4

5

6

1′ 2′

3′

4′5′

6′

7

8

Figure 18: 6-cycles highlighted in C as described in the proof of Theorem 27. Their
whiskers are marked by a square.

At this point all fourteen of the vertices have valence 3, so we have the entire graph,
see Figure 19. This is the Heawood graph (the dual of the triangulation of the torus with
underlying graph K7).

Now consider the following 2-coloring of the graph. Let 1, 2, 3, 4, 5, 6, 1′, 2′, 7 be
black and the remaining vertices white (see the right graph in Figure 19 for the coloring).
In the graph H spanned by the black vertices, 7 is the only vertex of valence 1 adjacent
to a vertex of valence 2 (namely 1′). Thus, any color-preserving automorphism ϕ fixes 7.
Thus, ϕ also fixes 1′ and hence, also 1. Since 2′ is the only remaining vertex of valence
one, ϕ also fixes 2. Thus, ϕ fixes the remaining vertices of the cycle C, so ϕ fixes all black
vertices. But then ϕ also fixes the white vertices adjacent to 3, 4, 5, 6. That leaves only 8
so it must be fixed as well, making ϕ the identity.
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Figure 19: Construction of the graph described in the proof of Theorem 27.

8 Questions

There are several questions worth further study. As before, we will denote as d the
maximal valence ∆(G) of a graph G.

Higher Valence Can we classify graphs G with d = D(G)?
As we have observed, if G = T (n, d), then ∆(G) = d = D(G). We could add edges

within each sibling family of size d − 1 to form a graph R0(n, d) analogous to R0
n (the

vertices of a sibling family then have valence d−1). We can also attach d−1 independent
vertices to a sibling family using Kd−1,d−1 to obtain a graph analogous to R1

n. There are
no analogues for R2

n and R3
n.

We can define a canonical d − 1 coloring rooted at a graph K such that the only
color-preserving automorphism of G fixing the vertices of K is the identity. Then, we
have to identify properties of such colorings that restrict the structure of K and S1(K).
Note that a variation of the canonical coloring using d + 1 colors, with color d + 1 for a
vertex v, colors 1, 2, . . . , d for the neighbors of v, and colors 1, 2, . . . , d− 1 is how one gets
D(G) 6 d + 1. To show D(G) = d + 1 only for G = Kd+1 or G = Kd,d, one could use
the canonical d-colorings rooted at an asymmetric vertex-induced subgraph K with color
d used only on K.

Highly Symmetric Graphs What can one say about vertex transitive, connected
graphs with valence d > 3 and D(G) > 2?

Lehner and Verret [23] have recently classified all such graphs with valence d = 4. We
had originally asked whether the number is finite as it is for d = 3, but the answer is
no. There is one infinite family of lexicographic products Cn[2K1] (called wreath graphs)
with D(G) = 3 and five others, each with at most 10 vertices. Interestingly, there are
none with D(G) = 4.

Connectivity What is the relationship between vertex or edge connectivity, valence
and distinguishing number?

The examples above with D(G) = d are not 2-connected. What happens if we require,
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say, 3-connectivity? For example, we can build a 3-connected graph G, such that D(G) =
d − 3, d > 5, as follows. Let P be a path of length 2. Attach each of the three vertices
of P to a different vertex of one Kd. The graph G is then 3-connected and if we color
one extremal vertex of P black and the other two white, then the three vertices in Kd

attached to P are fixed. Therefore, D(G) = d − 3. As the connectivity goes up, the
distinguishing number seems to go down, with finitely many exceptions like Kd+1.

Infinite Graphs What happens for infinite G with d > 3?
For infinite graphs, we expect that, if ∆(G) = d, then D(G) < d, just as for d = 3. But

there are also interesting questions just for such G with D(G) = 2. As we observed before
in Corollary 8, for finite graphs, large enough motion implies D(G) = 2. The Infinite
Motion Conjecture [28] is that, if G is locally finite and m(G) =∞, then D(G) = 2. On
the other hand, for the case d = 3, we see there is no need for the hypothesis of infinite
motion to get D(G) = 2, and there are other classes of graphs with D(G) = 2 that do
not depend intrinsically on infinite motion [27]. As we observed, however, it is easy to
construct an infinite d-valent graph G with D(G) = d−1. So for d > 3, we expect infinite
motion to be involved.

Motion For cubic graphs, if the motion m(G) > 2, then D(G) = 2 with the exception
of Q and P . For d > 3, is it the case that, if m(G) > d, then D(G) = 2 with finitely
many exceptions?

One might even ask whether m(G) > 2 gives D(G) = 2 with finitely many exceptions,
but the family of wreath graphs described in [23] provide a negative answer.

Chromatic Distinguishing Number Suppose all colorings are required to be proper
(adjacent vertices get different colors). What happens when d = 3?

Collins and Trenk [8] define the chromatic distinguishing number χD(G) to be the
least k such that G has a proper k-coloring whose only color-preserving automorphism is
the identity. They prove that χD(G) 6 2d with equality only for Kd,d and C6. For d = 3,
there is the possibility of classifying graphs with D(G) = 5, especially in the case that G
is bipartite.

In [15] the chromatic distinguishing number of infinite graphs is investigated. For
connected graphs of bounded valence d it is shown that χD(G) 6 2d− 1, and for infinite
subcubic graphs of infinite motion this improves to χD(G) 6 4.

Edge Distinguishing One can also define the distinguishing index (or edge distin-
guishing number) D′(G) as the least k such that some k-coloring of the edges of G is
preserved only by the identity. In [20] it is shown that D′(G) 6 d for finite graphs. For
infinite graphs d has to be replaced by the supremum of the valences [6].

What happens with D′(G), if d = 3?

Cost When D(G) = 2, the cost [4, 5] is the least number of times the color black is
used. When d = D(G) = 2, what can we say about the cost? For cubic graphs this is
treated in [18].
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The canonical coloring tends to use black as few times as possible for Sn(K), n > 0.
How close does this number come to the cost?
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