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Abstract

We consider two special subclasses of lambda-terms that are restricted by a
bound on the number of abstractions between a variable and its binding lambda,
the so-called De-Bruijn index, or by a bound on the nesting levels of abstractions,
i.e., the number of De Bruijn levels, respectively.

We show that the total number of variables is asymptotically normally distributed
for both subclasses of lambda-terms with mean and variance asymptotically equal
to Cn and C̃n, respectively, where the constants C and C̃ depend on the bound that
has been imposed. For the class of lambda-terms with bounded De Bruijn index we
derive closed formulas for the constant. For the other class of lambda-terms that
we consider, namely lambda-terms with a bounded number of De Bruijn levels, we
show quantitative and distributional results on the number of variables, as well as
abstractions and applications, in the different De Bruijn levels and thereby exhibit
a so-called “unary profile” that attains a very interesting shape.

Our results give a combinatorial explanation of an earlier discovered strange
phenomenon exhibited by the counting sequence of this particular class of lambda-
terms.
Mathematics Subject Classifications: 05A16, 05C30, 60F05

1 Introduction

1.1 Motivation

Lambda-terms are objects stemming from lambda-calculus and can be seen as combina-
torial objects with a simple description. Nevertheless, the enumeration of lambda-terms
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is not well understood. Combinatorially, they can be seen as words (sequence of sym-
bols) or graphs and thus the combinatorially most natural way to define an enumeration
problem is to ask for the number of terms with a given number of symbols or vertices,
respectively. This problem appears to be very intriguing, as standard techniques fail.
Considering subclasses by imposing certain restrictions can turn the enumeration prob-
lem into an accessible one, but for one particular model the enumeration formulas exhibit
a very peculiar behaviour. Our motivation to perform the present investigation is to shed
light on this oddity and to give a combinatorial explanation for this phenomenon.

1.2 Previous work and the considered model

Lambda-calculus is a set of rules to manipulate lambda-terms and it is an important tool
in theoretical computer science. To our knowledge, the first appearance of enumeration
problems in the sense of enumerative combinatorics which are linked to lambda-calculus is
found in [25], where certain models of lambda-calculus are analyzed which have represen-
tations as formal power series. More recently, we observe rising interest in the quantitative
properties of large random lambda-terms. The first work in this direction seems to be
[28]. Later David et al. [15] investigated the proportion of normalising terms, which was
also the topic of [5] in a different context. Other papers dealing with certain structural
properties of lambda-terms are for instance [13, 22, 30].

Since studying quantitative aspects of lambda-terms using combinatorial methods re-
lies heavily on their enumeration, many papers are devoted to their enumeration, which
itself very much depends on the particular class of terms and the definition of the term
size. The enumeration may be done by constructing bijections to certain classes of maps,
see e.g. [6, 34, 35] or the use of the methodology from analytic combinatorics [20], see
e.g. [3, 7, 8, 9, 11, 24, 27].

Another approach to gain structural insight is by random generation. Solving the
enumeration problems is the basis for an efficient algorithm for this purpose, namely
Boltzmann sampling [17, 18]. The method is extendible to a multivariate setting allowing
for a fine tuning according to specified structural properties of the sampled objects, as
was demonstrated in [2, 12]. The generation of lambda-terms was treated in [4, 6, 24, 29,
31, 32].

As mentioned above, lambda-terms can be seen as graphs, and so the natural combi-
natorial question is to ask for the number of such graphs with n vertices. It turned out,
however, that this model leads to a generating function being a purely formal power series,
which can be represented as an infinite nesting of square-roots of polynomial terms, see
[7]. The enumeration problem becomes amenable to analytic techniques, when imposing
restrictions on the lambda-terms: One such model is the class of all lambda-terms with
a bounded number of De Bruijn levels. In [8] the authors discovered a very interesting
phenomenon concerning the generating function associated with this model, namely that
the asymptotic behaviour of the coefficients of the generating function changes with the
imposed bound. More precisely, the type of the dominant singularity changes from 1

2
to 1

4

whenever the bound belongs to a special doubly-exponentially growing sequence. This al-
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teration of the type of the dominant singularity has a direct impact on the subexponential
factor of the coefficient’s asymptotics, namely it shifts from n−3/2 to n−5/2 for n tending
to infinity. This paper studies the structure of random large lambda-terms belonging to
this class and thereby delivers an explanation of the above mentioned phenomenon, since
it arises from the location of the variables within the lambda-term.

