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Abstract

We present a surprisingly new connection between two well-studied combinato-
rial classes: rooted connected chord diagrams on one hand, and rooted bridgeless
combinatorial maps on the other hand. We describe a bijection between these two
classes, which naturally extends to indecomposable diagrams and general rooted
maps. As an application, this bijection provides a simplifying framework for some
technical quantum field theory work realized by some of the authors. Most notably,
an important but technical parameter naturally translates to vertices at the level
of maps. We also give a combinatorial proof to a formula which previously resulted
from a technical recurrence, and with similar ideas we prove a conjecture of Hihn.
Independently, we revisit an equation due to Arquès and Béraud for the generating
function counting rooted maps with respect to edges and vertices, giving a new bi-
jective interpretation of this equation directly on indecomposable chord diagrams,
which moreover can be specialized to connected diagrams and refined to incorpo-
rate the number of crossings. Finally, we explain how these results have a simple
application to the combinatorics of lambda calculus, verifying the conjecture that a
certain natural family of lambda terms is equinumerous with bridgeless maps.
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1 Introduction

Connected chord diagrams are well-studied combinatorial objects that appear in numerous
mathematical areas such as knot theory [27, 5, 33], graph sampling [1], analysis of data
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structures [12], and bioinformatics [16]. Their counting sequence (Sloane’s A000699)
has been known since Touchard’s early work [29]. In this paper we present a bijection
with another fundamental class of objects: bridgeless combinatorial maps. Despite the
ubiquity of both families of objects in the literature, this bijection is, to our knowledge,
new. Furthermore, it is fruitful in the sense that it generalizes and restricts well, and
useful parameters carry through it.

1.1 Definitions

Before outlining the contributions of the paper more precisely, we begin by recalling
here the formal definitions of (rooted) chord diagrams and (rooted) combinatorial maps,
together with some auxiliary notions and notation.

The reader already familiar with these notions may jump straight to Sections 1.2
and 1.3 to find a detailed presentation of our results.

1.1.1 Chord diagrams

Definition 1 (Matchings on linear orders). Let P be a linearly ordered finite set. An
n-matching in P is a mutually disjoint collection C of ordered pairs (a1, b1), . . . , (an, bn)
of elements of P , where ai < bi for each 1 6 i 6 n. A perfect matching in P is a matching
which includes every element of P .

Definition 2 (Chord diagrams). A rooted chord diagram is a linearly ordered, non-empty
finite set P equipped with a perfect matching C. The pairs in C are called chords , while
the root chord is the unique pair whose first component is the least element of P .

Two n-matchings (P,C) and (P ′, C ′) are considered isomorphic if they are equivalent
up to relabeling of the elements and reordering of the pairs, or in other words, if there
is an order isomorphism φ : P ∼= P ′ and a permutation π ∈ Sn such that φC = C ′π,
where φC = (φ(a1), φ(b1)), . . . , (φ(an), φ(bn)) denotes the image of C under φ, and C ′π =
(a′π(1), b

′
π(1)), . . . , (a

′
π(n), b

′
π(n)) denotes the reindexing of C ′ by π. Up to isomorphism, a

chord diagram with n > 1 chords may therefore be identified with a perfect matching
on the ordinal 2n = {0 < · · · < 2n − 1}, and so we will usually omit reference to the
underlying set of a chord diagram, simply keeping track of the number of chords n (we
refer to the latter as the size of the diagram). Isomorphism classes of chord diagrams of
size n can also be presented as fixed point-free involutions on the set 2n, although we find
the definition as a perfect matching more convenient to work with.

To visualize a chord diagram, we represent the elements of its underlying linear order
by a series of collinear dots, and the matching by a collection of arches joining the dots
together in pairs: see Figure 1(a) for an example. In the literature, rooted chord diagrams
are also drawn according to a circular convention: instead of being arranged on a line,
the 2n points are drawn on an oriented circle and joined together by chords, and then
one point is marked as the root. This convention has been notably used in [22, 15], but
the linear convention is the one we adopt for the rest of the document1.

1People also consider unrooted chord diagrams with no marked point, see for example [20, §6.1]. Since
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(a) (b)
H = { 0, 1, 2, 3, 4 }
σ = (0 1 2)(3 4)
α = (0)(1 3)(2 4)

Figure 1: (a) Rooted chord diagram associated to the perfect matching (0, 3), (1, 5), (2, 4).
(b) A rooted map and its permutation representation.

Objects Size 1 Size 2 Size 3

Connected
diagrams

Bridgeless
maps

Table 1: Small connected diagrams and bridgeless maps

Definition 3 (Intersection graph, connected diagrams). The intersection graph of a chord
diagram C is defined as the digraph with a vertex for every chord, and an oriented edge
from chord (a, b) to chord (c, d) whenever a < c < b < d. A chord diagram is said to be
connected (or irreducible) if its intersection graph is (weakly) connected.

Equivalently, a diagram of size n is connected if for every proper non-empty subsegment
[i, j] ⊂ [0, 2n− 1], there exists a chord with one endpoint in [i, j] and the other endpoint
outside [i, j]. All connected diagrams of size 6 3 are depicted in the first row of Table 1.
Besides connectedness, we also consider the weaker notion of “indecomposability” of a
diagram, defined in terms of diagram concatenation.

Definition 4 (Diagram concatenation). Let C1 and C2 be chord diagrams of sizes n1

and n2, respectively. The concatenation of C1 and C2 is the chord diagram C1C2 of size
n1 +n2 whose underlying linear order is given by the ordinal sum of the underlying linear
orders of C1 and C2, and whose matching is determined by C1 on the first 2n1 elements
and by C2 on the next 2n2 elements.

As the name suggests, diagram concatenation has a simple visual interpretation as laying
two chord diagrams side by side.

Definition 5 (Indecomposable diagrams). A rooted chord diagram is said to be inde-
composable if it cannot be expressed as the concatenation of two smaller diagrams.

Every connected diagram is indecomposable, but the converse is not true: see Table 2.

we work only with rooted chord diagrams in this paper, we refer to them simply as chord diagrams, or
even as “diagrams” when there is no confusion.
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Objects Size 2 Size 3

Indecomposable
disconnected

diagrams

Maps with at
least one bridge

Table 2: Small indecomposable diagrams and maps not displayed in Table 1.

Finally, it will often be convenient for us to speak about intervals in a chord diagram.
By an interval, we simply mean a pair of successive points: thus a diagram with n chords
(joining 2n points) has 2n− 1 intervals.

1.1.2 Combinatorial maps

Combinatorial maps are representations of embeddings of graphs into oriented surfaces
[19, 20, 11]. Like chord diagrams, they come in both rooted and unrooted versions, but
we will be dealing only with rooted maps in this paper.

Definition 6 (Combinatorial maps). A rooted combinatorial map is a set equipped with
a transitive action of the group Γ = 〈σ, α | α2 = 1〉 and a distinguished fixed point for the
action of α. Explicitly, this consists of the following data:

• a set H (whose elements are called half-edges);

• a permutation σ and an involution α on H;

• a half-edge r ∈ H (called the root) for which α(r) = r;

• such that between any pair of half-edges x, y ∈ H, there is a permutation f defined
using only compositions of σ and α (and/or their inverses) for which f(x) = y.

Two rooted combinatorial maps are considered isomorphic just when there is a bijection
between their underlying sets of half-edges which commutes with the action of Γ and
preserves the root. Note that our definition of combinatorial maps is a bit non-standard
in allowing the involution α to contain fixed points and taking the root as a distinguished
fixed point of α. Defining the root as a fixed point is convenient for dealing with the
trivial map (pictured at the left end of the second row of Table 1), while the presence
of additional fixed points means that in general our maps can have “dangling edges” in
addition to the root. Formally, the underlying graph of a combinatorial map is defined as
follows.

Definition 7 (Underlying graph). Let M = (H, σ, α, r) be a rooted combinatorial map.
The underlying graph of M has vertices given by the orbits of σ, edges given by the orbits
of α, and the incidence relation between vertices and edges defined by their intersection.
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For any v ∈ orbit(σ) and e ∈ orbit(α) we have |v ∩ e| ∈ {0, 1, 2}, that is, a vertex and an
edge can be incident either zero, once, or twice in the underlying graph. An edge which is
incident to the same vertex twice is called a loop, while an edge which is incident to only
one vertex exactly once is called a dangling edge. The size of a map is defined here as the
number of edges in its underlying graph (giving full value to dangling edges). We call a
combinatorial map closed if its underlying graph contains no dangling edges other than
the root, and otherwise we call it open. For the most part, we will be dealing with closed
maps, so we usually omit the qualifier unless it is important to remind the reader when
we are dealing with open maps (as will at times be convenient). We also usually omit the
prefix “rooted”, again because we only ever consider rooted combinatorial maps.

Figure 1(b) shows an example of a (closed rooted) combinatorial map and its graphical
realization, where we have indicated the unattached end of the root by a white vertex.
This is also an example of a bridgeless map in the sense of Definition 9 below.

Proposition 8. The underlying graph of any combinatorial map is connected.

Proof. By transitivity of the action of Γ.

Definition 9 (Bridgeless maps). A combinatorial map is said to be bridgeless if its
underlying graph is 2-edge-connected, that is, if there does not exist an edge whose deletion
separates the graph into two connected components (such an edge is called a bridge).

The second row of Table 1 lists all (closed) bridgeless maps with at most three edges, while
the second row of Table 2 lists all the remaining maps of size 6 3. Observe that although
the half-edges are unlabeled (again, since we are interested in isomorphism classes of
labelled structures), the specification of the permutation σ is contained implicitly in the
cyclic ordering of the half-edges around each vertex, and the specification of the involution
α in the gluing together of half-edges to form edges. Observe also that one of the maps in
Table 1 contains a pair of crossing edges: such crossings should be thought of as “virtual”,
arising from the projection of a graph embedded in a surface of higher genus down to the
plane. For a more detailed discussion of the precise correspondence between combinatorial
maps and embeddings of graphs into oriented surfaces, see [19, 20, 11].

Finally, we introduce a few additional technical notions. In a rooted map, we distin-
guish the root from the root edge and the root vertex : the root vertex is the unique vertex
which is incident to the root, while the root edge (in a map of size > 1) is the unique
edge following the root in the positive direction (i.e., according to the permutation σ)
around the root vertex. A corner is the angular section between two distinct adjacent
half-edges. The root corner is the corner between the root and the root edge. Half-edges
are in obvious bijection with corners (for maps of size > 1), but it is often more convenient
to work with the corners: for example, pointing out two corners is a clear way to show
how to insert an edge in a map.
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1.2 Enumerative and bijective links between maps and diagrams

Expanding definitions, it is not hard to see that one-vertex combinatorial maps are in
direct correspondence with chord diagrams:

[one-vertex combinatorial maps]←→ [chord diagrams].

Indeed, any (closed) one-vertex map determines a fixed point-free involution α on its
non-root half-edges, together with a linear order induced by the cycle σ.

From a completely different direction, we demonstrate in this paper the existence of
a size-preserving bijection between bridgeless maps (with arbitrarily many vertices) and
connected diagrams:

[bridgeless combinatorial maps]
θ←→ [connected chord diagrams].

Indeed, we prove that θ is the restriction of a bijection between general combinatorial
maps and indecomposable diagrams:

[combinatorial maps]
φ←→ [indecomposable chord diagrams].

Conversely, we also prove that φ is the extension of θ obtained by composing with a
canonical decomposition of rooted maps (respectively, indecomposable diagrams) in terms
of the bridgeless (respectively, connected) component of the root.

The existence of θ implies the following enumerative statement.

Theorem 10. The number of rooted bridgeless combinatorial maps of size n is equal to
the number of rooted connected chord diagrams of size n.

The fact that bridgeless maps and connected diagrams define equivalent combinatorial
classes has apparently not been previously observed in the literature, let alone with a
bijective proof. On the other hand, an explicit bijection between combinatorial maps
and indecomposable diagrams was already given by Ossona de Mendez and Rosenstiehl
[24, 25], who moreover wrote (in the early 2000s) that the corresponding enumerative
statement “was known for years, in particular in quantum physics”, although “no bijective
proof of this numerical equivalence was known”.

Theorem 11 (Ossona de Mendez and Rosenstiehl [24, 25]). The number of rooted com-
binatorial maps of size n is equal to the number of rooted indecomposable chord diagrams
of size n.

It may appear surprising that Theorem 10 has been seemingly overlooked despite Theo-
rem 11 having been “known for years”, and with the latter even being given a nice bijective
proof over a decade ago (that was further analyzed and simplified by Cori [8]). Yet, there
is a partial explanation: it turns out that Ossona de Mendez and Rosenstiehl’s bijection
does not restrict to a bijection between bridgeless maps and connected maps — and more-
over cannot for intrinsic reasons that we will discuss in Section 6.1. In other words, both
of the bijections θ and φ we describe in this paper are apparently fundamentally new, and
we will see that they have interesting applications.
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1.3 Structure of the document

We will begin in Section 2 by showing that connected diagrams and bridgeless maps are
equinumerous due to them satisfying the same recurrences, and similarly for indecom-
posable diagrams and general maps. Implicitly this already induces bijections, but there
are choices to be made, and good choices will give bijections preserving interesting and
important statistics. Thus we will proceed in Section 3 to define operations on diagrams
and maps which will be the building blocks of the bijections. The bijections themselves
are presented in Section 4. Our bijection from connected diagrams to bridgeless maps has
two descriptions, one of which makes clear that it extends to a bijection between inde-
composable diagrams and general maps that we also give. Furthermore, we characterize
those diagrams which are taken to planar maps under our bijection.

The remainder of the paper looks at applications resulting from our bijections. Sec-
tion 5 applies our bijection from connected diagrams to some chord diagram expansions
in quantum field theory which some of us, with other collaborators, have discovered as
series solutions to a class of functional equations in quantum field theory. Some interest-
ing results have been proved thanks to the diagram expansions, but some of the diagram
parameters were obscure. We will use our bijections to maps to simplify and make more
natural these parameters and the resulting expansion. Most notably, a special class of
chords, known as terminal chords, corresponds to vertices in the maps. Moreover, we use
this new interpretation in terms of maps to give a combinatorial proof to a quite involved
formula appearing in [15], which was a key point of that article but did not have a clear
explanation aside a technical recurrence, and with similar ideas we prove a conjecture of
Hihn.

