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Abstract

In this paper we introduce the elementary factorization of the standard OGS
for the symmetric group, and show how it encodes the inversion and descent set
statistics. Proofs follow from exchange laws for powers of Coxeter elements in the
principal flag.

Mathematics Subject Classifications: 05E15, 06F15, 20B05, 20B20, 20B30,
20F60, 20K01

1 Introduction

One of the most important theorems of Linear Algebra is that every vector-space V over
a field F has a basis, i.e. there are elements v1, v2, . . . vn in V , such that every vector v in
V has a unique presentation of a form:

v = α1 · v1 + α2 · v2 + · · ·+ αn · vn, α1, α2, . . . , αn ∈ F

Thus, the vector v in V can be expressed by its n coordinates (α1, α2, . . . , αn). There
is a generalization of the basis for finitely generated abelian groups. Let A be a finitely
generated abelian group, then by the fundamental theorem of finitely generated abelian
groups there exists generators a1, a2, . . . an, such that every element a in A has a unique
presentation of a form:

g = ai11 · ai22 · · · ainn .

where, i1, i2, . . . , in are n integers such that for 1 6 k 6 n, 0 6 ik < |gk|, where ak has
a finite order of |ak| in A, and ik ∈ Z, where ak has infinite order in A. The mentioned
presentation is the canonical presentation of a ∈ A according to the basis 〈a1, a2, . . . , an〉.
Since A is an abelian group, the following exchange laws hold: ak · aj = aj · ak, for each
1 6 j, k 6 n. The exchange law allows us to put each product of two elements of the
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group A onto the mentioned canonical form. Therefore, we can write every element g of
an abelian group A as a n-tuple of integers (i1, i2, . . . in), where ik ∈ Z|ak| for 1 6 r 6 n
(we denote by Zr the set of integers modulo r, and we denote by by Z∞ the set of the
integers). Thus,

(i1, i2, . . . in) + (j1, j2, . . . jn) = (i1 + j1, i2 + j2, . . . , in + jn),

where, ik + jk is the group operation in the additive group of Z|ak|. In this paper we
consider a generalization of the canonical form by a given basis as it arises from the
fundamental theorem of abelian groups to the non-abelian case in the following way:

Definition 1. Let G be a non-abelian group. The ordered sequence of n elements
〈g1, g2, . . . , gn〉 is called an Ordered Generating System of the group G or by shortened
notation, OGS(G), if every element g ∈ G has a unique presentation in the a form

g = gi11 · gi22 · · · ginn ,

where, i1, i2, . . . , in are n integers such that for 1 6 k 6 n, 0 6 ik < rk, where rk||gk|
in case the order of gk is finite in G, or ik ∈ Z, in case gk has infinite order in G. The
mentioned canonical form is called OGS canonical form. For every q > p, 1 6 xq < rq,
and 1 6 xp < rp the relation

gxqq · gxpp = gi11 · gi22 · · · ginn ,

is called exchange law.

In contrast to finitely generated abelian groups, the existence of an OGS is generally
not true for every finitely generated non-abelian group. Even in case of two-generated
infinite non-abelian groups it is not too hard to find counter examples. For example,
the Baumslag-Solitar groups BS(m,n) [5], where m 6= ±1 or n 6= ±1, or most of the
cases of the one-relator free product of a finite cyclic group generated by a, with a finite
two-generated group generated by b, c with the relation a2 · b · a · c = 1 [14], do not have
an OGS. The following question is open: Does there exist an OGS for any finite group?
Moreover, contrary to the abelian case where the exchange law is just gq · gp = gp · gq,
in most of the cases of non-abelian groups with the existence of an OGS, the exchange
laws are very complicated. Although there are some specific non-abelian groups where
the exchange laws are very convenient and have very interesting properties (For example,
in the case of PSL2(q) there is an OGS which is closely connected to the BN − pair
decomposition, where the exchange laws yield some interesting recursive sequences over
finite fields [16]). In this paper we deal with the two most significant classes of Coxeter
groups (namely the I-type and the A-type), which have an OGS canonical presentation
strongly connected to the presentation in Coxeter generators, and with very interesting
and surprising exchange laws. The paper is organized as follows: In section 2, we describe
an OGS canonical form and the related exchange laws for the family of the dihedral
groups Dih(A), which are non-abelian extensions of an abelian group A by a cyclic group
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of order 2. Then, we focus in the case of Dih(A), where the abelian group A is cyclic,
since then the group is a Coxeter group with two generators. We show a connection
between the canonical form according to an OGS, which we call standard OGS, and the
reduced Coxeter presentation of it. In section 3, we show a generalization of the standard
OGS canonical form to the A-type Coxeter groups, which can be considered as a dual
family of the I-type Coxeter groups, where instead of limiting the number of vertices to
two in the Coxeter graph, we limit the lace of the edges to be simply laced. The (n− 1)-
generated A-type Coxeter group is the symmetric group Sn, which can be considered as
the permutation group on n elements. Therefore, a lot of work has been accomplished
concerning the connections between permutation invariants and the Coxeter length of
the elements by Brenti, Björner [6], Bóna [7], Foata, Schützenberger [8], Garsia, Gessel
[9], Reiner [11], Stanley [17], Steingrimsson [18], Bagno, Garber, Mansour, Shwartz [4],
and many others. In the same aspect, Adin and Roichman [1] introduced a presentation
of an OGS canonical form for the symmetric group Sn, for the hyperoctahedral group
Bn, and for the wreath product Zm o Sn. In the case of Sn, the OGS which they used,
coincides with the standard OGS by our definition. Adin and Roichman proved that
for every element of Sn presented in the standard OGS canonical form, the sum of the
exponents of the OGS equals the major-index of the permutation. Moreover, by using an
OGS canonical form, Adin and Roichman generalized the theorem of MacMahomn [10]
to the B-type Coxeter group, and to the wreath product Zm o Sn. A few years later, that
OGS canonical form was generalized for complex reflection groups by Shwartz, Adin and
Roichman [15]. Although an OGS canonical form for the symmetric groups Sn has been
already introduced, and a lot of work has been done concerning permutation statistics
and Coxeter length of elements in the symmetric groups, nothing has been carried out
yet concerning very important and very interesting aspects of the OGS canonical forms,
like exchange laws or an explicit formula for the Coxeter length of a given element of
Sn. In this paper, we find the related exchange laws for the standard and for the dual-
standard OGS canonical forms of the symmetric group Sn, with very interesting and
surprising properties. By using the standard OGS, we define standard OGS elementary
elements, which coincide with the elements of Sn with a single descent. Then, we define
standard OGS elementary factorization onto standard OGS elementary factors, such that
the number of the elementary factors of an element π ∈ Sn equals to the size of the descent
set of π. We also give a new explicit formula for the Coxeter length of a permutation in
the symmetric group Sn by using the standard OGS canonical form, and the standard
OGS elementary factorization.

2 OGS Canonical forms and exchange laws for Dih(A)

In this section we show an OGS canonical form, with very simple exchange laws, for
the dihedral groups, a very important family of non-abelian groups. Then, we show
connections between the mentioned OGS canonical form and the presentation in Coxeter
generators of the two-generated Coxeter groups, which are dihedral groups.
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Definition 2. Let A be an abelian group. The map φ : A→ A, such that φ(a) = a−1 is
an automorphism of A. Then, we define Dih(A) to be the dihedral group of order 2|A|,
as an extension of the group A by an involution b, where b(a) = a−1, for every a ∈ A.

