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Abstract

In this paper, we study a new cyclic sieving phenomenon on the set SSTn(λ) of
semistandard Young tableaux with the cyclic action c arising from its Uq(sln)-crystal
structure. We prove that if λ is a Young diagram with `(λ) < n and gcd(n, |λ|) = 1,
then the triple

(
SSTn(λ),C, q

−κ(λ)sλ(1, q, . . . , q
n−1)

)
exhibits the cyclic sieving phe-

nomenon, where C is the cyclic group generated by c. We further investigate a con-
nection between c and the promotion pr and show the bicyclic sieving phenomenon
given by c and prn for hook shape.

Mathematics Subject Classifications: 05E18, 05E05, 05E10

1 Introduction

The cyclic sieving phenomenon was introduced in 2004 by Reiner-Stanton-White in [14].
Let X be a finite set, with an action of a cyclic group C of order n, and f(q) a polynomial
in q with nonnegative integer coefficients. For d ∈ Z>0, let ωd be a dth primitive root
of the unity. We say that (X,C, f(q)) exhibits the cyclic sieving phenomenon if, for all
c ∈ C, we have

#Xc = f(ωo(c)),

∗Supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Gov-
ernment (NRF-2018R1D1A1B07051048).
†Supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Gov-
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where o(c) is the order of c and Xc is the fixed point set under the action of c. Note that
this condition is equivalent to the following:

f(q) ≡
n−1∑
l=0

alq
l (mod qn − 1),

where al counts the number of C-orbits on X for which the stablilizer-order divides l.
It has since then been extensively investigated for various combinatorial objects with
an action of a finite cyclic group including words, multisets, permutations, non-crossing
partitions, lattice paths, tableaux (see [16] for details).

In [17, 18], Schützenberger introduced the promotion operator pr on (semi)standard
Young tableaux, which takes one (semi)standard Young tableau to another via jeu de
taquin slides. Afterwards, it has been studied widely and now has become one of the
important objects in various research areas (see [19]). It is known that it has a finite
order, but in the best knowledge of the authors, its order is still mysterious except a few
cases such as rectangular or staircase Young diagrams [5, 13].

Given a Young diagram λ, let SSTn(λ) be the set of semistandard Young tableaux of
shape λ with entries in {1, 2, . . . , n}. In [15], Rhoades proved representation-theoretically
that if λ is of rectangular shape, the triple(

SSTn(λ), 〈pr〉, q−κ(λ)sλ(1, q, . . . , q
n−1)

)
exhibits the cyclic sieving phenomenon, where κ is the statistic on λ = (λ1, λ2, . . .) given
by κ(λ) =

∑
i>1(i− 1)λi, and sλ(1, q, . . . , q

n−1) is the principal specialization of the Schur
polynomial sλ(x1, x2, . . . , xn). This result, however, is no longer valid outside rectangular
shape in general. For a non-rectangular shape, another appropriate operator other than
pr should be considered if we stick to the principal specialization on SSTn(λ). In [4],
Rhoades’ result is refined in the following manner. Let λ = (ab) and α = (α1, . . . , αn) be
a composition of ab, such that α is invariant under lth cyclic shift, then the triple(

SSTn(λ, α), 〈prl〉, q
1
2

(a2b−(α2
1+α2

2+···+α2
n))Kλ,α(q)

)
exhibits the cyclic sieving phenomenon, where Kλ,α(q) is a Kostka-Foulkes polynomial
associated with λ and α. Unfortunately, outside rectangular case, no results similar to
this seem to be known yet.

In the present paper, we investigate the cyclic sieving phenomenon on SSTn(λ) with a
cyclic action arising from its crystal structure (see Section 2 for crystals). For this purpose,
we first notice that pr = σ1σ2 · · ·σn−1, where σi is the ith Bender-Knuth involution acting
on SSTn(λ). In general, σi’s do not satisfy braid relations. We then note that SSTn(λ) has
a Uq(sln)-crystal structure, thus it is equipped with an action of the Weyl group. Hence
it would be very natural to consider the operator c := s1s2 · · · sn−1 on SSTn(λ), where si is
the action on the crystal SSTn(λ) given by the simple reflection si = (i, i+ 1) in the Weyl
group. The operator c shares several similarities with pr, for instance, it is easy to check
that wt(c(T )) = wt(pr(T )) = s1s2 · · · sn−1(wt(T )). One of the most favorable features of
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c, compared with pr, might be that its order is given by n for arbitrary shape λ, whereas
the order of pr is very difficult to compute.

In the viewpoint of crystal theory, by using the operator c instead of pr, we observe
a new cyclic sieving phenomenon on SSTn(λ) beyond rectangular shape. More precisely,
we prove that if λ is a Young diagram with `(λ) < n and gcd(n, |λ|) = 1, then the triple(

SSTn(λ),C, q−κ(λ)sλ(1, q, . . . , q
n−1)

)
exhibits the cyclic sieving phenomenon, where C is the cyclic group generated by c (see
Theorem 4.3). There are several examples for which our cyclic sieving phenomenon hold
without the condition gcd(n, |λ|) = 1, and Remark 4.4 shows an example for another cyclic
sieving phenomenon with a specialization of sλ other than the principal specialization.
It would be an interesting problem to give a characterization of Young diagrams λ such
that (SSTn(λ),C, f(q)) exhibits a cyclic sieving phenomenon, where f(q) is a suitable
specialization of sλ (multiplied by a q-power). We also remark that the cyclic sieving
phenomenon on the set of isolated vertices of a tensor product B⊗m of a crystal B with
a different cyclic operator was studied in [20].

