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Abstract

It is shown that each nearly neighbourly family of standard boxes in R3 has
at most 12 elements. A combinatorial classification of all such families that have
exactly 12 elements is given. All the families satisfying an extra property called
incompressibility are described. Compressible families are discussed briefly.

Mathematics Subject Classifications: 52B10, 05C69

1 Introduction

A standard n-box or an n-interval is the Cartesian product of n ordinary closed intervals
of positive length. Two n-intervals I = I1 × · · · × In and J = J1 × · · · × Jn are adjacent
if there is i ∈ [n] such that Ii and Ji have exactly one point in common. Both the family
and the infinite graph of all n-intervals with the adjacency just defined are denoted by
I n. This convention extends to any subfamily G of I n: The same symbol G is for the
graph with adjacency inherited from I n. A subfamily G ⊂ I n is nearly neighbourly if
it is a clique in I n.

The main purpose of the present investigation is to demonstrate that the maximum
cardinality of a nearly neighbourly family in I 3 is 12 (Theorem 16), and to give full
combinatorial and geometric descriptions of all such families. It should be pointed out
that the case of the so-called compressible cliques (see Section 6) is addressed rather
superficially. Only results without proofs are presented. A more detailed analysis will
possibly be published elsewhere.

The notion of a nearly neighbourly family of intervals is a specialization of a more
general concept promoted by Zaks [16]: A family P of n-dimensional convex polytopes
in Rn is said to be nearly neighbourly, if for every two polytopes P , Q belonging to P
there is a hyperplane separating them that contains a facet of P and a facet of Q. In fact,
researchers have paid more attention to neighbourly families. Let us remind that P is
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neighbourly if the intersection of any two members of P is of dimension n−1. In general,
such a P can be of arbitrary finite cardinality unless n 6 2; in addition, one may even
assume that the members of P are affinely equivalent [11] or congruent [5]. However, if a
nearly neighbourly family P consists of polytopes having their number of facets bounded
from the above by m, then, as mentioned in [17],

|P| 6 2m. (1)

The proof is based on an idea of Perles [13]. (A similar method has been employed by other
researches even earlier; see [6] for further details). It is conjectured that if P consists of
n-dimensional simplices, then the above estimate can be improved; that is, |P| 6 2n. The
conjecture is open for all n > 3. (The best known estimate is 2n+1 − 2; see [7, 18], where
the case n = 3 is considered, and [9] for general n). It is even open for neighbourly families
of simplices in dimension 4. As it concerns tetrahedra, it was Bagemihl [3] who raised
the question. He constructed a neighbourly family of 8 tetrahedra, and speculated that it
is a family of maximum cardinality. Subsequently, Baston [4] proved that a neighbourly
family of tetrahedra has at most 9 elements. And finally Zaks [18] was able to show that
it has at most 8 elements as expected. His work depends heavily on Baston’s research
and the Graham—Pollak theorem [8] on minimal biclique partitions of complete graphs.
It was also Zaks [19] who constructed a neighbourly family of n-dimensional simplices
consisting of 2n members for n > 3.

We know just a couple of papers devoted to (nearly) neighbourly families of standard
boxes. Zaks [20] proved that the maximum cardinality of a neighbourly family of n-
intervals is n + 1. Again, the proof depends on the Graham—Pollak theorem. In [2],
N. Alon studied k-neighbouring families of n-intervals. Let us remind that P is such a
family if for every two members P and Q of P one has n − k 6 dimP ∩ Q 6 n − 1.
He gave estimates from below and above for the maximum cardinality of a k neighbourly
family of n-intervals. There are two works [14, 15] by J. D. Simon on (nearly) neighbourly
families of quadrilaterals. Some of her results will be discussed in Section 4.

We begin with showing that for families of n-intervals Perles’ estimate (1) can be
improved by a constant factor (Proposition 10, Remark 3). In this context, we introduce
a bulk of notions instrumental for further presentation.

2 Preliminaries

Let X be a non-empty set. We denote by NX the abelian semigroup of all finite formal
sums of elements of X. (The elements of NX will also be called combinations). Every
combination γ ∈ NX is uniquely determined by a function k : X → N with support
{x : kx > 0} of finite cardinality. We shall use the following notation related to γ:

γ =
∑
x∈X

kxx =
∑

kxx, |γ| =
∑

kx, supp γ = {x : kx > 0}.

On several occasions we will use a naturally defined partial order on NX: For δ =
∑
lxx

and γ =
∑
kxx, we write δ 6 γ if and only if lx 6 kx, for every x ∈ X. If δ 6 γ, then we
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say that δ is a subcombination of γ. If lx ∈ {kx, 0}, for every x ∈ X, then δ is an induced
subcombination of γ. Suppose G is a graph whose set of vertices V (G) equals X. Then
each γ determines in a natural way the graph Gγ:

V (Gγ) =
⋃

x : kx>0

{(x, 1), . . . , (x, kx)};

E(Gγ) = {{(x, i), (y, j)} : {x, y} ∈ E(G), 1 6 i 6 kx, 1 6 j 6 ky}.

In what follows, we shall often appeal to γ itself as to Gγ. Consequently, we shall write
V (γ), E(γ) rather than V (Gγ), E(Gγ).

Proposition 1. Let G be a graph and let γ =
∑
kxx be an element of NV (G). Then

|V (γ)| =
∑

kx, |E(γ)| =
∑

{x,y}∈E(G)

kxky.

The clique number ω(G) of a graph G is the cardinality of a maximum clique contained
in V (G). If γ ∈ NV (G), Then ω(γ) = ω(Gγ) is equal to ω(G[supp γ]), the clique number
of the subgraph of G induced by supp γ. The independence number α(G) of G is the
clique number of the complement graph of G.

Suppose that two non-empty sets X and Y , and a mapping f : X → Y are given.
Then f induces the mapping f∗ : NX → NY

f∗(γ) =
∑

kxf(x).

Proposition 2. Given two graphs G and H, and a homomorphism of graphs f : V (G)→
V (H). Then for every γ ∈ NV (G), the graph f∗(γ) is a homomorphic image of γ. In
particular, α(f∗(γ)) 6 α(γ).

Our next proposition is rather obvious.

Proposition 3. Let G1 and G2 be two graphs and let G = G1 ∗G2 be their disjunctive
product ; that is, V (G) = V (G1) × V (G2) and {(u1, u2), (v1, v2)} ∈ E(G) if and only if
{u1, v1} ∈ E(G1) or {u2, v2} ∈ E(G2). Let C be a finite clique in G and γi =

∑
x∈C xi,

i = 1, 2. Then
α(γ1) 6 ω(γ2).

Proof. Let D ⊆ C be a set of maximum cardinality such that
∑

x∈D x1 is independent.
Then

∑
x∈D x2 is a clique and |D| = α(γ1). Therefore,

α(γ1) =

∣∣∣∣∣∑
x∈D

x2

∣∣∣∣∣ 6 ω(γ2).

Proposition 4. Let K = {i1 < i2 < . . . < ik} be a proper subset of [n]. Let Kc be
its complement. For I ∈ I n, let IK = Ii1 × · · · × Iik . Then the mapping I 7→ (IK , IKc)
defines an isomorphism between graphs I n and I |K| ∗I |Kc|.

the electronic journal of combinatorics 26(4) (2019), #P4.44 3



By Propositions 3 and 4, we have

Corollary 5. Let K be a proper subset of [n]. Let C be a clique in I n. Let γL =∑
I∈C IL, where L = K,Kc. Then

α(γK) 6 ω(γKc).

In what follows, the notation of Corollary 5 is employed in a more general setting: Let
γ =

∑
I kII ∈ NI n, and K be a proper subset of [n]; then γK =

∑
I kIIK . If K = {i},

then we shall often write γi rather than γ{i}.

3 Incompressibility. An upper bound for the cardinality of a
maximum clique in I n.

For s ∈ N, let I (s) = {[0, 1], [s, s + 1]} ∪ {[i, j] : 1 6 i < j 6 s}. Let G be a finite
subfamily of I 1. There is clearly a homomorphism of graphs f : G → I (s) for some s
(for example, but not necessarily, one obtained by a homeomorphism of R that sends all
endpoints of intervals in G to positive integers). We shall be concerned with properties
of the family f(G ) for minimal s.

Proposition 6. Let a finite nonempty family G ⊆ I 1 be given. Let s = s(G ) be the
minimum number for which there is a homomorphism of graphs f : G → I (s). Then

(1) {[i, i+ 1] : 0 6 i 6 s} ⊆ f(G );

(2) α(G ) >
⌊
s
2

⌋
+ 1;

(3) {[1, 3], [s− 2, s]} ⊆ f(G ), whenever s > 3.

Proof. There is nothing to prove if s = 0. The case s = 1 is rather obvious. Moreover,
s 6= 2 as the mapping [2, 3] 7→ [0, 1], [i, i + 1] 7→ [i, i + 1] for i = 0, 1 is a homomorphism
of I (2) onto I (1). Therefore we may assume s > 3. Suppose [0, 1] 6∈ f(G ). For every
I = [a, b] belonging to f(G ), let as set

I ′ =

{
[1, b− 1] if a = 0 or a = 1, b > 2,
[a− 1, b− 1] if a = 1, b = 2 or a > 1.

The mapping g defined by I ′ = g(I) is a homomorphism of f(G ) into I (s−1). Therefore,
the composite g◦f maps G into I (s−1) contrary to the definition of s. Since the mapping

[a, b]
h7→ [s+ 1− b, s+ 1− a] is an automorphism of I (s) which sends [s, s+ 1] on [0, 1],

the interval [s, s+ 1] has to belong to f(G ) also.
Suppose now that [i, i+1] 6∈ f(G ), where i ∈ [1, s−1]. Then define the correspondence

I = [a, b]
g7→ I ′ as follows

I ′ =


[a, b] if b 6 i,
[a, b− 1] if a 6 i, b > i+ 1,
[a− 1, b− 1] if a > i+ 1.
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Again, the composite g ◦ f is a homomorphism of G into I (s − 1) contradicting the
minimality of s.

In order to prove (2), it suffices to observe that by (1), the independent set of intervals
{[2i, 2i+ 1] : 0 6 i 6

⌊
s
2

⌋
} is contained in f(G ), and that α(f(G )) 6 α(G ).

As it concerns the intervals [1, 3] and [s− 2, s], the automorphism h transposes them.
Moreover, there is an automorphism (see Appendix A) which transposes [1, 3] with [2, 3].
Therefore, both [1, 3] and [s− 2, s] have to belong to f(G ).

Remark 1. Suppose G ⊂ I 1 consists of intervals of odd length with integer endpoints.
Then the mapping [a, b] 7→ [amod 2, 1 + (amod 2)] is a graph homomorphism from G
to I (1). If there are two intervals in G with right endpoints of different parity, then
s(G ) = 2 and consequently G is bipartite. If all intervals in G have their right endpoints
of equal parity, then s(G ) = 0 and G has no edges.

A subgraph G ⊆ I 1 is incompressible if there is s such that G ⊆ I (s) and there is
no a homomorphism f : G → I (s′), where s′ < s. Otherwise, G is called compressible.
A combination γ ∈ NI (s) is incompressible (compressible) if supp γ is an incompress-
ible (compressible) subgraph of I (s). As an immediate consequence of the preceding
proposition we have

Proposition 7. If γ ∈ NI (s) \ {0} is incompressible then

(1) s 6 2α(γ)− 1;

(2) S (s) = {[i, i + 1] : 0 6 i 6 s} ∪ {[1, 3], [s − 2, s]} is contained in supp γ, whenever
s > 3.

Lemma 8. Let γ ∈ NI 1 be given. If α(γ) > 1, then

|γ| 6 4α(γ)− 3.