Obviously, the relations of Dih(A) are the relations of A and conjugation of the ele-
ments of A to their inverse by an involution b, i.e., b−1 · a · b = a−1 for every a ∈ A, which
is equivalent to: b · a = a−1 · b, for every a ∈ A. Thus, every element of Dih(A) has a
unique presentation in the following canonical form

g = ai11 · ai22 · · · ainn · bj

where, i1, i2, . . . , in are n integers such that for 1 6 k 6 n, 0 6 ik < |ak|, where ak has
a finite order of |ak| in A, and ik ∈ Z, where ak has infinite order in A, and 0 6 j < 2.
By Definition 1, the ordered sequence 〈a1, a2, . . . , an, b〉 is an OGS for G = Dih(A). The
relation b · a = a−1 · b for every a ∈ A implies exchange laws of the form b · aikk = a−ikk · b.
Therefore,

(i1, i2, . . . in, j)+(p1, p2, . . . pn, q) = (i1 +(−1)j ·p1, i2 +(−1)j ·p2, . . . , in+(−1)j ·pn, j+q),

where, the operation “+” in ik + (−1)j · pk is the group operation in the additive group
of Zr, and j + q is the group operation in the additive group of Z2.

Proposition 3. Every ordered sequence of a form

〈aπ(1), . . . , aπ(w), b, aπ(w+1), . . . aπ(n)〉,

where, w is an arbitrary integer such that 1 6 w 6 n, and π is a permutation of the
elements in the set of the n integers {1, 2, . . . n}, forms an OGS for G = Dih(A), where
the exchange laws of the given OGS canonical form is the following:

• aπ(k) · aπ(j) = aπ(j) · aπ(k), for 1 6 j, k,6 n (i.e., commutative exchange laws);

• b · aiπ(k)π(k) = a
−iπ(k)
π(k) · b, for 1 6 π(k) 6 w;

• aiπ(k)π(k) · b = b · a−iπ(k)π(k) , for w + 1 6 π(k) 6 n.

Proof. The proof comes directly by the definition of G = Dih(A) as an extension of the
abelian group A by an involution b, according to the automorphism b(a) = a−1, for every
a ∈ A.

The following example shows how we can multiply two arbitrary elements in Dih(A),
which are presented in OGS canonical form.

Example 4. Let A be Z9

⊕
Z3, where the elements a1 and a2 generates A, such that

|a1| = 9, |a2| = 3, and every element in A has a unique presentation in the canonical
form ai11 · ai22 , where 0 6 i1 < 9, and 0 6 i2 < 3. Now, consider the group Dih(Z9

⊕
Z3),

which is the extension of Z9

⊕
Z3 by an involution b such that b · a = a−1 · b, for every
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a ∈ A. Then, every element of Dih(Z9

⊕
Z3) ha a unique presentation in a canonical

form ai11 · ai22 · bj, where 0 6 i1 < 9, 0 6 i2 < 3, and 0 6 j < 2, with the exchange laws:

ai22 · ai11 = ai11 · ai22 b · ai11 = a9−i11 · b b · ai22 = a3−i22 · b

Thus, for example let x and y be the following elements: x = a41 ·a22 ·b, and y = a71 ·a2 ·b,
then by the exchange laws the following holds:

x · y = a41 · a22 · b · a71 · a2 · b = a41 · a22 · a9−71 · a3−12 · b · b = a61 · a42 · b2 = a61 · a2.

2.1 The Coxeter group I2(m)

There is a special interest in the family dihedral groups Dih(A), where A is a cyclic group.
Let A be a cyclic group of order m (m might be ∞), then Dih(A) is a two-generated
Coxeter group I2(m), of order 2m, where m is finite, or order ∞, in case m = ∞. We
recall the Coxeter presentation of I2(m), and some basic properties of it, as described in
[6]:

• I2(m) = 〈s1, s2|s21 = s22 = 1, (s1 · s2)m = 1〉 in case of finite m;

• I2(∞) = 〈s1, s2|s21 = s22 = 1〉, i.e., I2(∞) = Z2 ∗ Z2.

Now, define b to be s1, and define a to be s1 · s2. Then, 〈b, a〉 is an OGS for I2(m) with
the exchange law a · b = b · am−1, in case of finite m, or a · b = b · a−1 in case of m =∞.
Now, Consider the presentation of the elements of I2(m) in Coxeter generators.

Proposition 5. Let G = I2(m), with the Coxeter generators s1, s2, and let b = s1,
a = s1 · s2, then the following holds:

• b = s1;

• b · a = s2;

• b · ai = s2 · s1 · s2 · · · s1 · s2 = (s2 · s1)i−1 · s2, for every 1 < i 6 m+1
2

in case of finite
m, and for every i > 1 in case of infinite m;

• b · ai = s1 · s2 · s1 · · · s2 · s1 = (s1 · s2)m−i · s1, for every m+1
2

6 i < m in case of finite
m, and for every i < 0 in case of infinite m;

• ai = s1 · s2 · s1 · · · s1 · s2 = (s1 · s2)i, for every 0 < i 6 m
2

in case of finite m, and for
every i > 0 in case of infinite m;

• ai = s2 · s1 · s2 · · · s2 · s1 = (s2 · s1)m−i, for every m
2
6 i < m in case of finite m, and

for every i < 0 in case of infinite m.

Proposition 6. Let G be I2(m) for a finite m, then the Coxeter length is equidistributed
with the length (sum of the exponents) in the OGS canonical form by
OGS(I2(m)) = 〈b, a〉.
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Proof. Let G = I2(m), then the following hold:

• By [6], there are exactly two elements with Coxeter length i for every 1 6 i 6 m−1.

Namely (s1 · s2)
i
2 , and (s2 · s1)

i
2 for an even i. (s1 · s2)

i−1
2 · s1 and (s2 · s1)

i−1
2 · s2 for

an odd i;

• By [6], there is exactly one element with Coxeter length 0 and Coxeter length m.
The element with Coxeter length m is (s1 · s2)

m
2 = (s2 · s1)

m
2 in case of even m, and

(s1 · s2)
m−1

2 · s1 = (s2 · s1)
m−1

2 · s2 in case of odd m;

• The presentation of the elements in I2(m) in the canonical form according to the
sequence {b, a} is bj · ai, such that 0 6 j 6 1, 0 6 i 6 m − 1. Therefore, there are
two elements of length i for every 1 6 i 6 m−1, namely ai, and b·ai−1. The identity
is the only element of length 0, and b ·am−1 is the only one element of length m.

In Propositions 5 and 6, we show interesting connections between two presentations
of the two-generated Coxeter group, I2(m):

• The presentation in Coxeter generators;

• The OGS canonical presentation for OGS(I2(m)) = 〈b, a〉, where b = s1 and a =
s1 · s2.

Therefore, we call OGS(I2(m)) = 〈b, a〉, the standard OGS of I2(m).

Remark 7. The geometric meaning of the group I2(m) = Dih(Zm) is the symmetry group
of a regular m-sided polygon, where the m elements of Zm present the rotations of the
polygon, and the m elements of the form b·ai (where, 0 6 i < m) present the m reflections
of the polygon. The case of m = 3 is the non-abelian group which has the smallest order,
and in this case I2(3) = Dih(Z3) is the symmetric group on 3 elements, which is denoted
by S3.