Next, we turn to the connection between c and the pr. For an n-tuple α ∈ Zn>0, let
SSTn(λ, α) := {T ∈ SSTn(λ) | cont(T ) = α}. We denote by cont(λ) the set of all contents
of T where T varies over SSTn(λ), and by cont+(λ) the set of all α = (a1, . . . , an) ∈ cont(λ)
such that a1 > a2 > · · · > an. Notice that SSTn(λ, α) is invariant under prn for any
α ∈ cont(λ). For clarity, denote by prn|α the restriction of prn to SSTn(λ, α).

We here deal with the case where λ is of hook shape or two-column shape. In these
special cases, we show that prn commutes with si’s, thus prn commutes with c. We
then show that the order of prn on SSTn(λ) equals lcm{oλ(α) | α ∈ cont+(λ)}, where
oλ(α) denotes the order of prn|α and lcm{k1, k2, . . . , kt} the least common multiple of
k1, k2, . . . , kt. We next consider the bicyclic sieving phenomenon on SSTn(λ) in the case
where λ is of hook shape with gcd(n, |λ|) = 1 (see [16, Section 9] for the definition). Let
λ = (N −m, 1m) with gcd(n,N) = 1, and consider the polynomial

Sλ(q, t) = q−κ(λ)
∑
µ`N

tAµKλ,µ(t
d
dµ ) ·mµ(1, q, q2, . . . , qn−1)

given in Theorem 5.10. Here mµ(x1, x2, . . . , xn) is the monomial symmetric polynomial
associated to µ, and Kλ,µ(t) is the Kostka-Foulkes polynomial associated with λ and µ.
Note that the evaluation Sλ(q, t) at t = 1 is equal to q−κ(λ)sλ(1, q, . . . , q

n−1). We show
that the triple (SSTn(λ),C× P, Sλ(q, t)) exhibits the bicyclic sieving phenomenon, where
P is the cyclic group generated by prn (see Theorem 5.10).

This paper is organized as follows: In Section 2, we review briefly the crystal theory.
In Section 3, we recall the combinatorics of Young tableaux. In Section 4, we study the
action of c on SSTn(λ) and prove the triple

(
SSTn(λ),C, q−κ(λ)sλ(1, q, . . . , q

n−1)
)

exhibits
the cyclic sieving phenomenon. In Section 5, we investigate a connection between c and
pr and show the bicyclic sieving phenomenon given by c and prn for hook shape.
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2 Crystals

Let I be a finite index set. A square matrix A = (aij)i,j∈I is called a generalized Cartan
matrix if it satisfies (i) aii = 2 for i ∈ I and aij ∈ Z60 for i 6= j, (ii) aij = 0 if and
only if aji = 0, (iii) there exists a diagonal matrix D = diag(di | i ∈ I) such that DA is
symmetric. A Cartan datum (A,P,Π,P∨,Π∨) consists of

(1) a generalized Cartan matrix A,

(2) a free abelian group P, called the weight lattice,

(3) Π = {αi | i ∈ I} ⊂ P, called the set of simple roots,

(4) P∨ = HomZ(P,Z), called the coweight lattice,

(5) Π∨ = {hi ∈ P∨ | i ∈ I}, called the set of simple coroots,

which satisfy

(1) 〈hi, αj〉 = aij for i, j ∈ I,

(2) Π is linearly independent over Q,

(3) for each i ∈ I, there exists $i ∈ P, called the fundamental weight, such that
〈hj, $i〉 = δj,i for all j ∈ I.

We set Q :=
⊕

i∈I Zαi, called the root lattice, and Q+ :=
∑

i∈I Z>0αi. We fix a
nondegenerate symmetric bilinear form (· , ·) on h∗ := Q⊗Z P satisfying

(αi, αj) = diaij (i, j ∈ I), and 〈hi, λ〉 =
2(αi, λ)

(αi, αi)
(λ ∈ h∗, i ∈ I).

Let us denote by P+ := {λ ∈ P | 〈hi, λ〉 > 0 for all i ∈ I} the set of dominant integral
weights, and define ht(β) :=

∑
i∈I ki for β =

∑
i∈I kiαi ∈ Q+. Let W be the Weyl group

associated with A, which is generated by

si(λ) = λ− 〈hi, λ〉αi for i ∈ I and λ ∈ P.

Let Uq(g) be the quantum group associated with the Cartan datum (A,P,P∨Π,Π∨),
which is generated by fi, ei (i ∈ I) and qh (h ∈ P) with certain defining relations (see
[6, Chater 3] for details). The notion of crystals was introduced in [7, 8, 9]. We refer the
reader to [3, 6] for details.

Definition 2.1. A crystal associated with (A,P,P∨,Π,Π∨) is a set B together with the
maps wt : B → P, ẽi, f̃i : B → B ∪ {0}, and εi, ϕi : B → Z∪ {−∞} (i ∈ I) satisfying the
following properties:

(1) ϕi(b) = εi(b) + 〈hi,wt(b)〉 for all i ∈ I,
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(2) wt(ẽib) = wt(b) + αi if ẽib ∈ B,

(3) wt(f̃ib) = wt(b)− αi if f̃ib ∈ B,

(4) εi(ẽib) = εi(b)− 1, ϕi(ẽib) = ϕi(b) + 1 if ẽib ∈ B,

(5) εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b)− 1 if f̃ib ∈ B,

(6) f̃ib = b′ if and only if b = ẽib
′ for b, b′ ∈ B and i ∈ I,

(7) if ϕi(b) = −∞ for b ∈ B, then ẽib = f̃i = 0.