Proof. We may assume that supp γ ⊆ I (s) for some s. If γ is compressible, then let us
choose a new s and a homomorphism f : supp γ → I (s) so that γ′ = f∗(γ) is incom-
pressible. If s = 0 or s = 1, then since α(γ) > 1, we obtain

|γ| = |γ′| 6 2α(γ′) 6 2α(γ) 6 4α(γ)− 3.

As I (2) is compressible, we may assume that s > 2. Then, by the preceding lemma,
[0, 1] and [2, 3] are elements of supp γ′ and consequently α(γ′) > 1. Henceforth, we may
assume that γ ∈ NI (s) is incompressible and s > 2. Let us set B = {0, 1}s and

B(I) =


{1} × {0, 1}s−1, if I = [0, 1]
{0, 1}i−1 × {0} × {0, 1}j−i−1 × {1} × {0, 1}s−j, if I = [i, j], 1 6 i < j 6 s
{0, 1}s−1 × {0}, if I = [s, s+ 1]

Let γ] : B → R be associated with γ =
∑

I∈I (s) kII by the formula

γ](x) =
∑

I∈I (s)

kI1B(I)(x).
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Observe that γ] is bounded from the above by α(γ)1B. Moreover, these two functions do
not coincide, as if x0 = (0, . . . , 0), then, bearing in mind that Proposition 6 guarantees
k[0,1] > 0, we have

γ](x0) = k[s,s+1] < k[0,1] + k[s,s+1] 6 α(γ).

Therefore, summing up these functions with respect to x yields

α(γ)|B| >
∑
I

kI |B(I)|.

If I = [0, 1] or I = [s, s+ 1], then |B(I)| = 1
2
|B|; if not, |B(I)| = 1

4
|B|. By Proposition 6,

k[0,1] and k[s,s+1] are both greater or equal to 1, thus

α(γ) >
k[0,1] + k[s,s+1]

4
+

1

4

∑
I∈I (s)

kI >
1

2
+
|γ|
4
.

We denote by bm the maximum cardinality of a clique in I m.

Proposition 9. Let K be a proper subset of [n]. Let C be a clique in I n. Let γK =∑
I∈C IK . Then

α(γK) 6 bn−|K|.

Proof. By Corollary 5 and the fact that supp (γKc) ⊂ I n−|K|, one has

α(γK) 6 ω(γKc) = ω(supp (γKc)) 6 ω
(
I n−|K|) = bn−|K|.

Proposition 10. For every n > 2

bn 6 4bn−1 − 3.

Moreover, b2 = 5.

Proof. Suppose C to be a finite clique in I n. Let γ1 =
∑

I∈C I1. By Lemma 8 and
Proposition 9, one gets

|C | = |γ1| 6 4α(γ1)− 3 6 4bn−1 − 3,

whenever α(γ1) > 1. If α(γ1) = 1, then |γ1| 6 2 and the inequality |C | 6 4bn−1− 3 is still
valid.

To prove the second part, observe that since b1 = 2, it follows by the first part that
b2 6 5. Any of the configurations depicted in Figure 2 shows that b2 is at least 5.

Remark 2. The fact that b2 = 5 is due to Simon [14, Theorem 5.7]. Her proof seems
to be different. It depends on the analysis of the so-called Baston matrix of a maximum
family of 2-intervals.

Corollary 11. Let k > 1 and n > k. Then

bn 6
bk − 1

4k
4n + 1.
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Remark 3. As we have announced, we shall demonstrate later on that b3 = 12. Therefore,
for every n > 3

bn 6
11

64
4n + 1.

Remark 4. If C is a clique in I k and D is a clique in I l, then E = {I×J : I ∈ C , J ∈ D}
is a clique in I k+l. Therefore, we have

bkbl 6 bk+l.

In particular, for every n > 1
bn > 2bn−1,

as b1 = 2.

4 Maximum cliques in I 2

We are going to describe all cliques of maximal cardinality in I 2. Let C be such a clique.
By Proposition 10, |C | = 5. Let Ei = {{I, J} ∈ E(C ) : Ii and Ji are adjacent in I 1 },
i = 1, 2. Let the graphs Gi be defined by V (Gi) = C , E(Gi) = Ei. Let γi =

∑
I∈C Ii. It

is clear that Gi is isomorphic to the graph associated with γi. Since I 1 does not contain
triangles, γi and consequently Gi cannot contain triangles either. By the definition of
adjacency in I 2, the sets E1, E2 cover E(C ). These facts imply that the graphs Gi have
no vertices of degree higher than two and |Ei| 6 5. As C is a 5-clique, its set of edges
E(C ) has exactly ten elements. Therefore, {E1, E2} is a partition of E(C ) and |Ei| = 5
for i = 1, 2. It is rather clear now that G1, G2 gives us a decomposition of C into two
5-cycles.

Given a strictly increasing sequence of numbers a0, . . . , a4. Then

Γ = {[ak, ak+1] : k = 0, . . . , 3} ∪ {[a1, a3]}.

is a 5-cycle in I 1. It is easy to verify, that all 5-cycles in I 1 are of this form. Let
γ ∈ NI 1, be a 5-cycle. It is equally easy to observe that there is a unique 5-cycle Γ ∈ I 1

such that γ =
∑

I∈Γ I. Henceforth, we have just reduced the problem of describing all
cliques of maximal cardinality in I 2 to the following construction problem:

Given two 5-cycles Γi, i = 1, 2 in I 1. Find all possible 5-cliques C ⊂ I 2

such that
Ci := {Ii : I ∈ C } = Γi. (2)

Let ai,0, . . . , ai,4, be the sequence defining the 5-cycle Γi for i = 1, 2. We can label each
interval belonging to Γ1 as follows:

[a1,k, a1,k+1] 7→ k + 1 for k = 0, . . . , 3 and [a1,1, a1,3] 7→ 5.

Since I 7→ I1 is a one-to-one mapping from C onto Γi for every C to be constructed, it
determines a labelling of C by composition. Now, we can identify C with the complete
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1

2

3 4

5

Figure 1: G1 = 12345; G2 = 13524.

graph on {1, 2, 3, 4, 5} (see Fig. 1), where the edges of the cycle G1 corresponding to Γ1

are the edges of the pentagon while the edges of the other cycle G2 corresponding to Γ2

are the edges of the pentagram.
Now, observe that each clique C is determined by an isomorphism of G2 onto Γ2 and

vice versa. These isomorphisms can be expressed in terms of appropriate labellings of Γ2:
We write the cycle G2 as a sequence l1l2l3l4l5 and define the corresponding labelling

[a2,k, a2,k+1] 7→ lk+1 for k = 0, . . . , 3 and [a1,1, a1,3] 7→ l5.

We have ten sequences corresponding to G2: 13524, 35241, 52413, 24135, 41352, 14253,
42531, 25314, 53142, 31425. Thus, we have ten cliques, which are depicted in Figure 2.
Each clique is labelled by an appropriate sequence.

Remark 5. Modulo permutation and/or reversal of the two coordinates, we have essen-
tially two different types of 5-cliques in I 2. They are exemplified by cliques with labels
24135 and 35241. Both types were previously mentioned in [14, Figure 27]. In Section
6, we discuss a combinatorial equivalence of cliques. As is easily seen, all 5-cliques are
combinatorially equivalent.

5 Maximum cliques in I 3

Our present goal is to describe all cliques of maximum cardinality in I 3. We begin with
a general discussion concerning cliques in I n.

Let us suppose that G ⊂ I n is a clique of cardinality bn, where n > 2. Let Gi =
{Ji : J ∈ G }, i ∈ [n]. Let si = s(Gi) (see Proposition 6) and fi be a homomorphism of Gi
into I (si). Let us set f = f1 × · · · × fn and

C = f(G ) = {f1(J1)× · · · × fn(Jn) : J ∈ G }.

Clearly, C is a clique of maximum cardinality bn in I n. Let γi =
∑

I∈C Ii. By the
definition of C , the formal sum γi ∈ NI (si) is incompressible. Therefore, by Propositions
7, and 9,

si 6 2α(γi)− 1 6 2bn−1 − 1. (3)
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5

Figure 2: Cliques solving the construction problem for given Γ1 and Γ2.
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And if si > 3, then again by Proposition 7,

S (si) ⊆ supp γi. (4)

Let us remark that a description of cliques like C , call them incompressible, is a strictly
combinatorial problem: All such cliques consist of intervals I contained in [0, 2bn−1 − 1]n

whose vertices have integer coordinates. Suppose that this problem can be effectively
solved. As we have observed, if G is a clique of maximum cardinality, then there is a
mapping f which sends it to an incompressible clique. We can hope that this fact can be
employed in order to give a full description of all maximum cliques in I n. As we shall
see, this general strategy works for n = 3.

Example 1. Let C ⊂ I 3 consists of the following intervals:

1. [0, 1]× [3, 4]× [1, 4]
2. [0, 1]× [4, 5]× [2, 4]
3. [1, 2]× [3, 4]× [1, 3]
4. [1, 2]× [4, 5]× [2, 3]
5. [1, 3]× [1, 2]× [3, 4]
6. [1, 4]× [0, 1]× [3, 4]
7. [2, 3]× [1, 2]× [4, 5]
8. [2, 4]× [0, 1]× [4, 5]
9. [3, 4]× [1, 3]× [1, 2]

10. [3, 4]× [1, 4]× [0, 1]
11. [4, 5]× [2, 3]× [1, 2]
12. [4, 5]× [2, 4]× [0, 1]

.

One can easily check that C is an incompressible clique in I 3; that is, each γi =
∑

I∈C Ii
is incompressible (in fact, γ1 = γ2 = γ3). As |C | = 12, it follows that b3 > 12.

Now, we distinguish a set L of combinations λ ∈ NI 1 such that for every incompress-
ible clique C in I 3 of the maximal cardinality, each γi =

∑
I∈C Ii is a member of L. This

set is characterized by the following conditions:

(A) 12 6 |λ| 6 17;

(B) α(λ) 6 5;

(C) there is s, 3 6 s 6 9, such that S (s) ⊆ supp λ ⊆ I (s).

Condition (A) reflects the fact that 12 6 b3 6 17 (the second inequality is derived from
Proposition 10) ; (B) is implied by Proposition 9 and the equality b2 = 5. Condition (C)
reflects (3) and (4). Only the assumption s > 3 requires clarification. Suppose λ = γ1,
where γ1 =

∑
I∈C I1 and C is an incompressible clique of cardinality b3 in I 3. If there

would be s = s1 6 2, then

12 6 |C | = |γ1| 6 2α(γ1) 6 10,
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Figure 3: An illustration of the clique C described in Example 1. The clique is translated
so that the circumscribed box is centred at the origin.

which is impossible.
If one wants to determine all members of L, then one needs an effective method to

verify (B). We discuss this question now.
Let s be a positive integer. For ε ∈ {0, 1}s, let the subfamily I (s, ε) of I (s) be

defined as follows

[u, v] ∈ I (s, ε) if and only if [u, v] ∈ I (s) and either 1 6 u < v 6 s,
εu = 0, εv = 1, or [u, v] = [0, 1], ε1 = 1, or [u, v] = [s, s+ 1], εs = 0.

It is clear that all the families I (s, ε), ε ∈ {0, 1}s, are independent sets with respect to
the adjacency defined in I 1. Moreover, each maximal independent subset of I (s) can
be found among these families. This observation leads to the following

Proposition 12. Let s be a positive integer. If λ =
∑
kII belongs NI (s), then

α(λ) = max{
∑

I∈I (s,ε)

kI : ε ∈ {0, 1}s}

This proposition enables us to identify the problem of determining L as a problem of
integer linear programming.