3 OGS canonical forms and exchange laws for the symmetric
group Sn

The connections between the presentation in the standard OGS canonical form, and the
presentation in Coxeter generators for every two-generated Coxeter group I2(m) motivate
us to look at a generalization for Coxeter groups with more than two Coxeter generators.
In this section we consider the A-type Coxeter groups, where the Dynkin diagram is a path
with n vertices, but the lace of the connecting edges is fixed to be simply laced for every
two adjacent vertices in the Dynkin diagram. We consider the OGS which was introduced
in [1], and the dual OGS of it. We find the exchange laws for both OGS canonical forms,
which have interesting properties since it allows us an efficient multiplication of elements
in Sn. Then we define OGS elementary factorization, which allows us to introduce a new
explicit formula for the Coxeter length of an element in Sn.

We start with some basic definitions concerning the symmetric group Sn.
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Definition 8. Let Sn be the symmetric group on n elements, then :

• The symmetric group Sn is an (n− 1)-generated simply-laced Coxeter group which
has the presentation of:

〈s1, s2, . . . , sn−1|s2i = 1, (si · si+1)
3 = 1, (si · sj)2 = 1 for |i− j| > 2〉;

• The group Sn can be considered as the permutation group on n elements. A per-
mutation π ∈ Sn is denoted by [π(1);π(2); . . . ; π(n)] (i.e., π = [2; 4; 1; 3] is a permu-
tation in S4 which satisfies π(1) = 2, π(2) = 4, π(3) = 1, and π(4) = 3);

• Every permutation π ∈ Sn can be presented in a cyclic notation, as a product
of disjoint cycles of the form (i1, i2, . . . , im), which means π(ik) = ik+1, for
1 6 k 6 m − 1, and π(im) = i1 (i.e., The cyclic notation of π = [3; 4; 1; 5; 2] in S5,
is (1, 3)(2, 4, 5));

• The Coxeter generator si can be considered the permutation which exchanges the
element i with the element i+ 1, i.e., the transposition (i, i+ 1);

• We consider multiplication of permutations in left to right order; i.e., for every
π1, π2 ∈ Sn, π1 · π2(i) = π2(j), where π1(i) = j (in contrary to the notation in [6],
[1] where, Brenti, Björner, Adin, Roichman and other people have considered right
to left multiplication of permutations);

• For every permutation π ∈ Sn, the Coxeter length `(π) is equal to the number of
inversions in π, i.e., the number of different pairs i, j, s. t. i < j and π(i) > π(j);

• For every permutation π ∈ Sn, the set of the locations of the descents is defined to
be

Des (π) = {1 6 i 6 n− 1|π(i) > π(i+ 1)},

equivalently
i ∈ Des (π) if and only if `(si · π) < `(π)

(i.e., i is a descent of π if and only if multiplying π by si in the left side shortens
the Coxeter length of the element.);

• For every permutation π ∈ Sn, the major-index is defined to be

maj (π) =
∑

π(i)>π(i+1)

i

(i.e., major-index is the sum of the locations of the descents of π.).
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3.1 The standard and the dual-standard OGS canonical forms and the ex-
change laws

Theorem 9. Let Sn be the symmetric group on n elements. For every 2 6 m 6 n, define
tm to be the product

∏m−1
j=1 sj. The element tm is the permutation [m; 1; . . . ;m− 1], which

is the m-cycle (m, m − 1, . . . , 1) in the cyclic notation of the permutation. Then, the
elements tn, tn−1, . . . , t2 generate Sn, and every element of Sn has a unique presentation
in each one of the following OGS canonical forms:

1. ti22 · ti33 · · · tinn , where 0 6 ik < k for 2 6 k 6 n;

2. tinn · t
in−1

n−1 · · · ti22 , where 0 6 ik < k for 2 6 k 6 n.

The first case of the theorem has been proved in [1]. The proof of the second case is
very similar.

Remark 10. Contrary to the abelian groups and to the dihedral groups, in the case of Sn
for n > 4, the order in which the n − 1 generators t2, t3, . . . , tn can appear in the OGS
canonical form is important, and there is no other ordered sequence 〈tπ(2), tπ(3), . . . tπ(n)〉
which forms an OGS for Sn, for any permutation π 6= [2, 3, . . . , n], [n, n− 1, . . . , 2] on the
letters. For example, consider the goup S4, which is generated by the elements t2, t3, t4.
Then, it is satisfied that t24 · t2 = t3 · t4. Thus, there is no unique presentations of the
elements of S4 in the form ti33 · ti44 · ti22 , where 0 6 ik < k. Therefore, the ordered sequence
〈t3, t4, t2〉 does not form an OGS for Sn..

As a conclusion we consider the following two OGS for Sn.

• The standard OGS for Sn: OGS(Sn) = 〈t2, t3, . . . tn〉;

• The dual-standard OGS for Sn: OGS(Sn) = 〈tn, tn−1, . . . t2〉.
The standard OGS for Sn has been considered in [1] for combinatorial interest too.

By [1], the sum of the exponents of the generators according to the sequence,
∑n

j=2 ij,
(i.e., the length of the element π in the canonical form according to the standard OGS)
is the major-index of the permutation π.

Both the standard and the dual-standard OGS give exchange laws with very interest-
ing properties which we describe now.

Proposition 11. The following holds:

1. For transforming the element t
iq
q · tipp (p < q) onto the OGS canonical form

ti22 · ti33 · · · tinn , i.e., according to the standard OGS, one needs to use the following
exchange laws:

tiqq · tipp =



t
iq
iq+ip

· tipp+iq · t
iq
q q − iq > p

t
p+iq−q
iq

· tq−piq+ip
· tiq+ipq ip 6 q − iq 6 p

t
iq+ip−q
p+iq−q · t

p−ip
iq
· tiq+ip−pq q − iq 6 ip.
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2. Similarly, for transforming the element t
ip′

p · tiq
′

q (p < q) onto the OGS canonical
form tinn · t

in−1

n−1 · · · ti22 , i.e., according to dual-standard, one needs to use the following
exchange laws:

tip
′

p · tiq
′

q =



t
iq ′

q · tq−iq
′+ip′

p+q−iq ′ · t
p−ip′
q−iq ′+p−ip′ iq

′ > p

t
iq ′+ip′−p
q · t2p−ip

′−iq ′
q−iq ′+p−ip′ · t

q−p
q−iq ′ p− ip′ 6 iq

′ 6 p

t
iq ′+ip′

q · tq−iq
′−ip′

q−iq ′ · tip
′

p−iq ′ iq
′ 6 p− ip′.

Proof. First, consider the standard OGS of Sn. Then, we look at the exchange laws for
t
iq
q · tipp , where q > p. Since all
j ∈ [n] := {1, 2, . . . , n} such that j > q are fixed by t

iq
q · tipp , we may consider the element

t
iq
q · tipp in Sq instead of considering them in Sn. Therefore, the operation “+“ is considered

addition modulo q. Now, look at the elements t
iq
q and t

ip
p as permutations in Sq, then the

following is satisfied:

• tiqq (j) = j − iq for every 1 6 j 6 q;

• tipp (j) = j − ip + p = j − (ip − p+ q) for every 1 6 j 6 ip;

• tipp (j) = j − ip for every ip + 1 6 j 6 p;

• tipp (j) = j for every p+ 1 6 j 6 q.

