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Abstract

A new method is introduced for bounding the separation between the value of
−k and the smallest eigenvalue of a non-bipartite k-regular graph. The method is
based on fractional decompositions of graphs. As a consequence we obtain a very
short proof of a generalization and strengthening of a recent result of Qiao, Jing, and
Koolen [Electronic J. Combin. 26(2) (2019), #P2.41] about the smallest eigenvalue
of non-bipartite distance-regular graphs.

Mathematics Subject Classifications: 05C15, 05C31

1 Introduction

Let us consider a connected graph of order n and its adjacency matrix A(G). We speak
of the eigenvalues the graph G, by which we mean the eigenvalues of A(G). We order the
eigenvalues in descending order, λ1(G) > λ2(G) > · · · > λn(G). By the Perron-Frobenius
Theorem, the spectral radius of A(G) is equal to λ1(G). This means that |λn(G)| 6 λ1(G).
It also follows by the Perron-Frobenius Theorem that |λn(G)| = λ1(G) if and only if the
graph G is bipartite. For convenience, we write λmin(G) = λn(G). In this note we are
interested primarily in the gap

δ(G) = λmin(G) + λ1(G) > 0,
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which in some sense measures how far are we from being bipartite. We refer to [2], and
in particular to the famous inequality of Hoffman [3], see also [1].

If G is k-regular, then λ1(G) = k and δ(G) = λmin(G) + k. Our main concern will be
to derive bounds on δ(G).

Our original motivation for considering δ(G) was the following recent result of Qiao,
Jing, and Koolen [5] about the smallest eigenvalue of nonbipartite distance-regular graphs.

Theorem 1 (Qiao, Jing, and Koolen [5]). Let G be a non-bipartite distance-regular graph
with valency k and odd girth g. Then there exists a constant ε(g) > 0 such that δ(G) >
ε(g)k.

The proof in [5] gives a stronger result that for every odd integer g > 3 there exists
ε(g) > 0 such that every non-bipartite distance-regular graph G of odd girth g has δ(G) >
ε(g)k, where k is the degree of the vertices in G. We will mean this version when referring
to Theorem 1.

This note yields a very short proof and a strengthening of this results (Corollary 5)
and gives a generalization to arbitrary graphs (Theorem 3).

Theorem 1 was used in [5] to classify all non-bipartite distance-regular graphs of
diameters D = 4 and D = 5 that have δ(G) 6 k/D, continuing on their earlier result
in [4] which was used for diameter D = 3 and was based on a similar spectral lemma
bounding δ(G).

It is also mentioned in [5, Remark 1.2] that ε(g)→ 0 as g →∞, and odd cycles show

that ε(g) 6 2 cos2( (g−1)π
2g

) (for k = 2).
This result is interesting because it bounds the smallest eigenvalue away from the value

−k which is attained only for bipartite graphs. However, the dependence of the bound
on k is not tight. Our note gives the following improvement, which is asymptotically
best possible and holds not only for distance-regular graphs but holds for arbitrary k-
regular graphs, as long as they possess a certain homogeneity property. Our main result,
Theorem 3, is given in the next section; its application to distance-regular graphs is
outlined in Section 3.

2 Fractional decompositions and smallest eigenvalue of a graph

A decomposition of a graph G is a partition of its edge-set into subsets E1, . . . , Er. Each
subset Ei determines a subgraph Gi = (V (G), Ei) of G. We will denote by Ai the
adjacency matrix of Gi. Then we write G =

∑r
i=1Gi and we have A(G) =

∑r
i=1Ai.

A fractional decomposition of G with nonnegative weights αi > 0 (i = 1, . . . , r) is a
collection of spanning subgraphs Gi = (V (G), Ei) (i = 1, . . . , r), whose edge-sets Ei are
not necessarily edge-disjoint, such that for each edge e ∈ E(G),∑

i:e∈Ei

αi = 1. (1)

Then we write G =
∑r

i=1 αiGi and we have A(G) =
∑r

i=1 αiAi. We request that the sub-
graphs Gi are spanning in order to have the latter correspondence between their adjacency
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matrices and A(G). However, we will consider their subgraphs G′i that are obtained from
Gi by removing all isolated vertices (i.e., vertices of degree 0). We also let Vi = V (G′i) be
the set of vertices of positive degree in Gi.

