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Abstract

The main problem considered in this paper is maximizing the number of cycles
in a graph with given number of edges. In 2009, Király conjectured that there is
constant c such that any graph with m edges has at most c(1.4)m cycles. In this
paper, it is shown that for sufficiently large m, a graph with m edges has at most
(1.443)m cycles. For sufficiently large m, examples of a graph with m edges and
(1.37)m cycles are presented. For a graph with given number of vertices and edges
an upper bound on the maximal number of cycles is given. Also, bounds tight up
to a constant are presented for the maximum number of cycles in a multigraph with
given number of edges, as well as in a multigraph with given number of vertices and
edges.

Mathematics Subject Classifications: 05C35, 05C38

1 Introduction

Counting the number of cycles in a graph is a problem that was studied for different
classes of the graphs: graphs with given cyclomatic number, planar graphs, 3-regular and
4-regular graphs, and many others. However, only a few general bounds for the number of
cycles that use basic graph parameters are known. In this paper, bounds on the number
of cycles in a graph as a function of the number of vertices and edges are presented.

Let C(G) be the number of cycles in a graph G. In 1897, Ahrens [1] proved that for
a graph G with n vertices, m edges and k components,

m− n+ k 6 C(G) 6 2m−n+k − 1. (1)

The lower bound in (1) is tight; for example, it is achieved by any disjoint union of
cycles and trees. The tightness of the upper bound in (1) was shown by Mateti and Deo
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[10] and the only graphs for which the upper bound is tight are the ones that can be
obtained from subdivisions of K3, K4, K3,3 and K4 − e by sequentially adding pendant
edges. Aldred and Thomassen [2] improved the upper bound in (1) by showing that for
a connected graph G,

C(G) 6
15

16
2m−n+1. (2)

Entringer and Slater [7] considered C(G) for the class of connected graphs with fixed
cyclomatic number r = m − n + 1. It follows from the results of [7] that there is a 3-
regular connected graph G for which C(G) > 2r−1. Shi [13] presented an example of an
outer-planar 3-regular Hamiltonian graph G with C(G) = 2r−1 + r − 1.

Alt, Fuchs and Kriegel [3] and Aldred and Thomassen [2] studied C(G) for the class of
planar graphs, in terms of the number of vertices and in terms of the cyclomatic number,
respectively. Arman, Gunderson and Tsaturian [5] studied C(G) for the class of triangle-
free graphs on n vertices, and recently, Morrison, Roberts and Scott [11] studied C(G)
for the class of H-free graphs, where H contains a colour-critical edge.

Király [9] investigated C(G) for several classes of graphs: the union and the sum of
two trees, 3-regular and 4-regular graphs, and graphs with average degree 4. Király also
conjectured that there is a constant c, such that for any graph G that has m edges,

C(G) 6 c(1.4)m.

We refer an interested reader to [4, 5, 14] for a more comprehensive literature review.
Motivated by Ahrens’s bound (1) and by the work of Király, in this paper we further

investigate C(G) for two classes of graphs: those with n vertices and m edges, and those
with m edges.

The main result of this paper is providing an estimate on C(G) for graphs with given
number of vertices and edges.

Theorem 1. Let G be a multigraph with n > 2 vertices and m edges.
If m

n−1
< 3, then

C(G) <
3

4
∆(G) · ( 3

√
3)m.

If m
n−1

> 3, and b m
n−1
c = s, α = m

n−1
− s, then

C(G) <
3

4
∆(G)(s1−α(s+ 1)α)n−1.

A more compact, but slightly weaker bounds can be obtained as a corollary of Theo-
rem 1:

C(G) 6

{
3
4
∆(G)( m

n−1
)n−1, if m

n−1
> 3,

3
4
∆(G) · ( 3

√
3)m, if m

n−1
< 3.

(3)
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The bound in (3) is better than the one in (2) for graphs with sufficiently large number
of edges and average degree at least 4.25. The main tool used to derive Theorem 1 is
Lemma 4 that provides an estimate on the number of cycles that contain a given path.

For m ∈ Z+ let C(m) be the maximum number of cycles in a graph with m edges. As
a consequence of Theorem 1 we also obtain a bound for C(m).

Corollary 2. For any positive integer m,

C(m) < 4.5(
3
√

3)m.