Let L(s, v) be the set of all these λ ∈ L for which S (s) ⊆ supp λ ⊆ I (s) (comp.
(C)) and |λ| = v. Clearly, L is a union of the sets L(s, v), 3 6 s 6 9, 12 6 v 6 17. A
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combination λ =
∑

I∈I (s) kII is a member of L(s, v) if and only if kI , I ∈ I (s), satisfy
the following system of linear inequalities:∑

I∈I (s)

kI = v; (5)

∑
I∈I (s,ε)

kI 6 5, for every ε ∈ {0, 1}s; (6)

kI > 1, for I ∈ S (s). (7)

All solutions of this system can be found using standard mathematical packages. We
have preferred to run a simple Python code, and to perform tests using SCIP, a mixed
integer programming solver. As we have computed, L(s, 14) is non-empty only for s = 9.
Moreover, L(9, 14) consists of a single element

λ̄ = [0, 1]+[1, 2]+[2, 3]+[3, 4]+[4, 5]+[5, 6]+[6, 7]+[7, 8]+[8, 9]+[9, 10]+[1, 3]+[3, 5]+[5, 7]+[7, 9].

The sets L(s, v), for v > 14, appear to be empty, which can also be easily deduced from
the uniqueness of λ̄.

The following proposition is an immediate consequence of the definition of adjacency
in I n.

Proposition 13. Let C be a subset of I n and γi =
∑

I∈C Ii, i ∈ [n], then

|E(C )| 6
n∑
i=1

|E(γi)|.

Corollary 14.
b3 6 13

Proof. Suppose that there is a clique in I 3 which has 14 elements. Then there is an
incompressible clique C of the same cardinality. By the uniqueness of λ̄, we have λ̄ =∑

I∈C Ii for i ∈ [3]. One can check by hand that |E(λ̄)| = 20. Now, by Proposition 13

91 = |E(C )| 6 3|E(λ̄)| = 60,

which is a contradiction.

It follows from our corollary that only the cases v = 12, 13 are meaningful in our quest
for maximum cliques. The cardinalities of the sets L(s, v), 3 6 s 6 9, 12 6 v 6 13, are
collected in Table 1.

Let Aut(s) be the automorphism group of the graph I (s). By the correspondence
Aut(s) 3 f 7→ f∗, it acts on NI (s) in a natural way. Therefore, for every L(s, v), one
can form the quotient set L(s, v)/Aut(s). Let L̂(s, v) be a system of representatives (a
selection) of L(s, v)/Aut(s). Let L(v) be the union of all L(s, v), 3 6 s 6 9, for v = 12, 13,
and L̂(v) be the union of the corresponding sets L̂(s, v). It should be clear that any
maximum incompressible clique D of I 3 can be recovered (by an automorphism) from a
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v
s

3 4 5 6 7 8 9

12 5 19 210 164 82 13 1
13 0 0 20 35 55 13 3

Table 1: Cardinality of L(s, v).

v
s

3 4 5 6 7 8 9

12 1 4 37 29 21 5 1
13 0 0 5 8 13 5 2

Table 2: Cardinality of L̂(s, v).

clique C such that γi =
∑

I∈C Ii ∈ L̂(v), for i ∈ [3], where v = |D |. Therefore, we may

always consider L̂(v) instead of L(v). This will slightly simplify further considerations, as
in general the sets L̂(s, v) are smaller than L(s, v). In order to fix L̂(v) we work with, we
collect all the sets L̂(s, v) in Appendix B. We present in Table 2 all the cardinalities of
L̂(s, v) to allow the reader to compare them with the corresponding cardinalities gathered
in Table 1.

We adopt a strategy similar to the one we have applied to find maximum cliques in I 2.
We begin with solving the following ‘restricted’ construction problem as a step towards
the classification of all maximum cliques in I 3:

For every triple #–γ = (γ1, γ2, γ3) in L̂(v)3, where v = 12, 13, find all cliques C
in I 3 such that γi =

∑
I∈C Ii for every i ∈ [3].

Let us define the sets N(v) for v = 12, 13:

N(v) =

{
#–γ ∈ L̂(v)3 : E(γ1) + E(γ2) + E(γ3) >

(
v

2

)}
.

Proposition 13 shows that if the construction problem has a solution for #–γ ∈ L̂(v)3, then
#–γ ∈ N(v). Therefore, we can consider our problem only for elements of the sets N(v).
We can make further restrictions by selecting a triple from each class of triples equivalent
up to reordering of components. However, we want to make our choice somewhat special.

We may distinguish between two types of λ ∈ L̂(v):

(I) There are induced combinations β1 and β2 of λ (see Introduction for the definition)
such that

(I. 1) |βj| = α(βj) = 5, for every j ∈ [2],

(I. 2) supp β1 ∩ supp β2 = ∅.
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(II) λ is not of type I.

Let us remark that (I. 1) means that Gβj are 5-anticliques. As it can be easily computed
(see Appendix B), each λ of type II satisfies the inequality

E(λ) 6
1

3

(
v

2

)
.

Moreover, this inequality is sharp with only one exception; that is,

λ∗ = [0, 1] + [1, 2] + [1, 3] + [1, 5] + [2, 3] + [2, 5] + [3, 4] + 2[3, 5] + [4, 5] + 2[5, 6].

(Clearly, λ∗ belongs to L̂(5, 12) then). As a consequence, there is only one #–γ ∈ N(v) such
that all γi are of type II, in which case they are equal to λ∗. The following result shows
that this particular #–γ can be excluded from further considerations.

Proposition 15. The construction problem has no solutions for #–γ = (λ∗, λ∗, λ∗).

Proof. Conversely, suppose there is a clique C in I 3 such that λ∗ =
∑

I∈C Ii, whenever
i ∈ [3]. As [5, 6] ∈ supp λ∗, there is K ∈ C for which K1 = [5, 6]. Similarly, there
are Ik ∈ C such that Ik1 = [k, 5], for k ∈ [4]. Since [3, 5] occurs with multiplicity 2 in
λ∗, there is J3 ∈ C which is different from I3, and satisfies the equation J3

1 = [3, 5].
Since |E(λ∗)| = 22 and |E(C )| = 66, it follows from the definition of adjacency in I 3

and Proposition 13 that for every pair C,D ∈ C there is only one i ∈ [3] for which the
intervals Ci and Di are adjacent (i.e. intersect at a single point). Since all Ik1 , k ∈ [4],
form an anticlique, we deduce that B = {Ik{1}c : k ∈ [4]} ∪ {J3

{1}c} is a 5-clique in I 2.

Therefore, as is shown in Section 4, the families Bi = {Iki : k ∈ [4]} ∪ {J3
i }, i = 2, 3, have

to be 5-cycles contained in supp λ∗. Let us collect all possible 5-cycles with vertices in
supp λ∗:

1. [0, 1], [1, 2], [2, 3], [3, 4], [1, 3]

2. [0, 1], [1, 2], [2, 5], [5, 6], [1, 5]

3. [2, 3], [3, 4], [4, 5], [5, 6], [3, 5]

4. [0, 1], [1, 3], [3, 5], [5, 6], [1, 5]

5. [1, 2], [2, 3], [3, 5], [5, 6], [2, 5]

As K1 is adjacent to each of the intervals Ik1 , k ∈ [4], interval Ki cannot be adjacent to
any of the intervals belonging to Bi, for i = 2, 3. Consequently, if a 5-cycle among listed
were equal to Bi, then there would be an interval in supp λ∗ which is not adjacent to
any member of this cycle. Cycles no. 4 and no. 5 do not conform this condition, and
as such can be eliminated. On the other hand, for cycle no. 1 the only existing interval
is [5, 6], for cycle no. 2, the interval [3, 4] and for cycle no. 3, the interval [0, 1]. Thus,
{K2, K3} ⊂ {[0, 1], [3, 4], [5, 6]}. Let us remind that [5, 6], similarly as [3, 5], occurs in λ∗

with multiplicity 2. Therefore, there is L ∈ C \ {K} such that L1 = [5, 6]. By the same
argument as applied to K, {L2, L3} ⊂ {[0, 1], [3, 4], [5, 6]}. Since [0, 1], [3, 4], [5, 6] form
an anticlique, K and L are not adjacent, which contradicts the assumption that C is a
clique.
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Therefore, by Proposition 15, we may assume that at least one of the components of
#–γ ∈ N(v) is of type I. We may declare that γ3 is such a component. Suppose there is a
clique C ⊂ I 3 of cardinality v to be guessed such that γi =

∑
I∈C Ii. Let βj, j ∈ [2],

be combinations induced from γ3, as described in the definition of type I. Since these
combinations have disjoint supports there are disjoint subfamilies C j, j ∈ [2], of C such
that βj =

∑
I∈C j I3. Since βj are 5-anticliques, C j

{1,2} = {I{1,2} : I ∈ C j} have to be

5-cliques in I 2. Thus, the families C j
i = {Ii : I ∈ C j}, i, j ∈ [2], are 5-cycles, as is

explained in Section 4.
Let us write

γ =
∑
I∈C

I, γj =
∑
I∈C j

I.

Clearly, γ > γ1+γ2. Therefore, there is γ3 ∈ NI 3 such that γ =
∑3

j=1 γ
j and |γ3| = v−10.

Consequently,

γ{1,2} =
3∑
j=1

γj{1,2} and γi =
3∑
j=1

γji for i ∈ [2], (8)

where each γji , j ∈ [2], is the formal sum of all intervals constituting the 5-cycle C j
i .

Moreover, by Corollary 5

α(γ{1,2}) 6 ω(γ3) 6 ω(I 1) 6 2. (9)

Now, we are prepared to establish a procedure for finding all incompressible
cliques of maximum cardinality in I 3. Since each λ ∈ L̂(v) can potentially be
equal to γ1 or γ2 for a certain maximum clique in C , we have to produce all possible
decompositions λ =

∑3
j=1 λ

j, as described in the second part of (8). In other words, we

have to extract all possible quadruples q = (λ1, λ2, λ3, λ) such that λj are 5-cycles for
j ∈ [2] and

∑3
j=1 λ

j equals λ. To this end, we need to determine all 5-cycles with their
supports contained in I (9).

Step 1. Find the set Co5 consisting of all 5-cycles contained in NI (9).

Let us recall (see Section 4) that there is a one-to-one correspondence between the sets of
all 5-cycles in NI (9), and in I (9) given by the mapping κ 7→ supp κ. From a technical
point of view, the latter set is calculated rather than Co5.

The first two components of the quadruples under consideration are 5-cycles, therefore,
it seems reasonable to determine the Cartesian product Co5×Co5. Since |Co5| = 118, the
Cartesian square of Co5 has 13924 elements. Observe however that not all pairs of 5-cycles
can be components of a quadruple. For example, if Γ = [0, 1] + [1, 2] + [2, 3] + [3, 4] + [1, 3]
and ∆ = [0, 1] + [1, 3] + [3, 7] + [7, 8] + [1, 7] would be such components for v = 12, then
there would exist λ ∈ L̂(12) such that Γ+∆ 6 λ. If we take into account (C), the support
of such a λ has to contain one of the two sets A = S (8) or A = S (9), which is impossible
as A− (supp (Γ)∪ supp (∆)) has more than two elements. To define the set of appropriate
pairs of 5-cycles, we need the function Γ 7→ sep(Γ) which determines the smallest s such
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that supp (Γ) ⊂ I (s). As Γ can be written as a combination [a0, a1] + [a1, a2] + [a2, a3] +
[a3, a4] + [a1, a3], where a0 < . . . < a4, and all [ai, aj] are in I (9), we have

sep (Γ) =

{
a3, if a4 = a3 + 1,
a4, otherwise.

Step 2. For v = 12, 13, find the set Cp5(v), consisting of all pairs (Γ,∆) ∈ Co5 × Co5

such that |S (s)− (supp (Γ) ∪ supp (∆))| 6 v − 10, where s = max{sep (Γ), sep (∆)}.