Section 6 revisits a functional equation of Arquès and Béraud for the generating func-
tion counting rooted maps with respect to edges and vertices. We give a new bijective
interpretation of this functional equation directly on indecomposable chord diagrams,
with the important property that it restricts to connected diagrams to verify a modified
functional equation. These equations have also appeared recently in studies of the combi-
natorics of lambda calculus, and we explain how to use our results to verify a conjecture
that a certain family of lambda terms is equinumerous with bridgeless maps.

2 Equality of the cardinality sequences

Once the observation has been made, it is quite elementary to show that the cardinali-
ties of the above-mentioned classes are the same by proving that they satisfy the same
recurrences, as we will do in this section. First, we establish the recurrence for connected
diagrams and bridgeless maps, which implies Theorem 10. Then, we establish a recur-
rence for indecomposable diagrams and unrestrained maps, which yields a new proof of
Theorem 11. Note that the propositions we prove in this section also yield implicit cor-
respondences between the combinatorial classes, but they do not determine which map a
given diagram must be sent to. Although it is easy to settle that in an arbitrary way, the
more careful analysis of Section 3 and 4 will yield bijections preserving various important
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statistics.

2.1 Between connected diagrams and bridgeless maps

We combinatorially show the following recurrence – which characterizes the sequence
A000699 in the OEIS – for connected diagrams and bridgeless maps. The formula was
given by Stein [26] for connected diagrams, but it has never been stated for bridgeless
maps.

Proposition 12. The number cn of rooted connected diagrams of size n and the number
of rooted bridgeless maps of size n both satisfy c1 = 1 and

cn =
n−1∑
k=1

(2k − 1) ck cn−k. (1)

Proof. The recurrence relation translates the fact that it is possible to combine two ob-
jects, one of which is weighted by twice its size (minus 1), to bijectively give a bigger
object of cumulated size. We describe how to do so for our two classes.

connected
diagrams ⊕

bridgeless
maps



⊕

⊕

Figure 2: Schematic decomposition of connected diagrams and bridgeless maps.

Connected diagrams. For connected diagrams, 2k − 1 counts the number of intervals
delimited by k chords. In other words, it means there are 2k−1 ways to insert a new root
chord in a diagram of size k. We can find in the literature numerous ways to combine
a diagram C1 with another diagram C2 with a marked interval [23]. The one we choose
comes from [10] and is illustrated in Figure 2. The idea is to insert C2 into C1, just after
the root chord of C1. Then, we move the right endpoint of the root chord of C1 to the
marked interval of C2. We thus obtain our final combined diagram.

To recover C1 and C2, we mark the interval just after the root chord. Then, we pull the
right endpoint of the diagram to the left until the diagram disconnects into two connected
components. The first component is C1, the second one C2.
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Bridgeless maps. In maps of size k, the number 2k− 1 refers to the number of corners.
Given two maps M1 and M2 where M2 has a marked corner, we construct a larger map
as follows (this is also illustrated in Figure 2).

If M1 has size 1, we insert a new edge in M2 which links the root corner of M2 to its
marked corner. If M1 has size greater than 1 then it has a root edge. Let us unstick the
second endpoint of the root edge and insert it in the marked corner of M2. Then, we take
the root of M2 and insert it where the second endpoint of the root edge of M1 was. We
thus obtain our final map. Note that no bridge has been created in the process.

To recover M1 and M2, we start by marking the corner after the second endpoint of
the root edge of the new map. Then, grab this endpoint and slide it up, towards the
root. When a bridge appears, we stop the process and cut the bridge, marking it as a
root. The two resulting diagrams are M1 are M2. If we reach the root vertex with this
process without creating any bridge, then it means that M1 was the trivial map with one
half-edge. In that case, we obtain M2 by just removing the root edge.

2.2 Between indecomposable diagrams and maps

We now prove a similar proposition for indecomposable diagrams and unconstrained maps.
The recurrence formula, which we can consider to be part of folklore, is essentially the
one described by Arquès and Béraud for maps [2]. To our knowledge, this has never been
combinatorially interpreted for indecomposable diagrams.

Proposition 13. The number bn of indecomposable diagrams of size n and the number
of rooted maps of size n both satisfy b1 = 1 and

bn =
n−1∑
k=1

bk bn−k + (2n− 3)bn−1. (2)

Proof. The decompositions for both classes, which we describe in this proof, are illustrated
by Figure 3.
Indecomposable diagrams. For an indecomposable diagram D of size n > 1, there are
two exclusive possibilities.

• The deletion of the root chord makes the diagram decomposable, i.e. the
resulting diagram is the concatenation of several indecomposable diagrams. Let D1

be the first one of them, and D2 the diagram D where we have removed D1 while
leaving the root chord in place. The transformation is reversible; we can recover D
from D1 and D2 by putting D1 in the leftmost interval (after the left endpoint of
the root chord) of D2. Thus, if D1 has size k, the number of such diagrams D is
bkbn−k.

• The deletion of the root chord induces another indecomposable diagram
D′. Then D′ has size n − 1 and we can recover D via a root chord insertion. As
mentioned in the proof of Proposition 12, a chord diagram with k chords has 2k− 1
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indecomposable
diagrams

 or↔ ↔

rooted maps


or↔ ↔

Figure 3: Schematic decomposition of indecomposable diagrams and maps.

intervals, so there are 2n− 3 different ways to insert a root chord in D′. Thus, the
number of such diagrams is (2n− 3)bn−1.

The conjunction of both cases gives Equation 2.
Maps. The decomposition we give is based on Tutte’s classic root edge removal proce-
dure, extended to the arbitrary genus case [2, 11]. We distinguish again two exclusive
possibilities for a rooted map of size n > 1.

• The root edge is a bridge. In other words, M joins two different maps M1 and
M2 via a bridge. If M1 has size k, there are then bkbn−k such maps.

• The root edge is not a bridge. Then M is obtained from a map of size n− 1 by
a root edge insertion. There are 2n− 3 ways to insert a root edge in a map of size
n− 1 (this corresponds to the number of corners). Thus, the number of such maps
is (2n− 3)bn−1.

Again, Equation 2 results from the consideration of these two cases.

3 Basic operations

We define in this section several basic operations on chord diagrams and combinatorial
maps, which will be used in Section 4 to formally construct bijections between connected
diagrams and bridgeless maps, and between indecomposable diagrams and general maps.

3.1 Operations on chord diagrams

Definition 14 (Operations RootIns and DiagIns). Let D be a diagram of size n, k an
integer 1 6 k 6 2n − 1, and D′ an arbitrary diagram. We write RootInsk(D) to denote
the diagram obtained from D by inserting a new root chord whose right endpoint ends
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in the kth interval of D (from left to right), and DiagInsD′,k(D) to denote the diagram
obtained from D by inserting the diagram D′ into the kth interval of D. (Figure 4 shows
examples of both operations.)

RootIns5( )= ( )=DiagIns ,3

Figure 4: Illustration of operations RootIns and DiagIns.

The following technical lemma describes an important commutation relation between
RootIns and DiagIns.

Lemma 15. Let k and ` be two integers and D an indecomposable chord diagram. We
have the commutation rules

DiagInsD,` ◦RootInsk = RootInsk ◦DiagInsD,`−2, if k 6 `− 2, (3)

DiagInsD,` ◦RootInsk = RootInsk+2|D| ◦DiagInsD,`−1, if 1 6 `− 1 6 k, (4)

where |D| is the number of chords in D.

Proof. Each time we (i) insert a new root chord into a diagram C and then (ii) insert a
diagram into C, we can choose to do it in the opposite order – (ii) then (i) – as long as the
diagram is not inserted into the first interval. The only things we have to take care of are
the positions where the insertions occur, which can change after a root chord insertion or
a diagram insertion. Thus, the ith leftmost interval becomes, after an operation RootInsk,
the (i + 1)th leftmost interval if i < k, and the (i + 2)th one if i > k. Similarly, after an
operation DiagInsD,`, the ith leftmost interval remains the ith leftmost interval if i < `,
and will become the (i + 2|D|)th leftmost interval if i > `. Equations (3) and (4) follow
from this analysis.

Finally, we define an operation on combinatorial objects, that we name indexed prod-
uct. For connected diagrams, it corresponds to the combination of two connected diagrams
described in the proof of Proposition 12.

Definition 16 (Indexed product for connected diagrams). Let C1 and C2 be two con-
nected diagrams, and i be an integer between 1 and 2|C2| − 1, where |C2| is the size of
C2. The connected diagram C1 ?i C2 is defined as

RootInsi(C2) if C1 is the one-chord diagram,

RootInsi+`

(
DiagInsC2,`(Ĉ1)

)
if C1 is of the form RootIns`(Ĉ1) for some Ĉ1.

Examples of this operation are shown in Figure 5. Let us recall, as used in the
proof of Proposition 12, that the star product induces a bijection between connected
diagrams C, and triples (C1, C2, i) where C1 and C2 are two connected diagrams, and
i ∈ {1, . . . , 2|C2| − 1}.

Other similar definitions are both possible and useful. We will define a variant of the
indexed product for some technical work in Subsection 5.3 (see Definition 34).
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?4 = ?4 =

Figure 5: Illustration of the indexed product for connected diagrams.

3.2 The Bridge First Labeling of a map

1

2 3

4

56

7 8

910
11

13

15
16

17

14

12

Figure 6: The Bridge First Labeling of a map. The overlined edges correspond to the edges
which become bridges during the algorithm described in Subsection 3.2. Alternatively,
they form the spanning tree associated to the rightmost DFS.

Given a rooted mapM (potentially with dangling edges), we describe in this subsection
a way to label the corners of M , which we call the Bridge First Labeling of M . We choose
this labeling because we want the operations of insertions in maps to satisfy an analogue
of Lemma 15.

The Bridge First Labeling is given by the following algorithm.

• The first corner we consider is the root corner. We label it by 1.

• Assume the current corner is labeled by k, and consider the (potentially dangling)
edge e adjacent to this corner in the counterclockwise order. There are three possi-
bilities:

– The edge e is a bridge. Go along this edge to the next corner. Label this corner
by k + 1.

– The edge e is a dangling edge. Go to the following corner in the counterclock-
wise order, and label it by k + 1.

– The edge e is neither dangling nor a bridge. Cut e into two dangling edges.
Go to the following corner in the counterclockwise order, and label it by k+ 1.

• The algorithm stops when we reach the root.

An example of a run of this algorithm has been started in Figure 7.
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Figure 7: The first steps of the Bridge First Labeling of the map of Figure 6.

Alternatively, the Bridge First Labeling can be deduced from the tour2 of the spanning
tree induced by the Depth First Search (DFS) of the map where we favor the rightmost
edges (call this a rightmost DFS ). The notion of rightmost DFS will return in Subsec-
tion 5.6.

3.3 Operations on maps

Now that we have set a suitable way to label the corners of a map, we define two analogues
of RootIns and DiagIns for maps:

Definition 17 (Operations RootIns and MapIns). Let M be a map of size n, k an
integer 1 6 k 6 2n− 1, and M ′ an arbitrary map. We write RootInsk(M) to denote the
map obtained from M by adding an edge linking the root corner and the kth corner of
the Bridge First Labeling of M . We write MapInsM ′,k(M) to denote the insertion of M ′

in M via a bridge at the kth corner of the Bridge First Labeling of M .

Examples are given by Figure 8.

RootIns12( )= MapIns ,6 ( )=

Figure 8: Illustration of operations RootIns and MapIns.

The next lemma explains why we have chosen the Bridge First Labeling as a canonical
way to number the corners of a map: the operations RootIns and MapIns satisfy an
analogous commutation relation as the corresponding operations RootIns and DiagIns on
diagrams (Lemma 15). Numerous statistics will be thus preserved when we transform a
map into a diagram.

Lemma 18. Let k and ` be two integers, and M be a combinatorial map (with only one

2in the sense of [3]: we visit every half-edge, starting by the root. If a half-edge does not belong to
the spanning tree, we go to the next half-edge in counterclockwise order; it a half-edge does belong to it,
we follow the associated edge.
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dangling edge, marking the root). We have the commutation rules

MapInsM,` ◦RootInsk = RootInsk ◦MapInsM,`−2, if k 6 `− 2, (5)

MapInsM,` ◦RootInsk = RootInsk+2|M | ◦MapInsM,`−1, if 1 6 `− 1 6 k, (6)

where |M | is the number of edges in M .

Proof. Similarly as in Lemma 15, we have to understand how a root edge insertion or a
diagram insertion affects the labels of a map.

The edge added by the operation RootInsk will be necessarily cut in half at the start
of the Bridge First Labeling algorithm. The rest of the tour will be unchanged, except for
an extra step at the kth position, which is the visit of the second dangling edge resulting
from the root edge. Therefore, a corner labeled by i with i < k will carry the label i+ 1
(the first dangling edge has been visited but not the second one), while a corner labeled
by i with i < k will carry the label i+ 2.

Concerning the operation MapInsM,`, it will only affect the labels of the corners which
are after `. Indeed, after the `th step, we have to visit the entire map M , which counts
2|M | corners. Thus, a corner with label i > ` will carry the label i + 2|M | after the
operation MapInsM,`.

Finally, we define an indexed product for bridgeless maps. As for connected diagrams,
this product describes the combination between two bridgeless maps which is stated in
the proof of Proposition 12. It is the formal analog of Definition 16.

Definition 19 (Indexed product for bridgeless maps). Let M1 and M2 be two bridgeless
maps, and i an integer between 1 and 2|M2| − 1, where |M2| is the size of M2. The
bridgeless map M1 ?iM2 is defined as

RootInsi(M2) if M1 is reduced to a root,

RootInsi+`

(
MapInsM2,`(M̂1)

)
if M1 is of the form RootIns`(M̂1) for some M̂1.

Once again, following the proof of Proposition 12, for each bridgeless map M of size
> 1, there exists a unique triple (M1,M2, i) where M1 and M2 are two bridgeless maps
such that M = M1 ?iM2. Examples of this indexed product are shown in Figure 9.

?4 = ?4 =

Figure 9: Illustration of the indexed product for bridgeless maps.
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4 Description of the main bijections

With all the tools we have introduced, it is now easy to construct explicit bijections
between connected diagrams and bridgeless maps.

4.1 Natural bijections

We establish first a bijection between bridgeless maps and connected diagrams, which we
denote θ.

Definition 20 (Bijection θ between bridgeless maps and connected diagrams). Let M
be a bridgeless map.