Theorem 1 and Corollary 2 are proved in Section 2.
In Section 3, for m sufficiently large, a graph G with m edges is constructed, such that

C(G) > (2 +
√

8)
m
5
−1 > 1.37m.

Corollary 2 and the result of Section 3 imply that for m large enough,

1.37m 6 C(m) 6 1.443m. (4)

The lower and upper bound in (4) differ exponentially, which motivated us to question
the sharpness of Lemma 4. Although this lemma might not be sharp for counting cycles
in graphs, we show in Section 4 that Lemma 4 provides exponentially sharp bound on the
number of cycles in multigraphs. It is shown (Theorem 8) that if G is a multigraph that
has the most cycles among all loopless multigraphs with m edges, then

9

10
(

3
√

3)m 6 C(G) 6 4.5(
3
√

3)m.

Finally, in Appendix A it is shown that extremal graphs for the function C(m) have
bounded degrees. Namely, it is shown (Theorem 10) that if G is a graph with m edges
with C(G) = C(m), then the maximum degree of G is at most 11.

2 Main results

For k ∈ Z+, denote {i ∈ Z; 1 6 i 6 k} by [k], and for a set S, denote {T ⊆ S : |T | = k}
by [S]k. A multigraph in this paper is an ordered triplet G = (V,E, t), where V is a set
of vertices, E is a set of edges and t is a function that maps E to [V ]2 (t(e) indicates
which vertices are incident to e ∈ E). Note that under this notation the edge set of a
multigraph is indeed a set (not a multiset). The degree degG(V ) of a vertex v ∈ V (G) is
the number of edges incident to v. For two vertices u, v ∈ V (G), denote by E(u, v) the
set of all edges between u and v. For a vertex v ∈ V (G), denote by N(v) the set of all
vertices connected with v by at least one edge. Denote the average degree of a graph (or
a multigraph) G by d(G), the maximum degree by ∆(G), and the minimum degree by
δ(G). A cycle in a multigraph G is a set of k > 2 distinct vertices and k distinct edges
{v1, e1, v2, e2, . . . , ek, v1}, where for each i ∈ [k], vi ∈ V (G), ei ∈ E(G) and any consecutive
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vertex and edge are incident. As in the case of simple graphs, denote the number of cycles
in a multigraph G by C(G).

In order to prove Theorem 1, we introduce a counting Lemma 4 that bounds the
number of cycles in a multigraph through a given path by essentially a number of ways
to extend that path to a longer one. Lemma 4 is subsequently used to obtain Lemma 5
which provides an estimate on the number of cycles through a given vertex in a graph.
We then use Lemma 5 in combination with induction to prove Theorem 1. Finally, we
establish Corollary 2 as a quick consequence of Theorem 1.

Definitions 3. Let G be a multigraph with n vertices.
Let P = v1e1v2 . . . ek−1vk be a path in G. Define

f(P ) = max{degG−{v2,...,vk−1}(vk), 1},

i.e. f(P ) is equal to the number of ways to select the next vertex on a cycle that starts
with P , or equal to 1 if P cannot be extended to a cycle. Denote the number of cycles in
G that contain P by C(P ).

For two paths P1 and P2 with the same starting vertex, write P1 ⊆ P2 if P1 is a subpath
of P2 (i.e. P1 = v1e1v2 . . . ek−1vk, P2 = v1e1v2 . . . ek−1vkek . . . e`−1v`). We write P1 ⊂ P2 if
P1 ⊆ P2 and P1 6= P2. In this case, define f(P1, P2) =

∏`
j=k f(v1e1 . . . vj).

Lemma 4. Let G be a multigraph with n > 2 vertices, k ∈ [n], and P = v1e1v2e2 . . . vk
be a path in G. Then

C(P ) 6 max
P ′:P⊆P ′

f(P, P ′).

Proof. For a path P = v1e1v2 . . . ek−1vk additionally define

F (P ) = {P ′ : P ′ is a path of form Pekvk+1},

i.e. F (P ) is the set of paths that extend P by exactly one edge.
Fix n > 2. Let G be a multigraph on n vertices. The proof is by downwards induction

on k.
Base case. Let k = n. Let P = v1e1 . . . vn be a path in G, C(P ) in this case is equal to
the number of edges between vn and v1 and maxP⊆P ′ f(P, P ′) = f(P ). f(P ) is at least
the number of edges between vn and v1, hence this proves the base case.
Inductive step. Let ` ∈ [n − 1]. Assume that the statement of the lemma holds for
k = `+ 1, and prove it for `, i.e. let P = v1e1 . . . v`, and we seek to bound C(P ).
Let s be the number of edges between v` and v1. Then

C(P ) = s+
∑

P ′∈F (P )

C(P ′).