Let x be the conjugate of t
ip
p by the element t

−iq
q , i.e, x := t

iq
q · tipp · t−iqq . Then, by

conjugating laws of permutations, the permutation x satisfies the following by considering
the inequalities modulo q (i.e., if q = 10, then 8 6 j 6 2 means the set of integers
{8, 9, 10, 1, 2}):

• x(j) = j − (ip − p+ q) for iq + 1 6 j 6 iq + ip;

• x(j) = j − ip for iq + ip + 1 6 j 6 iq + p;

• x(j) = j for iq + p+ 1 6 j 6 iq.

Thus, by using x(j) we get the following canonical form for x:

• x = t
iq
iq+ip

· tipp+iq in case q > iq + p (i.e., q − iq > p);

• x = t
iq−(q−p)
iq

· tq−piq+ip
· tipq in case iq + ip 6 q 6 iq + p (i.e., ip 6 q − iq 6 p);

• x = t
iq+ip−q
iq−(q−p) · t

p−ip
iq
· tip−pq in case q 6 iq + ip (i.e., q − iq 6 ip).
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Now, right multiplications of each one of the three equalities by t
iq
q gives the desired

exchange laws for t
iq
q · tipp .

Now, consider the dual-standard OGS of Sn. Since (t
iq
q · tipp )−1 = t

p−ip
p · tq−iqq , we get

the exchange laws for t
ip′

p · tiq
′

q easily by taking the inverse of the the exchange laws for
t
iq
q · tipp , and substituting ip

′ = p− ip, iq ′ = q − iq.

From the described exchange laws for Sn we conclude the following observations:

Observation 12. The standard OGS canonical form of t
iq
q · tipp , and the dual-standard

canonical form of t
ip′

p · tiq
′

q (where, p < q) are products of non-zero powers of at most three
different canonical generators, where the following holds:

1. The standard OGS canonical form of t
iq
q · tipp (p < q, ip > 0, iq > 0) is a product of

non-zero powers of two different canonical generators if and only if q − iq = p or
q − iq = ip, and then the following hold:

tiqq · tipp =


t
iq
iq+ip

· tiq+ipq q − iq = p

t
p−ip
iq
· tq−pq q − iq = ip.

2. The dual-standard OGS canonical form of t
ip′

p · tiq
′

q (p < q, ip
′ > 0, iq

′ > 0) is
a product of non-zero powers of two different canonical generators if and only if
iq
′ = p, or iq

′ = p− ip′, and then the following holds:

tip
′

p · tiq
′

q =


t
ip′

q · tp−ip
′

q−ip′ iq
′ = p

tpq · t
q−p
q−iq ′ iq

′ = p− ip′.

Proof. The results of Proposition 11 imply that the standard OGS canonical form of

t
iq
q · tipp , and the dual-standard OGS canonical form of t

ip′

p · tiq
′

q (where, p < q) are product
of non-zero powers of at most three different canonical generators. In the cases q− iq = p

and in case q− iq = ip the element t
iq
q · tipp (where, p < q) is a product of a non-zero powers

of two different canonical generators, using the exchange laws in case 1. of Proposition

11. Similarly, in cases iq
′ = p or iq

′ = p − ip′, the element t
ip′

p · tiq
′

q (where, p < q) is a
product of a non-zero powers of two different canonical generators, using the exchange
laws in case 2. of Proposition 11.

Observation 13. The exchange laws for Sn which are described in Proposition 11 and
Observation 12 satisfy the following properties:

1. The standard OGS canonical form of the element t
iq
q ·tipp for q > p is either tiaa ·t

ib
b ·ticc ,

or tiaa · t
ib
b for a < b < c, where c = q and all of the numbers: a, b, ia, ib, and ic,

are linear combinations of at most three different elements from {p, q, ip, iq} with
co-efficients 1 or −1;
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2. The dual-standard canonical form of the element t
ip′

p · tiq
′

q for q > p is either tia
′

a ·
tib
′

b · tic
′

c , or tia
′

a · t
ib
′

b for a > b > c, where a = q and all of the numbers: b, c, ia
′,

ib
′, and ic

′, are linear combination of at most four elements from {p, q, ip′, iq ′} with
co-efficients 1 or −1 or 2 (The co-efficient 2 appears just in one of the three cases
for ib

′, as a co-efficient of p).

Proof. The results come directly from Proposition 11 and Observation 12.

Example 14. Consider the following elements x, y ∈ S5. Let x = t3 · t24 · t35, which is the
permutation [3; 5; 1; 4; 2]. Let y = t2 · t34 · t25, which is the permutation [3; 2; 4; 1; 5]. Now,
we find the standard OGS canonical form of the product π = x · y by using the exchange
laws described in Propositions 11, and 12:

x · y = t3 · t24 · (t35 · t2) · t34 = t3 · t24 · t34 · (t45 · t34) = t3 · (t4 · t23) · t4 · t35 = t3 · t3 · (t34 · t4) · t35
= t23 · t35.

π = x · y is the permutation [4; 5; 3; 1; 2], which is the product of the 2-cycles (1, 4) · (2, 5).

The next proposition shows the standard OGS canonical form of some conjugates of
tk and t−1k , which will be useful in the next section.

Proposition 15. Let G = Sn and consider the standard OGS canonical form. Then, for
every 2 6 k 6 n− 1 the following holds:(

n−k−1∏
j=0

tn−j

)
· tk ·

(
n−k−1∏
j=0

tn−j

)−1
= t−1n−k+1 · tn.

(
n−k−1∏
j=0

tn−j

)
· t−1k ·

(
n−k−1∏
j=0

tn−j

)−1
= tn−kn−1 · tk−1n .

Proof. The proof is in induction on n−k. If n−k = 1 (i.e., k = n−1, then by Proposition
12,

tn · tn−1 · t−1n = t2 · t2n · t−1n = t2 · tn.
Assume in induction that the proposition holds for every k such that n− k < k′ for some
k′ > 1 and we prove it for n − k = k′. Then, by the induction hypothesis, the following
is satisfied: (

n−k′−1∏
j=0

tn−j

)
· tk′ ·

(
n−k−1∏
j=0

tn−k

)−1
= tn · t−1n−k′ · tn−1 · t

−1
n .

Then, by Proposition 11 and Observation 12 the following holds:

tn · tn−k
′−1

n−k′ · tn−1 · t
−1
n = tn−k′ · tn−k

′−1
n−k′+1 · tn · tn−1 · t

−1
n = tn−k′ · tn−k

′−1
n−k′+1 · t2 · t

2
n · t−1n

= tn−k′ · tn−k
′−1

n−k′ · t
n−k′
n−k′+1 · tn = t−1n−k′+1 · tn.
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Thus, the first part of the proposition holds for every k. Now,(
n−k−1∏
j=0

tn−j

)
· t−1k ·

(
n−k−1∏
j=0

tn−j

)−1
=

(n−k−1∏
j=0

tn−j

)
· tk ·

(
n−k−1∏
j=0

tn−j

)−1−1

=
(
t−1n−k+1 · tn

)−1
= t−1n · tn−k+1.