For a crystal B, we set Bξ := {b ∈ B | wt(b) = ξ} so that B = tξ∈PBξ. Let

wt(B) := {ξ ∈ P | Bξ 6= ∅}.

For a dominant integral weight Λ ∈ P+, we denote by B(Λ) the crystal of the irreducible
highest weight Uq(g)-module Vq(Λ) with highest weight Λ. For i ∈ I, we define the
bijection si on B(Λ) by

si(b) =

{
f̃
〈hi,wt(b)〉
i b if 〈hi,wt(b)〉 > 0,

ẽ
−〈hi,wt(b)〉
i b if 〈hi,wt(b)〉 < 0.

(2.1)

Then the Weyl group W acts on the crystal B(Λ) in which the simple reflection si acts
via si for i ∈ I (see [3, Chapter 2.5] for details). Note that

wt(si(b)) = si(wt(b)) for i ∈ I and b ∈ B(Λ). (2.2)

The character chB(Λ) of B(Λ) is defined by

chB(Λ) :=
∑

ξ∈wt(B(Λ))

|B(Λ)ξ|eξ,

where |B(Λ)ξ| is the number of elements of B(Λ)ξ, and eξ are formal basis elements of
the group algebra Q[P] with the multiplication given by eξeξ

′
= eξ+ξ

′
. The q-dimension

of B(Λ) is given by

dimq B(Λ) =
∑

ξ∈wt(B(Λ))

|B(Λ)ξ|qev(Λ−ξ),

where ev : Q→ Z is the map defined as follows:

ev(β) :=
∑
i∈I

bi for β =
∑
i∈I

biαi ∈ Q.

We now assume that I = {1, 2, . . . , r} and the Cartan matrix A is of finite type. Note
that the crystal B(Λ) is a finite set. We define the bijection c on B(Λ) as follows:

c := s1s2 · · · sr. (2.3)

Since si’s act on B(Λ) as simple reflections of the Weyl group W, c can be viewed as a
Coxeter element of W. Let C := 〈c〉 be the cyclic subgroup of W generated by c, and h
the Coxeter number of W. Note that h is the order of c.

Lemma 2.2. The cyclic group C has order h and acts on the crystal B(Λ).
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3 Semistandard tableaux

For a partition λ = (λ1 > λ2 > . . . > λl > 0), the length `(λ) of λ is defined to be the
number of positive parts of λ and the size |λ| of λ the sum of all parts, that is, `(λ) = l
and |λ| = Σλi. Throughout this paper, we will confuse λ with its Young diagram drawn
in English convention, more precisely, an array of boxes in which the ith row has λi boxes
from top to bottom. The conjugate λ′ of λ denotes the Young diagram obtained from λ
by flipping the diagonal.

A semistandard tableau T of shape λ with entries bounded by n is a filling of boxes of
λ with entries in {1, 2, . . . , n} such that

(1) the entries in each row are weakly increasing from left to right, and

(2) the entries in each column are strictly increasing from top to bottom.

Let sh(T ) denote the shape of a semistandard tableau T and SSTn(λ) the set of all
semistandard tableaux of shape λ with entries bounded by n. We say that b = (p, q) ∈ T
if b is a box of T at the pth row and the qth column, and denote by T (b) the entry of the
box b. For example, the following is a semistandard tableau of shape λ = (8, 5, 2) with
entries bounded by 5:

1 1 2 2 2 4 5 5

2 3 3 3 5

3 4

For T ∈ SSTn(λ), the content cont(T ) of T is defined to be the n-tuple (c1, . . . , cn),
where ck is the number of occurrences of k in T . Setting xT := xc11 · · ·xcnn , we define the
Schur polynomial

sλ(x1, . . . , xn) :=
∑

T∈SSTn(λ)

xT .

Next, we describe the promotion operator pr on SSTn(λ). Let T ∈ SSTn(λ). If T does
not contain entries equal to n, then pr(T ) is defined to be the tableau obtained from T
by increasing all the entries by 1. Otherwise, replace every entry equal to n with a dot,
then by using jeu-de-taquin, slide the dots to the northwest corner from left to right and
top to bottom. Finally, replace all dots by 1’s and increase all other entries by 1 to obtain
pr(T ).

Example 3.1. Let n = 4 and λ = (3, 3, 1). The following is an illustration of the
promotion on a tableaux T ∈ SST4(λ).

T =
1 1 2

3 3 4

4

//
1 1 2

3 3 •
•

//
• 1 2

1 3 •
3

//
• • 2

1 1 3

3

//
1 1 3

2 2 4

4

= pr(T )
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From now on, we assume that the Cartan matrix A is of type An−1, i.e., Uq(g) =
Uq(sln), with I = {1, 2, . . . , n − 1}. For k = 1, . . . , n, we set εk := (0, . . . , 1, . . . , 0) ∈ Qn

to be the unit vector with the 1 in the kth position. For i ∈ I, we set

αi := εi − εi+1 and $i :=
i∑

k=1

εk.