The sets Cp5(v) are much smaller compared with Co5 × Co5, and yet (λ1, λ2) belongs to
Cp5(v) for every admissible quadruple q = (λ1, λ2, λ3, λ). We have |Cp5(12)| = 384 and
|Cp5(13)| = 1135.

Step 3. For v = 12, 13, find the set Mc(v) of all quadruples (λ1, λ2, λ3, λ) such that
(λ1, λ2) ∈ Cp5(v), λ ∈ L̂(v), λ1 + λ2 6 λ and λ3 = λ− λ1 − λ2.

The cardinalities of the sets Mc(v) are as follows: |Mc(12)| = 372, |Mc(13)| = 409.

Step 4. Construct all candidates for γ{1,2}.

We want them to be decomposed as described in (8), and to satisfy (9). To this end, for
every pair q = (λ1, λ2, λ3, λ), q̄ = (λ̄1, λ̄2, λ̄3, λ̄) belonging to Mc(v), let us define the set
Fl(q, q̄) of all quadruples p = (ϕ1, ϕ2, ϕ3, ϕ) ∈ (NI 2)4 such that

(F1) Gϕj are 5-cliques in I 2, for j ∈ [2],

(F2) ϕ = ϕ1 + ϕ2 + ϕ3,

(F3) if pi = (ϕ1
i , ϕ

2
i , ϕ

3
i , ϕi), i ∈ [2], then p1 = q, p2 = q̄;

(F4) α(ϕ) 6 2.

As is stated in Sect. 4, there are 10 ways to combine two 5-cycles from I to get a 5-clique
in I 2. Moreover, there are at most (v − 10)! ways to merge λ3 with λ̄3 in order to get
ϕ3. Therefore, the cardinality of Fl(q, q̄) is at most 100(v − 10)! 6 600. Condition (F4)
can cut this last number substantially.

Step 5. Find the sets Flat(v), v = 12, 13, which are the unions of Fl(q, q̄), when (q, q̄)
runs over Mc(v)2.

It appears that Flat(13) is empty. Consequently, no 13-cliques in I 3 exist. By
Example 1, we conclude:

Theorem 16.
b3 = 12.
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Figure 4: Diagrams for λ♣.
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[1, 3]

[3, 4]
[4, 5]

[3, 4]
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[1, 2]

[2, 3]

[3, 5]
[5, 6]

[3, 5]

[1, 3]
0 1 2 3 4 5 6

2 22

2 2

Figure 5: Diagrams for λ♠.

Flat(12) contains 96 elements. Interestingly enough, if (ϕ1, ϕ2, ϕ3, ϕ) belongs to Flat(12),
then ϕ1 = ϕ2. Moreover, ϕ1 is equal to one of the three combinations:

λ♣ = 2[0, 1] + 2[1, 2] + [1, 3] + [1, 4] + [2, 3] + [2, 4] + 2[3, 4] + 2[4, 5],

λ♠ = [0, 1] + [1, 2] + 2[1, 3] + 2[2, 3] + 2[3, 4] + 2[3, 5] + [4, 5] + [5, 6],

λ♦ = [0, 1] + [1, 2] + [1, 3] + [2, 3] + [3, 4] + 2[3, 5] + [4, 5] + [5, 6]

+[5, 7] + [6, 7] + [7, 8].

Figures 4–6 show self-explanatory diagrams for them. Combinations λ♣ and λ♠ are
of type I, as exemplified by Table 3, while λ♦ is of type II.

0 1 2 3 4 5 6 7 8

2

Figure 6: Diagram for λ♦.

Proposition 17. If the construction problem has a solution for #–γ = (γ1, γ2, γ3) ∈ N(12),
then

#–γ = (λ♣, λ♣, λ♣) or #–γ = (λ♠, λ♠, λ♠).

the electronic journal of combinatorics 26(4) (2019), #P4.44 17



Proof. Let us remind that we may assume γ3 to be of type I. Then it follows from the
definition, and properties of Flat(12) that γ1 = γ2 and γ1 ∈ {λ♣, λ♠, λ♦}.

Suppose first that γ1 = λ♦. Recall that |E(λ♦)| = 19. Since #–γ ∈ N(12), it can
be deduced that |E(γ3)| > 28. There is a unique element in L̂(12) which satisfies this
inequality. Namely, γ3 = 2[0, 1] + 2[1, 2] + 3[1, 3] + 2[2, 3] + 3[3, 4]. (|E(γ3)| = 29, to be
precise). Suppose that there is a 12-clique C such that γi =

∑
I∈C Ii, i ∈ [3]. Let β1 =

2[0, 1]+3[3, 4], β2 = 2[1, 2]+3[3, 4] and β3 = 3[1, 3]+2[2, 3]. As all βj are subcombinations
of γ3, there are γj 6 γ =

∑
I∈C I for which γj3 = βj. Observe now that α(βj) = 5 for each

βj. We already know that it implies each γj1 to be a 5-cycle. Since combinations β1, β3

have disjoint supports, we deduce that γ1
1 + γ3

1 6 γ1 = λ♦. There are only two 5-cycles
such that their sum does not exceed λ♦; these are κ = [0, 1] + [1, 2] + [2, 3] + [3, 4] + [1, 3]
and κ′ = [4, 5]+[5, 6]+[6, 7]+[7, 8]+[5, 7]. Thus, {γ1

1 , γ
3
1} = {κ, κ′}. Similarly, by the fact

that β2, β3 have disjoint supports, we obtain {γ2
1 , γ

3
1} = {κ, κ′}. Since γ1 = λ♦, there is

J ∈ C such that J1 = [3, 5]. Since the supports of βj, j ∈ [3] form a covering of supp γ3,
there is k such that J3 ∈ supp βk. As βk is an induced subcombination of γ3, we deduce
that J ∈ supp γk. Therefore,

[3, 5] ∈ supp γk1 ⊂ supp κ ∪ supp κ′ = {[i, i+ 1] : i = 0, . . . , 7} ∪ {[1, 3], [5, 7]},

which is a contradiction.
If γ1 ∈ {λ♣, λ♠}, then it is of type I. By symmetry, it enforces γ2 = γ3. Thus

#–γ ∈ {(λ♣, λ♣, λ♣), (λ♠, λ♠, λ♠)}.

Now, the final steps of our construction follow. Let us extract two sets from Flat(12):

Fl♣ = {(ϕ1, ϕ2, ϕ3) : (ϕ1, ϕ2, ϕ3, ϕ) ∈ Flat(12), ϕ1 = λ♣},

Fl♠ = {(ϕ1, ϕ2, ϕ3) : (ϕ1, ϕ2, ϕ3, ϕ) ∈ Flat(12), ϕ1 = λ♠}.

Let (β1, β2, β3) be defined so that λ♣ = β1 + β2 + β3 where β1, β2 are the elements of
λ♣-row of Table 3.

Step 5 Find

Cq♣ = {π1+π2+π3 ∈ NI 3 : (π1
1, π

2
1, π

3
1) ∈ Fl♣, (π1

2, π
2
2, π

3
2) = (β1, β2, β3), α(π1+π2+π3) = 1}.

β1 β2

λ♣ 2[0,1]+[2,4]+2[3,4] 2[1,2]+[1,3]+2[4,5]
λ♠ [0,1]+2[3,4]+2[3,5] 2[1,3]+2[2,3]+[5,6]

Table 3: λ♣ and λ♠ are of type I.
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Therefore, Cq♣ consists of all 12-cliques C ⊂ I 3, written as formal combinations, such
that

∑
I∈C Ii = λ♣ for i ∈ [3]. It appears that we have

|Cq♣| = 64. (10)

In the same manner, we define Cq♠.

Step 6 Find Cq♠.

The elements of Cq♠ correspond to 12-cliques C ⊂ I 3 such that
∑

I∈C Ii = λ♠. We have

|Cq♠| = 256. (11)

Theorem 18. C is an incompressible maximum clique in I 3 if and only if
∑

I∈C I ∈
Cq♣ ∪Cq♠.

Proof. (⇒) Let γ =
∑

I∈C I. By Theorem 16 and the definition of the sets L(s, v), there
are si, i ∈ [3], such that γi ∈ L(si, 12). Let automorphisms fi ∈ Aut(si) be chosen so
that (fi)∗(γi) ∈ L̂(si, 12). Then ((f1)∗(γ1), (f2)∗(γ2), (f3)∗(γ3)) has to belong to N(12).
By Proposition 17, (fi)∗(γi) = λ♣ for i ∈ [3] or (fi)∗(γi) = λ♠ for i ∈ [3]. Observe now
that λ♣ is invariant under the action of Aut(4); that is, if g ∈ Aut(4), then g∗(λ

♣) = λ♣.
Similarly, λ♠ is invariant under the action of Aut(5). Therefore, (γ1, γ2, γ3) is one of the
triples (λ♣, λ♣, λ♣), (λ♠, λ♠, λ♠).

(⇐) As each member of L(s, v) satisfies only a necessary condition for being incompressible
(compare (C) and Proposition 7), it may happen that λ♣ or λ♠ are compressible. By
Proposition 17, the only possibility is that λ♠ can be compressed to λ♣; that is, there
is a homomorphism h : I (5) → I (4) such that h∗(λ

♠) = λ♣. Consequently, |E(λ♣)| >
|E(λ♠)|. The latter is impossible, as |E(λ♣)| = 24 while |E(λ♠)| = 26.

6 Isomorphic incompressible cliques. Automorphisms

From now on, we shall interpret Cq♣ and Cq♠ as families of 12-cliques rather than formal
combinations of the 3-intervals these cliques consist of. As in the preceding section, let
Aut(s) be the automorphism group of the graph I (s). Let Aut3(s) consists of the product
mappings f = f1 × f2 × f3, where fi ∈ Aut(s). It is clear that for every C ∈ Cq♣ and
f ∈ Aut3(4), we have f(C ) ∈ Cq♣. Therefore, the group Aut3(4) acts on Cq♣. It can be
rather easily computed that Cq♣ is an orbit of Aut3(4). Consequently, we have:

Proposition 19. All cliques belonging to Cq♣ are isomorphic.

Similarly, Aut3(5) acts on Cq♠. It appears that Cq♠ splits into 3 orbits under the
action of Aut3(5). (Two of them are of cardinality 64 while the remaining orbit is of
cardinality 128). Clearly, it does not necessarily mean that there are three pairwise non-
isomorphic cliques. In fact, they are not.

Let S3 be the symmetry group of {1, 2, 3}. Each σ ∈ S3 induces the isometry sσ of
R3 which in turn extends to intervals: sσ(I) = Iσ−1(1) × Iσ−1(2) × Iσ−1(3). Obviously, sσ
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defines an isomorphism of cliques. It is rather obvious that the composites sσ ◦ f , where
σ ∈ S3 and f ∈ Aut3(s), form a group of isomorphisms of cliques. Algebraically, it is a
semidirect product of S3 and Aut3(s). Let us denote it by A3(s). A computation shows
that Cq♠ splits into two orbits under the action of A3(5). Let us fix some representatives
of these orbits for further discussion, and call them D1 and D2 (Table 4, Figure 6).