The lambda-calculus was invented by Church and Kleene in the 1930ies as a tool for the
investigation of decision problems. Today it still plays an important role in computability
theory and for automatic proof systems. Furthermore, it represents the basis for some
programming languages, such as LISP or Haskell. In fact, the generation of random
lambda terms served for optimising the Glasgow Haskell Compiler [29] and for finding
bug in a C-compiler [33] As mentioned at the beginning, recently, rising interest in the
number and structural properties of lambda-terms can be observed. This is triggered
on the one hand by the fact that random lambda-terms have practical application and
the understanding of structural properties enables their tuning when generating random
terms, see [2], on the other hand, they turned out to be a source of interesting, albeit in
part very intricate, combinatorial enumeration problems. Finally, we mention that there
is a direct relationship between these random structures acting as computer programs
and mathematical proofs (see [14]), but this relationship essentially concerns only typed
lambda-terms and not general ones.

For a thorough introduction to lambda calculus we refer to [1]. This paper does
not require any preliminary knowledge of lambda calculus in order to follow the proofs.
Instead we will study the basic objects of lambda calculus, namely lambda-terms, by
considering them as combinatorial objects, or more precisely as a special class of directed
acyclic graphs (DAGs).

1.3 The considered model

We are now in position to formally define the model of lambda-terms which we are con-
sidering in this paper. The way we see the structures and the methodology of proving
our results heavily relies on analytic combinatorics. Thus, a profound knowledge of some
methods in this field is necessary to follow all our arguments in detail. The prerequisites
can be found in Flajolet and Sedgewick’s seminal book [20].

Definition 1 (lambda-terms, [23, Definition 3]). Let V be a countable set of variables.
The set Λ of lambda-terms is defined by the following grammar:

1. every variable in V is a lambda-term,

2. if T and S are lambda-terms then TS is a lambda-term, (application)

3. if T is a lambda-term and x is a variable then λx.T is a lambda-term. (abstraction)

The name application arises, since lambda-terms of the form TS can be regarded as
functions T (S), where the function T is applied to S, which in turn can be a function
itself. An abstraction can be considered as a quantifier that binds the respective variable
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in the sub-lambda-term within its scope. Both application and repeated abstraction are
not commutative, i.e., in general the lambda-terms TS and ST , as well as λx.λy.M and
λy.λx.M , are different (with the exceptions of T = S and none of the variables x or y
occurring inM , respectively). Each λ binds exactly one variable, which may occur several
times in a term or even not at all. And since we will just focus on the special subclass of
closed lambda-terms, each variable is bound.

We will consider lambda-terms modulo α-equivalence, which means that we identify
two lambda-terms if they only differ by the names of their bound variables. For example
λx.(λy.(xy)) ≡ λy.(λz.(yz)). 1972 De Bruijn [16] introduced a representation for lambda-
terms that completely avoids the use of variables by substituting them by natural numbers
that indicate the number of abstractions between the variable and its binding lambda (the
binding lambda is counted as well), i.e., λx.(λy.(xy)) = λ(λ21).

Definition 2 (De Bruijn index, De Bruijn level). The natural numbers that represent the
variables in the De Bruijn representation of a lambda-term are called De Bruijn indices.
The number of nested lambdas starting from the outermost one specifies the De Bruijn
level in which a variable (or De Bruijn index, respectively) is located.

For example in the lambda-term λx.x(λy.(xy)) = λ1(λ21) the first occurrence of the
variable x (i.e., the leftmost 1 in the De Bruijn representation) is in the first De Bruijn
level, while the other variables are in the second De Bruijn level.

There is also a combinatorial interpretation of lambda-terms that considers them as
DAGs and thereby naturally identifies two α-equivalent terms to be equal. Combina-
torially, lambda-terms can be seen as rooted unary-binary trees containing additional
directed edges. Note that in general the resulting structures are not trees in the sense
of graph theory, but due to their close relation to trees (see Definition 3) some authors
call them lambda-trees or enriched trees. We will call them lambda-DAGs in order to
emphasise that these structures are in fact DAGs, if we consider the undirected edges of
the underlying tree to be directed away from its root.