Then we identify the weight lattice P with the image of Zn in the quotient space of Qn

by the subspace Q(ε1 + · · · + εn) (see [3, Section 2]). Note that the bilinear form (· , ·)
corresponds to the usual inner product and si(εj) = εsi(j) for i ∈ I, where the subscript
si denotes the simple transposition (i, i+ 1) in the symmetric group Sn.

Let λ = (λ1 > · · · > λ` > 0) be a Young diagram with `(λ) < n. Letting λ′ =
(λ′1, λ

′
2, . . . , λ

′
t), we set wt(λ) :=

∑t
k=1$λ′k

∈ P+. It is well-known that SSTn(λ) admits a
Uq(sln)-crystal structure and

SSTn(λ) ' B(wt(λ))

as a Uq(sln)-crystal. We refer the reader to [3, Chapter 3] and [6, Chapter 7] for details.
Note that wt(T ) = c1ε1 + · · · + cnεn for T ∈ SSTn(λ), where cont(T ) = (c1, . . . , cn). We
remark that the principal specialization of sλ(x1, . . . , xn) is equal to the q-dimension of
B(wt(λ)) up to a power of q, more precisely,

sλ(1, q, . . . , q
n−1) = qκ(λ) dimq B(wt(λ)), where κ(λ) =

∑̀
k=1

(k − 1)λk. (3.1)

Since SSTn(λ) is a Uq(sln)-crystal, the operator c defined as in (2.3) acts on SSTn(λ).
The lemma below follows from Lemma 2.2 immediately.

Lemma 3.2. The cyclic group C has order n and acts on the Uq(sln)-crystal SSTn(λ).

4 Cyclic sieving phenomenon

As before, assume that the Cartan matrix A is of type An−1. Let c := s1s2 · · · sn−1 ∈ Sn.
Note that Sn acts on the weight lattice P. In addition, from the definition of pr and c it
follows that

wt(c(T )) = wt(pr(T )) = c(wt(T )) for T ∈ SSTn(λ).

Lemma 4.1.

(1) For β ∈ Q, we have
ev(c(β)) ≡ ev(β) (mod n).

(2) Let Λ ∈ P+ and N = (Λ, α1 + 2α2 + · · ·+ (n− 1)αn−1). Then

ev(c(Λ)) ≡ ev(Λ)−N (mod n).
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Proof. (1) As ev is linear, it suffices to consider the case where β = αi for i ∈ I. By a
direct computation, we can derive that

c(αi) =

{
αi+1 if i 6= n− 1,
−α1 − α2 − · · · − αn−1 if i = n− 1.

This tells us that ev(c(αi)) ≡ ev(αi) (mod n).
(2) As above, due to the linearity of ev, we may assume that Λ = $i for i ∈ I.

Note that i = ($i, α1 + 2α2 + · · ·+ (n− 1)αn−1). It follows from the identity c$i =
$i − αi − αi−1 − · · · − α1 that

ev(c($i)) = ev($i)− i,

which justifies the assertion.

For positive integers a, b ∈ Z>0, we denote by gcd(a, b) the greatest common divisor
of a and b. A subset {a1, a2, . . . , an} ⊂ Z is called a complete residue system modulo n if
it has no two elements that are congruent modulo n.

Lemma 4.2. Let Λ ∈ P+ and N = (Λ, α1 + 2α2 + · · ·+ (n− 1)αn−1). Suppose that
gcd(n,N) = 1. Then, for any ξ ∈ wt(B(Λ)), the set {ev(Λ− ξ), ev(Λ− c(ξ)), . . . , ev(Λ−
cn−1(ξ))} is a complete residue system modulo n.

Proof. Let ξ ∈ wt(B(Λ)). Then we can write as ξ = Λ− β for some β ∈ Q+. Since

c(Λ)− Λ ∈ Q and ck(β) ∈ Q for k ∈ Z>0,

Lemma 4.1 implies that

ev(ck(c− id)β) = ev((c− id)(ckβ)) ≡ 0 (mod n), and

ev(ck(c− id)Λ) ≡ ev((c− id)Λ) ≡ −N (mod n).

Combining these congruences, we derive that

ev(ck(c− id)ξ) = ev(ck(c− id)(Λ− β)) ≡ −N (mod n),

and thus, for t = 1, . . . , n− 1,

ev(ct(ξ))− ev(ξ) ≡ ev((ct − id)(ξ)) ≡
t−1∑
k=0

ev(ck(c− id)ξ) ≡ −t ·N (mod n).

Now, our assertion follows from the assumption gcd(n,N) = 1.

For two polynomials f(q) and g(q), we write f(q) ≡n g(q) if f(q)− g(q) is divisible by
qn − 1. We are now ready to state the main result on the cyclic sieving phenomenon for
semistandard tableaux.
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Theorem 4.3. Assume that λ is a Young diagram with `(λ) < n and gcd(n, |λ|) = 1. Then
we have

(1) every orbit of SSTn(λ) under the action of C is free, and

(2) the triple (SSTn(λ),C, q−κ(λ)sλ(1, q, . . . , q
n−1)) exhibits the cyclic sieving pheno-

menon.

Proof. (1) Let Λ = wt(λ) and denote by O(λ) the set of all orbits of SSTn(λ) under the
action of C. Set

e(O) := {ev(Λ− wt(S)) | S ∈ O}

for each orbit O ∈ O(λ). Also, for T ∈ SSTn(λ), we set O(T ) := {ck(T ) | k ∈ Z>0} ∈
O(λ). Since the cyclic group C has order n, we can deduce that

(i) |O(T )| divides n, and

(ii) |e(O(T ))| 6 |O(T )|.