If F (P ) = ∅ then C(P ) = s 6 f(P ) and hence the inductive step follows. Now assume
that F (P ) 6= ∅. For all possible choices of P ′ ∈ F (P ), according to inductive hypothesis,

C(P ′) 6 max
P ′′:P ′⊆P ′′

f(P ′, P ′′).

the electronic journal of combinatorics 26(4) (2019), #P4.42 4



Therefore,

C(P ) 6 s+ (f(P )− s) max
P ′∈F (P )

C(P ′)

6 s+ (f(P )− s) max
P ′∈F (P )

max
P ′′:P ′⊆P ′′

f(P ′, P ′′)

6 f(P ) max
P ′∈F (P )

max
P ′′:P ′⊆P ′′

f(P ′, P ′′)

= max
P ′∈F (P )

max
P ′′:P ′⊆P ′′

f(P )f(P ′, P ′′)

= max
P ′∈F (P )

max
P ′′:P ′⊆P ′′

f(P, P ′′) = max
P ′′:P⊆P ′′

f(P, P ′′).

This proves that the statement of the lemma holds for `, and therefore by induction
it holds for all k ∈ [n].

Lemma 5. Let G be a multigraph with n > 3 vertices and m edges, and let v1 be a vertex
in G of degree ∆(G).

• If m
n−1

> 3, and b m
n−1
c = s, m

n−1
−s = α, then there are at most ∆(G)

2
(s1−α(s+1)α)n−1

cycles in G that contain v1.

• If m
n−1

< 3, then there are at most ∆(G)
2
· ( 3
√

3)m cycles in G that contain v1.

Proof. Let G be a multigraph with n > 3 vertices and m edges, and v1 be a vertex with
degree ∆(G).
For any edge e = v1v2 incident to v1, by Lemma 4, the number of cycles that contain e is
at most

max
P ′:e⊆P ′

f(e, P ′).

Every cycle through v1 contains two such edges, therefore the number of cycles that
contain v1 is at most

∆

2
max
e=v1v2

max
P ′:e⊆P ′

f(e, P ′). (5)

Let e = v1v2 and P ′ = v1v2, . . . vt be an edge and a path that give the maximum in (5)
with the smallest possible t. For 2 6 i 6 t define fi = f(v1 . . . vi), so

∆

2
max
e=v1v2

max
P ′:e⊆P ′

f(e, P ′) =
∆

2
f2 · . . . · ft.

Then ft > 2 (otherwise remove all fi = 1 after the last fk > 2 to obtain the smaller
collection of vertices that gives maximum in (5)). Then for all 2 6 i 6 t,

fi = degG−{v2,...,vi−1}(vi).

For 2 6 i 6 t, all the edge sets {viu ∈ E(G) : u ∈ V (G)\{v2, . . . , vi}} are mutually
disjoint, so f2 + · · ·+ ft 6 m. Therefore,

∆

2
f2 · . . . · ft 6

∆

2
· max

26t6n
x2+...+xt6m,
∀i∈[2,t],xi∈Z+

{x2 · x3 · . . . · xt}.
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So the number of cycles in G that contain v1 is at most

∆

2
· max

26t6n
x2+...+xt6m,
∀i∈[2,t],xi∈Z+

{x2 · x3 · . . . · xt}. (6)

For a fixed t the product x2 . . . xt in (6) obtains its maximum when xis (i > 2) are as
equal as possible (for all i, j |xi − xj| 6 1), and their sum is equal to m. Let b m

n−1
c = s,

m
n−1

= s+ α.
If s > 3 (which is equivalent to m

n−1
> 3), let the maximum in (6) be achieved for some

t 6 n and let x2, · · · , xt be a collection of xis that gives the maximum in (6). If t < n, then
s > 3 implies that either for some i ∈ [t], xi > 5, or for two different i, j ∈ [t], xi = xj = 4.
In the first case replacing xi by xi−2 and setting xt+1 = 2 gives a collection of xi’s with a
bigger product. In the second case setting xi = xj = 3 and xt+1 = 2 increases the product
of xis. Hence, the maximum in (6) is achieved when t = n. For all 2 6 i 6 n, xi = s or
xi = s+ 1. Then the number of cycles in G that pass through v1 is at most

∆

2
x2 . . . xn =

∆

2
s(1−α)(n−1)(s+ 1)α(n−1) =

∆

2
(s1−α(s+ 1)α)n−1.