• If M is reduced to a root, then θ(M) is the one-chord diagram.

• Otherwise, M is of the form M1 ?iM2. Then θ(M) is equal to θ(M1)?i θ(M2), where
θ(M1) and θ(M2) are computed recursively.

Figure 10: A bridgeless map and a connected diagram in bijection under θ.

The mapping θ is provably bijective since we can define its inverse θ−1 by symmetry.
Figure 10 presents a bridgeless map and a connected diagram in bijection under θ, the
decompositions of which are shown by Figures 4 and 8.

As mentioned in the introduction, it was already known that rooted maps are in
bijection with indecomposable diagrams [24, 25, 8]. However, this known bijection does
not restrict to a bijection between bridgeless maps and connected diagrams, so we will
now give one which does.

Definition 21 (Bijection φ between maps and indecomposable diagrams). Let M be a
combinatorial map. We define here the indecomposable diagram φ(M) as follows. (Fig-
ure 11 illustrates this definition.)

• If M is reduced to the root, then φ(M) is the one-chord diagram.

• Assume that the root edge of M is a bridge, i.e. M is of the form MapInsM↓,1(M↑)
for some M↓ and M↑. Then φ(M) is defined as

φ(M) = DiagInsφ(M↓),1 (φ(M↑)) .

(The diagrams φ(M↓) and φ(M↑) are defined recursively.)
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• Assume that the root edge of M is not a bridge, i.e. M is of the form M =
RootInsk(M

′). Then φ(M) is defined as

φ(M) = RootInsk (φ(M ′)) .

(The diagram φ(M ′) is defined recursively.)

φ

Figure 11: How φ is defined.

Remarkably, the two previous bijections are compatible with each other.

Theorem 22. The bijection φ is a bijection between rooted maps and indecomposable
diagrams whose restriction to bridgeless maps is θ. (Therefore, φ sends bridgeless maps
to connected diagrams.)

The proof will be postponed for the next subsection.

4.2 Extension of θ and equality between bijections

In this subsection, we give another description of φ, which is directly based on θ. To
do so, we again exploit the fact that rooted maps and indecomposable diagrams have
equivalent decompositions, but now in terms of bridgeless maps and connected diagrams.
The next proposition states those decompositions for both families, the principle of which
is illustrated in Figure 12.

Proposition 23. Decomposition of diagrams. Any indecomposable diagram D can
be uniquely decomposed as a connected diagram C and a sequence (D1, i1), . . . , (Dk, ik)
where each Dj is an indecomposable diagram and ij is a integer such that i1 6 · · · 6 ik
and

D = DiagInsD1,i1 ◦DiagInsD2,i2 ◦ · · · ◦DiagInsDk,ik
(C).

Decomposition of maps. Any map M can be uniquely decomposed as a bridgeless map
MB and a sequence (M1, i1), . . . , (Mk, ik) where each Mj is a map and ij is a integer such
that i1 6 · · · 6 ik and

M = MapInsM1,i1 ◦MapInsM2,i2 ◦ · · · ◦MapInsMk,ik
(MB).
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connected

indecomposable bridgeless

unconstrained

Figure 12: Left. Decomposition of an indecomposable diagram. Right. Decomposition of
an unconstrained map. It is also the image of the diagram under φ = θ.

Proof. Indecomposable diagrams. Here C is the connected component of D that
includes the root chord. We can recover D from C by inserting in each interval of C a
sequence of indecomposable diagrams. We can do that starting from the right and ending
to the left, which gives the above decomposition.
Maps. Here MB is the “bridgeless component” of the root (see right side of Figure 12).
We recover M from MB by grafting on each corner of MB a sequence of combinatorial
maps. This can be done in the decreasing order for the Bridge First Labeling of MB.

Definition 24 (Definition of θ). Consider a map M . Let

M = MapInsM1,i1 ◦MapInsM2,i2 ◦ · · · ◦MapInsMk,ik
(MB)

be the decomposition of M described by Proposition 23. Then θ(M) is defined as the
diagram

θ(M) = DiagInsθ(M1),i1
◦DiagInsθ(M2),i2

◦ · · · ◦DiagInsθ(Mk),ik
(θ(MB)) .

where θ is the bijection defined by Definition 20 and where θ(M1), . . . , θ(Mk) are computed
recursively3.

It is easy to prove that θ is a bijection since θ
−1

can be similarly defined by swapping the
roles of maps and diagrams. Moreover, when M is bridgeless, we have k = 0. Therefore,
the restriction of θ to bridgeless maps is, by definition, equal to θ.

Theorem 22 then results from the following proposition.

Proposition 25. We have φ = θ.

3Since we have θ = θ for bridgeless diagrams, the base cases of the recursion are well treated.
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Proof. We prove that φ(M) = θ(M) for any map M by induction on the size of the map.
The base case (when M reduced to a root) is given by the definitions.

Let M be a map of size > 1, which we decompose (by Proposition 23) as

M = MapInsM1,i1 ◦MapInsM2,i2 ◦ · · · ◦MapInsMk,ik
(MB).

There are three possibilities.
1. The root edge of M is a bridge. Since the root edge of M is a bridge,

we have i1 = 1. Moreover, referring to the notation of Definition 21, M1 = M↓ and
M↑ = MapInsM2,i2 ◦ · · · ◦MapInsMk,ik

(MB). By using twice the definition of θ, we have

θ(M) = DiagInsθ(M1),1
◦DiagInsθ(M2),i2

◦ · · · ◦DiagInsθ(Mk),ik
(θ(MB))

= DiagInsθ(M1),1

(
θ(M↑)

)
.

But by induction, θ(M1) = φ(M1) and θ(M↑) = φ(M↑). Thus, we recover the definition
of φ, and so θ(M) = φ(M).

2. The root edge of M is not a bridge and its deletion in MB gives a
bridgeless map M ′

B. Then MB is of the form MB = RootInsi(M
′
B). By definition of θ,

we have θ(MB) = RootInsi(θ(M
′
B)). Therefore

θ(M) = DiagInsθ(M1),i1
◦ · · · ◦DiagInsθ(Mk),ik

◦RootInsi (θ(M
′
B)) .

Since i1 > 1, we can use Lemma 18 to slide the operation RootIns to the left:

θ(M) = RootInsj ◦DiagInsθ(M1),j1
◦ · · · ◦DiagInsθ(Mk),jk

(θ(M ′
B)) .

(The integers j, j1, . . . , jk are given by Lemma 18.) But by Lemma 15 we also have

M = MapInsM1,i1 ◦ · · · ◦MapInsMk,ik
◦RootInsi(M

′
B)

= RootInsj ◦MapInsM1,j1 ◦ · · · ◦MapInsMk,jk
(M ′

B),

with the same j, j1, . . . , jk as above. So using successively the definition of φ, the induction
hypothesis, and the definition of θ,

φ(M) = RootInsj
(
φ
(
MapInsM1,j1 ◦ · · · ◦MapInsMk,jk

(M ′
B)
))

= RootInsj
(
θ
(
MapInsM1,j1 ◦ · · · ◦MapInsMk,jk

(M ′
B)
))

= RootInsj

(
DiagInsθ(M1),j1

◦ · · · ◦DiagInsθ(Mk),jk
(θ(M ′

B))
)

= θ(M).

3. The root edge of M is not a bridge and its deletion in MB does not give
a bridgeless map. Since the deletion of the root edge of MB does not give a bridgeless
map, MB is an indexed product (see Definition 19) of the form

MB = M ′ ?`M
′′
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where M ′ is a bridgeless map of size > 1, and M ′′ is some bridgeless map. Since M ′

has size more than 1, it can be put in the form RootInsi(M̂). Then, by definition of the
indexed product, MB can be written as

MB = RootInsi+` ◦MapInsM ′′,i

(
M̂
)
.

Since by definition, θ(MB) = θ(M ′) ?` θ(M
′′), we also have

θ(MB) = RootInsi+` ◦DiagInsθ(M ′′),i

(
θ(M̂)

)
.

Then, using the same techniques as the previous case, we apply the definition of θ:

θ(M) = DiagInsθ(M1),i1
◦ · · · ◦DiagInsθ(Mk),ik

◦RootInsi+` ◦DiagInsθ(M ′′),i

(
θ(M̂)

)
,

we commute the operators thanks to Lemma 15:

θ(M) = RootInsj ◦DiagInsθ(M1),j1
◦ · · · ◦DiagInsθ(Mk),jk

◦DiagInsθ(M ′′),i

(
θ(M̂)

)
,

we recognize the definition of θ:

θ(M) = RootInsj

(
θ
(

MapInsM1,j1 ◦ · · · ◦MapInsMk,jk
◦MapInsM ′′,i

(
M̂
)))

,

and we use the induction hypothesis and the definition of φ to conclude.

4.3 Planar maps as diagrams with forbidden patterns

Planarity of a combinatorial map can be recognized using its Euler characteristic.

Definition 26 (Faces, Euler characteristic, planarity). Let M = (H, σ, α, r) be a rooted
combinatorial map (potentially with dangling edges). The faces of M are the orbits
of the composite permutation σα. The root face is the face containing r. The Euler
characteristic of M is defined by

χ(M) = | orbit(σ)|+ | orbit(α)|+ | orbit(σα)| − |H|.

M is said to be planar if χ(M) = 2.

We here characterize the image of planar maps under the previous bijections.

Proposition 27. Under φ planar rooted maps with n edges are in bijection with inde-
composable diagrams with n chords which do not contain the configuration of Figure 13
as a subdiagram. Thus, restricting to θ, a bridgeless map is planar if and only if the
corresponding connected diagram does not contain the forbidden configuration.

Before we prove this result we need a couple more definitions.
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Figure 13: Forbidden configuration for diagrams corresponding to planar maps.

Definition 28 (Internal/external corners). Given a planar rooted map M , a corner whose
second component is contained in the root face is called an external corner of M . A corner
which is not external is called internal .

Definition 29 (Blocked/unblocked intervals). Given an indecomposable diagram D, an
interval in D is a blocked interval if it is

• under the root chord and under at least one other chord in the same connected
component as the root chord,

• or already blocked in a component of the diagram obtained by removing the root
chord.

An interval which is not blocked is called unblocked .

Lemma 30. Let M be a planar rooted map. The blocked intervals of φ(M) correspond to
the internal corners of M .

Proof. We prove this lemma by induction. In the base case M is the trivial map, which
has no internal corners, corresponding to the one-chord diagram with no blocked intervals.
Suppose M is a planar map with more than one half-edge. There are two cases.

Suppose the root edge of M is a bridge, so that M = MapInsM1,1(M2), where M1 and
M2 are planar maps. All of the internal corners ofM1 andM2 remain internal inM , and all
of the external corners remain external (the external root corner of M2 splits into two ex-
ternal corners inM). Likewise, since the connected components remain the same, all of the
blocked intervals of φ(M1) and φ(M2) remain blocked in φ(M) = DiagInsφ(M1),1(φ(M2)),
and unblocked intervals remain unblocked. By induction, the internal corners of M1 and
M2 correspond to the blocked corners of φ(M1) and φ(M2), so this ends the proof.

The other case is M = RootInsk(M1), where M1 is planar and k is an external corner
of M1. The external corners of M are its root corner, along with the external corners of
M1 which counterclockwisely follow the corner labeled by k. Expressed in terms of the
Bridge First Labeling of M1, these external corners are those with an index larger than
k, which correspond to the corners with index > k + 2 in M . On the other hand, for
the diagram φ(M) = RootInsk(φ(M1)), the new root chord blocks the intervals 2 through
k+1 in φ(M), while leaving the other intervals unchanged. By induction, internal corners
of M1 correspond to blocked corners of φ(M1), so this concludes the proof.
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Proof of Proposition 27. Let us first observe that MapInsM1,k(M2) is planar if and only if
both M1 and M2 are planar, while RootInsk(M1) is planar if and only if M1 is planar and
k is an external corner of M1.

Now, consider a map M as built iteratively according to the induction used in the
definition of φ(M).

Suppose M is nonplanar. Then at some stage in this construction we must have built
a map RootInsk(M1) by inserting a new root edge into an internal corner of a planar
map M1. Let M ′ = RootInsk(M1). We will now proceed to show that φ(M ′) has the
configuration of Figure 13.

By Lemma 30, since RootInsk(M1) comes from the insertion of a new root edge into an
internal corner, RootInsk(φ(M1)) comes from the insertion of a a new root into a blocked
interval k of φ(M1). Let r be the root chord of φ(M ′) = RootInsk(φ(M1)). Since the
interval where r is inserted is blocked, there is some subdiagram of φ(M1) where the first
point of the definition of blocked interval holds. In other words, there is a connected
subdiagram C of φ(M1) with root chord s, and when r is inserted via RootInsk(φ(M1)),
then r crosses both s and another chord t of C. Since s is the root of C, other chords
of C can only cross s on the right. Also C is connected, so there is a chain of chords
connecting t to the right hand side of s. By taking a minimum chain we can guarantee
that the chords in the chain go from left to right and do not cross chords which are not
their immediate neighbors. Thus r, s and the chain give the forbidden configuration in
Figure 13.

Further operations of RootIns and DiagIns preserve the forbidden configuration, and
so φ(M) also has the forbidden configuration. Thus we have proved that if M is nonplanar
then φ(M) has the forbidden configuration.

Now consider the converse. With no planarity assumption on M , suppose that φ(M)
has the forbidden configuration. Then at some stage in the construction of φ(M) we must
have built a diagram RootInsk(φ(M1)) so that the newly constructed root chord, call it
r, crosses the root chord s of φ(M1) and another chord t of φ(M1) and there is a chain in
φ(M1) joining the right end points of t and s. In particular the kth interval of φ(M1) is
under s and t, both of which are in the same connected component of φ(M1). Thus this
interval is blocked in φ(M1). By Lemma 30, it must correspond to an internal corner of
M1, and so RootInsk(M1) is nonplanar. Further, once the map becomes nonplanar, no
sequence of RootIns or MapIns operations can make the map planar again, and so M is
also nonplanar.

An interesting question (posed by a referee) is whether indecomposable diagrams cor-
responding to genus 1 maps can be similarly characterized by a list of forbidden configu-
rations. We leave this as an open problem.