But, since n 6 |e(O(T ))| due to Lemma 4.2, we can deduce that

|e(O(T ))| = |O(T )| = n,

as required.
(2) Note that

|λ| = (wt(λ), α1 + 2α2 + · · ·+ (n− 1)αn−1).

For O ∈ O(λ), we define

dimq(O) :=
∑
e∈e(O)

qe.

As gcd(n, |λ|) = 1, Lemma 4.2 implies that

dimq(O) ≡n qn−1 + qn−2 + · · ·+ q + 1

for any orbit O ∈ O(λ). Combining this with the identity |O(λ)| =
|SSTn(λ)|

n
, which

follows from (1), we derive that

dimq B(wt(λ)) =
∑
O∈O(λ)

dimq(O) ≡n
SSTn(λ)

n
(qn−1 + qn−2 + · · ·+ q + 1).

Now the assertion follows from Equation (3.1).
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Remark 4.4. Theorem 4.3 does not hold necessarily without the condition gcd(n, |λ|) = 1.
To see this, consider the case where n = 5, λ = (2, 13) and Λ := wt(λ) = $1 +$4. Then
gcd(n, |λ|) = 5 6= 1. Since the crystal B(Λ) is the crystal of the adjoint representation of
sl5, we have

wt(B(Λ)) = {0,±(εi − εj) | 1 6 i < j 6 5}, |B(Λ)ξ| =
{

4 if ξ = 0,
1 if ξ 6= 0.

It follows from the identity c(εi) =

{
εi+1 if i 6= 5,
ε1 if i = 5,

that every orbit is free or consists

of a singleton. One can easily see that the number of free orbits equals 4 and the number
of fixed points equals 4. By a direct computation, we have

q−κ(λ)sλ(1, q, q
2, q3, q4) = 1 + 2q + 3q2 + 4q3 + 4q4 + 4q5 + 3q6 + 2q7 + q8

6≡5 4 + 4(1 + q + q2 + q3 + q4).

This says that the triple (B(Λ),C, q−κ(λ)sλ(1, q, q
2, q3, q4)) does not exhibit the cyclic siev-

ing phenomenon.
However, setting σ(λ) :=

∑
i∈I

i(i−1)
2
λi, we can observe that

q−σ(λ)sλ(1, q, q
3, q6, q10) = 1 + q + q3 + q4 + q5 + q6 + 2q7 + q8 + q9 + 4q10

+ q11 + q12 + 2q13 + q14 + q15 + q16 + q17 + q19 + q20

≡5 4 + 4(1 + q + q2 + q3 + q4).

Hence, quite interestingly, the triple (B(Λ),C, q−σ(λ)sλ(1, q, q
3, q6, q10)) exhibits the cyclic

sieving phenomenon. It is worthwhile to mention that, setting ẽv(β) :=
∑

i∈I ibi for
β =

∑
i∈I biαi ∈ Q, we obtain

q−σ(λ)sλ(1, q, q
3, q6, q10) =

∑
ξ∈wt(B(Λ))

|B(Λ)ξ|qẽv(Λ−ξ).

As mentioned in Introduction, it would be an interesting problem to give a characterization
of Young diagrams λ such that (SSTn(λ),C, f(q)) exhibits a cyclic sieving phenomenon,
where f(q) is a suitable specialization of sλ (multiplied by a q-power).

5 Commuting action with c

Recall that pr is the promotion on SSTn(λ). For T ∈ SSTn(λ), let

Opr(T ) := {prk(T ) | k ∈ Z>0} ⊂ SSTn(λ).

Proposition 5.1. Let λ be a Young diagram with `(λ) < n. Suppose that gcd(n, |λ|) = 1.
Then we have
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(1) for any T ∈ SSTn(λ), |Opr(T )| is divisible by n, and

(2) the order of pr on SSTn(λ) is divisible by n.

Proof. (1) Let T ∈ SSTn(λ) and set

T := {k ∈ Z>0 | ev(Λ− wt(T )) ≡ ev(Λ− wt(prk(T ))) (mod n)}.

Since wt(c(T )) = wt(pr(T )) = c(wt(T )) and n is the order of c, by Lemma 4.2, we see
that

T = {kn | k ∈ Z>0}.

Since |Opr(T )| ∈ T by definition, we have the assertion.
(2) It follows from (1) directly.

Lemma 5.2. Let λ be a Young diagram with `(λ) < n. Suppose that λ is of hook shape
or two-column shape. Then s1 · pr2 = pr2 · sn−1.

Proof. To begin with, let us fix necessary notations for the proof.
For k ∈ Z>0 and l ∈ Z>0, let kl := (k, . . . , k︸ ︷︷ ︸

l

). For i = (i1, . . . , il) ∈ Zl, let i+t :=

(i1 + t, . . . , il + t), and we simply draw i (resp. i ) for the one-row (resp.

one-column) tableau with entries (i1, . . . , il).
For T ∈ SSTn(λ), we write k ∈ T if k appears in T as an entry. For 1 6 k 6 n, we set

T6k to be the tableau obtained from T by removing all boxes with entries in {k+1, . . . , n}.
We also define T<k, T>k and T>k in a similar manner.