If s < 3, let the maximum of (6) be achieved for some 2 6 t 6 n and let x2, · · · , xt be
the collection of xis that gives the maximum in (6). Recall that for all i, j |xi−xj| 6 1. If
for two different i, j ∈ [t] xi = xj > 3, then m > 6 + 3(t− 2) = 3t, and s < 3 implies that
t < n. Replacing xi by xi − 1, xj by xj − 1 and setting xt+1 = 2 increases the product.
Therefore, there is at most one i, such that xi = 4. If there is i such that xi = 1, then
replacing any xj (j 6= i) by xj+1 and deleting xi increases the product. If for some i, j, k ∈
[t] xi = xj = xk = 2, then replacing xi by 3, xj by 3 and deleting xk increases the product.
Therefore, {x2, . . . , xt} ∈ {{3, 3, . . . , 3, 2, 2}, {3, 3, . . . , 3, 4}, {3, 3, . . . , 3, 2}, {3, 3, . . . , 3}}.
Then x2 . . . xt is at most 3

m
3 , so the number of cycles that pass through v1 is at most

∆

2
x2 . . . xt 6

∆

2
3
m
3 .

Proof of Theorem 1. The proof is by mathematical induction on n.
Base case. If n = 2, there is only one multigraph on n vertices with m edges – two vertices
connected by m edges. In this case s = m

n−1
= m, and G has max{

(
m
2

)
, 0} cycles, which

is less than 3
4
m( 3
√

3)m (for the case m < 3), and less than 3
4
m ·m (for the case m > 3).

Inductive step. Let k > 3 be an integer, and suppose that the statement of the theorem
is proved for n = k − 1. Let G be a multigraph with k vertices, m edges and let v1 be a
vertex of maximal degree in G.
Case 1: Suppose that m

k−1
< 3.

If ∆(G) 6 2, then every edge is contained in at most one cycle, and every cycle contains
at least two edges, so the number of cycles in G is at most

m

2
6

3

4
∆(G) · ( 3

√
3)m.
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If ∆(G) > 3, then the multigraph G − v1 has at most m − 3 edges, ∆(G − v1) 6 ∆(G)

and |E(G−v1)|
|V (G−v1)|−1

6 m
k−1

< 3, therefore, by inductive assumption, the number of cycles in

G − v1 is at most 3
4
∆(G) · ( 3

√
3)m−3. By Lemma 5, the number of cycles that contain v1

is at most ∆(G)
2
· ( 3
√

3)m, therefore the total number of cycles in G is at most

∆(G)

2
· ( 3
√

3)m +
3

4
∆(G) · ( 3

√
3)m−3 =

3

4
∆(G) · ( 3

√
3)m.

Case 2: Now we consider the case m
k−1

> 3.
Let s = b m

k−1
c, α = m

k−1
− b m

k−1
c. Note that ∆(G− v1) 6 ∆(G) and let

y =
|E(G− v1)|
|V (G− v1)| − 1

6
m

k − 1
.

Note that the function
f(x) = (bxc)1−x+bxc(bxc+ 1)x−bxc

is non-decreasing on every interval [a, a+ 1], a ∈ Z>0 (and hence on R+), therefore

s1−α(s+ 1)α > f(3) = 3. (7)

If y > 3, then, by the induction hypothesis,

|E(G− v1)| 6 3

4
∆(G)((byc)1−y+byc(byc+ 1)y−byc)k−2

6
3

4
∆(G)(s1−α(s+ 1)α)k−2.

If y < 3, then |E(G− v1)| < 3(k − 2), and by the induction hypothesis

|E(G− v1)| 6 3

4
∆(G)(

3
√

3)|E(G−v1)| <
3

4
∆(G)(

3
√

3)3(k−2)

=
3

4
∆(G) · 3k−2 6

3

4
∆(G)(s1−α(s+ 1)α)k−2.