5 New perspectives on chord diagram expansions in QFT

Interestingly, by the work of some of the authors with other collaborators [22, 15, 10],
rooted connected chord diagrams appear in quantum field theory where they give series
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solutions to certain Dyson-Schwinger equations. We are going to see that the θ bijection of
Section 4 will simplify some formulas in this theory: Corollary 48 recasts the main result of
[15] in map language; Table 3 shows how important parameters translate, some becoming
considerably more natural; and along the way we prove and generalize a conjecture of
Hihn (see the discussion at the end of Subsection 5.4). This section will begin with some
of the physics context. The reader who simply wants to get to the combinatorics can jump
to Definition 31 in Subsection 5.2 and then also skip the discussion after (10), returning
at (13).

5.1 Context: Feynman graphs and Dyson-Schwinger equations

This physics work lies within the field of perturbative quantum field theory, which is the
approach of studying quantum field theory by expanding in (hopefully small) parameters.
One well-established and still very useful way to do this is by expanding in Feynman
graphs (also known as Feynman diagrams).

Feynman graphs are graphs with edge types corresponding to the different particles in
the quantum field theory in question and with vertex types corresponding to the possible
interactions in the theory. Feynman diagrams may also have external edges, which are
best thought of as half-edges which are not paired into an edge with another half-edge,
analogous to the root in our combinatorial maps. For example the Feynman graphs in
Figure 14 is in a theory (Yukawa theory) with two edge types, an unoriented edge shown
with a dashed line and an oriented edge. This theory has one vertex type with one ingoing
and one outgoing oriented edge and one dashed edge. The example in the figure has two
external edges (on the right and left). The size of a Feynman graph is usually taken to be
the dimension of its cycle space, so one and four respectively for the two example graphs
in Figure 14; this is called the loop number in the physics literature. For formal definitions
in a compatible language see sections 5.1 and 5.2 of [32]. In perturbative quantum field
theory each Feynman graph is associated to an integral called the Feynman integral, where
each edge and vertex of the graph contributes a factor to the integrand (or more generally
a factor to each term in a sum giving the integrand). A few examples can be found in
section 5.6 of [32] and many more along with more information on where these integrals
come from can be found in any quantum field theory textbook, for example section 6.1 of
[17].

Summing Feynman integrals corresponding to Feynman graphs with the same multiset
of external edges computes the scattering amplitude for the physical process where the
external edges are the particles coming into and going out of the process, as for example
in a particle accelerator where some known particles are collided and the output particles
of the collision are measured by the detectors. As in enumerative combinatorics we can
restrict to considering connected Feynman graphs by taking a logarithm and to bridgeless
Feynman graphs by taking a Legendre transform [18]. The resulting sums of Feynman
integrals over all connected bridgeless Feynman graphs with a given multiset of external
edges are Green functions of the theory. These sums are still very difficult to analyze,
which motivates to study special cases where we put further restrictions on the graphs.
We will also call these more restricted sums Green functions.

the electronic journal of combinatorics 26(4) (2019), #P4.37 23



Dyson-Schwinger equations are the quantum analogues of the classical equations of
motion. The solutions of such functional equations are the same Green functions of the
quantum field theory discussed above. It turns out that these equations have a nice
underlying combinatorial aspect. They capture the decomposition of Feynman graphs
into subgraphs, so viewing perturbative expansions as intricately weighted generating
functions, the Dyson-Schwinger equations can be interpreted as equations for the gener-
ating functions of appropriate combinatorial classes of Feynman diagrams. Furthermore
these functional equations mirror the combinatorial decomposition of the graphs. Using
the universal property of the so-called Connes-Kreimer Hopf algebra of rooted trees, we
can also view the Dyson-Schwinger equations as functional equations for classes of rooted
trees. This happens by using the rooted trees to represent insertion structures of Feynman
diagrams.

Dyson-Schwinger equations can be expressed in a number of different forms which are
not obviously related. The first form one might find is an equation involving the derivative
of an important object known as the action in terms of another function of the field. The
precise definitions would be too much of a digression for the present purposes, but with a
similar argument to the derivation of the Feynman integrals themselves, Dyson-Schwinger
equations in this form can be converted into diagrammatic form, namely, in terms of sums
over Feynman graphs. One fairly concrete presentation of this material can be found in
sections V.A and V.B of the notes [28].

The Dyson-Schwinger equations in diagrammatic form are essentially combinatorial
specifications for classes of Feynman graphs interpreted at the level of the Green func-
tions. A good concrete example is the special case of bridgeless connected Yukawa theory
graphs formed by iteratively inserting the left hand graph of Figure 14 into itself. Dia-
grammatically this Dyson-Schwinger equation is often written

= −
(7)

where a graph with a blob represents a sum of Feynman integrals, running over all pos-
sible graphs that can be formed by substituting some graph into the blob (while staying
compatible with the edge and vertex types allowed in the theory). Furthermore, for the
grey (lighter) blob we restrict to connected bridgeless graphs, while for the purple (darker)
blob a sequence of any number of connected bridgeless graphs can be inserted. This is
usually written

=
1

.

To interpret this second equation, note that the previous equation for the graph with the
grey (lighter) blob told us that the sum corresponding to the graph with the grey blob
begins with just a single edge (known as a propagator since it corresponds to a particle
propagating without interacting). Inserting a single edge into an edge is the identity
operation (because there are no vertices at the ends, so we do not create subdivisions),
and so we can treat it as 1. Thus the graph with the grey blob corresponds to an invertible
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Figure 14: Two examples of Feynman graphs which occurs in the simpler Dyson-Schwinger
equation.

series and in particular the inverse is the geometric series of the second term on the right
of (7). An example of two Feynman graphs appearing in this expansion are given in
Figure 14.

Translated into more combinatorial terms, these equations are telling us that the
class of graphs we are building consists of an outer arc and inside a sequence of smaller
graphs from the class; that is we have a graph class in bijection with rooted trees with
the classical combinatorial specification T = • × Seq(T ) and corresponding generating
function equation T (x) = x/(1 − T (x)). The Dyson-Schwinger equation rewrites this
in terms of U(x) = 1 − T (x) and so the generating function equation becomes U(x) =
1−x/U(x). The only difference between this last generating function equation and (7) is
that rather than an ordinary generating function we have the Green function, so we are
weighting each graph with its Feynman integral rather than just counting them in the
sum.

Analogously to how the combinatorial specification converts to the functional equation
for the generating function, the diagrammatic form of the Dyson-Schwinger equation can
be converted to an analytic form: an integral equation which arises when each Feynman
graph is replaced by its Feynman integral. The particular example we have been using
was studied in this integral form and solved by Broadhurst and Kreimer in [6]. It can also
be found in notation closer to what we are using here as a running example in [31] or [30]
(see particularly example 3.5), or in chapter 6 of [32].

However, this is still not the form we want for the Dyson-Schwinger equation. Ex-
ample 3.7 of [31] of [30] shows how to convert this integral form of the Dyson-Schwinger
equation into a differential form. In this example the equation becomes

G(x, L) = [ρ0]

(
1− xG

(
x,

d

d(−ρ)

)−1
(e−Lρ − 1)F (ρ)

)
(8)

where
F (ρ) = f0ρ

−1 + f1 + f2ρ+ · · ·

is the series expansion of the regularized Feynman integral of the primitive Feynman graph
(see [22] for details). Note that e−Lρ−1 has no constant as a series in ρ, so (e−Lρ−1)F (ρ)
is in fact a power series, not a Laurent series, in ρ.

There are a number of observations to be made about this equation. First of all
Equation (8) should be interpreted as a formal series equation. The unknown is the
bivariate series G(x, L). The appearance of the differential operator d/d(−ρ) in G should
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be interpreted by substituting d/d(−ρ) for L in the formal power series G(x, L)−1 and
then viewing this term by term as a formal differential operator acting on (e−Lρ−1)F (ρ).

To continue the Yukawa example, in that case we have F (ρ) = 1/(ρ(1 − ρ)) and so
then G(x, L) in (8) is the sum indexed by all Feynman graph generated by (7) where each
graph contributes its Feynman integral. The variable L is defined as L = log(q2/µ2) where
q is the momentum coming in and going out of each graph and µ is a renormalization
constant, and x is the coupling constant (giving the strength of the interaction).

If we took a different class of Feynman graphs, potentially in a different quantum
field theory, but with the same combinatorics, then the only thing that would change
in (8) would be F (ρ). For example, quantum electrodynamics is the quantum theory of
photons and electrons (and positrons), and also has one directed edge type (corresponding
to electrons and positrons) and one undirected edge type (corresponding to photons) and
the only kind of vertex is the one with one photon edge along with an incoming and an
outgoing directed edge. The graphs combinatorics is the same and so the analogous class
of graphs with photon edges (usually drawn with wiggly lines) replacing the dashed edges
would also satisfy (8) but F (ρ) would be a different series.

5.2 Context: chord diagram expansions of Dyson-Schwinger equations

One of us has a program with various collaborators to better understand the combinatorial
underpinnings of Dyson-Schwinger equations. One of the successes of this program has
been to solve certain classes of Dyson-Schwinger equations using expansions indexed by
chord diagrams, first in [22] and then generalized in [15].

The paper [22] considered the Dyson-Schwinger equation (8) discussed above. This
corresponds to the situation where one primitive4 Feynman graph is inserted into itself in
all possible ways on one internal edge.

The paper [15] considers more general Dyson-Schwinger equations, see Equation (10),
though they are still not the most general possible. The form studied in [15] captures
classes of graphs which can be made from inserting more than one different graph into
itself, and so in particular the graphs may be nonplanar. The parameter s in (10) lets the
equation also capture different underlying combinatorics of edge and vertex types. More
details on s are given below where (10) is discussed.

Two things are missing before we can consider that we have captured all Dyson-
Schwinger equations from quantum field theory. First, the Fi should be multivariate.
This corresponds to the fact the momentum of different particles in the process is in
general different. Second, we should work with systems of Dyson-Schwinger equations, as
we are not interested in just one multiset of external edges, but with many, and we are
interested in how the different external edge structures interact. Some of this is work in
progress with one of us and a student; the program of understanding Dyson-Schwinger
equations by chord diagram expansions is ongoing.

4In this case primitive means primitive in the renormalization Hopf algebra, or equivalently having no
proper subdivergences.
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34

Figure 15: An example where the intersection order (indicated) is not the order by first
end point.

To proceed, we need two further definitions concerning rooted connected chord dia-
grams which arise from the quantum field theory application, see [22, 15].

Definition 31 (Intersection order). The intersection order of the chords of a rooted
connected diagram C is defined as follows.

• The root chord of C is the first chord in the intersection order.

• Remove the root chord of C and let C1, C2, . . . , Ck be the connected components of
the result ordered by their first vertex.

• For the intersection order of C, after the root chord come all the chords of C1

ordered recursively in the intersection order, then all the chords of C2 ordered by
intersection order, and so on.

This intersection order is not in general the same as the order by first endpoint,
see Figure 15 for an example. The intersection order and the order by first endpoint
both define total orders on chords extending the partial order induced by paths in the
intersection graph (recall Definition 3).

Definition 32 (Terminal chord). A chord c is terminal if the left endpoint of every chord
intersecting c is to the left of c.

Equivalently, a chord c is terminal if it does not cross any chords larger than it in
the intersection order; or (third equivalent definition) a chord is terminal if it is a sink
in the intersection graph. For example, in Figure 15, only chords labeled by 3 and 4 are
terminal.

The main result of [22] was to solve the Dyson-Schwinger equation (8) as

G(x, L) = 1−
∑
C

b(C)∑
i=1

fb(C)−i
(−L)i

i!

x|C|f
|C|−`
0

∏̀
j=2

ftj−tj−1
(9)

where the sum is over connected diagrams C and the terminal chords of C are indexed
by b(C) = t1 < t2 < · · · < t` in the intersection order. Note that this gives G(x, L) − 1
as a kind of strangely weighted generating function of connected diagrams. Its first terms
are given by

G(x, L)− 1 = f0Lx+

(
f1L− f0

L2

2

)
f0x

2 + · · · ,
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which respectively correspond to the one-chord diagram and the connected two-chords
diagram. In [10] two of us used tools of asymptotic combinatorics to better understand
some of these parameters and in particular were able to conclude that in each of the next-
tok-leading log expansions only f0 and f1 contribute. This was subsequently generalized
to the case of (10) in [9].

We can compare (9) to the original Feynman graph expansion. Both are expansions
over combinatorial objects yielding the same series G(x, L). In the Feynman graph ex-
pansion each graph has a very complicated contribution, namely its Feynman integral, to
the sum. Thus if we want to find properties like the asymptotic behavior of G(x, L), the
Feynman graph expansion hides important features in the Feynman integrals and so only
a combinatorial analysis can get us so far.

In the chord diagram expansion each chord diagram has a simple contribution to the
sum – just certain monomials in the fi. This means that, in principle, combinatorial
tools could fully understand G(x, L), and in practice we can make good progress as in
[10]. On the other hand, we have lost a physical interpretation for each diagram (the
Feynman graphs directly represent particles and their interactions); each chord diagram
just represents some terms in expansions of some Feynman graphs.

In [15], generalizing [22], one of us with Markus Hihn solves the Dyson-Schwinger
equation

G(x, L) = [ρ0]

(
1−

∑
k>1

xkG

(
x,

d

d(−ρ)

)1−sk

(e−Lρ − 1)Fk(ρ)

)
(10)

where Fk(ρ) =
∑

i>0 ak,iρ
i−1 and s is a positive integer parameter. This Dyson-Schwinger

equation corresponds to the case where we are still restricted to propagator corrections
but now we can have any number of primitive Feynman graphs (the integer k refers to
their possible sizes, where the size is the dimension of the cycle space of the graph), and
the number of insertion places is one less than s times the size of the graph, where s can
be any positive integer.

Let us look at some more Feynman graphs in order to get a better feel for what these
parameters mean. In the previous Yukawa example we were building Feynman graphs by
inserting

(11)

into itself in all possible ways. Another Feynman graph in this theory and with the same
external edges but which can’t be built out of insertions of the first is

(12)

Notice that the first Feynman graph has one internal edge into which it can be inserted
while the second has three. Any way of making another Feynman diagram with one more
cycle but with the same edge and vertex types and the same external edges would have
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Figure 16: Some Feynman graphs in φ3.

five places to insert itself. This increases by two at each step corresponds to the fact that
s = 2. In a different quantum field theory, say scalar φ3 theory, the growth in insertion
places would be different. Figure 16 shows some Feynman graphs in φ3 theory with two
external edges. Note that number of insertion places increases by three as the dimension
of the cycle space increases by one. This means that s = 3 in this theory.