1. [0, 1]× [1, 3]× [2, 3] [0, 1]× [1, 3]× [2, 3]
2. [1, 2]× [2, 3]× [1, 3] [1, 2]× [2, 3]× [1, 3]
3. [1, 3]× [1, 2]× [2, 3] [1, 3]× [1, 2]× [2, 3]
4. [1, 3]× [2, 3]× [0, 1] [1, 3]× [2, 3]× [0, 1]
5. [2, 3]× [0, 1]× [1, 3] [2, 3]× [0, 1]× [1, 3]
6. [2, 3]× [1, 3]× [1, 2] [2, 3]× [1, 3]× [1, 2]
7. [3, 4]× [3, 5]× [5, 6] [3, 4]× [3, 5]× [4, 5]
8. [3, 4]× [4, 5]× [3, 5] [3, 4]× [5, 6]× [3, 5]
9. [3, 5]× [5, 6]× [3, 4] [3, 5]× [3, 4]× [5, 6]

10. [3, 5]× [3, 4]× [4, 5] [3, 5]× [4, 5]× [3, 4]
11. [4, 5]× [3, 5]× [3, 4] [4, 5]× [3, 4]× [3, 5]
12. [5, 6]× [3, 4]× [3, 5] [5, 6]× [3, 5]× [3, 4]

.

Table 4: A system of representatives for Cq♠/A3(5).

Figure 7: Illustrations of cliques D1 and D2. They are translated so that their circum-
scribed boxes are centred at the origin.

It seems to be a proper place to give a formal definition of an isomorphism of cliques.
For every pair of n-intervals I and J we define a 0/1 vector ε = ε(I, J) in Rn as follows

εi =

{
1, if Ii and Ji have exactly one point in common,
0, otherwise.
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0 1 1 1 2 4 2 4 2 4 6 6
1 0 2 4 1 1 2 4 2 4 6 6
1 2 0 2 2 4 1 5 1 5 4 4
1 4 2 0 4 4 3 1 3 1 2 2
2 1 2 4 0 2 1 5 1 5 4 4
4 1 4 4 2 0 3 1 3 1 2 2
2 2 1 3 1 3 0 4 4 2 1 4
4 4 5 1 5 1 4 0 2 2 1 2
2 2 1 3 1 3 4 2 0 4 4 1
4 4 5 1 5 1 2 2 4 0 2 1
6 6 4 2 4 2 1 1 4 2 0 1
6 6 4 2 4 2 4 2 1 1 1 0



,



0 1 1 1 2 4 2 4 2 4 6 6
1 0 2 4 1 1 2 4 2 4 6 6
1 2 0 2 2 4 1 5 1 5 4 4
1 4 2 0 4 4 3 1 3 1 2 2
2 1 2 4 0 2 1 5 1 5 4 4
4 1 4 4 2 0 3 1 3 1 2 2
2 2 1 3 1 3 0 2 4 4 1 4
4 4 5 1 5 1 2 0 4 2 1 2
2 2 1 3 1 3 4 4 0 2 4 1
4 4 5 1 5 1 4 2 2 0 2 1
6 6 4 2 4 2 1 1 4 2 0 1
6 6 4 2 4 2 4 2 1 1 1 0


Table 5: Adjacency matrices of D1 and D2.

Let C and D be two subfamilies of I n. A bijection f : C → D is an isomorphism between
these families if there is a permutation σ ∈ Sn so that

sσ(ε(f(I), f(J))) = ε(sσ(f(I)), sσ(f(J))) = ε(I, J)

for every I, J ∈ C . Obviously, if one of the two families is a clique, then the other is a
clique as well. Isomorphic families will also be called combinatorially equivalent.

Observe that if C ∈ Cq♣ and D ∈ Cq♠, then they cannot be combinatorially equiv-
alent; otherwise, |E(λ♣| = |E(λ♠)|, which is not true. Now, we are about to show that
cliques D1 and D2 are not equivalent as well. Two approaches are effective:

(1) Prove that if cliques C and D belonging to Cq♠ are combinatorially equivalent, then
there is f ∈ A3(5) such that f(C ) = D .

(2) Prove that authomorphism groups of D1 and D2 are not isomorphic.

We include both of them. Here we shall follow the second approach, while the first
one is discussed in Appendix C.

For every finite family D = {I1, . . . , Im} ⊂ I n, we may define its adjacency matrix
AD = [εij] so that εij = ε(I i, Ij). Clearly, the automorphism group Aut(D) is isomorphic
to the group of all these permutations π ∈ Sm for whose there are σ ∈ Sn such that
sσ(επ(i)π(j)) = εij for every i and j. Table 5 contains the adjacency matrices of D1 and
D2; in order to simplify the notation each 0/1 wector (α, β, γ) is replaced by the number
α + 2β + 4γ.

The following simple idea can be applied in order to compute the automorphism group
of D efficiently. Let bij be the cardinality of the set {k : εik = εjk}. Let BD = [bij]. A
permutation π ∈ Sm is a protoautomorphism of D if it fixes BD ; that is, [bij] = [bπ(i)π(j)].
Clearly, each automorphism is a protoautomorphism. On the other hand, it is much easier
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(1) (2) (3) (4) (5) (6) (7) (9) (10) (11) (12) (8)
(1) (2) (3) (4) (5) (6) (7, 9) (10, 8) (11, 12)
(1, 2) (3, 5) (4, 6) (7) (9) (10) (11) (12) (8)
(1, 2) (3, 5) (4, 6) (7, 9) (10, 8) (11, 12)
(1, 3, 4, 2, 5, 6) (7, 11, 10, 9, 12, 8)
(1, 3, 4, 2, 5, 6) (7, 12, 10) (9, 11, 8)
(1, 4, 5) (2, 6, 3) (7, 8, 12, 9, 10, 11)
(1, 4, 5) (2, 6, 3) (7, 10, 12) (9, 8, 11)
(1, 5, 4) (2, 3, 6) (7, 11, 10, 9, 12, 8)
(1, 5, 4) (2, 3, 6) (7, 12, 10) (9, 11, 8)
(1, 6, 5, 2, 4, 3) (7, 8, 12, 9, 10, 11)
(1, 6, 5, 2, 4, 3) (7, 10, 12) (9, 8, 11)
(1, 7) (2, 9) (3, 8) (4, 12) (10, 5) (11, 6)
(1, 7, 2, 9) (3, 8, 5, 10) (12, 6, 11, 4)
(1, 8, 2, 10) (3, 12, 5, 11) (9, 6, 7, 4)
(1, 8) (2, 10) (3, 12) (4, 9) (11, 5) (6, 7)
(1, 9, 2, 7) (3, 10, 5, 8) (12, 4, 11, 6)
(1, 9) (2, 7) (3, 10) (4, 11) (12, 6) (5, 8)
(1, 10) (2, 8) (3, 11) (4, 7) (9, 6) (12, 5)
(1, 10, 2, 8) (3, 11, 5, 12) (9, 4, 7, 6)
(1, 11) (2, 12) (3, 7) (4, 8) (9, 5) (10, 6)
(1, 11, 2, 12) (3, 7, 5, 9) (10, 4, 8, 6)
(1, 12, 2, 11) (3, 9, 5, 7) (10, 6, 8, 4)
(1, 12) (2, 11) (3, 9) (4, 10) (5, 7) (6, 8)

(1) (2) (3) (4) (5) (6) (7) (9) (10) (11) (12) (8)
(1) (2) (3) (4) (5) (6) (7, 9) (10, 8) (11, 12)
(1, 2) (3, 5) (4, 6) (7) (9) (10) (11) (12) (8)
(1, 2) (3, 5) (4, 6) (7, 9) (10, 8) (11, 12)
(1, 3, 4, 2, 5, 6) (7, 11, 10) (9, 12, 8)
(1, 3, 4, 2, 5, 6) (7, 12, 10, 9, 11, 8)
(1, 4, 5) (2, 6, 3) (7, 8, 11, 9, 10, 12)
(1, 4, 5) (2, 6, 3) (7, 10, 11) (9, 8, 12)
(1, 5, 4) (2, 3, 6) (7, 11, 10) (9, 12, 8)
(1, 5, 4) (2, 3, 6) (7, 12, 10, 9, 11, 8)
(1, 6, 5, 2, 4, 3) (7, 8, 11, 9, 10, 12)
(1, 6, 5, 2, 4, 3) (7, 10, 11) (9, 8, 12)
(1, 7, 3, 12, 4, 10, 2, 9, 5, 11, 6, 8)
(1, 7, 5, 11, 4, 10) (2, 9, 3, 12, 6, 8)
(1, 8, 6, 11, 5, 9, 2, 10, 4, 12, 3, 7)
(1, 8, 4, 12, 5, 9) (2, 10, 6, 11, 3, 7)
(1, 9, 5, 12, 4, 8) (2, 7, 3, 11, 6, 10)
(1, 9, 3, 11, 4, 8, 2, 7, 5, 12, 6, 10)
(1, 10, 4, 11, 5, 7) (2, 8, 6, 12, 3, 9)
(1, 10, 6, 12, 5, 7, 2, 8, 4, 11, 3, 9)
(1, 11) (2, 12) (3, 8) (4, 7) (9, 6) (10, 5)
(1, 11, 2, 12) (3, 8, 5, 10) (9, 4, 7, 6)
(1, 12, 2, 11) (3, 10, 5, 8) (9, 6, 7, 4)
(1, 12) (2, 11) (3, 10) (4, 9) (5, 8) (6, 7)

Table 6: Isomorphic copies of Aut(D1) and Aut(D2).

to determine whether a permutation is a protoautomorphism than an automorphism. It
appears that both D1 and D2 have only 48 protoautomorphism. Finally, it remains to
single out automorphisms from protoautomorphisms, which is an easy task as the number
of protoautomorphisms is small. Again, it appears that both automorphism groups are of
the same order 24. All automorphisms of both cliques are collected in Tabel 6. Clearly,
groups Aut(D1) and Aut(D2) are different, as only the latter contains elements of order
12. In fact, we can easily identify these groups using GAP [21]. The first of them is an
(external) semidirect product of cyclic group Z3 by dihedral group Dih4 of order 8, where
the action of the latter on the former is given by a homomorphism whose kernel is one of
the Klein four-subgroups of the dihedral group. The second is the simple product of Z3

and Dih4.

Proposition 20. The quotient space Cq♠/≈, where ≈ is the combinatorial equivalence
of cliques, consists of two classes

Since all cliques belonging to Cq♣ are isomorphic, their automorphism groups are
isomorphic as well. Therefore, it suffices to fix any C ∈ Cq♣, and find Aut(C ) in or-
der to know the structure of the automorphism groups of the remaining cliques. We
could take for example clique C described in Example 1. By much the same argu-
ment as in the case of D i one finds that Aut(C ) is of order 48. (Interestingly enough,
the protoautomorphism group has in this case 3070 elements). The following permuta-
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0 1 1 1 2 4 2 4 2 4 6 6
1 0 2 4 1 1 2 4 2 4 6 6
1 2 0 2 2 4 1 4 1 4 4 4
1 4 2 0 4 4 2 1 2 1 2 2
2 1 2 4 0 2 1 4 1 4 4 4
4 1 4 4 2 0 2 1 2 1 2 2
2 2 1 2 1 2 0 4 4 2 1 4
4 4 4 1 4 1 4 0 2 2 1 2
2 2 1 2 1 2 4 2 0 4 4 1
4 4 4 1 4 1 2 2 4 0 2 1
6 6 4 2 4 2 1 1 4 2 0 1
6 6 4 2 4 2 4 2 1 1 1 0



,



0 1 1 1 2 4 2 4 2 4 6 6
1 0 2 4 1 1 2 4 2 4 6 6
1 2 0 2 2 4 1 4 1 4 4 4
1 4 2 0 4 4 2 1 2 1 2 2
2 1 2 4 0 2 1 4 1 4 4 4
4 1 4 4 2 0 2 1 2 1 2 2
2 2 1 2 1 2 0 2 4 4 1 4
4 4 4 1 4 1 2 0 4 2 1 2
2 2 1 2 1 2 4 4 0 2 4 1
4 4 4 1 4 1 4 2 2 0 2 1
6 6 4 2 4 2 1 1 4 2 0 1
6 6 4 2 4 2 4 2 1 1 1 0


Table 7: Adjacency matrices of C 1 and C 2.

tions are generators of the isomorphic copy of Aut(C ): (1, 12, 7, 4, 9, 6) (2, 10, 5, 3, 11, 8),
(1, 12, 4, 9) (2, 11, 3, 10) (5, 6, 8, 7). Since |A3(s)| = |S3||Aut(s)|3 = 6 · 83, for s > 4,
|Aut(C )| = 48 and |Cq♣ | = 64, it follows that each automorphism of C is the re-
striction to C of an element from A3(4). Similarly, all automorphisms of D1 and D2 can
be identified with corresponding elements of A3(5).