Hence, for any y, |E(G− v1)| 6 3
4
∆(G)(s1−α(s + 1)α)k−2, which together with Lemma 5

and (7) implies that

C(G) =
3∆(G)

4
(s1−α(s+ 1)α)k−2 +

∆(G)

2
(s1−α(s+ 1)α)k−1 (8)

6
3∆(G)

4
(s1−α(s+ 1)α)k−1, (9)

which proves the inductive step and hence the theorem.

Proof of Corollary 2. Let G be a graph with n vertices and m edges, such that C(G) =
C(m). First, prove the statement of the corollary for the case when ∆(G) 6 6. Suppose

that m
n−1

> 3. Let f(s, α) = (s1−α(s + 1)α)
1

s+α , then for any s > 0, f(s, α) is monotone
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in α and max
s∈Z+,α∈[0,1)

f(s, α) = max
s∈Z+

s
1
s =

3
√

3. This, together with Theorem 1, implies that

for s = b m
n−1
c and α = m

n−1
− b m

n−1
c

C(m) = C(G) <
3

4
∆(G)((s1−α(s+ 1)α)

1
s+α )m 6 4.5(

3
√

3)m.

If m
n−1

< 3 then, by Theorem 1,

C(m) = C(G) <
3

4
∆(G)(

3
√

3)m 6 4.5(
3
√

3)m.

The proof for the case ∆(G) > 7 goes by induction on m. Let v be a vertex of degree
at least 7 in G, then there exists an edge e, incident to v, such that there are at most
2
7
C(G) cycles in G that contain e. Hence C(G) 6 5

7
C(G−e), and by inductive hypothesis,

C(G− e) 6 4.5( 3
√

3)m−1. Therefore

C(G) 6
5

7
4.5(

3
√

3)m−1 6 4.5(
3
√

3)m.

In Appendix A it is shown that extremal graphs for the function C(m) have bounded
degrees. Theorem 10 states that if G is a graph with m edges with C(G) = C(m), then
the maximum degree of G is at most 11.

3 Example of a graph with (1.37)m cycles

In this section we present an example of a graph with m edges that has at least (1.37)m

cycles. The previous best known bound is due to Alt, Fuchs and Kriegel [3] who provided
an example of a planar graph with 1.34m cycles.

For n > 1 let Hn be the graph on 2n+ 2 vertices with

V (Hn) = {u1, u2, . . . , un+1, v1, v2, . . . vn+1} and

E(Hn) = {uivj : i, j ∈ [n+ 1], |i− j| 6 1} ∪ {uiui+1 : i ∈ [n]} ∪ {vivi+1 : i ∈ [n]}.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13

Figure 1: Graph H12.

For n > 1 denote by P (n) the number of paths from the vertex u1 to the vertex un+1

in Hn. Note that P (n) is also equal to the number of paths from u1 to vn+1 in Hn.
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Claim 6. For all n > 2

P (n) = 4P (n− 1) + 4P (n− 2).

Proof sketch. The proof of the claim relies on an inductive argument and an observation
that each path from u1 to un+1 in Hn corresponds to exactly one of the following paths:

• path from u1 to un in Hn−1 followed by the path unun+1 or by the path unvn+1un+1.

• path from u1 to vn in Hn−1 followed by the path vnun+1 or by the path vnvn+1un+1.

• path from u1 to un−1 in Hn−2 followed by the path un−1unvn+1vnun+1 or by the path
un−1vnvn+1unun+1.

• path from u1 to vn−1 in Hn−2 followed by the path vn−1unvn+1vnun+1 or by the path
vn−1vnvn+1unun+1.

Solving the recurrence relation leads to the inequality

P (n) > (2 + 2
√

2)n.

Define the graph Gn by identifying vertices u1 and un+1 in Hn. Then Gn has 2n + 1
vertices, m = 5n+ 1 edges and

C(Gn) > P (n) > (2 + 2
√

2)n.

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

u1 u2

u3

u4

u5

u6u7
u8

u9

u10

u11

u12

v13 v1

Figure 2: G12 with 25 vertices and 61 edges.