(Hook shape case)
We assume that λ is of hook shape, and choose any T ∈ SSTn(λ). We denote by c1(T )

(resp. r1(T )) the first column (resp. the first row) of T . It is obvious that s1 · pr2(T ) =
pr2 · sn−1(T ) when sh(T6n−2) = ∅. Thus we assume that sh(T6n−2) 6= ∅. Let

x := the number of occurrences of n− 1 in r1(T ),

y := the number of occurrences of n in r1(T ).

(Case 1) Suppose that n−1, n /∈ c1(T ). Then we can write T and sn−1(T ) as follows:

T =
i (n− 1)x ny

j
sn−1(T ) =

i (n− 1)y nx

j
.

By a direct computation, we can see that

pr2(T ) =
1x 2y i+2

j+2 pr2 · sn−1(T ) =
1y 2x i+2

j+2

which verifies the assertion since s1 exchanges the number of 1 and 2.

the electronic journal of combinatorics 26(4) (2019), #P4.39 11



(Case 2) Suppose that n − 1 ∈ c1(T ), but n /∈ c1(T ). We first consider the case
where y = 0. Then T and s1(T ) can be written as follows:

T =
i (n− 1)x

j

n− 1

sn−1(T ) =
i nx

j

n

.

Thus we have

pr2(T ) =
1x+1 i+2

j+2 pr2 · sn−1(T ) =
2x+1 i+2

j+2

which justifies the assertion as before.
In case where of y 6= 0, we can see that

T =
i (n− 1)x ny

j

n− 1

sn−1(T ) =
i (n− 1)y−1 nx+1

j

n− 1

and thus

pr2(T ) =
1x+1 2y i+2

j+2 pr2 · sn−1(T ) =
1y 2x+1 i+2

j+2

as required.
(Case 3) Suppose that n− 1 /∈ c1(T ), but n ∈ c1(T ). Then T is given as follows:

T =
i (n− 1)x ny

j

n

.

If x = 0, then we have

pr2(T ) =
2y+1 i+2

j+2 pr2 · sn−1(T ) =
1y+1 i+2

j+2

as required.
If x 6= 0, then we obtain

sn−1(T ) =
i (n− 1)y+1 nx−1

j

n

and thus

pr2(T ) =
1x 2y+1 i+2

j+2 pr2 · sn−1(T ) =
1y+1 2x i+2

j+2

as required.
(Case 4) Suppose that n − 1, n ∈ c1(T ). Then T and sn−1(T ) can be written as

follows:

T =
i (n− 1)x ny

j

n− 1
n

sn−1(T ) =
i (n− 1)y nx

j

n− 1
n

.
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A direct computation yields that

pr2(T ) =
1x+1 2y i+2

2

j+2
pr2 · sn−1(T ) =

1y+1 2x i+2

2

j+2

as required.

(Two-column shape case)
We assume that λ is of two-column shape and T ∈ SSTn(λ). Let

p := the number of occurrences of n− 1 in T ,

q := the number of occurrences of n in T .

If p = q, then there is nothing to prove since sn−1(T ) = T and s1 · pr2(T ) = pr2(T ). From
now on, suppose that p 6= q. Then we have the following cases:

(p, q) ∈ {(2, 0), (0, 2), (0, 1), (1, 0), (2, 1), (1, 2)}.

(Case 1) Suppose that (p, q) = (2, 0) or (0, 2). Then T can be written as follows:

T =
i j

a

a

where a = n− 1 or n. Applying pr2 to T , we have

pr2(T ) =
b b

i+2 j+2

where b = 1 or 2, respectively. This shows that s1 · pr2(T ) = pr2 · sn−1(T ).
(Case 2) Suppose that (p, q) = (0, 1) or (1, 0). We first consider the case where

(p, q) = (0, 1). Then we can write T as follows:

T =
i j

n

or
i j

n
.

In either case, the equality T<n−1 = (sn−1(T ))<n−1 holds. Thus, it is easy to see that

(pr2(T )>2) = (pr2 · sn−1(T )>2), (pr2(T ))62 = 2 , (pr2 · sn−1(T ))62 = 1 ,

which implies that s1 · pr2(T ) = pr2 · sn−1(T ).
The remaining case where (p, q) = (1, 0) can be proved in the same manner.
(Case 3) Suppose that (p, q) = (2, 1) or (1, 2). We first consider the case where

(p, q) = (2, 1). Then T can be written as follows:

T =
i j

n− 1

n− 1
n

or
i j

n− 1
n

n− 1

.
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Then we have

sn−1(T ) =
i j

n

n− 1
n

or
i j

n− 1
n

n

.

respectively. By the same argument as in (Case 1) and (Case 2), we have

(pr2(T )>2) = (pr2 · sn−1(T )>2), (pr2(T ))62 = 1 1
2

, (pr2 · sn−1(T ))62 = 1 2
2

.

Thus, we have that s1 · pr2(T ) = pr2 · sn−1(T ).
The remaining case where (p, q) = (1, 2) can be proved in the same manner.

Remark 5.3. It should be remarked that the identity s1 · pr2 = pr2 · sn−1 is not true in
general. Let us consider the case where n = 4, λ = (3, 2, 1) and

T =
1 1 4
2 3
3

∈ SST4(λ).

Then
pr2 · s3(T ) =

1 2 3
2 4
3

6= s1 · pr2(T ) =
1 2 3
2 3
4

.