For formal defintions of insertion and related notions see section 2.2.3 of [30] or [31]
and for more on counting insertion places see Proposition 3.9 of [30] of [31].

The main result of [15] is that (10) is solved by

G(x, L) = 1−
∑
C

b(C)∑
i=1

ad(b(C)),b(C)−i
(−L)i

i!

w(C)A(C)x‖C‖, (13)

where the first sum runs over all connected diagrams C, carrying a positive integer weight
d(c) on each of its chords c, and such that the position of the first terminal chord is b(C).
As for the other parameters, |C| denotes the number of chords; ‖C‖ is the sum of the
chord weights; t1 = b(C) < t2 < · · · < t` = |C| lists the positions of all the terminal
chords in intersection order;

w(C) =

|C|∏
m=1

(
d(m)s+ ν(m)− 2

ν(m)

)
; (14)

and

A(C) =
∏
c not

terminal

ad(c),0
∏̀
j=2

ad(tj),tj−tj−1
. (15)

For the definition of w(C), we need another parameter ν(c) which is discussed in the next
subsection. Note that again G(x, L) − 1 is a weighted generating function of connected
diagrams.

Example 33. As an example, take the diagram in Figure 15. Note that the terminal
chords are chords 3 and 4, so b(C) = 3. If all the chords are weighted by 1 then A(C) =
a21,0a1,1. If the first chord is weighted by 2 while the rest are weighted by 1 then A(C) =
a1,0a2,0a1,1, while if the fourth chord is weighted by 2 and the rest are weighted by 1 then
A(C) = a21,0a2,1. Note that the weight of the first terminal chord does not affect A(C).

Continuing the example, note that if all chords are weighted by 2/s (since s is an
integer and the weights are nonnegative integers, this means s = 2 and all weights are 1
or s = 1 and all weights are 2) then w(C) is independent of ν and equals 1 for all C. More
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generally, ν(C) will be defined in the next subsection, but for now taking it as given that
ν(1) = ν(2) = 0 and ν(3) = 2 and ν(4) = 1 then we can compute w(C). Say s = 2 and
all chords are weighted by 1 except the third which has weight 2, then w(C) =

(
3
2

)
= 3.

With the same weights but s = 3 we get w(C) =
(
1
0

)(
1
0

)(
3
2

)(
7
6

)
= 21.

The theorem stating that (13) solves (10) was shown by checking that the coefficients of
the Dyson-Schwinger equation and the eventual solution both satisfy the same recurrences
with the same initial conditions. This was done in two steps. First viewing each as a
series in L with coefficients which are functions of α, these coefficients were shown to
satisfy the same recurrence. For the Dyson-Schwinger equation this L-recurrence is the
renormalization group equation, an important equation for quantum field theories.

The second step was to check that the linear coefficient in L matches in the chord
diagram expansion and the Dyson-Schwinger equation giving the initial conditions for
the L-recurrence. These coefficients are themselves series in x and the proof is again done
by matching recurrences. However, this time the recurrence is more obscure, correspond-
ing neither to a straightforward combinatorial decomposition nor to a standard physics
identity. Stated as an identity of weighted generating functions this equation becomes
what will be numbered by (16) in the next subsection. In [22] and [15] we understood
this formula by passing to a class of rooted trees but this class was messy and we were
not able to understand the formula directly on the chord diagrams. We will discuss this
formula further, reinterpreting it in terms of rooted maps, and providing a combinato-
rial interpretation also at the level of rooted maps. This will show that the connection
between chord diagrams and rooted maps can improve our understanding as the whole
story can be formulated with one class of objects, namely rooted maps.

5.3 Diagram parameters and binary trees

To see how the bijection θ from connected diagrams to bridgeless maps helps simplify
the situation, we need to understand these additional parameters as they were originally
defined.

The first thing we need is a variant of the indexed product (see Figure 17 for an
illustration).

Definition 34 (Variant product for connected diagrams). Let C1 and C2 be two connected
diagrams and i an integer between 1 and 2|C2| − 1. The connected diagram C1⊕iC2 is
defined as

RootInsi(C2) if C1 is the one-chord diagram

RootInsi+`

(
DiagInsĈ1,i

(C2)
)

if C1 is of the form RootIns`(Ĉ1)

Decomposition according to this variant of the indexed product is known as the root-
share decomposition in [22, 15].

Note that this product gives the same recurrence of ordinary generating functions as
the ? product. The ? product is combinatorially more convenient, particularly for the
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⊕

Figure 17: Schematic of the variant indexed product or root-share decomposition.

asymptotic counting of [10], while the ⊕ product is what was originally used in [22] and
[15]. The two different products clearly give a permutation ι of the set of the connected
diagrams: it takes the 1-chord diagram to itself, and otherwise for a connected diagram
C = C1 ?i C2, it lets ι(C) = ι(C1)⊕i ι(C2).

The constructions below use the ⊕ product so as to align with the original definitions
from [22] and [15], but an analogous theory could be worked out from the ? product.

The origin of the next definition is to carve out a class of rooted planar binary trees
satisfying the same recurrence as the one that comes from either connected diagram
product.

Definition 35 (Tree τ (C)). The map τ from connected diagrams to rooted planar binary
trees with labeled leaves is defined as follows. The leaves of the tree correspond to the
chords of the diagram; this correspondence is indicated by labeling the leaves by the
indices of the chords in intersection order.

• The image of the one-chord diagram under τ is the rooted binary tree with one
node. This node is a leaf and is labeled 1.

• Suppose C is a connected chord diagram with at least 2 chords. Write C = C1⊕k C2.
Let T1 = τ(C1) and T2 = τ(C2). Let v be the kth vertex of T2 in a pre-order traversal.
Let T be the binary rooted tree obtained by beginning with T2 and replacing v with
a new vertex which has the subtree rooted at v as its right child and T1 as its left
child. Relabel the leaves of T to correspond to the same chords but as indexed in
C, that is, the leaf 1 from T1 remains 1, next come all the leaves of T2 maintaining
their relative order, and finally come all the other leaves of T1 maintaining their
relative order.

See Figure 18 for two examples; see [22, 15] for many more examples.
It turns out that τ is one-to-one, though describing the inverse map is tricky, and

the best characterization we have for the image of τ is rather complicated (see [22]).
Nonetheless, τ does have some nice properties. By construction, leaves correspond to
chords under τ and vertices (including leaves) correspond to intervals. Furthermore,
these trees can see the ν parameter, and the most natural decomposition of trees – the
decomposition into the root along with the left and right subtrees – gives the formula (16)
below.

Now we are ready for the original definition of ν (see [15] for more information on ν).

Definition 36 (Parameter ν(c)). Let C be a connected diagram and let c be a chord of
C. Let ν(c) be the length of the path which begins at the leaf of τ(C) associated to c and
goes up and to the left as far as possible. If this leaf is a left child, then ν(c) = 0.
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Figure 18: An example of the action of τ .

For the first tree in Figure 18, ν(1) = ν(2) = 0, ν(3) = 2 and ν(4) = 1 agreeing with
what was used in Example 33. For the second tree in Figure 18, ν(1) = 0, ν(2) = 1,
ν(3) = 0, ν(4) = 0, and ν(5) = 3. At this stage it is not apparent what this parameter
measures about the chord diagram.

We are finally ready for the promised mysterious formula. To prove the main results of
[22] and [15] we needed formulas which come from decomposing the binary tree associated
to a diagram into its left and right subtrees. Reversing this decomposition involves grafting
the trees and shuffling some of their labels (see [15, Section 5] for this grafting, and the
shuffling operation worked out in detail). We have no interpretation for the decomposition
directly at the level of chord diagrams. The formula in its more refined version is [15,
Proposition 6.10]:

∑
‖C‖=i+1
b(C)=j+1
ν(b(C))=n

ŵ(C)A(C) =
i∑

k=1

j∑
`=1

(
j

`

) ∑
‖D1‖=k
b(D1)>`

w(D1)ad(b(D1)),b(D1)−`A(D1)



×


∑

‖D2‖=i−k+1
b(D2)=j−`+1
ν(b(D2))=n−1

ŵ(D2)A(D2)


(16)

where

ŵ(C) =
∏

m 6=b(C)

(
d(m)s+ ν(m)− 2

ν(m)

)
=

w(C)(
d(b(C))s+ν(b(C))−2

ν(b(C))

) .
We will give an interpretation of this equation in terms of maps in Subsection 5.7.

Notice that the first terminal chord b(C) always has a special role to play in these
quantum field theoretic chord diagram expansions. It has its own special factor in the
solutions to the Dyson-Schwinger equations (9) and (13). In (16) on the left hand side we
are ignoring the first terminal chord aside from fixing its size and index in the summation
conditions. Then in the equation on the right hand side the first terminal chord of the
subdiagrams in the second sum remains the first terminal chord in the whole diagram and
so does not contribute outside the summation conditions, but the first terminal chord of
the subdiagrams in the first sum becomes a later terminal chord in the whole diagram and
so it contributes a factor and more possibilities of first terminal chord must be summed
over.
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Figure 19: Covering numbers for the intersection order.

To go towards our new interpretation we need to associate numbers to chords in a
more natural way, which the next subsection does.

5.4 New interpretations on chord diagrams of the quantum field theoretic
parameters

In this subsection, we describe an alternative notion of ν-index, which we call the covering
number or ω-index and which is more meaningful at the chord diagram level, while still
satisfying the above formulas. This new notion is not equivalent to the old one, so we
have to establish some bijections to show that the statistics are indeed equidistributed.

Definition 37 (Covering number ω(i)). Let C be a connected diagram. Fix an order
c1 < · · · < cn for the chords of C (for example the intersection order). Proceeding through
all the chords of C in that order, mark all the intervals below the current chord with
the index of that chord, replacing any previous marks. At the end of this procedure, the
intervals are partitioned among the chords according to their markings. For i ∈ {1, . . . , n},
let ω(i) be the number of intervals labeled by i in this way, minus 1.

An example of this construction for the intersection order is given in Figure 19. For
this diagram, we have ω(1) = ω(3) = 0, ω(2) = ω(5) = 1, ω(4) = 2. Note that ν and ω
are not equal.

Proposition 38. If we change every occurrence of ν to ω, then, for the intersection order,
Equation (16) still holds, and the function G(x, L) defined by (13) still solves (10).

The proof of the proposition directly derives from the following lemma which says that
the number of diagrams with the same ν and ω vectors are equal. Moreover, this remains
true if we fix the indices of the terminal chords for the intersection order.

Lemma 39. Let n be an integer. Given an n-vector v = (v1, . . . , vn), and a subset S of
{1, . . . , n}, we denote by Av,S (resp. Bv,S) the set of connected diagrams of size n such
that the positions of the terminal chords for the intersection order are given by S, and
such that ν(i) = vi (resp. ω(i) = vi) for every i ∈ {1, . . . , n}. Then, for every vector v
and subset S, the cardinal of Av,S is the same as Bv,S.

For example, there are three connected diagrams with 3 chords and with only the last
chord as a terminal chord. These diagrams are illustrated in Figure 20 with their values
of ν and ω written as vectors along with the constructions to determine the vectors. Note
that for both ν and ω there is one diagram corresponding to the vector (0, 1, 1) and two
corresponding to (0, 0, 2) but which diagrams are which is not the same.
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Figure 20: Connected diagrams on 3 chords with only the last chord terminal along with
some associated information.

Proof. The proof is by induction on the number of chords. The result clearly holds for
n = 1.

Consider two vectors u = u1, . . . , un1 and v = v1, . . . , vn2 , and two subsets S1 ⊆
{1, . . . , n1} and S2 ⊆ {1, . . . , n2}. We suppose by induction that |Au,S1| = |Bu,S1| and
|Av,S2| = |Bv,S2|.

We are going to prove that the ν-indices among the diagrams of the form C1⊕k C2

with C1 ∈ Au,S1 , C2 ∈ Av,S2 and k ∈ {1, . . . , n}, are distributed in the same way as the
ω-indices among the diagrams of the form C ′1⊕k C ′2 with C ′1 ∈ Bu,S1 , C

′
2 ∈ Bv,S2 and

k ∈ {1, . . . , n}. The induction will then be shown by summing over all vectors u, v and
subsets S1, S2 such that n1 +n2 = n. Remark that in diagrams of the form C = C1⊕k C2,
the positions of the terminal chords in C for the intersection order only depend on S1 and
S2; this is why we only need to focus on the ν-indices and the ω-indices.

Fix C1 ∈ Au,S1 and C2 ∈ Av,S2 . When constructing τ(C1⊕k C2) from τ(C1) and
τ(C2), we add a new vertex along one of the leftwards paths, so we increase exactly one ν-
index by 1. Furthermore, running over all k means performing this path lengthening once
at each vertex of τ(C2). We can more precisely observe that, for every i ∈ {1, . . . , n2},
there are vi + 1 possibilities among the choices of k to increase ν(i) by 1, since, by
definition, the leftward path starting at the leaf labeled by i contains vi + 1 vertices.
Eventually, we notice that for every vector w of the form (u1 = 0, v1, . . . , vi−1, vi +
1, vi+1 . . . , vn2 , u2, . . . , un1), the set Aw,S contains exactly vi + 1 diagrams of the form
C1⊕k C2, and zero such diagrams if w has a different form.

Now consider C = C ′1⊕k C ′2 where C ′1 ∈ Bu,S1 and C ′2 ∈ Bv,S2 are fixed. For the
intersection order of C, every non-root chord of C ′1 comes after any chord of C ′2. Thus,
since the non-root chords of C ′1 are below every chord of C ′2, the marking of the intervals
of C ′1 (except the first one) will overwrite the marking of the intervals delimited by the
chord of C ′2. So, except a priori for the root chord, the ω-index associated to the chords
of C ′1 will remain unchanged in C. However the ω-index for the root chord is always 0,
because the label of every interval below the root chord other than the first one will be
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overwritten by other chords of C.
Concerning the intervals delimited by C ′2, the marking will be unchanged except for

the kth leftmost interval of C ′2, where the insertion of C ′1 occurred, splitting this interval
in two. The marking from the non-root chords of C ′1 will occur and this will overwrite
all the labels inserted into interval k, leaving just the two ends to be marked as the kth
interval was in C ′2. So if the label of the kth interval was i, then ω(i) will be increased by 1
and this is the only value of ω that changes. But, as we run over k, there are exactly vi+1
intervals labeled by i in C ′2. Therefore, for every vector w of the form (0, v1, . . . , vi−1, vi +
1, vi+1 . . . , vn2 , u2, . . . , un1), the set Bw,S contains exactly vi + 1 diagrams of the form
C ′1⊕k C ′2, and zero such diagrams if w has a different form.