For an integer m let graph G be obtained from Gbm−1
5
c by adding (m − 5bm−1

5
c − 1)

edges. Then G has m edges and for m large enough

C(G) > C(Gbm−1
5
c) > (2 + 2

√
2)b

m−1
5
c > (2 + 2

√
2)

m
5
−1 > 1.37m.
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4 Maximum number of cycles in multigraphs

The problems of maximizing the number of cycles with fixed number of edges or fixed
average degree can also be considered for multigraphs. Using the techniques presented in
this paper, the authors can prove the following two results.

Theorem 7. Let G be a multigraph that has the maximum number of cycles among all
the multigraphs with n > 2 vertices and m > 3 edges. Let b m

n−1
c = s, α = m

n−1
− s.

If m
n−1

> 3, then

8

27
s(s1−α(s+ 1)α)n−1 6 C(G) 6

3

4
∆(G)(s1−α(s+ 1)α)n−1.

If m
n−1

6 3, then

4(
3
√

3)m−4 6 C(G) <
3

4
∆(G) · ( 3

√
3)m.

The upper bounds in Theorem 7 follow from Theorem 1. For the lower bounds, define
Cn,m to be the multigraph obtained from the cycle Cn by replacing each of some m−bm

n
cn

consecutive edges with edges of multiplicity bm
n
c + 1 and the rest bm

n
cn − m + n edges

with edges of multiplicity bm
n
c. The lower bound in the first case is achieved by the graph

Cn,m. The lower bound in the second case is achieved by the graph Cbm+1
3
c,m with extra

n − bm+1
3
c isolated vertices. For a detailed proof of Theorem 7 we refer an interested

reader to [4, 14].

Theorem 8. Let G be a multigraph with m > 3 edges that has the maximum number of
cycles among all the multigraphs with m edges. Then

9

10
(

3
√

3)m < 4(
3
√

3)m−4 6 C(G) 6 4.5(
3
√

3)m

The upper bound in Theorem 8 can be obtained by repeating the argument of Corol-
lary 2 and a version of Theorem 10, modified for multigraphs. The example for the lower
bound is the same as for the second case of Theorem 7.
Theorems 7 and 8 answer both questions for multigraphs up to a constant factor. The au-
thors believe that for m > 9 the graph Cbm+1

3
c,m has the most cycles among all multigraphs

with m edges.

5 Concluding remarks

Theorem 1 gives an upper bound for the number of cycles in a graph G with n vertices
and m edges. For a graph G with n vertices and average degree d > 6, Theorem 1 and
AM-GM imply

C(G) 6 3∆(G)

(
d

2

)n
.
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For d = Ω(lnn), letG be a random graphG(n, p) with p = d
n−1

. Glebov and Krivelevich [8]

proved that the number of hamiltonian cycles in G is a.a.s. at least
(
d
e

)n
(1 + o(1))n. It

was shown in [4,14] that, provided d→∞, a random G(n,m) graph has
(
d
e

)n
(1 + o(1))n

cycles in expectation. Therefore, if G is a graph with the maximal number of cycles among
all graphs with n vertices and average degree d (with d→∞), then for n large enough(

d

e

)n
(1 + o(1))n 6 C(G) 6 (1 + o(1))n

(
d

2

)n
.

In an earlier version of this paper, we conjectured that C(G) 6
(
(1 + o(1))d

e

)n
. This was

shown to be true by Noel [12], who used Bregman’s theorem to show that

C(G) 6 (d+ 1)!n/(d+1) = (1 + o(1))n(d/e)n.

We note that the bound in Theorem 1 is exponentially better than the one of Noel for
the case when d < 9.2411.

As mentioned in the introduction, Theorem 2 and the result of Section 3 imply that

1.37m 6 C(m) 6 1.443m.

Király [9] conjectured that C(m) < 1.4m. The upper bound in Corollary 2 is 4.5( 3
√

3)m,
which inspired the following conjecture.

Conjecture 9. For sufficiently large m, there exists a graph G with m edges and at least
(1 + o(1))m( 3

√
3)m cycles.
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Added in proof:

After submission of this paper Dvořák, Morrison, Noel, Norin and Postle [6] have substan-
tially improved Theorem 1 and disproved Conjecture 9. Their proof is based on bounding
the number of paths between two vertices in a graph by a function of degree sequence
that is much more intricate, compared to the one used in this paper.