By Observation 12,
t−1n · tn−k+1 = tn−1n · tn−k+1 = tn−kn−1 · tk−1n .

3.2 Normal form, and its connection to the standard OGS canonical form

From now on, we consider just the standard OGS canonical form.

In this subsection, we recall the definition of a normal form of elements of Sn in Coxeter
generators, which is described in detail in Brenti and Björner’s book, “Combinatorics of
Coxeter groups” [6]. Then, we find a connection of the normal form to the standard OGS
canonical form.

Definition 16. By [6], every element π of Sn can be presented uniquely in the following
normal reduced form, which we denote by norm(π):

norm(π) =
n−1∏
u=1

yu−1∏
r=0

su−r.

such that yu is a non-negative integer where, 0 6 yu 6 u for every 1 6 u 6 n− 1.
We denote by `(π), the Coxeter length of an element π ∈ Sn, which is the number of

Coxeter generators sj which are used in the reduced presentation of π. By our notation
of norm(π),

`(π) =
n−1∑
u=1

yu.

Example 17. Let m = 8, y2 = 2, y4 = 3, y5 = 1, y8 = 4, and y1 = y3 = y6 = y7 = 0, then

norm(π) = (s2 · s1) · (s4 · s3 · s2) · s5 · (s8 · s7 · s6 · s5).

`(π) = 2 + 3 + 1 + 4 = 10.

Notice, tk =
∏k−1

u=1 su is already presented in the mentioned normal form according to
[6], with yu = 1 for every 1 6 u 6 k − 1.

Lemma 18. Consider the symmetric group Sn. then for every 2 6 k 6 n, and
1 6 ik 6 k − 1 the following holds:

norm(tikk ) =
k−1∏
u=ik

ik−1∏
r=0

su−r.

`(tikk ) = k · ik − i2k.
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Proof. First, notice, by the definition of tik+1
, we conclude:

∏ik−1
r=0 sik−r = t−1ik+1 = tikik+1.

Notice also,
∏ik−1

r=0 su−r for ik < u 6 k − 1, is a conjugate of
∏ik−1

r=0 sik−r by
∏u+1

u′=ik+2 t
−1
u′ .

Hence,

k−1∏
u=ik

ik−1∏
r=0

su−r = t−1ik+1 ·
k∏

u=ik+2

u−ik−2∏
r=0

tu−r · t−1ik+1 ·

(
u−ik−2∏
r=0

tu−r

)−1 .

Now, assume in induction that

t−1ik+1 ·
k−1∏

u=ik+2

u−ik−2∏
r=0

tu−r · t−1ik+1 ·

(
u−ik−2∏
r=0

tu−r

)−1 = tikk−1.

Then,

t−1ik+1 ·
k∏

u=ik+2

u−ik−2∏
r=0

tu−r · t−1ik+1 ·

(
u−ik−2∏
r=0

tu−r

)−1
= tikk−1 ·

k−ik−2∏
r=0

tk−r · t−1ik+1 ·

(
k−ik−2∏
r=0

tk−r

)−1 .

Then, by Proposition 15,k−ik−2∏
r=0

tk−r · t−1ik+1 ·

(
k−ik−2∏
r=0

tk−r

)−1 = t
k−(ik+1)
k−1 · tikk .

Hence,
k−1∏
u=ik

ik−1∏
r=0

su−r = tikk−1 · t
k−(ik+1)
k−1 · tikk = tikk .

Then, by using norm(tikk ), we get `(tikk ) = (k − ik) · ik = k · ik − i2k.

Example 19.

t37 = (s3 · s2 · s1) · (s4 · s3 · s2) · (s5 · s4 · s3) · (s6 · s5 · s4).

`(t37) = 7 · 3− 32 = 12.

Lemma 20. Assume norm(π) =
∏v−1

r=0 sk−r, where k, v are positive integers, such that
v 6 k, then the standard OGS canonical form of π is the following:

• π = tk−vk · tvk+1 in case v < k
(i.e., norm(π) = sk · sk−1 · · · sk−v+1, where k − v + 1 > 2).
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• π = tkk+1 in case v = k
(i.e., norm(π) = sk · sk−1 · · · s1).

Proof. Assume π = tkk+1. By Lemma 18, tkk+1 =
∏k−1

r=0 sk−r.
Now, assume π = tk−vk · tvk+1. Then, π = (tvk)

−1 · tvk+1. By using Lemma 18,

norm(tvk) = (sv · sv · · · s1) · (sv+1 · sv+1 · · · s2) · · · (sk−1 · sk−2 · · · sk−v)

and

norm(tvk+1) = (sv ·sv · · · s1) · (sv+1 ·sv+1 · · · s2) · · · (sk−1 ·sk−2 · · · sk−v) · (sk ·sk−1 · · · sk−v+1).

Thus,
norm(tvk+1) = norm(tvk) · (sk · sk−1 · · · sk−v+1).

Hence,

norm(π) = norm(t
−(v)
k · tvk+1) =

v−1∏
r=0

sk−r.

Example 21. Assume, norm(π) = s5 · s4 · s3, then π = t25 · t36 in the standard OGS
canonical form.

Lemma 22. Let π = tk1−vk1
· tvk2 be an element of Sn, which is presented in the standard

OGS canonical form, where v is a positive integer such that 1 6 v 6 k1 − 1. Then,

norm(π) = norm(tk1−vk1
· tvk2) =

k2−1∏
u=k1

v−1∏
r=0

su−r.

`(π) = (k2 − k1) · v.

Proof. Let π = tk1−vk1
· tvk2 be an element of Sn, which is presented in the standard OGS

canonical form. Then, π =
∏k2−1

u=k1
t−vu · tvu+1. By Lemma 20,

norm(t−vu · tvu+1) =
∏v−1

r=0 su−r. Therefore, norm(
∏k2−1

u=k1
t−vu · tvu+1) =

∏k2−1
u=k1

∏v−1
r=0 su−r.

Therefore, obviously, `(π) = (k2 − k1) · v.

The next Theorem describes the connection between the normal form of Sn in Coxeter
generators, and the standard OGS canonical form of Sn.

Theorem 23. Let π ∈ Sn, such that norm(π) =
∏n−1

u=1

∏yu−1
r=0 su−r, where

0 6 yu 6 u is a non negative integer (yu = 0 means norm(π) does not contain any
segment of decreasing indices starting with su). Then, the standard OGS canonical form
of π is:

n∏
j=2

t
ij
j ,

such that:
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• If yj 6 yj−1, then ij = yj−1 − yj;

• If yj > yj−1, then ij = j + yj−1 − yj;

• in = yn−1 (We may assume yn = 0, and using in = yn−1 − yn).

Proof. Let π ∈ Sn, such that norm(π) =
∏n−1

u=1

∏yu−1
r=0 su−r, where 0 6 yu 6 u is a non

negative integer. Then, by Lemma 20, the following holds:

• If 0 < yu < u, then
∏yu−1

r=0 su−r = tu−yuu · tyuu+1;

• If yu = u, then
∏yu−1

r=0 su−r =
∏u−1

r=0 su−r = tuu+1;

Thus, by substituting instead of
∏yu−1

r=0 su−r, the suitable presentation in canonical form,
and by using tuu = 1 for 2 6 u 6 n, we get the desired result.