7 Compressible cliques.

We have classified all incompressible 12-cliques in I 3 up to combinatorial equivalence,
however, it is not the whole picture. There are 12-cliques which are of different combina-
torial type from the three described so far. Clearly, if C is such a clique, then there is a
homomorphism f = f1×f2×f2 : I 3 → I (s)3, where s ∈ {4, 5} such that D = f(C ) is an
incompressible clique (see Section 5). Since ε(I, J) 6 ε(f(I), f(J)), for every I, J ∈ I 3,
we deduce that AC 6 AD , where both inequalities are stated with respect to the coordi-
natewise order. Since we have only three combinatorial types of incompressible cliques,
we deduce that the number of combinatorial types of 12-cliques is finite. As we briefly
explain in this section, this number is 5. Details will be published elsewhere.

It can be shown that if AC 6= AD , then D ∈ Cq♠. As our objective is to characterize
all 12-cliques up to combinatorial equivalence, we may assume that D ∈ {D1,D2}. Let
us assume that the intervals belonging to D = D i are labelled as in Table 4. Moreover,
let the elements of C = C i be labelled so that I = f(J) ∈ D and J ∈ C have the same
number. If we take into account authomorphisms of D , the fact that ε(I1, I8) = (1, 0, 1)
and the assumption AC 6= AD , then we can set that ε(J1, J8) = (0, 0, 1). It appears that
this equality determines AC for both D1 and D2. In Table 7, the adjacency matrices of
C 1 and C 2 encoded in the same manner as in Table 5 are presented. The subsequent
table shows the corresponding 12-cliques.
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1. [0, 1]× [1, 3]× [2, 3] [0, 1]× [1, 3]× [2, 3]
2. [1, 2]× [2, 3]× [1, 3] [1, 2]× [2, 3]× [1, 3]
3. [1, 5

2
]× [1, 2]× [2, 3] [1, 5

2
]× [1, 2]× [2, 3]

4. [1, 3]× [2, 3]× [0, 1] [1, 3]× [2, 3]× [0, 1]
5. [2, 5

2
]× [0, 1]× [1, 3] [2, 5

2
]× [0, 1]× [1, 3]

6. [2, 3]× [1, 3]× [1, 2] [2, 3]× [1, 3]× [1, 2]
7. [5

2
, 4]× [3, 5]× [5, 6] [5

2
, 4]× [3, 5]× [4, 5]

8. [3, 4]× [4, 5]× [3, 5] [3, 4]× [5, 6]× [3, 5]
9. [5

2
, 5]× [5, 6]× [3, 4] [5

2
, 5]× [3, 4]× [5, 6]

10. [3, 5]× [3, 4]× [4, 5] [3, 5]× [4, 5]× [3, 4]
11. [4, 5]× [3, 5]× [3, 4] [4, 5]× [3, 4]× [3, 5]
12. [5, 6]× [3, 4]× [3, 5] [5, 6]× [3, 5]× [3, 4]

.

Table 8: Compressible cliques C 1, C 2.

It can be shown that C 1 and C 2 are not isomorphic, despite the fact that their auto-
morphism groups are both isomorphic to Dih4.

Figure 8: Illustrations of compressible cliques C 1 and C 2. They are translated so that
their circumscribed boxes are centred at the origin.

8 Isometric incompressible cliques. Chirality

Let I(s) = [0, s + 1]× [0, s + 1]× [0, s + 1]. Let Iso3(s) be the group of isometries of the
cube I(s). For s = 4, Iso3(s) acts on Cq♣, while for s = 5, Iso3(s) acts on Cq♠. The
action is defined naturally: If U ∈ Iso3(s) and C is an incompressible 12-clique, then
U(C ) = {U(I) : I ∈ C }. Let us remark, that Iso3(s) can be identified with the subgroup
of A3(s) consisting of all the elements sσ ◦f = sσ ◦(f1×f2×f3) such that σ is an arbitrary
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Figure 9: Labelings of supp λ♣ and supp λ♠.

permutation belonging to S3 while each fi is either the identity mapping or the reflection
about (s+ 1)/2; that is, fi([a, b]) = [s+ 1− b, s+ 1− a], for [a, b] ∈ I (s).

Each group Iso3(s) contains the subgroup Iso3
+(s) consisting of preserving-orientation

isometries. Since incompressible cliques of intervals are geometric objects, it makes sense
to characterize them up to congruency; that is, to find a system of representatives for
each of the quotient spaces: Cq♣ / Iso3

+(4), Cq♣ / Iso3(4), Cq♠ / Iso3
+(5), Cq♠ / Iso3(5). It

appears that some of the cliques are chiral while the other are achiral. In our context, a
clique C is achiral if its orbits with respect to Iso3

+(s) and Iso3(s) coincide; otherwise, it
is chiral.

To simplify the exposition, we label the elements of supp λ♣ as follows: [i− 1, i] 7→ i,
for i = 1, . . . , 5; [1, 3] 7→ 6, [2, 4] 7→ 7, [1, 4] 7→ 8. Then we extend this labelling to 3-
intervals; for example, interval I = [0, 1]×[3, 4]×[1, 4] is labeled by 148. Similarly we label
the elements of of supp λ♠: [i−1, i] 7→ i, for i = 1, . . . , 6; [1, 3] 7→ 7, [3, 5] 7→ 8 (Figure 8).
We gather the information concerning the quotient spaces under the discussion in Tables
9–10

No. orbit representative orbit length
1. [148, 157, 246, 253, 624, 814, 325, 715, 462, 481, 532, 571] 8
2. [165, 134, 285, 274, 651, 852, 341, 742, 413, 427, 516, 528] 8
3. [116, 128, 213, 227, 652, 842, 351, 741, 465, 434, 585, 574] 24
4. [116, 123, 218, 227, 645, 855, 344, 754, 482, 471, 562, 531] 24

Table 9: A system of representatives for Cq♣ / Iso3
+(4). Two blocks of cliques belonging

to the same orbit of Iso3(4) are distinguished. All cliques are chiral.

Acknowledgements and concluding remarks.

We extensively used solvers for mixed integer programming in the early stages of our inves-
tigations. Our first (incompressible) 12-clique of 3-intervals was found using A. Makhorin’s
GLPK (Gnu Linear Programming Kit) for Windows [12]. Other incompressible cliques
were produced with the aid of SCIP Optimization Suite [1, 10]. Gurobi Optimizer 5.1 was
employed to perform preliminary verification that no additional incompressible cliques ex-
isted. Subsequently, we wrote Python scripts to make the results mathematically sound.
Automorphism groups were calculated with the use of GAP[21].
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No. orbit representative orbit length
I. class of the combinatorial equivalence ≈
1. [177, 233, 727, 732, 313, 371, 445, 464, 886, 858, 548, 684] 12
2. [177, 233, 723, 772, 317, 331, 446, 454, 885, 868, 584, 648] 12
3. [177, 233, 727, 732, 313, 371, 446, 468, 885, 854, 544, 688] 12
4. [177, 233, 723, 772, 317, 331, 486, 464, 845, 858, 544, 688] 12
5. [177, 233, 727, 732, 313, 371, 485, 454, 846, 868, 588, 644] 12
6. [177, 233, 723, 772, 317, 331, 445, 458, 886, 864, 588, 644] 12
7. [177, 233, 727, 732, 313, 371, 486, 458, 845, 864, 584, 648] 24
8. [177, 233, 723, 772, 317, 331, 485, 468, 846, 854, 548, 684] 24
9. [173, 237, 723, 731, 317, 372, 486, 458, 845, 864, 584, 648] 4
10. [137, 273, 713, 732, 327, 371, 485, 468, 846, 854, 548, 684] 4
II. class of the combinatorial equivalence ≈
11. [177, 233, 727, 732, 313, 371, 445, 458, 886, 864, 588, 644] 24
12. [177, 233, 727, 732, 313, 371, 446, 454, 885, 868, 584, 648] 24
13. [177, 233, 727, 732, 313, 371, 485, 468, 846, 854, 548, 684] 24
14. [177, 233, 723, 772, 317, 331, 486, 458, 845, 864, 584, 648] 24
15. [177, 233, 727, 732, 313, 371, 486, 464, 845, 858, 544, 688] 24
16. [173, 237, 723, 731, 317, 372, 485, 468, 846, 854, 548, 684] 8

Table 10: A system of representatives for Cq♠ / Iso3
+(5). There are two blocks of cliques

corresponding to two classes of the combinatorial equivalence. Each block consists of
subblocks. Cliques within a subblock belong to the same orbit of Iso3(5). Cliques 15 and
16 are achiral.

We wish to thank Professor J. Zaks for sending us reprints of his papers.
We are greatly indebted to an anonymous reviewer for valuable comments and sug-

gestions. The alternative approach to the classification of maximum cliques presented in
Appendix C has been proposed by the reviewer.

Appendices

A Aut(s)

Our goal is to describe the group Aut(s) of all automorphisms of the graph I (s) (see
Section 3 for the definition of I (s)). If s ∈ {1, 2}, then I (s) is a path of length s
and consequently Aut(s) is isomorphic to Z2. If s = 3, then I (s) is a cycle of length
5. Therefore, Aut(3) is isomorphic to Dih5, which can be identified with the group of
isometries of a regular pentagon. In the case of s = 4, one can see that Aut(s) is
isomorphic to Dih4, the group of isometries of a square. Figure 10 provides a sufficient
explanation.
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Figure 10: Diagrams for I (4).

In fact, the latter statement remains valid for arbitrary s > 4:

Theorem 21. Aut(s) ∼= Dih4, for every s > 4.

We are going to prove this result straightforwardly; that is, by determining all the
elements of Aut(s). We begin with analysing the degrees of the vertices of I (s). We
adopt the following shorthand notation: Each vertex (interval) [i, j] of the graph I (s) is
denoted by i : j.

Lemma 22. Let s > 4. Let i : j ∈ V (I (s)). Then deg(i : j) is equal to:

1. s− (j − i)− 1, if 2 6 i and j 6 s− 1;

2. s− (j − i), if i, j satisfy one of the following relations: i = 0 and j = 1, i = 1 and
j 6 s− 1, 2 6 i and j = s, i = s and j = s+ 1 ;

3. s− (j − i) + 1 = 2, if i = 1 and j = s.

The proof is obvious, the degree deg(i : j) is equal to the number of the intervals in
I (s) adjacent to i : j. For example, if i = 1 and j 6 s−1, then the only interval adjacent
to i : j from the left is 0 : 1, while the intervals j : k, where j + 1 6 k 6 s, are adjacent
from the right. Therefore, there are 1 + (s− j) = s− (j − i) adjacent intervals in total, a
result which agrees with our lemma.

Proof of the theorem. It follows from the lemma that if s > 4, then the only vertices of
degree s − 1 in I (s) are a = 0: 1, b = 1: 2, c = s − 1: s and d = s : s + 1. Thus, every
automorphism of I (s) has to send these vertices onto themselves. Since the subgraph G
of I (s) induced by V = {a, b, c, d} is a disjoint union of two paths of length 1, its auto-
morphism group Aut(G) is isomorphic to Dih4. We shall prove that every automorphism
of G extends to an automorphism of I (s) in a unique way. Let us begin with listing the
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automorphisms of G.