Comparing the results for C1⊕k C2 and C ′1⊕k C ′2 over all k enables us to conclude.

The ideas of this last proof are closely related to some unpublished ideas of one of us
along with Markus Hihn [13]. Lemma 39 enables us to have a direct proof of Proposi-
tion 38.

Proof of Proposition 38. Lemma 39 tells us that the generating functions of connected
chord diagrams counted by terminal chords and ν vectors is the same with ω vectors
instead. An additional integer weight on each chord carries through the constructions
with no changes. Examples of such generating functions then, with some very particular
choices of functions of these parameters, are G(x, L) and the sums appearing in (16),
hence these formulas cannot tell the difference between ν and ω.

Lemma 39 also proves a conjecture of Hihn [14, Section 3.2.1]:

Corollary 40. The number of chord diagrams C with a fixed set of terminal chords and
with ν(|C|) = m is equal to the number of chord diagrams with the same set of terminal
chords and where the vertex in the intersection graph corresponding to the last chord has
m neighbors.

Proof. In the algorithm to build ω, the last chord marks all the intervals under it and
the number of intervals under a chord is one more than the number of chords it crosses.
Therefore Hihn’s conjecture exactly states that the number of chord diagrams C with a
fixed set of terminal chords and ν(|C|) = m is equal to the number of chord diagrams
with the same set of terminal chords and ω(|C|) = m. This statement is a corollary of
Lemma 39.

Some of Hihn’s attempts to prove the conjecture led to the arguments of [13] which
were generalized into Lemma 39.

Using ω in place of ν makes the parameters of (16) more natural, but what about
the desired interpretation of the formula as coming from a decomposition: what chord
diagram construction builds a connected diagram out of two connected diagrams in

(
j
`

)
ways, with j and ` as in the formula? For the ν-index, the binomial coefficient counted
shuffles of a subset of the labels of τ(C). For ω the rooted maps will save the day: there
we have a direct interpretation involving shuffling the edges around the root vertex, see
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Figure 26. Rooted maps are the one place where everything becomes relatively natural.
To get there we need one last change of order on the chords.

5.5 Changing the ordering of the chords

The intersection order does not induce a nice natural description when it is transposed to
the set of combinatorial maps via the bijection θ. In this subsection, we describe a new
ordering on the chords of an indecomposable diagram for which Formulas (13) and (16)
still work, and have a simple interpretation in the world of maps.

Definition 41 (Peeling order). The peeling order of an indecomposable diagram D is
defined as follows.

• The root chord of D is the first chord in the peeling order.

• Remove the root chord of D. The result is not necessarily indecomposable. Let
D1, D2, . . . , Dk be the indecomposable diagrams we obtain from left to right.

• For the peeling order of D, after the root chord come all the chord of Dk ordered
recursively in the peeling order, then all the chords of Dk−1 ordered recursively, and
so on.

1

2

3

4

5

13

1 2 3 4 413 13 5 57 7 5

6

7

8 9
10

11
12

6 678 9 9910 1011 11 12 12

Figure 21: The peeling order of a connected diagram. The covering numbers are also
indicated under the intervals.

An example of the peeling order is given by Figure 21. Although this example is
connected, the peeling order on indecomposable but not connected diagrams comes up
recursively. For example, upon removing the root chord of the diagram in Figure 21, we
obtain a disconnected indecomposable diagram to which the definition of peeling order is
applied.

Note that like the intersection order and the order by first endpoint, the peeling order
extends the partial order on chords induced by the intersection graph.

Naturally, any connected diagram inherits a ω-indexing from the peeling order. How-
ever, the vector distribution over all connected diagrams is not the same as for the in-
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tersection order5. Luckily, the parameters appearing in Equations (13) and (16) do not
require the exact ordering of the chords, but weaker statistics, such as the multiset of the
gaps between two consecutive terminal chords. It turns out that these weaker statistics
agree for the intersection and the peeling order, implying that the quantum field theory
formulas still hold for the peeling order. This also emphasizes that the gaps between
terminal chords are the more natural chord diagram parameter rather than the indices of
the terminal chords themselves.

Proposition 42. If we change every occurrence of ν to ω, then, for the peeling order,
Equation (16) still holds, and the function G(x, L) defined by (13) still solves (10).

It will be helpful to consider an example before proceeding to the proof of the Propo-
sition. Consider the statistics:

(1) the number of chords |C|, the sum of the chord weights ‖C‖, the product∏
c not terminal

ad(c),0

(which appears in the definition of A(C) – see Equation (15));

(2) the position of the first terminal chord for the intersection order b(C);

(3) the multiset formed by the pairs (d(k), ω(k)), where d(k) is the weight associated
to the kth chord in the intersection order, and ω(k) its covering number for the
intersection order (used to define w(C) – see Equation (14));

(4) the monomial α(C) =
∏`

j=2 ad(tj),tj−tj−1
, where t1 = b(C) < t2 < · · · < t` = |C| lists

the positions of all the terminal chords in intersection order.

The core of the proof of the proposition will be to show these statistics are preserved
diagram by diagram when we replace the intersection order by the peeling order. Proposi-
tion 42 will be then a consequence of Proposition 38. We can first check it on an example.

Example 43. Consider the diagram of Figure 22 where we have put a weight 2 on chords
with labels 5, 6, 8 (for the intersection order) and a weight 1 on the remaining chords.
We have

(1) |C| = 13, ‖C‖ = 16,
∏

c not terminal ad(c),0 = a71,0;

(2) b(C) = 5;

(3) the multiset {(d(k), ω(k))} contains four times (1, 0), five times (1, 1), once (1, 2),
once (2, 1), twice (2, 2);

5We have observed that a chord with a high ω-index tends to be smaller in the intersection order than
in the peeling order. For example, there are 2 more connected diagrams of size 6 such that ω(1) = ω(2) =
ω(3) = 0, ω(4) = ω(5) = 2, ω(6) = 1 for the intersection order, compared with the peeling order.
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(4) α(C) = a31,1a1,2a2,1a2,2.

We can then verify that the same diagram but with the peeling order (see Figure 21)
satisfies the same equalities. However remark that the positions of the terminal chords
differ between the peeling order and the intersection order (these positions are given by
5, 6, 7, 9, 10, 12, 13 for the peeling order, and by 5, 6, 8, 9, 11, 12, 13 for the intersection
order).

1

2

3

4

5

13

1 2 3 4 4 5 5 5

6

7

8 9
10

11
12 139

117

6

10
128

13 139 9 11 117 76 68 1210 128 6 11

Figure 22: The intersection order version of the diagram of Figure 21.

We now proceed to the proof.

Proof of Proposition 42. Using Proposition 38, we saw that Formulas (16) and (13) only
depend on the statistics on the connected diagrams C that were enumerated above. We
are going to prove that these statistics do not change if we swap the intersection order by
the peeling order, which is sufficient to show the proposition.

Obviously, the statistics listed in (1) do not depend on the order.
As for the position of the first terminal chord given by (2), we can observe that the

intersection order and the peeling order coincide for the first chords until the first terminal
chord. Indeed, in both cases, after putting in first position the root chord and removing it,
the first diagram we recursively sort is either the topmost connected component denoted
by C↑ (for the intersection order), or the rightmost indecomposable diagram denoted by
D→ (for the peeling order). The diagram C↑ is included in D→ and will be peeled first in
D→ because the connected components below C↑ are to the left of the rightmost endpoint
of C↑ (so they will appear at some point of the peeling of D→ to the left of what remains
of C↑). Thus, the position of the first terminal chord remains the same for the intersection
and peeling order.

Now let us consider the multiset {(d(k), ω(k))}k described by (3). Remark that the
covering number of a chord c will only depend on the chords above/below c in the diagram,
and the chords intersecting c. But both for intersection and peeling order, a chord c↓ which
is below a chord c↑ will satisfy c↑ < c↓, while a chord c← intersecting from the left a chord
c→ will satisfy c← < c→. Therefore, the covering number associated to any chord will
remain the same for the intersection and the peeling order, hence the equality of the
multisets.
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The point (4) is the most delicate equality to establish. To remove the ambiguity,
let αinter(C) be the version of α(C) for the intersection order, and αpeel(C) be the one
for the peeling order. We are going to prove by induction that αinter(C) = αpeel(C) for
any connected diagram C. Since the base case is clear, we assume that C has at least
2 chords. Let C1, C2, i be such that C = C1⊕iC2. We assume that C1 is not a single
chord, since it is easy to conclude by induction in that case.

First we observe that, in the intersection order, each non-root chord of C1 is after any
chord of C2 (by definition). So if C2 exactly contains j terminal chords, then the terminal
chords with positions t1, t2, . . . , tj in C are in C2 (diagram in which the terminal chords
have positions t1 − 1, t2 − 1, . . . , tj − 1), and the other ones are in C1. Moreover, the last
chord of a connected diagram for the intersection order is terminal, hence tj = |C2| + 1.
Additionally, if t′1 = b(C1), . . . , t

′
k denote the positions of the terminal chords in C1, we

can check that tj+p = t′p + |C2| for p ∈ {1, . . . , k}. Taking all this into account, we obtain

αinter(C) = αinter(C2)× ad(tj+1),tj+1−tj × αinter(C1)

= ad(b(C1)),b(C1)−1 αinter(C1) αinter(C2).

Now let us consider the peeling order. Let D be the diagram C1 with its root chord
removed. When we remove the root chord of C, the diagram D is left somewhere in the
diagram C2. When we continue to peel C, the chords of D will remain unconsidered until
the point where D appears as one of the indecomposable diagrams D1, D2, . . . , Dk. There
are then two possibilities: either D = Dk and then the chord preceding the first chord of
D for the peeling order is a chord going over D and ending at the rightmost point of the
diagram; or D = Dj with j < k and then the chord preceding the first chord of D is the
last chord of Dj+1. In any case, the chord preceding the first chord of D is terminal, so its
position should be of the form tq. Thus, if t′1, . . . , t

′
k denote the positions of the terminal

chords of D, then tq+r = t′r + tq, for r ∈ {1, . . . , k}. We have then

q+k∏
j=q+1

ad(tj+1),tj+1−tj = ad(tq+1),tq+1−tq αpeel(D) = ad(b(D)),b(D) αpeel(D).

Furthermore, C1 differs from D just by a root chord insertion, hence we have αpeel(D) =
αpeel(C1) so that

q+k∏
j=q+1

ad(tj+1),tj+1−tj = ad(b(C1)),b(C1)−1 αpeel(C1).

Compare now the peelings of C and C2. We can process them in parallel, except that
at some point in the peeling of C, we have to treat the subdiagram D. After finishing
the peeling of D, we can resume the peeling of C and C2 in parallel. Thus, since the
chord visited just before D has label tq, and D has k terminal chords, the set of gaps
between two terminal chords of C2 is constituted by t2− t1, t3− t2, . . . , tq− tq−1 (occurring
in C before visiting D), then tq+k+1 − |D| − tq (in C2 we do not visit D, so we have to
subtract |D| from the labels > tq + |C2| of C to recover the labels of C2), and finally
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tq+k+2 − tq+k+1, . . . , t` − t`−1 (occurring in C after D). Note that tq+k = t′k + tq, which is
also equal to |D|+ tq since the last chord is always terminal. Therefore we have

αpeel(C2) =

q∏
j=1

ad(tj+1),tj+1−tj ×
∏̀

j=q+k+1

ad(tj+1),tj+1−tj

so that
αpeel(C) = ad(b(C1)),b(C1)−1 αpeel(C1) αpeel(C2).

We then conclude that αinter(C) = αpeel(C) by the induction hypothesis.

5.6 Restating the quantum field theory formulas in terms of maps

Now let us think about how all the previous work clarifies the situation when the diagrams
are transformed into combinatorial maps under θ.

The key is that here the orientation of the map given by the rightmost DFS (Depth
First Search) of the map.

Definition 44 (Rightmost DFS). The principle of the rightmost DFS is the following.
Starting from the root, we explore the map as far as possible by choosing at each newly
visited vertex the nearest half-edge in clockwise order. If the other associated half-edge
belongs to an already visited vertex, we backtrack. We stop once every edge has been
visited.

This map traversal naturally gives an orientation of the edges of the map, as illustrated
by Figure 23. Rightmost DFS also induces a spanning tree (the same as in the Bridge
First labeling), which consists of edges that revealed new vertices.

1
2
3

4
5

5

5
4

13
13

6

6

7

7
789

9
9

10

10
11 11

1212

Figure 23: The rightmost DFS of a map and its associated statistics.

We now give an equivalent of the ω-index for maps M . The principle is illustrated by
Figure 24.

Definition 45 (DFS-labeling of a map). We are going to label the corners of a map M
with integers 1, . . . , |M |, using the orientation induced by the rightmost DFS. We start
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with the corner following the root, whose label is 1. Suppose that the current corner is
labeled by i, and the next corner around the vertex in the counterclockwise order is not
labeled. If the edge separating these two corners is ingoing, then we label the second
corner by i + 1; otherwise, the edge is outgoing, and we label the corner by i. Once all
corners around the current vertex have been labeled, we go to the vertex which has been
visited next during the rightmost DFS. Around this vertex, there is only one ingoing edge
coming from the spanning tree induced by the rightmost DFS — it is the first edge that
enabled the visit of this vertex. We then label the corner following this edge by the next
available label, and continue the procedure. We stop when every corner is labeled.

The reader can refer again to Figure 23 for an example.
Similarly to diagrams, we can define ω(k) for maps as the number of corners carrying

the label k (minus 1). However it will be more convenient to define ω for edges. Thus,
to each edge e, the integer ω(e) + 1 is the number of corners carrying the same label as
the corner that is clockwisely adjacent to the ingoing part of e. Equivalently, ω(e) is the
number of outgoing edges between the ingoing part of e and the next ingoing half-edge
after e in the clockwise order. For example, the value of ω applied to the root of the map
in Figure 23 is 2, since there are three labels 5.

1
2

i

i+ 1 j

j

b

b

ingoing edge

next visited vertex
for the rightmost DFS

b+ 1

b+ 1 next visited vertex

outgoing edge

root unique ingoing edge
from the DFS spanning tree

Figure 24: DFS-labeling procedure

We can now describe how the statistics from the QFT formulas translate to maps.