During the preparation of this paper, Morrison, Roberts and Scott [11] have considered
the problem of maximising C(G) for the class of H-free graphs. For the class of H-free
graphs they obtain bounds that are exponentially better than the ones in Theorem 1,
provided m is close to the Turán number of H.
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Appendix A Maximal degree of graphs with C(m) cycles

Recall that, for m ∈ Z+, C(m) is the maximum number of cycles in a graph with m edges.

Theorem 10. If G is a graph with m edges such that C(G) = C(m), then ∆(G) 6 11.

The proof of Theorem 10 relies on the following two lemmas.

Lemma 11. Let k > 6 be a positive integer. For 1 6 i < j 6 k, let wi,j be a non-negative
real number, and let S =

∑
16i<j6k wi,j. Then there exists a 6-element set D ⊆ [k] such

that ∑
1 6 i < j 6 k
i 6∈ D, j 6∈ D

wi,j >

(
1− 6(2k − 7)

k(k − 1)

)
S.

Proof. The proof relies on an averaging argument. For each i ∈ [k] set wi =
∑

j∈[k],j 6=iwi,j.
Note that ∑

i∈[k]

wi = 2S.

Let X be a collection of all 6-element subsets of [k]. For D ∈ X let

S(D) =
∑

1 6 i < j 6 k
i 6∈ D, j 6∈ D

wi,j

= S −
∑
i∈D

wi +
∑

i,j∈D,i<j

wi,j.

Let S(D) be the average of S(D) over all D ∈ X, then

S(D) =

∑
D∈X

(
S −

∑
i∈D wi +

∑
i,j∈D,i<j wi,j

)
(
k
6

)
= S −

(
k−1

5

)
· 2S(

k
6

) +

(
k−2

4

)
· S(

k
6

)
=

(
1− 6(2k − 7)

k(k − 1)

)
S.

There exists D ∈ X, such that S(D) > S(D), i.e.∑
1 6 i < j 6 k
i 6∈ D, j 6∈ D

wi,j >

(
1− 6(2k − 7)

k(k − 1)

)
S.
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Lemma 12. Let k > 2 be a positive integer. For 1 6 i < j 6 k, let wi,j be a non-negative
real number, and let S =

∑
16i<j6k wi,j. Then there exists a partition A1∪A2∪A3∪A4 =

[k], such that ∑
16l<m64

∑
i ∈ Al
j ∈ Am

wi,j >

(
3k2 − 4

4k(k − 1)

)
S.

Proof. For all l ∈ [4] let al = bk+l−1
4
c (note that a1 + a2 + a3 + a4 = k). Let X be the

collection of all ordered quadruples (A1, A2, A3, A4), such that π = A1 ∪ A2 ∪ A3 ∪ A4 is
a partition of [k] and for all l ∈ [4], |Al| = al. Note that

|X| = k!

a1!a2!a3!a4!
.

For p = (A1, A2, A3, A4) ∈ X define

S(p) =
∑

16l<m64

∑
i ∈ Al
j ∈ Am

wi,j = S −
∑
l∈[4]

∑
i < j

i, j ∈ Al

wi,j.

Let S(p) be the average of S(p) over all possible choices of p.

S(p) =

∑
p∈X(S −

∑
l∈[4]

∑
i,j∈Al,i<j wi,j)

|X|

= S −
∑

l∈[4]

∑
16i<j6k

∑
p∈X: i,j∈Al wi,j

|X|

Note that for any choice of l ∈ [4] and any choice of i, j, such that 1 6 i < j 6 k there
are exactly

(k − 2)!(al)(al − 1)

a1!a2!a3!a4!

quadruples p ∈ X, such that i, j ∈ Al. Then,

S(p) = S − (
∑
l∈[4]

∑
16i<j6k

(k − 2)!(al)(al − 1)

a1!a2!a3!a4!
wi,j)/|X|

= S − (
∑
l∈[4]

(k − 2)!(al)(al − 1)

a1!a2!a3!a4!
· S) · 1

|X|

= S − (
∑
l∈[4]

bk+l−1
4
c(bk+l−1

4
c − 1)

k(k − 1)
) · S

> S

(
1− (k − 2)2

4k(k − 1)

)
.
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There exists a p = (A1, A2, A3, A4) ∈ X, such that S(p) > S(p), therefore the partition
A1 ∪ A2 ∪ A3 ∪ A4 satisfies the statement of Lemma 12.