The fractional decomposition is homogeneous if there are regular graphs H1, . . . , Ht

such that each G′i is isomorphic to one of these graphs and for each j ∈ [t], the value

sj = sj(v) =
∑

i:G′
i'Hj ,v∈Vi

αi (2)

is the same for each vertex v ∈ V (G).
Figure 1 shows two graphs that have homogeneous fractional decomposition into copies

of H1 = C3 and H2 = C5 with weights 1
2

for every subgraph, where the cycles in the
decomposition are all facial cycles. (The faces of the first one correspond to the planar
embedding, including the outer face, and the faces for the other one correspond to the
faces of the embedding in the projective plane, where diametrically opposite points and
edges on the circle are pairwise identified.) In the second example one can also take weight
α (0 6 α 6 1) for the triangles and weight 1− α for the 5-cycles.
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Figure 1: Two examples of homogeneous fractional decompositions in which the subgraphs
of the decomposition correspond to the facial cycles of lengths 3 and 5 of the planar and
projective-planar embeddings shown.

Lemma 2. Suppose that G1, . . . , Gr is a homogeneous fractional partition of a k-regular
graph G with weights α1, . . . , αr. Let H1, . . . , Ht be the corresponding graphs, where Hj is
dj-regular, j ∈ [t], and the constants sj are given by (2). Then we have

t∑
j=1

djsj = k. (3)

Proof. Consider a vertex v ∈ V (G). Each value sj is the sum of the weights of all G′i
containing v that are isomorphic to Hj. Since Hj is dj-regular, the sum of the values djsj
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is the sum of the weights of edges in those subgraphs G′i that are incident with the vertex
v. By the edge-condition (1), this sum contributes 1 to each edge incident with v. Since
G is k-regular, the sum must be equal to k.

Theorem 3. Suppose that G1, . . . , Gr is a homogeneous fractional partition of a k-regular
graph G with weights α1, . . . , αr. Let H1, . . . , Ht be the corresponding regular graphs, and
let the constants sj (j ∈ [t]) be given by (2). Then we have

δ(G) >
t∑

j=1

δ(Hj)sj.

Proof. For i ∈ [r], let Vi be the set of vertices of G′i. Let x ∈ RV (G) be a unit eigenvector
for λmin(G). For each i ∈ [r], let xi be the vector obtained from x by changing the
coordinates xv to 0 if v has degree 0 in Gi. Then

(Aix, x) = (Aix
i, xi) > λmin(Ai)(x

i, xi). (4)

Therefore,

λmin(G) = (Ax, x) =
(∑

i

αiAix, x
)

=
∑
i

αi(Aix
i, xi)

>
r∑
i=1

αi λmin(Ai)(x
i, xi)

=
t∑

j=1

∑
i:G′

i≈Hj

αi λmin(Hj)
∑
v∈Vi

x2v

=
t∑

j=1

λmin(Hj)
∑

v∈V (G)

x2v
∑

i:G′
i≈Hj ,v∈Vi

αi

=
t∑

j=1

λmin(Hj) sj
∑

v∈V (G)

x2v =
t∑

j=1

λmin(Hj) sj

=
t∑

j=1

(δ(Hj)− dj)sj = −k +
t∑

j=1

δ(Hj)sj.

This implies that δ(G) >
∑t

j=1 δ(Hj)sj, which we were to prove.

In one of the corollaries (Corollary 5 below), we will use Theorem 3 with t = 1, i.e.
when all graphs in a homogeneous fractional partition are isomorphic to a single d-regular
graph H. In that case, s1 = k/d, if G is k-regular. Then we have

δ(G) > δ(H1)k/d.