1 a b c d
2 d c a b
3 b a d c
4 c d b a
5 b a c d
6 a b d c
7 d c b a
8 c d a b

1 0: 1 1 : 2 s− 1: s s : s+ 1
2 s : s+ 1 s− 1: s 0: 1 1 : 2
3 1: 2 0 : 1 s : s+ 1 s− 1: s
4 s− 1: s s : s+ 1 1: 2 0: 1
5 1: 2 0 : 1 s− 1: s s : s+ 1
6 0: 1 1 : 2 s : s+ 1 s− 1: s
7 s : s+ 1 s− 1: s 1: 2 0 : 1
8 s− 1: s s : s+ 1 0: 1 1: 2

Lists of the automorphisms of G in both notations for vertices.

These lists encode automorphisms in a rather obvious manner; for example, the automor-
phism defined by the row no. 5 acts as follows: a 7→ b, b 7→ a, c 7→ c, d 7→ d.

Let us consider the vertices of the lowest degree in I (s), s > 4. These are u = 2: s−1,
v = 1: s− 1, w = 2: s oraz x = 1: s. The graph H induced by the vertices a, b, c, d, u, v,
w, x is isomorphic to I (4) (for s = 4 they simply coincide) and Figure 10 represents H
equally well as it represents I (4).

Clearly, the automorphisms of G extend to the automorphisms of H in a natural and
unique way. We arrange the automorphisms of H into two tables. The second table
describes the action of these automorphisms restricted to the vertices u, v, w, x in the
original notation.

1 a b c d u v w x
2 d c a b v x u w
3 b a d c x w v u
4 c d b a w u x v
5 b a c d v u x w
6 a b d c w x u v
7 d c b a u w v x
8 c d a b x v w u

1 2: s− 1 1: s− 1 2: s 1: s
2 1: s− 1 1: s 2: s− 1 2: s
3 1: s 2: s 1: s− 1 2: s− 1
4 2: s 2: s− 1 1: s 1: s− 1
5 1: s− 1 2: s− 1 1: s 2: s
6 2: s 1: s 2: s− 1 1: s− 1
7 2: s− 1 2: s 1: s− 1 1: s
8 1: s 1: s− 1 2: s 2: s− 1

Aut(H)

Now, we are prepared to describe all the automorphisms of I (s), s > 4. Since, as we shall
show, they are uniquely determined by the automorphisms of G, it suffices to describe
their action on vertices belonging to I (s)\V (H). These are the vertices of degree greater
than 2 and smaller than s−1. The indices i, j appearing in our description have to satisfy
the following constraints:

2 < i < s− 1; i < j, if both indices appear; 2 < j < s− 1.
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The enumeration of automorphisms is consistent with the preceding tables.

1 1 : i 2: i j : s− 1 j : s i : j
2 s+ 1− i : s s+ 1− i : s− 1 1: s+ 1− j 2: s+ 1− j s+ 1− j : s+ 1− i
3 2: i 1: i j : s j : s− 1 i : j
4 s+ 1− i : s− 1 s+ 1− i : s 2: s+ 1− j 1: s+ 1− j s+ 1− j : s+ 1− i
5 2: i 1: i j : s− 1 j : s i : j
6 1: i 2: i j : s j : s− 1 i : j
7 s+ 1− i : s s+ 1− i : s− 1 2: s+ 1− j 1: s+ 1− j s+ 1− j : s+ 1− i
8 s+ 1− i : s− 1 s+ 1− i : s 1: s+ 1− j 2: s+ 1− j s+ 1− j : s+ 1− i

The action of Aut(s) on I (s) \ V (H).

The fact that the described eight mappings, call them ϕi, i = 1, . . . , 8, are automorphisms
of the graph I (s), s > 4, is easily verified. As they extend the automorphism of G, it
remains to be shown that no other extensions exist. Let ϕ be any of the automorphisms.
Then there is a unique i, such that ϕ|V (G) = ϕi|V (G). As we have already mentioned, the
extension of ϕi|V (G) to V (H) is unique; therefore, ϕ|V (H) = ϕi|V (H). Since H = I (s)
for s = 4, we may further assume s > 5. Observe now, that for every y ∈ V (G), and
2 < δ < s−1 there is exactly one neighbouring vertex z of degree δ. Let y′ = ϕi(y) = ϕ(y).
Since y′ ∈ V (G), there is only one vertex z′ being a neighbour of y′ whose degree is δ.
This implies that z′ = ϕ(z) = ϕi(z). Thus, ϕ and ϕi coincide on the neighbourhood of
V (G). Now, if a vertex t does not belong to the neighbourhood of V (G), then there are
i, j such that t = i : j and 2 < i < j < s − 1. Take z1 = 1: i oraz z2 = j : s. These are
neighbours of t. Moreover, they belong to the neighbourhood of V (G), as the pairs z1, a
and z2, d are adjacent. As a result, both automorphisms send z1 on the same element z′1
and z2 onto z′2. Since z1, z2 have a unique common neighbour t, the elements z′1, z′2 have
a unique common member t′. Clearly, t′ = ϕ(t) = ϕi(t), which completes the proof that
ϕ and ϕi coincide.

B L̂(s, v)

We fulfill our declaration made in Section 5 to collect all L̂(s, v) for v = 12, 13. We explain
how to read these tables taking row no. 9 of Table 13 as an example: Entries of this row
bounded by double lines encode γ = λ∗, the combination discussed in Proposition 15.
The fact that e = 22′ means that the graph Gγ has 22 edges and is of type II.

No. 0: 1 1: 2 1: 3 2: 3 3: 4 e
1 2 2 2 3 3 29

Table 11: L̂(s, v) for v = 12 and s = 3.
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No. 0: 1 1: 2 1: 3 1: 4 2: 3 2: 4 3: 4 4: 5 e
1 1 1 1 1 1 2 2 3 25
2 1 1 1 1 1 1 3 3 26
3 1 2 0 1 1 3 1 3 27
4 1 2 1 1 1 2 2 2 24
5 1 2 0 1 2 2 2 2 25
6 1 2 0 1 1 2 2 3 26
7 1 2 0 2 1 2 1 3 26
8 2 2 1 1 1 1 2 2 24

Table 12: L̂(s, v) for v = 12 and s = 4.
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No. 0: 1 1: 2 1: 3 1: 4 1: 5 2: 3 2: 4 2: 5 3: 4 3: 5 4: 5 5: 6 e
1 1 1 1 0 1 2 1 0 1 2 1 1 21
2 1 1 1 0 1 2 1 0 2 1 1 1 21
3 1 1 1 0 0 3 0 0 1 3 1 1 26
4 1 1 1 0 0 3 0 0 2 2 1 1 26
5 1 1 1 0 1 1 2 0 1 1 2 1 20
6 1 1 1 0 1 1 1 1 1 1 1 2 20
7 1 1 1 0 1 1 0 1 2 1 1 2 21
8 1 1 1 0 1 1 1 0 1 2 1 2 21
9 1 1 1 0 1 1 0 1 1 2 1 2 22′

10 1 1 1 0 0 2 0 1 2 1 1 2 22
11 1 1 1 0 1 2 0 0 2 1 1 2 22
12 1 1 1 0 0 2 0 1 1 2 1 2 23
13 1 1 1 0 1 2 0 0 1 2 1 2 23
14 1 1 1 0 0 2 0 0 2 2 1 2 24
15 1 1 1 0 0 2 0 0 1 3 1 2 25
16 1 1 1 0 0 1 0 2 1 1 1 3 22
17 1 1 1 0 1 1 0 1 1 1 1 3 22
18 1 1 1 0 0 1 0 1 1 2 1 3 23
19 1 1 1 0 0 1 0 0 1 3 1 3 24
20 1 1 1 0 0 1 1 1 1 1 2 2 21
21 1 1 1 0 1 1 1 0 1 1 2 2 21
22 1 1 1 0 0 1 0 1 2 1 2 2 22
23 1 1 1 0 0 1 0 0 2 2 2 2 23
24 1 1 1 0 0 2 0 0 1 2 2 2 23
25 1 1 1 0 0 1 0 1 1 1 2 3 22
26 1 1 1 0 0 1 0 0 1 2 2 3 23
27 1 1 1 0 0 1 0 0 1 1 3 3 22
28 1 1 2 0 0 2 0 0 2 2 1 1 26
29 1 2 1 0 0 1 0 2 1 1 1 2 22
30 1 2 1 0 0 1 1 1 1 1 1 2 21
31 1 2 1 0 1 1 1 0 1 1 1 2 20
32 1 2 1 0 0 1 0 1 1 2 1 2 22
33 1 2 1 0 0 1 0 1 2 1 2 1 21
34 1 2 1 0 0 2 0 0 1 2 1 2 23
35 1 2 1 0 0 1 0 1 1 1 2 2 21
36 1 2 1 0 0 2 0 0 1 1 2 2 21
37 2 2 1 0 0 1 0 0 1 1 2 2 20

Table 13: L̂(s, v) for v = 12 and s = 5.
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No. 0: 1 1: 2 1: 3 1: 4 1: 5 1: 6 2: 3 2: 4 2: 5 2: 6 3: 4 3: 5 3: 6 4: 5 4: 6 5: 6 6: 7 e
1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 19′

2 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 18
3 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 18
4 1 1 1 0 0 0 1 0 0 0 2 1 1 1 1 1 1 20′

5 1 1 1 0 0 0 1 0 0 1 2 1 0 1 1 1 1 19
6 1 1 1 0 0 0 1 2 0 0 1 0 0 1 2 1 1 20
7 1 1 1 0 0 0 1 1 0 0 1 0 1 1 2 1 1 19
8 1 1 1 0 0 0 2 0 0 0 1 1 1 1 1 1 1 20′

9 1 1 1 0 0 0 1 1 0 0 1 0 1 2 1 1 1 19
10 1 1 1 0 0 0 1 1 0 0 2 0 0 1 2 1 1 21
11 1 1 1 0 0 0 1 0 0 0 2 0 1 1 2 1 1 20
12 1 1 1 0 0 0 1 0 0 0 2 0 1 2 1 1 1 20
13 1 1 1 0 0 0 1 0 0 0 3 0 0 1 2 1 1 22
14 1 1 1 0 0 0 1 0 0 0 1 0 2 1 1 1 2 20
15 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 1 2 19
16 1 1 1 0 0 0 1 0 0 1 1 0 1 1 1 1 2 19
17 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 2 18
18 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 2 19′

19 1 1 1 0 0 0 1 0 0 1 1 1 0 1 1 1 2 18
20 1 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 2 18
21 1 1 1 0 0 0 1 0 0 0 2 0 1 1 1 1 2 20
22 1 1 1 0 0 0 1 0 0 1 2 0 0 1 1 1 2 19
23 1 1 1 0 0 0 1 0 0 0 1 0 1 1 2 1 2 19
24 1 1 1 0 0 0 1 1 0 0 1 0 0 1 2 1 2 19
25 1 1 1 0 0 0 1 0 0 0 1 0 1 2 1 2 1 18
26 1 1 1 0 0 0 1 0 0 0 2 0 0 1 2 1 2 20
27 1 1 1 0 0 0 1 0 0 0 1 0 1 1 1 2 2 19
28 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 2 2 18
29 1 1 1 0 0 0 1 0 0 0 2 0 0 1 1 2 2 19

Table 14: L̂(s, v) for v = 12 and s = 6.
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No. 0: 1 1: 2 1: 3 2: 3 2: 4 2: 5 2: 7 3: 4 3: 5 3: 7 4: 5 4: 6 4: 7 5: 6 5: 7 6: 7 7: 8 e
1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 16
2 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1 17′

3 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 17′

4 1 1 1 1 0 0 0 1 2 0 1 0 0 1 1 1 1 19′

5 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 16
6 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 18′

7 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 16
8 1 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 17
9 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 1 2 16
10 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 1 2 17′

11 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 1 2 17
12 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 2 16
13 1 1 1 1 0 0 0 2 0 0 1 0 1 1 1 1 1 17
14 1 1 1 1 0 0 0 1 1 0 2 0 0 1 1 1 1 18′

15 1 1 1 1 0 0 0 1 0 1 2 0 0 1 1 1 1 17
16 1 1 1 1 0 0 0 1 1 0 1 0 0 1 2 1 1 18′

17 1 1 1 1 0 1 0 1 0 0 1 0 0 1 2 1 1 17
18 1 1 1 1 0 0 0 1 0 0 2 0 0 1 2 1 1 17
19 1 1 1 1 0 0 0 1 0 0 1 0 0 1 2 1 2 16
20 1 1 1 1 0 0 0 2 0 0 2 0 0 1 1 1 1 18
21 1 1 1 1 0 0 0 1 0 0 1 0 0 1 1 2 2 16

Table 15: L̂(s, v) for v = 12 and s = 7. Columns 1: 4, 1 : 5, 1 : 6, 1 : 7, 2 : 6, 3 : 6 are omitted,
as they contain only 0 entries.