Proof of Theorem 10. Let m be a positive integer and G be a graph with m edges. To
prove Theorem 10, it is sufficient to prove that if ∆(G) > 12, then there is a graph H
with m edges and with C(H) > C(G).

Let ∆(G) > 12 and u be a vertex of maximal degree in G. Let N(u) = {u1, u2, . . . , uk}
be the neighbourhood of u (note that k > 12). For 1 6 i < j 6 k, define wi,j to be the
number of paths from the vertex ui to the vertex uj in the graph G−u. Then the number
of cycles in graph G that pass through vertex u is S =

∑
16i<j6k wi,j. By Lemma 11,

there is a 6-element set D = {i1, i2, . . . , i6}, such that∑
1 6 i < j 6 k
i 6∈ D, j 6∈ D

wi,j >

(
1− 6(2k − 7)

k(k − 1)

)
S. (10)

Suppose, upon re-indexing, that D = {k − 5, k − 4, . . . , k − 1, k}. Applying Lemma
12 to the collection of real numbers wi,j with 1 6 i < j 6 k − 6 gives a partition
A1 ∪ A2 ∪ A3 ∪ A4 = [k − 6] with∑

16l<m64

∑
i ∈ Al
j ∈ Am

wi,j >

(
3(k − 6)2 − 4

4(k − 6)(k − 7)

)(
1− 6(2k − 7)

k(k − 1)

)
S. (11)

For i ∈ [4], let Ui = {uj : j ∈ Ai}. Construct a graph H by deleting u and all of the
edges incident to u, adding four new vertices v1, v2, v3, v4, then for all 1 6 i 6 4 adding
edges from vi to each vertex of Ui, and for all 1 6 i < j 6 4 adding edges vivj (see Figure
3). Then |E(H)| = |E(G)|.

u

G:

U3U2

U1 U4

D

v1 v4

v2 v3

U3

H:

U2

U1 U4

D

Figure 3: Constructing graph H from G.

To count the number of cycles in H, note the following:

• Every cycle in G that does not pass through the vertex u is still a cycle in H. There
are C(G)− S such cycles.
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• Let C be a cycle in G that for some 1 6 i < j 6 k − 6 contains a path uiuuj. If for
some l ∈ [4] ui and uj are in the same class Ul, then C corresponds to the cycle in
H that uses the path uivluj instead of uiuuj. In the case if ui ∈ Ul and uj ∈ Um for
some 1 6 l < m 6 4, cycle C corresponds to the cycle that uses the path uivlvmuj
instead of uiuuj. By (10), there are at least(

1− 6(2k − 7)

k(k − 1)

)
S

cycles in G that use path uiuuj with ui, uj ∈ N(u)\D.

• Every cycle in G that for some i ∈ Al and j ∈ Am with l 6= m contains a path uiuuj
gives rise to additional 4 cycles in H(except the one containing uivlvmuj). For
example, if l = 1, m = 2 the four new cycles contain paths uiv1v3v2uj, uiv1v4v2uj,
uiv1v3v4v2uj and uiv1v4v3v2uj instead of uiuuj. According to (11), there are at least(

3(k − 6)2 − 4

4(k − 6)(k − 7)

)(
1− 6(2k − 7)

k(k − 1)

)
S =

(
3k2 − 36k + 104

4k(k − 1)

)
S

cycles in G that for some i ∈ Al and j ∈ Am with l 6= m pass through a path uiuuj.

• There are 7 new cycles in H spanned by the vertices v1, v2, v3, v4.

By all of the observations above, the number of cycles in H is

C(H) > C(G)− S +

(
1− 6(2k − 7)

k(k − 1)

)
S + 4

(
3k2 − 36k + 104

4k(k − 1)

)
S + 7

> C(G) + 7 + S

(
3(k − 4)(k − 12)

k(k − 1)

)
> C(G).

Therefore, H has more cycles than G.

Note, that for m = 7 the graphs that have the most cycles are K4 plus an edge and
K4 with one edge replaced by a path of length two. In the first case minimum degree is
one, in the second case – two.

The authors can also prove the following theorem (for the proof, see [4]).

Theorem 13. If m > 7 and G is a connected graph with C(G) = C(m), then δ(G) > 3.
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