Example 24. Let π ∈ S9 with the following normal form in Coxeter generators:

norm(π) = s1 · (s3 · s2) · (s4 · s3 · s2) · (s6 · s5 · s4 · s3) · (s7 · s6) · (s8 · s7).

Then, y1 = 1, y2 = 0, y3 = 2, y4 = 3, y5 = 0, y6 = 4, y7 = 2, y8 = 2. Thus, the standard
OGS canonical form of π is the following:

π = t12 · t3−23 · t4−14 · t35 · t6−46 · t27 · t08 · t29
= t2 · t3 · t34 · t35 · t26 · t27 · t29.

3.3 Standard OGS elementary factorization, and the Coxeter length

In this subsection, we define standard OGS elementary elements, and the standard OGS
elementary factorization of elements of Sn onto a product of standard OGS elementary
factors, which we need to describe the Coxeter length of an arbitrary π ∈ Sn, which is
presented in the standard OGS canonical form.

Definition 25. Let π ∈ Sn, where π =
∏m

j=1 t
ikj
kj

is presented in the standard OGS
canonical form, with ikj > 0 for every 1 6 j 6 m. Then, π is called standard OGS
elementary element of Sn, if

m∑
j=1

ikj 6 k1.

Definition 26. Let π =
∏m

j=1 t
ikj
kj

a standard OGS elementary element of Sn which is
presented in the standard OGS canonical form, with ikj > 0 for every 1 6 k 6 m. Then,
for every 1 6 j 6 m, ρj and %j are defined to be as follows:

ρj =
m∑
x=j

ikx %j =

j∑
x=1

ikx
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Remark 27. Let π =
∏m

j=1 t
ikj
kj

a standard OGS elementary element of Sn which is pre-
sented in the standard OGS canonical form, with ikj > 0 for every 1 6 j 6 m, let ρj and
%j be as defined in Definition 26. Then, by [1]:

ρ1 = %m = maj (π) .

In particular, π is a standard OGS elementary element if and only if

maj (π) 6 k1.

Theorem 28. Let π =
∏m

j=1 t
ikj
kj

be a standard OGS elementary element of Sn, presented
in the standard OGS canonical form, with ikj > 0 for every 1 6 j 6 m. Then, the
following are satisfied:

•

π =


tρ1k1 · (t

k1−ρ2
k1

· tρ2k2) · (t
k2−ρ3
k2

· tρ3k3) · · · (t
km−1−ρm
km−1

· tρmkm) k1 > ρ1

(tk1−ρ2k1
· tρ2k2) · (t

k2−ρ3
k2

· tρ3k3) · · · (t
km−1−ρm
km−1

· tρmkm) k1 = ρ1

.

•

norm(π) =

k1−1∏
u=ρ1

ρ1−1∏
r=0

su−r ·
k2−1∏
u=k1

ρ2−1∏
r=0

su−r ·
k3−1∏
u=k2

ρ3−1∏
r=0

su−r · · ·
km−1∏
u=km−1

ρm−1∏
r=0

su−r,

for 1 6 x 6 m;

•

`(π) =
m∑
j=1

kj · ikj − (ik1 + ik2 + · · ·+ ikm)2 =
m∑
j=1

kj · ikj − (maj (π))2 ;

• Every sub-word of π is a standard OGS elementary element too. In particular, for
every two sub-words π1 and π2 of π, such that π = π1 · π2, it is satisfied:

`(π) = `(π1 · π2) < `(π1) + `(π2);

•

`(sr · π) =

{
`(π)− 1 r =

∑m
j=1 ikj

`(π) + 1 r 6=
∑m

j=1 ikj
.

i.e., Des (π) contains just one element, which means Des (π) = {maj (π)}.

Proof. Let π =
∏m

j=1 t
ikj
kj
∈ Sn, s.t. k1 < k2 < . . . , < km, and ikj > 0 for 1 6 j 6 m, be

a standard OGS elementary element. For 1 6 x 6 m, let ρx =
∑m

j=x ikj . Then, we get
ikx = ρx − ρx+1 for every 1 6 x 6 m− 1 and ρm = ikm . Thus,

π =


tρ1k1 · (t

k1−ρ2
k1

· tρ2k2) · (t
k2−ρ3
k2

· tρ3k3) · · · (t
km−1−ρm
km−1

· tρmkm) k1 > ρ1

(tk1−ρ2k1
· tρ2k2) · (t

k2−ρ3
k2

· tρ3k3) · · · (t
km−1−ρm
km−1

· tρmkm) k1 = ρ1

.
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Now we turn to the proof of the second part of the proposition. By applying Lemma 18
for the normal form of the sub-word tρ1k1 and applying Lemma 22, for the normal form of

every sub-word t
−ρx+1

kx
· tρx+1

kx+1
, we get the desired normal form for π according to [6]. Now,

we turn to the proof of the third part of the proposition. By the formula of norm(π):

`(π) = (k1 − ρ1) · ρ1 +
m∑
j=2

(kj − kj−1) · ρj

=
m−1∑
j=1

kj · (ρj − ρj+1) + km · ρm − ρ21

=
m∑
j=1

kj · ikj − (maj (π))2 .

Now, we turn to the proof of the forth part of the proposition. Assume π1 and π2 are two
sub-words of π, such that π = π1 · π2. Then, the standard OGS presentation of π1 and
π2 as follows:

π1 =
w−1∏
j=1

t
ikj
kj
· ti
′
kw
kw

π2 = t
i′′kw
kw
·

m∏
j=w+1

t
ikj
kj
,

where, 1 6 w 6 m, and i′kw + i′′kw = ikw . Obviously,

maj (π1) =
w−1∑
j=1

ikj + i′kw 6 maj (π) 6 k1,

maj (π2) =
m∑

j=w+1

ikj + i′′kw 6 maj (π) 6 k1 6 kw.

Thus, π1 and π2 are standard OGS elementary elements too. Since π = π1 ·π2, obviously,
maj (π) = maj (π1) +maj (π2). Thus,

`(π1) + `(π2) =
m∑
j=1

kj · ikj − (maj (π1))
2 − (maj (π2))

2 >
m∑
j=1

kj · ikj − (maj (π))2 = `(π).

Now, we turn to the proof of the last part of the proposition. Recall, tj = s1 · s2 · · · sj−1,
therefore

tj(p) =


j p = 1

p− 1 2 6 p 6 j

p p > j + 1

.

Hence, by using ρ1 6 k1, the following holds:

• π(p) = k1 − ρ1 + p, for 1 6 p 6 ik1 ;

• π(p) = kq − ρ1 + p, for 2 6 q 6 m and %q−1 + 1 6 p 6 %q;
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• In particular, π(ρ1) = π(%m) = km;

• π(p) = p− ρ1, for ρ1 + 1 6 p 6 k1;

• π(p) = p− ρq, for 2 6 q 6 m and kq−1 6 p 6 kq;

• π(p) = p, for km + 1 6 p 6 n.

We have sj shorten the length of π if and only if j ∈ Des (π). By the observation of π(p)
for r+ 1 6 p 6 n and by definition of ρq obviousely, π(ρ1 + 1) < π(ρ1 + 2) < · · · < π(n).
Since k1 < k2 < · · · , < km, it follows π(1) < π(2) < · · · < π(ρ1). Therefore, Des (π)
contains ρ1 only, and thus, `(sρ1 · π) = `(π)− 1, and `(sj · π) = `(π) + 1, for j 6= ρ1.