Proposition 46. Under the bijection of Section 4, the parameters of (13) are transferred
as indicated by Table 3.

This proposition can be in particular verified by comparing Figures 21 and 23 (see
Example 43 for the diagram parameters worked out), whose map and diagram are in
bijection through φ.

The most striking correspondence is the one between the terminal chords and the
vertices of a map. First of all, it implies that the original QFT formulas can be expressed in
terms of bridgeless maps counted with respect to edges and vertices, which are admittedly
more natural than connected diagrams and terminal chords. It also again emphasizes that
the gaps not the terminal chords themselves are the right parameter. Moreover, all the
asymptotic results of [10] translate over to asymptotics about vertices of bridgeless maps.
In particular, it implies the following.
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Parameters in connected diagrams Parameters in bridgeless maps

chords edges

terminal chords
vertices; equivalently, edges in spanning

tree induced by the rightmost DFS

position b(C) of the first terminal chord number of ingoing edges (for the
rightmost DFS) incident to root vertex

gap tj − tj−1 between the (j − 1)th and
the jth terminal chords

number of ingoing edges (for the
rightmost DFS) incident to vertex

visited at position j in rightmost DFS

ω-index of the kth chord
for the peeling order

number of corners labeled by k
for DFS-labeling procedure minus 1

Table 3: How parameters in the QFT formulas transfer from diagrams to maps.

Corollary 47. The number of vertices in a random uniform bridgeless map with n edges
asymptotically obeys a Gaussian law of mean ∼ lnn and of variance ∼ lnn.

Proof of Proposition 46 (sketch). The proof is a simple induction on (not necessarily
bridgeless) maps M . It uses the fact that θ can be extended to φ (see Theorem 22).
Indeed, it is sufficient to consider M under all possible forms (map reduced to one
edge; M = MapInsM2,1(M1); M = RootInsi(M

′)) and confront it to its image un-
der φ (respectively the diagram reduced to one chord; φ(M) = MapInsφ(M2),1(φ(M1));
φ(M) = RootInsi(φ(M ′))).

The proof is not difficult, but it requires a tedious checking through all parameters.
All the necessary ideas are depicted in Figure 25.

φ

1
1

1 11

1

1
2

k
k

kk1 2

last for peeling

last for
rightmost DFS

φφ

Figure 25: How the statistics evolve from maps to indecomposable diagrams
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Thanks to Propositions 42 and 46, we can rewrite the formulas we described in Sub-
section 5.2 in terms of maps, offering a new viewpoint on these equations. In particular,
Equation (13) can be written under the following form.

Corollary 48. Let Fk(ρ) be a formal Laurent series of the form
∑

i>0 ak,iρ
i−1, and s be

a positive integer parameter. The Dyson-Schwinger equation

G(x, L) = 1− [ρ0]
∑
k>1

xkG(x, ∂−ρ)
1−sk(e−Lρ − 1)Fk(ρ)

has for solution

G(x, L) = 1−
∑
M

RootInDeg(M)∑
i=1

ad(root(M)),RootInDeg(M)−i
(−L)i

i!

w(M)A(M)x‖M‖,

where the sum runs over all bridgeless maps M , carrying a positive integer weight d(e) on
every edge e. As for the other parameters, RootInDeg(M) is the number of ingoing edges
induced by the rightmost DFS (see Definition 44); ‖M‖ is the sum of the edge weights;

w(M) =
∏

e edge ∈M

(
d(e)s+ ω(e)− 2

ω(e)

)
; (17)

ω(e) is the number of outgoing edges between the ingoing part of e and the next ingoing
half-edge after e in the clockwise order;

A(M) =
∏

e not in the
DFS spanning tree

ad(e),0
∏

e 6=root and in the
DFS spanning tree

ad(e),InDeg(v(e)); (18)

and InDeg(v(e)) is the number of ingoing edges around the vertex pointed by the edge e.

Observe that in the case of the Dyson-Schwinger equation (8) the solution given above
simplifies as we only sum over unweighted bridgeless maps, and s = 2 so w(M) = 1
in all cases. If we further take F (ρ) = ρ/(1 − ρ) then the coefficient of the [L1] part
of the solution to the Dyson-Schwinger equation is the generating function of rooted
connected chord diagrams, and the higher powers of L give the generating functions of
rooted connected chord diagrams where the position of the first terminal chord is at least
the exponent of L. This was already observed empirically by Broadhurst and Kreimer
in [7]. Translating this case through our bijection we obtain the generating function for
bridgeless maps, (and for higher powers of L, generating functions for bridgeless maps
with restrictions on the number of ingoing edges at the root), appearing in the solution
to this Dyson-Schwinger equation.
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5.7 A new combinatorial interpretation of a quantum field theoretic formula

As an application of the map interpretation of the solution of the previous Dyson-
Schwinger equations, we are going to describe an interpretation of Equation (16) at the
map level. Then with Corollary 48 all steps and tools can be understood on the same
objects namely combinatorial maps. Recall that this equation was in the core of the proof
of the papers [22, 15] but the proof passed to rooted trees in an obscure way and was
never understood at the level of chord diagrams. It can be reformulated in terms of maps
as follows.

Theorem 49. Let Gd(x, c) and Ĝd(x, c) be the weighted generating functions

Gd(x, c) =
∑

M bridgeless map
with a weight >0

on each edge
with RootInDeg(M)=d

w(M)A(M)x‖M‖ cω(root(M)),

Ĝd(x, c) =
∑

M bridgeless map
with a weight >0

on each edge
with RootInDeg(M)=d

ŵ(M)A(M)x‖M‖ cω(root(M)),

where RootInDeg(M) is the number of ingoing edges induced by the rightmost DFS inci-
dent to the root vertex, ‖M‖ is the sum of the edge weights, ω(root(M)) is the number of
outgoing edges between the root and the next ingoing edge for the clockwise order, w(M)
and A(M) are respectively defined by (17) and (18), and

ŵ(M) =
∏

e edge ∈M
different from the root

(
d(e)s+ ω(e)− 2

ω(e)

)
.

Then for d > 2,

Ĝd(x, c) = c
∑

d1>1,i>1
d1+i=d

∑
d2>i

(
d1 + i− 1

i

)
Ĝd1(x, c) decd2,i(x)Gd2(x, 1), (19)

where decd2,i(x) =
∑

k>1 ak,d2−i (1− x)xk−1.

Proof. 1. Principle. This proof is rather complex and will be divided in several parts.
The idea is to interpret the right side of Equation (19) as the combination of two bridgeless
maps that we shuffle at the level of their root vertices.

More precisely, we are going to consider two bridgeless maps M1 and M2, where
the numbers of ingoing edges (for the rightmost DFS) incident to the root vertex are
respectively d1 and d2 and we fix any i ∈ {1, . . . , d2}. Roughly speaking, we are going
to split the root vertex of M2 in d2 pieces containing each one of them an ingoing edge,
then select the first i such pieces and glue them on the root vertex on M1. Meanwhile,
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i

d2 ingoing

edges
d1 ingoing

edges

⊕

Figure 26: Interpretation of Equation (19) as the combination of two bridgeless maps.

the root of M2 will be inserted at the corner just to the right of the root. This principle
is illustrated by Figure 26.

The series decd2,i(x) =
∑

k>1 ak,d2−i (1−x)xk−1 is introduced to deal with the fact that
the root of M2 is no longer the root after the operation, and so A(M2) has been modified.

2. Splitting the root of M2. The half-edges incident to the root of M2 can be
listed in the counterclockwise order as

i1, (o2,1, . . . , o2,j2), i2, (o3,1, . . . , o3,j3), i3, . . . , (od2,1, . . . , od2,jd2 ), id2 = root(M2),

where i1, . . . , id2 are the d2 ingoing edges incident to the root vertex, id2 is the root of
M2, and (ok,1, . . . , ok,jk) is the sequence (potentially empty) of outgoing edges preceding
ik. Note that jk = ω(ik) for every k ∈ {1, . . . , d2}.

We split the root vertex of M2 into d2 smaller vertices v1, . . . , vk such that the incident
half-edges of vk are ok,1, . . . , ok,jk , ik. Let us denote the resulting map M̂2. Remark that M̂2

is still connected since we can still carry out a DFS with the same orientation (maybe not
in the same order, but if we need to backtrack to the root vertex to follow an outgoing edge,
this edge is necessarily attached to an ingoing edge which has been previously visited).
The process is shown in Figure 27.

v1

v2
v3

v4

v1 v2v3

v4

v5

Figure 27: Typical splitting of M2, along with an example.

3. Defining the map M . We are going to merge the vertices v1, . . . , vi of M̂2 with
the root vertex of M1 at some particular locations. These locations are just inside the
corners that counterclockwisely follow an ingoing edge. (Thus there are d1 such corners.)
Figure 28 illustrates that.

We fix now a subset S of these locations, multiplicity allowed, of size i. (Since we
authorize multiple occurrences of the same location, there are

((
d1
i

))
=
(
d1+i−1

i

)
such
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Figure 28: Corners after the ingoing edges, along with an example.

subsets.) Then we glue v1 at the first6 corner given by S, putting i1 in last. We similarly
glue v2 in the second position, then v3, and so on and so forth, finishing by vi. We glue
back vi+1, . . . , vd2 as they were before in M2.

Moreover, we attach the root of M̂2 as a non-root edge just in the corner following the
root of M1 in the clockwise order.

The resulting map is denoted M . Complete examples are given by Table 4. Note that
when i = d2, the root of M2 becomes a loop.

i M1 with S M2 Resulting M

3

5

Table 4: Examples of combinations between two bridgeless maps M1 and M2.

4. How the parameters evolve. First of all, the weights on the edges do not
change during the operation, so ‖M‖ = ‖M1‖+ ‖M2‖.

One outgoing edge was added to the right of the root of M (which was the root
of M2), so the number of outgoing edges of M between the root and the next ingoing
edge in the clockwise order has been increased by 1 compared to M1. In other words,
ω(root(M)) = ω(root(M1)) + 1. Additionally, since each vertex v1, . . . , vi has one ingoing
edge, we have RootInDeg(M) = RootInDeg(M1) + i = d1 + i.

6First means here first in the counterclockwise order, if we start from the root.
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Concerning A(M), we remark that it compiles every factor of A(M1) and A(M2), and
the factor associated to the root of M2 (which is no longer a root in M). There are two
possibilities here: either i < d2, and in that case, the root of M2 belongs to the DFS
spanning tree of M , and because we have removed i ingoing edges to the root vertex of
M2, this factor is ad(root(M2)),d2−i; or i = d2, and the root vertex of M2 is merged with the
root vertex of M1, implying that root(M2) is not in the spanning tree of M , hence the
factor is ad(root(M2)),0. In every case, we have A(M) = ad(root(M2)),d2−iA(M1)A(M2).

As for ŵ(M), observe that ω(e) is invariant for every edge e different from the root of
M . We have for that purpose split the root of M2 in pieces which preserve the number of
outgoing edges before an ingoing edge. Consequently, ŵ(M) = w(M1)ŵ(M2).

It is then relatively easy to see that the weighted generating function of maps M
(potentially with multiplicity) produced by the combinations of every pair of maps M1

and M2, with respectively d1 and d2 ingoing edges incident to the root vertex, is given
by the right side of (19). The only subtlety here is the incorporation of ad(root(M2)),d2−i
which depends on the decoration of the root of M2. To deal with this, we remark that the
weighted generating function of maps M2 where we have removed the weight of the root

is given by
Gd2∑
k>1 x

k
=
Gd2
x

1−x
. Then, to recover the weight of the root of M2 along with

ad(root(M2)),d2−i, we have to multiply the previous series by
∑

k>1 ak,d2−ix
k, which gives

decd2,i(x)Gd2 .
Thus, to prove Equation (19), it just remains to show that the construction is bijective,

which is the purpose of the last point.
5. Recovering M1, M2 and i. Given a map M , we are going to construct two

maps M1 and M2 whose combination gives M . The process is illustrated by Figure 29.

Figure 29: How to recover M1 and M2.

We start by detaching the edge clockwisely following the root edge and making it a
root. This will be the root of the map M2. We are going now to successively detach edges
which are incident to the root vertex of M until we obtain two separate maps.

To do so, we run a rightmost DFS of the map that starts from the root of M2.
Whenever we return to the root vertex of M , we detach the corresponding ingoing edge
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along with the whole sequence of outgoing edges that clockwisely follow it. We repeat
this until M2 forms a new connected component. At this point, we glue every detached
vertex to the root vertex of M2, in the same order that these vertices were attached to
the root vertex of M .

We thus prove that the combination procedure is bijective.

Over all, the message here is that the map interpretation is helpful and more natural
for the chord diagram expansions in quantum field theory of [22, 15, 10]. Some of these
improvements are manifestly simple such as the reinterpretation of terminal chords as
vertices. Others, such as the formula of this section, are considerably more intricate.
Keep in mind, however, that the original proof of this formula was also very intricate
and went though subtle auxiliary objects, and part of the complexity exhibited here is in
proving the connection between the two approaches as in Subsection 5.5, rather than due
to the new approach itself.

Aside from Equation (16), the other main ingredient in the original proof of (13) is
another equation which expresses how the variant product decomposition of Definition 34
affects the sums over chord diagrams appearing in the solution G(x, L). This becomes a
recurrence for [Lk]G(x, L) in terms of [Li]G(x, L) for 1 6 i < k, and corresponds to the
renormalization group equation in physics. This should translate over straightforwardly to
the bridgeless maps with the product decomposition that defines our bijection, and hence
a proof of (13) entirely at the level of maps should be achievable, though the details have
not been worked out.