Remark 5.4. It should also be remarked that f̃1 · pr2 6= pr2 · f̃n−1 even in the case of a
hook shape or a two-column shape (see [1, Proof of Proposition 3.2]). For example, we
consider the case where n = 3 and T = 1 2

2
. Then it is easy to see that

pr2 · f̃2(T ) = 1 3
2

6= 1 2
3

= f̃1 · pr2(T )).

Lemma 5.5. Let λ be a Young diagram with `(λ) < n. Suppose that λ is of hook shape
or two-column shape. Then we have

si · prn = prn · si for i ∈ I.

In particular, we have c · prn = prn · c.

Proof. It was shown in [1, Proposition 3.2] that f̃i+1 · pr = pr · f̃i and ẽi+1 · pr = pr · ẽi for
i = 1, . . . , n− 2. For T ∈ SSTn(λ), we have

〈hi,wt(T )〉 = 〈c−1(hi+1),wt(T )〉 = 〈hi+1, c(wt(T ))〉 = 〈hi+1,wt(pr(T ))〉.

Then, it follows from the definition (2.1) that

si+1 · pr(T ) = pr · si(T ) for i = 1, . . . , n− 2.

By Lemma 5.2, we have

prn · si = pri−1 · pr2 · prn−i−1 · si = pri−1 · pr2 · sn−1 · prn−i−1 = pri−1 · s1 · pr2 · prn−i−1

= si · pri−1 · pr2 · prn−i−1 = si · prn,

which completes the proof.
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In the following, we assume that

gcd(n, |λ|) = 1 and si · prn = prn · si for i ∈ I. (5.1)

Let P be the cyclic group generated by prn acting on SSTn(λ). Then the product group
C× P acts on SSTn(λ). For T ∈ SSTn(λ), we set

OC(T ) := {ca(T ) | a ∈ Z>0}, OP(T ) := {prbn(T ) | b ∈ Z>0},
OC×P(T ) := {caprbn(T ) | a, b ∈ Z>0}.

For an n-tuple α ∈ Zn>0, let SSTn(λ, α) := {T ∈ SSTn(λ) | cont(T ) = α}. We denote by
cont(λ) the set of all contents of T where T varies over SSTn(λ), and by cont+(λ) the set
of all α = (a1, . . . , an) ∈ cont(λ) such that a1 > a2 > · · · > an. Notice that SSTn(λ, α) is
invariant under prn for any α ∈ cont(λ). For clarity, denote by prn|α the restriction of prn

to SSTn(λ, α).

Theorem 5.6. Suppose that (5.1) holds. Then the following hold.

(1) For T ∈ SSTn(λ), |Opr(T )| = |OC×P(T )|.

(2) For an n-tuple α ∈ Zn>0 with SSTn(λ, α) 6= ∅, let oλ(α) be the order of prn|α.
Then the order of pr on SSTn(λ) equals n · lcm{oλ(α) | α ∈ cont+(λ)}, where
lcm{k1, . . . , kt} denotes the least common multiple of k1, . . . , kt.

Proof. (1) Since |OC(T )| = n and the order of prn is given by
|Opr(T )|

n
by Theorem 4.3

together with Proposition 5.1, we deduce that

|Opr(T )| = n · |Opr(T )|
n

= |OC(T )| · |OP(T )| = |OC×P(T )|.

(2) By the assumption (5.1), we have that oλ(α) = oλ(si · α) for i ∈ I. Thus, by (1),
we have that

the order of pr = n · lcm{oλ(α) | α ∈ cont(λ)} = n · lcm{oλ(α) | α ∈ cont+(λ)}.

Example 5.7. We consider the case where n = 6 and λ = (2, 2, 2, 1). Then (5.1)
holds by Lemma 5.5 and cont+(λ) = {α1 := (2, 2, 2, 1, 0, 0), α2 := (2, 2, 1, 1, 1, 0), α3 :=
(2, 1, 1, 1, 1, 1)}. As |SST6(λ, α1)| = 1, it follows that oλ(α1) = 1. In the case of
SST6(λ, α2), we have

1 1
2 2
3 4
5

pr6
44

1 1
2 2
3 5
4

pr6
tt

which tells us that the order oλ(α2) = 2. Finally, we can see that SST6(λ, α3) is decom-
posed into the following two orbits:

1 1
2 3
4 5
6

pr6
44

1 1
2 4
3 6
5

pr6
tt 1 1

2 3
4 6
5

pr6
//

1 1
2 5
3 6
4

pr6
//

1 1
2 4
3 5
6

.

pr6

zz
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Thus oλ(α3) = 6, and by Theorem 5.6, the order of pr is given by 6 · lcm{1, 2, 6} = 36.

We now focus on the hook shape λ = (N −m, 1m). In this case, a closed formula for
the order of pr was given in [2].

Theorem 5.8 ([2, Theorem 3.9]). For a hook shape λ = (N −m, 1m), the order of pr on
SSTn(λ) is given as follows:{

n if n = m+ 1,

n · lcm{m+ 1,m+ 2, . . . ,min{n,N} − 1} if n > m+ 1.

Suppose that gcd(n,N) = 1. Let α = (a1, . . . , an) ∈ Zn>0 and let m(α) denote the
number of nonzero entries in α. It was proved in [2] that the order of prn|α is given as{

1 if m(α) = m+ 1,

m(α)− 1 if m(α) > m+ 1,

and the triple (SSTn(λ, α), prn|α, X(q)) exhibits the cyclic sieving phenomenon, where

X(q) =

[
m(α)− 1

m

]
q

is the q-binomial coefficient. For λ, µ ` N , let mλ(x1, x2, . . . , xn)

be the monomial symmetric polynomial associated to λ and let Kλ,µ(q) be the Kostka-
Foulkes polynomial associated with λ and µ (see [12] for the definitions). The following
lemma is needed for the bicyclic sieving phenomenon on SSTn(λ), which can be proved
straightforwardly.