Now, we define the main definition of the paper, Standard OGS elementary fac-
torization, which allows us to present every π ∈ Sn as a product of standard OGS
elementary elements, by using the standard OGS of π.

Definition 29. Let π ∈ Sn. Let z(π) be the minimal number, such that π can be pre-
sented as a product of standard OGS elementary elements, with the following conditions:

•

π =

z(π)∏
v=1

π(v), where π(v) =
m(v)∏
j=1

t
ı
(v)
j

h
(v)
j

,

by the presentation in the standard OGS canonical form for every 1 6 v 6 z(π)
and 1 6 j 6 m(v) such that:

– ı
(v)
j > 0;

–
∑m(1)

j=1 ı
(1)
j 6 h

(1)
1 i.e., maj

(
π(1)
)
6 h

(1)
1 ;

– h
(v−1)
m(v−1) 6

∑m(v)

j=1 ı
(v)
j 6 h

(v)
1 for 2 6 v 6 z

i.e., h
(v−1)
m(v−1) 6 maj

(
π(v)
)
6 h

(v)
1 for 2 6 v 6 z.

Then, the mentioned presentation is called Standard OGS elementary factorization
of π. Since the factors π(v) are standard OGS elementary elements, they are called
standard OGS elementary factors of π.

The next theorem shows some very important properties of the standard OGS ele-
mentary factorization, which is connected to the descents of π, and we give an explicit
formula for the Coxeter length of an arbitrary π ∈ Sn by using the standard OGS.

Theorem 30. Let π =
∏m

j=1 t
ikj
kj

be an element of Sn presented in the standard OGS
canonical form, with ikj > 0 for every 1 6 j 6 m. Consider the standard OGS elementary
factorization of π with notation of Definition 29. Then, the following properties hold:

• The standard OGS elementary factorization of π is unique, i.e., the parameters
z(π), m(v) for 1 6 v 6 z(π), h

(v)
j , and ı

(v)
j for 1 6 j 6 m(v), are uniquely determined

by the standard OGS canonical form of π, such that:
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– For every h
(v)
j there exists exactly one kj′ (where, 1 6 j′ 6 m), such that

h
(v)
j = kj′;

– If h
(v)
j = kj′, for some 1 6 v 6 z(π), 1 < j < m(v), and 1 6 j′ 6 m, then

ı
(v)
j = ikj′ ;

– If h
(v1)
j1

= h
(v2)
j2

, where 1 6 v1 < v2 6 z(π), 1 6 j1 6 m(v1), and

1 6 j2 6 m(v2), then necessarily v1 = v2 − 1, j1 = m(v1), j2 = 1, and

h
(v2−1)
m(v2−1) = h

(v2)
1 = maj

(
π(v2)

)
= kj′ ,

for some j′, such that ı
(v2−1)
m(v2−1) + ı

(v2)
1 = ikj′ ;

•

norm(π) =

z(π)∏
v=1

norm(π(v));

•

`(sr · π) =

{
`(π)− 1 r =

∑m(v)

j=1 ı
(v)
j for 1 6 v 6 z(π)

`(π) + 1 otherwise
.

i.e.,

Des (π) =

z(π)⋃
v=1

Des
(
π(v)
)

= {maj
(
π(v)
)
| 1 6 v 6 z(π)};

•

`(π) =

z(π)∑
v=1

`(π(v)) =

z(π)∑
v=1

m(v)∑
j=1

h
(v)
j · ı

(v)
j −

z(π)∑
v=1

(
maj

(
π(v)
))2

=
m∑
x=1

kx · ikx −
z(π)∑
v=1

(
maj

(
π(v)
))2

=
m∑
x=1

kx · ikx −
z(π)∑
v=1

(
c(v)
)2
, where c(v) ∈ Des (π) .

Proof. Let π =
∏m

j=1 t
ikj
kj

, such that, 2 6 k1 < k2 < · · · < km 6 n, and ikj > 0 for every
1 6 j 6 m. We build the standard OGS elementary factorization of π in the following
way. Let us start with the structure of π(z(π)). Consider the smallest integer r, such that∑m

x=m−r+1 ikx > km−r, and fit m(z(π)) to be r, and h
(z(π))
y to be km−r+y for every integer

1 6 y 6 r. We set ı
(z(π))
y to be ikm−r+y for 2 6 y 6 r, and ı

(z(π))
1 as follows: Let ı

(z(π))
1 be

ikm−r+1 in case
∑m

x=m−r+1 ikx 6 km−r+1, and let ı
(z(π))
1 be km−r+1 −

∑m
x=m−r+2 ikx in case∑m

x=m−r+1 ikx > km−r+1. Now, we have π = π′ · π(z(π)), where
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• in case
∑m

x=m−r+1 ikx 6 km−r+1:

π′ = t
ik1
k1
· tik2k2 · · · t

ikm−r
km−r

π(z(π)) = t
ikm−r+1

km−r+1
· · · tikm−1

km−1
· tikmkm .

Thus,

km−r < maj
(
π(z(π))

)
=

m∑
x=m−r+1

ikx 6 km−r+1;

• in case
∑m

x=m−r+1 ikx > km−r+1:

π′ = t
ik1
k1
· tik2k2 · · · t

ikm−r
km−r

· tikm−r+1
−km−r+1+

∑m
x=m−r+2 ikx

km−r+1

π(z(π)) = t
km−r+1−

∑m
x=m−r+2 ikx

km−r+1
· tikm−r+2

km−r+2
· · · tikm−1

km−1
· tikmkm .

Thus,

maj
(
π(z(π))

)
= km−r+1.

Now, we look at π′ and we construct π(z(π)−1) from the terminal segment of π′ in
the same way as we constructed π(z(π)) from the terminal segment of π, and we get
π′ = π′′ · π(z(π)−1). Then, π = π′′ · π(z(π)−1) · π(z(π)). We continue in the same way, by
defining π(x) for every 1 6 x. Finally, we get π =

∏z(π)
v=1 π

(v).

Since π(v) is a standard OGS elementary element for all 1 6 v 6 z(π), such that

h
(v)
1 > h

(v−1)
m(v−1) for every 2 6 v 6 z(π), by using Theorem 28, we have

norm(π) =

z(π)∏
v=1

norm(π(v)).

Now, we prove the next part of the theorem. The proof is in induction on z(π). By the

last part of Theorem 28, `(sr · π(1)) = `(π(1))− 1 if and only if r =
∑m(1)

j=1 ı
(1)
j . Therefore,

this part of the theorem holds for v = 1. Now, assume in induction, for every v 6 z(π)−1:

`(sr · π(1) · π(2) · · · π(v)) =

{
`(π(1) · π(2) · · · π(v))− 1 r =

∑m(w)

j=1 ı
(w)
j

`(π(1) · π(2) · · · π(v)) + 1 r 6=
∑m(w)

j=1 ı
(w)
j

,

for some w 6 v. Now, consider v = z(π). Let r ∈ maj
(
π(v′)

)
for some 1 6 v′ 6 z(π)− 1.