No. 0: 1 1: 2 1: 3 2: 3 3: 4 3: 6 3: 8 4: 5 4: 6 5: 6 5: 8 6: 7 6: 8 7: 8 8: 9 e
1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 14
2 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 15
3 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 15
4 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 16
5 1 1 1 1 1 0 0 1 0 2 0 1 1 1 1 15

Table 16: L̂(s, v) for v = 12 and s = 8. Columns containing only 0 entries are omitted.

No. 0: 1 1: 2 1: 3 2: 3 3: 4 4: 5 5: 6 6: 7 7: 8 7: 9 8: 9 9: 10 e
1 1 1 1 1 1 1 1 1 1 1 1 1 13

Table 17: L̂(s, v) for v = 12 and s = 9. Columns containing only 0 entries are omitted.
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No. 0: 1 1: 2 1: 3 1: 4 1: 5 2: 3 2: 4 2: 5 3: 4 3: 5 4: 5 5: 6 e
1 1 1 1 0 1 1 0 1 1 2 1 3 27
2 1 1 1 0 0 2 0 0 2 2 2 2 28
3 1 2 1 0 1 1 1 1 1 1 1 2 24
4 1 2 1 0 0 2 0 1 1 2 1 2 27
5 1 2 1 0 0 1 1 1 1 1 2 2 25

Table 18: L̂(s, v) for v = 13 and s = 5.

No. 0: 1 1: 2 1: 3 1: 4 1: 5 1: 6 2: 3 2: 4 2: 5 2: 6 3: 4 3: 5 3: 6 4: 5 4: 6 5: 6 6: 7 e
1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 22
2 1 1 1 0 0 0 2 1 0 0 1 1 1 1 1 1 1 23
3 1 1 1 1 0 0 1 1 0 0 1 0 1 2 1 1 1 23
4 1 1 1 0 0 0 2 0 0 0 2 1 1 1 1 1 1 25
5 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 2 22
6 1 1 1 0 0 0 1 1 0 0 1 0 1 1 2 1 2 23
7 1 1 1 0 0 0 1 0 0 0 2 0 1 1 2 1 2 24
8 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 2 2 23

Table 19: L̂(s, v) for v = 13 and s = 6.

No. 0: 1 1: 2 1: 3 2: 3 2: 4 2: 5 2: 7 3: 4 3: 5 3: 7 4: 5 4: 6 4: 7 5: 6 5: 7 6: 7 7: 8 e
1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 20
2 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 20
3 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 2 20
4 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 2 21
5 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 1 2 20
6 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 1 2 20
7 1 1 1 1 0 0 0 2 1 0 1 0 1 1 1 1 1 21
8 1 1 1 1 0 0 0 1 2 0 1 0 0 1 2 1 1 23
9 1 1 1 1 0 1 0 1 1 0 1 0 0 1 2 1 1 22
10 1 1 1 1 0 0 0 1 1 0 2 0 0 1 2 1 1 22
11 1 1 1 1 0 0 0 1 1 0 1 0 0 1 2 1 2 21
12 1 1 1 1 0 0 0 2 1 0 2 0 0 1 1 1 1 22
13 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 2 2 20

Table 20: L̂(s, v) for v = 13 and s = 7. Columns containing only 0 entries are omitted.
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No. 0: 1 1: 2 1: 3 2: 3 3: 4 3: 5 3: 6 3: 8 4: 5 4: 6 5: 6 5: 8 6: 7 6: 8 7: 8 8: 9 e
1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 18
2 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 18
3 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 18
4 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 19
5 1 1 1 1 0 2 0 0 0 1 1 1 1 1 1 1 19

Table 21: L̂(s, v) for v = 13 and s = 8. Columns containing only 0 entries are omitted.

No. 0: 1 1: 2 1: 3 2: 3 3: 4 3: 7 4: 5 5: 6 5: 7 6: 7 7: 8 7: 9 8: 9 9: 10 e
1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 16
2 1 1 1 1 1 1 1 1 0 1 1 1 1 1 17

Table 22: L̂(s, v) for v = 13 and s = 9. Columns containing only 0 entries are omitted.

the electronic journal of combinatorics 26(4) (2019), #P4.44 35



C Cq♠/A(5)3 = Cq♠/ ≈

We give here an alternative reasoning that Cq♠/ ≈ consists of exactly two elements. To
this end, it suffices to take into account that Cq♠/A(5)3 has two elements (see Table 4 in
Section 6 and comments therein), and to show the following result.

Proposition 23. If C and D belonging to Cq♠ are combinatorially equivalent, then there
is g ∈ A3(5) such that g(C ) = D .

We collect indispensable notions and results before delving into the proof.
Let v be a vertex of a simple graph G. The neighbourhood N(v) of v is the set of all

vertices adjacent to v; that is, N(v) = {x ∈ V (G) : {v, x} ∈ E(G)}. We define the twin
relation ∼ on the vertices of G as follows: u ∼ v if and only if N(u) = N(v). Clearly, the
twin relation is an equivalence. The graph G is point-determining if u ∼ v implies u = v,
for each pair u, v.

Let X be a non-empty finite set and η : X → V (G) be an ‘onto’ mapping. Let Gη

be the graph with set of vertices V (Gη) = X and set of edges E(Gη) = {{u, v} ⊆
X : {η(u), η(v)} ∈ E(G)}. The graph Gη is an instant of a blow-up of G.

Proposition 24. Let G be a point-determining graph. If Gη is a blow-up of G defined
by an ‘onto’ mapping η : X → V (G), then for every x ∈ X, the equivalence class of x
with respect to the twin relation is equal to the preimage of η(x); that is,

[x]∼ = η−1(η(x)).

Proof. Let y ∈ η−1(η(x)); equivalently, η(y) = η(x). Then

u ∈ N(x)⇐⇒ {η(u), η(x)} ∈ E(G)⇐⇒ {η(u), η(y)} ∈ E(G)⇐⇒ u ∈ N(y), ∀u ∈ X.

Thus, y ∈ [x]∼ and consequently η−1(η(x)) ⊆ [x]∼.
Suppose now that y ∼ x. Let w ∈ V (G), and z be an element of the preimage η−1(w).

The preimage is non-empty, as η is ‘onto’. We have

{w, η(y)} ∈ E(G)⇐⇒ {η(z), η(y)} ∈ E(G)⇐⇒ z ∈ N(y).

The same argument can be repeated with y replaced by x. Now, since y ∼ x, we deduce
{w, η(y)} ∈ E(G) if and only if {w, η(x)} ∈ E(G), for every w ∈ V (G), which shows
N(η(y)) = N(η(x)). As G is point-determining, we conclude η(y) = η(x). Thus, y ∈
η−1(η(x)), and consequently [x]∼ ⊆ η−1(η(x)).
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Lemma 25. Let X and Y be finite sets, and G be a point-determining graph. Let ϕ : X →
V (G) and ψ : Y → V (G) be ‘onto’ mappings. If f : X → Y is a bijection such that
{ϕ(u), ϕ(v} ∈ E(G) ⇔ {ψ ◦ f(u), ψ ◦ f(v)} ∈ E(G), for every u, v ∈ X, then there is a
unique automorphism h of G for which the following diagram commutes

X Y

V (G) V (G).

f

ϕ ψ

h

Proof. Let us first remark that our assumptions on f imply that f is an isomorphism of
blow-up graphs Gϕ and Gψ. (We shall tacitly accept that all graph-teoretic structures
defined on X and Y relate to these graphs). In particular, we have,

f(N(x)) = N(f(x)), for every x ∈ X. (α)

Let us fix an element u ∈ V (G). Let x, y ∈ ϕ−1(u). By our proposition, we have N(x) =
N(y), while by (α), N(f(y)) = N(f(x)). Therefore, we have proved that f(ϕ−1(u)) ⊆
[f(x)]∼. Again by our proposition there is a unique element v ∈ V (G) such that ψ−1(v) =
[f(x)]∼. Hence

f(ϕ−1(u)) ⊆ ψ−1(v). (β)

Since f is a bijection and the family ϕ−1(u), u ∈ V (G), is a partition of X, its image
f(ϕ−1(u)), u ∈ V (G), is a partition of Y . Partitions f(ϕ−1(u)), u ∈ V (G), and ψ−1(v),
v ∈ V (G), of Y are of the same cardinality and the former is finer than the latter.
Consequently, they coincide. Thus, there is a unique bijection h : V (G) → V (G) such
that f(ϕ−1(u)) = ψ−1(h(u)), for every u ∈ V (G). Clearly, h is the only bijection for
which our diagram commutes.

To complete the proof, it suffices to show that h sends edges to edges. Let {u, v}
be an edge of G. Then ϕ−1(u) and ϕ−1(v) are disjoint. Let us fix x ∈ ϕ−1(u) and
y ∈ ϕ−1(u). According to our definition of h, we have ψ◦f(x) = h(u) and ψ◦f(y) = h(v).
Since {u, v} = {φ(x), φ(y)} is an edge, it follows by our assumptions that {h(u), h(v)} =
{ψ ◦ f(x), ψ ◦ f(y)} is an edge of G.

Proof of Proposition 23. By the combinatorial equivalence,there is an isomorphism
f : C → D . Since permutations of coordinates belong to A3(5), we may assume that
ε(f(I), f(J)) = ε(I, J), whenever I, J ∈ C . Equivalently, for every i ∈ [3] and every
I, J ∈ C , Ii, Ji are adjacent (have exactly one point in common) if and only if f(I)i, f(J)i
are adjacent. For each i ∈ [3], let πi : I 3 → I 1 be the projection πi(I) = Ii. Observe
that the graph G with supp λ♠ as its set of vertices and the adjacency inherited from
I 1 is point-determining. Let us set X = C , Y = D , ϕ = πi|C , ψ = πi|D . Then the
sextuple G,X, Y, f, ϕ, ψ satisfies the assumptions of Lemma 25. Therefore, there is an
automorphism hi of G such that the following diagram commutes
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C D

supp λ♠ supp λ♠.

f

πi|C πi|D

hi

It is easy to check that hi extends (in a unique way) to an automorphism gi ∈ Aut(5).
Therefore, h1×h2×h3 is a restriction of certain g ∈ Aut(5)3 ⊂ A(5)3. Moreover, observe
that π1|C × π2|C × π3|C is the identity mapping of C . The identity map of D can be
expressed in a similar way. Consequently, the following diagram commutes

C D

C D ,

f

id id

g

which shows that g(C ) = D .
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