Lemma 5.9. Let ϕ : C̃ → C be a surjective homomorphism between finite cyclic groups.
Suppose that the triple (X,C, f(q)) exhibits the cyclic sieving phenomenon. We set

d := |C̃|/|C|. Then the triple (X, C̃, f(qd)) also exhibits the cyclic sieving phenomenon
via the homomorphism ϕ.

We now have the following bicyclic sieving phenomenon.

Theorem 5.10. Let λ = (N −m, 1m) with gcd(n,N) = 1, and let d and dα be the orders
of prn and prn|α respectively. We set

Sλ(q, t) := q−κ(λ)
∑
µ`N

tAµKλ,µ(t
d
dµ ) ·mµ(1, q, q2, . . . , qn−1),

where Aµ = d
dµ

(
−κ(µ) +m · µ′1 −

m(m+1)
2

)
and κ(µ) is defined in (3.1). Then the triple

(SSTn(λ),C× P, Sλ(q, t)) exhibits the bicyclic sieving phenomenon.

Proof. Let X be a finite set on which a finite group G acts. For g ∈ G, let Xg := {x ∈
X | x = g · x} and let o(g) be the order of g. Note that the symmetric group Sn acts on
Zn>0 by place permutation, i.e., si · (a1, . . . , an) = (asi(1), . . . , asi(n)) for i = 1, . . . , n− 1.

Let c := s1 · · · sn−1 ∈ Sn and choose any µ = (µ1, . . . , µn) ` N with SSTn(λ, µ) 6= ∅.
Let W (µ) := {w · µ | w ∈ Sn} and set l := m(µ). Note that m(µ) = µ′1. It follows from
Lemma 4.2 and Theorem 4.3 that

the elements µ, c · µ, . . . , cn−1 · µ are all distinct. (5.2)
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For w = si1 · · · sil ∈ Sn, we set w := si1 · · · sil and define

OSn(T ) := {w · T | w ∈ Sn} for T ∈ SSTn(λ, µ),

and
S(µ) :=

⋃
w∈Sn

SSTn(λ,w · µ).

Note that m(µ) = m(w · µ), w · SSTn(λ, µ) = SSTn(λ,w · µ) and |W (µ)| = |OSn(T )| for
T ∈ SSTn(λ, µ). Then the group C×P clearly acts on S(µ). It follows from (5.2) together
with Lemma 5.5 that

S(µ)(ca,prbn) = S(µ)c
a ∩ S(µ)pr

bn

for 0 6 a < n, 0 6 b < dµ.

But, as every C-orbit of SST(λ) is free by Theorem 4.3, we can deduce that

S(µ)(ca,prbn) =

{
S(µ)pr

bn
if a = 0,

∅ if a 6= 0.
(5.3)

Let

Xµ(t) =

[
l − 1
m

]
t

and Yµ(q) = q−κ(λ)mµ(1, q, . . . , qn−1).

Note that the triple (SSTn(λ, µ), prn|µ, Xµ(t)) exhibits the cyclic sieving phenomenon
by [2, Theorem 4.3]. By the same argument as in the proof of Theorem 4.3, for any
T ∈ SSTn(λ, µ), one can show that (OSn(T ),C, Yµ(q)) also exhibits the cyclic sieving
phenomenon. For k ∈ Z>0, let ωk be a primitive kth root of unity. By definition, we have

Xµ(ωo(prbn)) = |SSTn(λ, µ)pr
bn|, and

Yµ(ωo(ca)) = |(OSn(T )c
a| = δa,0 · |OSn(T )| = δa,0 · |W (µ)|.

(5.4)

Here, the second equality for Yµ follows from the fact that every C-orbit is free. Thus, by
putting Lemma 5.5, (5.3) and (5.4) together, we can derive that

|S(µ)(ca,prbn)| = δa,0 · |S(µ)pr
bn| = δa,0 · |W (µ)| · |SSTn(λ, µ)pr

bn|
= Xµ(ωo(prbn)) · Yµ(ωo(ca)),

which tells us that the triple (S(µ),C × P, Xµ(t) · Yµ(q)) exhibits the bicyclic sieving
phenomenon. Since SSTn(λ) =

⋃
µ`N S(µ), we conclude that the triple

(SSTn(λ),C× P,
∑
µ`N

Xµ(td/dµ) · Yµ(q))

exhibits the bicyclic sieving phenomenon by Lemma 5.9. Now the assertion follows from

the equality Xµ(t) = t−κ(µ)+m·µ′1−
m(m+1)

2 Kλ,µ(t) ([11, Example 4.2] or [10, Lemma 7.12]).

Remark 5.11. For a non-rectangular two-column shape λ, we do not know yet whether
there exists a suitable polynomial X(q) such that the triple (SSTn(λ, α), prn|α, X(q)) ex-
hibits the cyclic sieving phenomenon. Thanks to Lemma 5.5, if such a polynomial X(q)
is available, then we can also derive an analogue of Theorem 5.10 for a non-rectangular
two-column shape.
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