Then,

`(sr · π) = `(sr ·
z(π)−1∏
v=1

π(v) · π(z(π))) 6 `(sr ·
z(π)−1∏
v=1

π(v)) + `(π(z(π))).
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Since r ∈ maj
(
π(v′)

)
for some 1 6 v′ 6 z(π)− 1, by our induction hypothesis,

`(sr ·
z(π)−1∏
v=1

π(v)) = `(

z(π)−1∏
v=1

π(v))− 1.

Thus,

`(sr · π) 6 `(

z(π)−1∏
v=1

π(v))− 1 + `(π(z(π))) = `(π)− 1.

By using norm(π) =
∑z(π)

v=1 norm(π(v)), and by the property that a product of an element
by a Coxeter generator sr either shortens or lengthens the length of the element by 1, we
conclude

`(sr · π) = `(π)− 1,

for every r ∈ maj
(
π(v′)

)
for some 1 6 v′ 6 z(π) − 1. Notice also, that the sum of all r

such that `(sr · π) = `(π)− 1 is the sum of the locations of all the descents of π, which is
maj (π). By [1],

maj (π) =

z(π)∑
v=1

m(v)∑
j=1

ı
(v)
j

and

maj

z(π)−1∏
v=1

π(v)

 =

z(π)−1∑
v=1

m(v)∑
j=1

ı
(v)
j .

Let q be the number of descents of π, which are not descents of π(v) for any v < z(π), and
denote by rx (where, 1 6 x 6 q) the descents such that rx ∈ Des (π) and rx /∈ Des

(
π(v)
)

for v < z(π). Then, the following holds:

q∑
x=1

rx = maj (π)−maj

z(π)−1∏
v=1

π(v)

 =

z(π)∑
v=1

m(v)∑
j=1

ı
(v)
j −

z(π)−1∑
v=1

m(v)∑
j=1

ı
(v)
j

=
m(z(π))∑
j=1

ı
(z(π))
j = maj

(
π(z(π))

)
,

and by [6]

srx ·

z(π)−1∏
v=1

π(v)

 · π(z(π)) =

z(π)−1∏
v=1

π(v)

 · π̂z(π)
where, we get π̂z(π) from π(z(π)) by omitting one Coxeter generator from a reduced pre-
sentation of it (i.e., srx shortens by 1 the length of the segment π(z(π)) of π).

Notice, by Theorem 28, the first letter from left to right of norm(π(z(π))) is
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smaj(π(z(π))). We already proved norm(π) = norm(
∏z(π)−1

v=1 π(v)) · norm(π(z(π))).

Therefore, the first letter from left to right of the segment norm(π(z(π))) in norm(π)
is smaj(π(z(π))) too. Thus, any rx < maj

(
π(z(π))

)
cannot shorten the length of the seg-

ment norm(π(z(π))) in norm(π). Thus, q = 1, and r1 = maj
(
π(z(π))

)
is the only element

in Des (π) which is not in Des
(
π(v)
)
, for 1 6 v 6 z(π)− 1. That proves

Des (π) =

z(π)⋃
v=1

Des
(
π(v)
)

= {maj
(
π(v)
)
| 1 6 v 6 z(π)}.

Now, we prove the last part of the theorem, the explicit formula for length π ∈ Sn.
Since norm(π) =

∏z(π)
v=1 norm(π(v)) by a former part of the proposition, and norm(π) is a

reduced Coxeter presentation of π, we get

`(π) =

z(π)∑
v=1

`(π(v)).

Since π(v) is a standard OGS elementary factor of π for every 1 6 v 6 z(π), by Theorem
28,

`(π(v)) =
m(v)∑
j=1

h
(v)
j · ı

(v)
j −

(
maj

(
π(v)
))2

.

By the first part of the theorem,

z(π)∑
v=1

m(v)∑
j=1

h
(v)
j · ı

(v)
j =

m∑
x=1

kx · ikx .

By a former part of the theorem, c(v) ∈ Des (π) if and only if c(v) = maj
(
π(v)
)

for some
1 6 v 6 z(π). Therefore, we get

`(π) =
m∑
x=1

kx · ikx −
z(π)∑
v=1

(
c(v)
)2
, where c(v) ∈ Des (π) .

Example 31. Let π = t3 · t24 · t46 · t37 · t39 · t210. Then, the standard OGS elementary factors
of π are as follows:

π(1) = t3 · t24, π(2) = t46 · t7, π(3) = t27 · t39 · t210.

Now we compute norm(π(1)), norm(π(2)), and norm(π(3)) by using Theorem 28:

norm(π(1)) = s3 · s2,

norm(π(2)) = (s5 · s4 · s3 · s2 · s1) · s6,
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norm(π(3)) = (s7 · s6 · s5 · s4 · s3) · (s8 · s7 · s6 · s5 · s4) · (s9 · s8).

Therefore,

norm(π) = norm(π(1)) · norm(π(2)) · norm(π(3))

= [s3 · s2] · [(s5 · s4 · s3 · s2 · s1) · s6]·
· [(s7 · s6 · s5 · s4 · s3) · (s8 · s7 · s6 · s5 · s4) · (s9 · s8)]

π(1) = [1; 3; 4; 2], π(2) = [2; 3; 4; 5; 7; 1; 6], π(3) = [1; 2; 5; 6; 7; 9; 10; 3; 4, 8].

π = π(1) · π(2) · π(3) = [2; 6; 7; 5; 10; 1; 9; 3; 4; 8].

Des
(
π(1)
)

=
{
maj

(
π(1)
)}

= {3}, Des
(
π(2)
)

=
{
maj

(
π(2)
)}

= {5},

Des
(
π(3)
)

=
{
maj

(
π(3)
)}

= {7},

Des (π) = Des
(
π(1)
)
∪Des

(
π(2)
)
∪Des

(
π(3)
)

= {3, 5, 7} .

`(π) = `(π(1)) + `(π(2)) + `(π(3))

=
(
3 · 1 + 4 · 2− 32

)
+
(
6 · 4 + 7 · 1− 52

)
+
(
7 · 2 + 9 · 3 + 10 · 2− 72

)
= (3 · 1 + 4 · 2 + 6 · 4 + 7 · 3 + 9 · 3 + 10 · 2)−

(
32 + 52 + 72

)
= 20.

4 Conclusions and future plans

In the paper, we introduced a quite interesting generalization of the fundamental theorem
for abelian groups to two important and very elementary families of non-abelian Coxeter
groups, the I-type (dihedral groups), and the A-type (symmetric groups). We showed
canonical forms, with very interesting exchange laws, and quite interesting properties
concerning the Coxeter lengths of the elements. The interesting results for the two ele-
mentary families of non-abelian Coxeter groups motivate generalization for further families
of Coxeter and generalized Coxeter groups, which have an importance in the classification
of Lie algebras and the Lie-type simple groups, and in other fields of mathematics, such as
algebraic geometry for classification of fundamental groups of Galois covers of surfaces [2].
In the first step it is interesting to generalize the standard OGS canonical forms and the
exchange laws for the finite classical families of B and D-type, which have presentations
as signed permutations, then to the affine classical families Ã, B̃, C̃, and D̃, and also to
other generalizations of the mentioned Coxeter groups, as the complex reflection groups
G(r, p, n) [13] or the generalized affine classical groups, the definition of which is described
in [12], [3].
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