Let us illustrate Theorem 3 on some examples.
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(a) Consider the first graph depicted in Figure 1. Here H1 = C3 and H2 = C5, the
fractional decomposition has all weights equal to 1

2
and has 10 copies of C3 and 6

copies of C5. Since each vertex is in three copies of C3 and one C5, we have s1 = 3
2

and s2 = 1
2
. This gives that

δ(G) > 3
2
δ(C3) + 1

2
δ(C5) = 3

2
(−1 + 2) + 1

2
(−1−

√
5

2
+ 2) = 9−

√
5

4
.

(b) Similarly as above we get for the second example in Figure 1 that

δ(G) > 2α + 2(1− α)(3−
√
5

2
) = 3−

√
5 + α(

√
5− 1).

This bound is strongest for α = 1, and shows that δ(G) > 2.

(c) The graph in (b) is the line graph of the Petersen graph. In fact, every line graph
G = L(H) of a k-regular graph (k > 3) has a homogeneous decomposition into
cliques of order k, two cliques per vertex. Therefore, δ(G) > 2δ(Kk) = 2(k − 2).
Of course, this is equivalent to the well-known fact that the smallest eigenvalue of
a line graph L(H) is −2 if |E(H)| > |V (H)|. So, this fact is not new, but these
examples show that our theorem is tight for every even degree.

(d) Another class of tight examples can be obtained as follows. By taking the “blow-up”
of the odd cycle C2h+1 in which we replace each vertex v by an independent set Iv
of cardinality k and each edge uv by a copy of the complete bipartite graph Kk,k

joining Iv and Iu, we obtain a graph of degree 2k and odd girth 2h + 1 which has
a homogeneous fractional decomposition into copies of the cycle C2h+1. The bound
of Theorem 3 is tight for all such graphs.

The setup of homogeneous fractional decompositions can be applied in other similar
settings if the subgraphs G′i are spanning (i.e. for each i, every vertex of G is incident
with an edge in Gi). In that case, bounds similar to that of Theorem 3 can be derived for
the spectral gap λ1(G)− λ2(G), or for any convex function of eigenvalues, like the sum of
t largest or t smallest eigenvales.

Note that the degree matrix D(G) and the Laplacian matrix L(G) = D(G) − A(G)
are also fractionally decomposed with the same coefficients, D(G) =

∑r
i=1 αiD(Gi) and

L(G) =
∑r

i=1 αiL(Gi). If each G′i is spanning, then there is a result similar to Theorem
3 bounding the largest eigenvalue of L(G) and also bounding the smallest non-trivial
eigenvalue of L(G).

3 Distance-regular graphs

The following decomposition lemma enables us to apply the bound of Theorem 3 to
distance-regular graphs.

Lemma 4. Let G be a distance-regular graph with odd girth g = 2h+ 1. Then G admits
a homogeneous fractional decomposition into copies of the odd cycle C2h+1.
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Proof. With the standard notation for intersection array for distance-regular graphs, it
is clear that for every pair of vertices v and x at distance h, there are precisely p :=
chch−1 · · · c1 paths of length h from x to v. Also, distance-regularity implies that for every
edge xy ∈ E(G), the number q of vertices that are at distance h from both of them is
independent of the edge. Since the odd girth is 2h+ 1, we know that q > 0. This implies
that every edge belongs to precisely p2q cycles of length 2h + 1. (To see this one has to
realize that a path of length h from x to v and such path from y to v cannot intersect,
since that would give a shorter odd cycle; hence any two such paths together with the
edge form a cycle.) Let G1, . . . , Gr be all cycles of length 2h + 1 in G. Then it is clear
that G =

∑r
i=1

1
p2q

Gi.

Corollary 5. Let G be a k-regular non-bipartite distance-regular graph with odd girth
g = 2h+ 1. Then

δ(G) > (1− cos( π
2h+1

)) k >

(
π2

2(2h+ 1)2
− π4

24(2h+ 1)4

)
k .

Proof. By the previous lemma, G has a homogeneous fractional decomposition into copies
of the graph H = C2h+1. It is well-known that

λmin(C2h+1) = 2 cos( 2hπ
2h+1

) = −2 cos( π
2h+1

) > −2 + ( π
2h+1

)2 − 1
12

( π
2h+1

)4.

Now Theorem 3 completes the proof.
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