6 New interpretation of the Arquès-Béraud functional equation

6.1 Statement of the equation and implications

In [2], Arquès and Béraud studied the two-variable generating function

B(z, u) = u + z(u + u2) + z2(3u + 5u2 + 2u3) + z3(15u + 32u2 + 22u3 + 5u4) + · · ·

counting rooted maps with respect to edges7 (z) and vertices (u), and proved that it
satisfies the following simple functional equation:

B(z, u) = u+ zB(z, u)B(z, u+ 1) (20)

Arquès and Béraud showed how to derive (20) algebraically starting from another func-
tional differential equation which they established through a root edge decomposition of
maps on oriented surfaces of arbitrary genus (a refinement of the basic analysis we de-
scribed in Section 2.2). Later, Cori [8] gave an alternative proof of (20) that made use of
Ossona de Mendez and Rosenstiehl’s bijection (henceforth, the “OMR bijection”) between
combinatorial maps and indecomposable involutions [25], which sends vertices of a map to

7Note that our rooting convention for maps allocates one additional (dangling) edge relative to Arquès
and Béraud’s convention, explaining the seeming shift by a factor of z.

the electronic journal of combinatorics 26(4) (2019), #P4.37 48



left-to-right maxima of the corresponding indecomposable involution. Speaking in terms
of chord diagrams, left-to-right maxima correspond to top chords : that is, chords which
are not below another chord. For example, the number of top chords in the diagrams of
size 3 of Tables 1 and 2 are respectively 3, 3, 2, and 2 for the connected diagrams, and 1,
1, 1, 2, 2, and 2 for the disconnected diagrams.

In the following section, we give a direct bijective interpretation of (20) on indecompos-
able chord diagrams. Besides its intrinsic interest, this bijection has the useful property
that it restricts to connected diagrams to verify a modified functional equation:

C(z, u) = u+ zC(z, u)(C(z, u+ 1)− C(z, 1)) (21)

By Theorem 10, we know that C(z, 1) is also the generating function for bridgeless maps
counted by number of edges, and we will use this fact later to derive an interesting
application to the combinatorics of lambda calculus (Section 6.3). On the other hand,
we do not see an obvious interpretation of the u parameter of (21) for bridgeless maps:
in particular, it is easy to check (by simple inspection of Table 1) that the coefficient of
znuk in

C(z, u) = u+ zu2 + z2(2u2 + 2u3) + z3(10u2 + 12u3 + 5u4) + · · ·
does not give the number of bridgeless maps with n edges and k vertices. This can
also be seen as an explanation for why the OMR bijection cannot possibly restrict to a
bijection between bridgeless maps and connected diagrams. Indeed, we have the following
somewhat curious situation:

1. The OMR bijection sends vertices to top chords, but does not restrict to a bijection
between bridgeless maps and connected diagrams.

2. The φ bijection of Section 4 restricts to a bijection between bridgeless maps and
connected diagrams, but sends vertices to terminal chords rather than to top chords
(see Proposition 46).

Taking either the φ bijection or the OMR bijection as a starting point leads naturally to
two different open questions:

Question 50. Is there a natural statistic Q of maps, such that the coefficient of znuk in
(21) counts bridgeless maps with n edges and Q = k?

Question 51. Is there a natural property P of maps, such that the coefficient of znuk in
(21) counts P -maps with n edges and k vertices?

Furthermore, we can state at this point another interesting phenomenon. Combining
Observations 1 and 2 from above shows that the number of indecomposable diagrams
with n chords and k terminal chords is equal to the number of indecomposable diagrams
with n chords and k top chords, indeed that there is a bijection between these sets of
diagrams given by composing φ with the inverse of the OMR bijection. In actual fact,
the statistics counting terminal chords and top chords are more than equidistributed for
indecomposable diagrams; they are symmetric:
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Proposition 52 ([21]). Indecomposable diagrams of size n with k1 terminal chords and
k2 top chords are in bijection with indecomposable diagrams of size n with k2 terminal
chords and k1 top chords.

The proof of this result, which was communicated to the authors by Mathias Lep-
outre [21], uses the fact that one can recursively change the position of the leftmost
closing endpoint.

6.2 Combinatorial interpretation

Before describing the interpretation of Equations (20) and (21) on chord diagrams, we
take the opportunity of refining them to keep track of the number of crossings.

Theorem 53. Let B(z, u, v) be the ordinary generating function of indecomposable di-
agrams counted with respect to the number of chords minus one (z), the number of top
chords (u) and the number of crossings (v). Similarly, let C(z, u, v) be the generating
function for connected diagrams with the same interpretation of the parameters. The
following equations hold:

B(z, u, v) = u+ zB(z, 1 + uv, v)B(z, u, v), (22)

C(z, u, v) = u+ z(C(z, 1 + uv, v)− C(z, 1, v))C(z, u, v). (23)

Proof. From a combinatorial point of view, Equation (20) says that every indecompos-
able diagram with a least two chords can be seen as the product of two indecomposable
diagrams, one of which has a marked subset of top chords.

We start by describing the combination part, building a diagram from two smaller
ones. Figure 30 gives an example of such a combination.

Figure 30: An example of how to combine an indecomposable diagram with another
indecomposable diagram in which a subset of top chords is marked. The first diagram
has 4 top chords, 2 of which are marked. The second diagram has only one top chord.
The combination of both induces 3 top chords, as expected.

Let us thus consider two indecomposable diagrams D1 and D2, where some top chords
of D1 are marked. We run the following algorithm:

1. Put D2 on the right of D1.
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2. Open the left endpoint of the root chord D2.

3. Consider the rightmost marked top chord. (The top chords are sorted from left to
right without ambiguity.) If there are no more marked top chords, go to 5.

4. Forget the marking of that chord. Then, open its left endpoint, and replace it by
the left endpoint of the other open arc. Go to 3.

5. Close the open arc at the left of D1.

The composition of two diagrams is thus defined. We denote by D the resulting diagram.
Let us enumerate the top chords of D. Each non-marked top chord of D1 is now below

a chord (which corresponds to the most immediate marked top chord to its right – or the
root chord of D2 if there were not any marked top chords on its right), so is not a top
chord in D anymore. On the contrary, each marked top chord of D1 remains a top chord.
Indeed, the only chords that change from D1 to D are the marked top chords, and the
algorithm is constructed in such a way that a marked top chord never covers the marked
top chords on its left. As for the other chords of D, it only takes a quick check to observe
that non-top chords stay non-top chords, and top chords of D2 stay top chords. Finally,
the top chords of D are given by the top chords of D2 and the marked top chords of D1.

As for the number of crossings in D, we can notice that the algorithm only creates
crossings during the execution of step 4. Indeed, swapping an open arc and the left
endpoint of a top chord (being on the left of the open arc) increases the number of
crossings exactly by 1. That is why the number of crossings in D is the number of the
crossings of D1 and D2, plus the number of marked top chords.

We just proved that the multi-set of diagrams D induced by the combinations of
diagrams D1 and D2 has for generating function zB(z, 1 + uv, v)B(z, u, v). To prove
(22), we only need to show that our way of combining two diagrams to produce a larger
diagram is bijective. For the inverse operation, we run the following algorithm, starting
from an indecomposable diagram D of size > 1.

1. Open the left endpoint of the root chord of D.

2. If the resulting diagram is not indecomposable, go to 6.

3. Consider the leftmost top chord intersecting the open arc.

4. Open its left endpoint, and replace it by the left endpoint of the other open arc.

5. Mark the chord that was just closed. Go to 2.

6. Close the open arc to the right of the leftmost indecomposable component of D. We
thus obtain two indecomposable diagrams D1 (on the left) and D2 (on the right).

To see that this algorithm computes an inverse to the first algorithm, the reader may refer
again to Figure 30, which can be likewise read from right to left. This establishes that
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every indecomposable diagram which is not the one-chord diagram can be expressed as
the combination of two diagrams, and so Equation (22) holds.

Note that a new connected component is created by this process if and only if no top
chord is marked. Indeed, the only way to form a new component is to close the root
chord of D2 directly at the left of D1, which can be done by jumping Item 4. So if we
want to enumerate connected diagrams, we have to force diagrams D1 to have at least one
marked top edge. Such diagrams are counted by C(z, 1 + uv, v)− C(z, 1, v). We recover
Equation (23).

6.3 An application to lambda calculus

The results of the previous sections have a surprising application to the combinatorics
of lambda calculus. As one of the authors described in [34], the original Arquès-Béraud
equation (20) is also satisfied by the generating function counting certain natural isomor-
phism classes of terms in lambda calculus (namely, neutral linear terms modulo exchange
of adjacent lambdas) by size and number of free variables. This fits a broader pattern of
combinatorial connections recently discovered between different fragments of lambda cal-
culus and different families of maps, beginning with a bijection between rooted trivalent
maps and linear lambda terms found by Bodini, Gardy, and Jacquot [4], and a bijection
between rooted planar maps and neutral planar lambda terms found by Giorgetti and
Zeilberger [36]. It was also shown in [35] that the bijection of [4] restricts to a bijection
between bridgeless (respectively, bridgeless planar) trivalent maps and linear (respectively,
planar) lambda terms with no closed subterms – such terms were called “indecomposable”
in [35], but here we call them unit-free to avoid confusion with indecomposable chord dia-
grams. Similarly, it is not difficult to check that the bijection of [36] restricts to a bijection
between bridgeless planar maps and unit-free neutral planar terms. It is therefore tempt-
ing to draw the list of correspondences between families of lambda terms and families
of rooted maps pictured in Table 5, where on the right we have indicated the index for
the relevant OEIS entry counting objects by size (note that the size of a 3-valent map is
defined here as its number of vertices, rather than edges).

The aforementioned works establish (either directly or as easy consequences) that each
family of lambda terms is in the same combinatorial class as the corresponding family
of rooted maps, for every row of Table 5 other than the boldfaced one. On the other
hand, Proposition 12 above establishes that bridgeless maps are indeed counted by OEIS
sequence A000699. So, to verify the full table, all that remains is to show that unit-free
neutral linear terms (modulo exchange of adjacent lambdas) are counted by the same
sequence.

Proposition 54 (cf. [34, 35]). Let C(z, u) be the two-variable generating function counting
isomorphism classes of unit-free neutral linear lambda terms by size and number of free
variables. Then C(z, u) satisfies equation (21).

Proof. This is essentially immediate from definitions: see the references [34] and [35]
for formal definitions of the relevant terms, as well as for the proofs of very similar
equations.
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family of lambda terms family of rooted maps OEIS entry
linear terms 3-valent combinatorial maps A062980
planar terms planar 3-valent maps A002005
unit-free linear terms bridgeless 3-valent maps A267827
unit-free planar terms bridgeless planar 3-valent maps A000309
neutral linear terms/∼ combinatorial maps A000698
neutral planar terms planar maps A000168
unit-free neutral linear/∼ bridgeless maps A000699
unit-free neutral planar bridgeless planar maps A000260

Table 5: Known correspondences between different families of lambda terms and rooted
maps. The correspondence in the boldfaced row was previously only conjectured, but is
a corollary of our results here.

Corollary 55. Isomorphism classes of unit-free neutral linear lambda terms of size n and
with k free variables are equinumerous with connected chord diagrams of size n and with
k top chords.

Proof. Since by Proposition 54 and Theorem 53, their generating functions both satisfy
the same equation (21).

Corollary 56. The number of isomorphism classes of unit-free neutral linear lambda
terms of size n is equal to the number of rooted bridgeless combinatorial maps of size n.

Proof. By combining Corollary 55 with Theorem 10 (or Proposition 12).

It is worth remarking that our proof of this enumerative result also implicitly yields
a bijection between isomorphism classes of unit-free neutral linear lambda terms and
rooted bridgeless combinatorial maps, by composing the bijection θ between bridgeless
maps and connected diagrams with the implicit bijection between connected diagrams
and this family of lambda terms that results from their admitting the same recursive
decomposition (21). However, the meaning of this bijection is far less clear because we
run into the obstacle posed by Question 50, namely, that it is not obvious what part of
a rooted map should correspond to the free variables in a unit-free neutral linear term
(i.e., what’s counted by the u parameter in C(z, u)). On the other hand, one might try to
side-step this obstacle by passing directly from (bridgeless) combinatorial maps to (unit-
free) neutral linear terms via an analogue of the bijection of Section 4. Given what we
know about the transfer of statistics across that bijection (see Table 3), the following is
therefore a natural related question.

Question 57. What (if anything) is the lambda calculus analogue for the terminal chords
of a chord diagram? In particular, is there a natural invariant Q of neutral linear terms,
such that there is a bijection between connected diagrams of size n with k1 top chords
and k2 terminal chords, and isomorphism classes of unit-free neutral linear terms of size n
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with k1 free variables and Q = k2 (cf. Corollary 55)? (A good notion of Q should also be
symmetrically distributed with the number of free variables among neutral linear terms
of size n, following Proposition 52.)

7 Conclusion

After noticing an enumerative link between connected chord diagrams and bridgeless
combinatorial maps, we made this observation into a size-preserving bijection θ by proving
that these two families admit parallel decompositions in terms of an indexed product. An
alternative decomposition based on root chord/root edge deletion then yielded another
bijection φ between the larger families of indecomposable chord diagrams and rooted
combinatorial maps, but these two bijections turned out to be essentially equivalent:
θ is the restriction of φ, while φ is the extension of θ obtained by composing with a
“connected/bridgeless root component” decomposition. Moreover, we established that
the bijection φ = θ has many other interesting properties as well: vertices correspond to
terminal chords; planarity is equivalent to a forbidden pattern in the world of diagrams.

Some decompositions are apparently only meaningful for one of the two families, such
as the decomposition of maps with respect to the number of ingoing edges for the rightmost
DFS (Theorem 49), or the decomposition of diagrams with respect to the top chords
(Theorem 53). On the other hand, since each of these decompositions describes interesting
features for one of the combinatorial families, it is natural to wonder if they have analogues
in the other class, highlighting new parameters (cf. Questions 50 and 51). There are other
nice consequences of the present work which concern transversal areas, such as quantum
field theory or lambda calculus. Indeed, our bijection between maps and diagrams has
given interesting new perspectives on these domains and enabled a better understanding
of some aspects of the theory, while suggesting a few natural directions for future work.

Finally, one may wonder about a non-recursive approach to a bijection between bridge-
less maps and connected diagrams. Although the authors have thought in this direction
and see no straightforward answer, it is not impossible that maps and diagrams conceal
other nice connections.
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[2] Didier Arquès and Jean-François Béraud. Rooted maps on orientable surfaces, Ric-
cati’s equation and continued fractions. Discrete Mathematics, 215:1–12, 2000.

[3] Olivier Bernardi. A characterization of the Tutte polynomial via combinatorial em-
bedding. Annals of Combinatorics, 12(2):139–153, 2008.

[4] Olivier Bodini, Danielle Gardy, and Alice Jacquot. Asymptotics and random sam-
pling for BCI and BCK lambda terms. Theoretical Computer Science, 502:227–238,
2013.

the electronic journal of combinatorics 26(4) (2019), #P4.37 54
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