Definition 3 (lambda-DAG, [23, Definition 5]). With every lambda-term T , the corre-
sponding lambda-DAG G(T ) can be constructed in the following way:

1. If x is a variable then G(x) is a single node labeled with x. Note that x is unbound.

2. G(PQ) is a lambda-DAG with a binary node as root, having the two lambda-DAGs
G(P ) (to the left) and G(Q) (to the right) as subgraphs.

3. The DAG G(λx.P ) is obtained from G(P ) in four steps:

(a) Add a unary node as new root.

(b) Connect the new root by an undirected edge with the root of G(P).

(c) Connect all leaves of G(P ) labelled with x by directed edges with the new root,
where the root is start vertex of these edges.

(d) Remove all labels x from G(P ). Note that now x is bound.
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Obviously, applications correspond to binary nodes and abstractions correspond to
unary nodes of the underlying Motzkin-tree that is obtained by removing all directed
edges. Of course, in the lambda-DAG some of the vertices that were former unary nodes
might have gained out-going edges, so they are no unary nodes in the lambda-DAG
anymore. However, when we speak of unary nodes in the following, we mean the unary
nodes of the underlying unary-binary tree that forms the skeleton of the lambda-DAG.

(a) λx.((λy.(xy))x)
= λ((λ21)1)

(b) (λx.(x(λy.y))(λx.(λy.xy))
= (λ(1(λ1)))(λ(λ21))

Figure 1: The lambda-DAGs corresponding to the respective terms written below.

2 1 1
1

1 3

2 2 2
2

3 3

Figure 2: The lambda-DAG representing the term λx.((λy.xy)(λz.(z(λt.tx))z)), where
the leaves are labelled with (left) the corresponding De Bruijn indices, and (right) the De
Bruijn level in which they are located.

Since the skeleton of a lambda-DAG is a tree, we sometimes call the variables leaves
(i.e., the nodes with out-degree zero), and the path connecting the root with a leaf
(consisting of undirected edges) is called a branch. There are different approaches as to
how one can define the size of a lambda-term (see [15, 8, 27]), but within this paper the
size will be defined as the number of nodes in the corresponding lambda-DAG. This is
combinatorially the most natural definition, and it is even equivalent to Barendregt’s [1]
definition.

In the lambda-DAG, the De Bruijn indices and levels are easily visible: The De Bruijn
index of a variable v is the number of unary nodes we find on the path from v to its
binding lambda in the skeleton of the lambda-DAG, where the last unary node on the
path has to be counted as well. The De Bruijn level of v is the number of unary nodes
on the path from v to the root. See Figure 2.
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At first sight lambda-terms appear to be very simple structures, in the sense that
their construction can easily be described, but so far no one has yet accomplished to
derive their asymptotic number. However, the asymptotic equivalent of the logarithm
of this number can be determined up to the second-order term (see [9]). The difficulty
of counting unrestricted lambda-terms arises due to the fact that their number increases
superexponentially with increasing size. The reason for this are the many degrees of
freedom to choose the bindings. Thus, if we translate the counting problem into generating
functions, then the resulting generating function has a radius of convergence equal to
zero, which makes the common methods of analytic combinatorics inapplicable. This
fast growth of the number of lambda-terms can be explained by the numerous possible
bindings of leaves by lambdas, i.e. by unary nodes. Consequently, lately some simpler
subclasses of lambda-terms, which reduce these multiple binding possibilities, have been
studied, e.g. lambda-terms with prescribed number of unary nodes ([8]), or lambda-terms
in which every lambda binds a prescribed ([9, 6, 23]) or a bounded ([10, 6, 23]) number of
leaves. In this paper we will investigate structural properties of lambda-terms that have
been introduced in [7] and [8], namely at first lambda-terms with a bounded number of
abstractions between each leaf and its binding lambda, which corresponds to a bounded
De Bruijn index. The second class of lambda-terms that we will investigate within this
paper is the class of lambda-terms with a bounded number of nesting levels of abstractions,
i.e., lambda-terms with a bounded number of De Bruijn levels. From a practical point
of view these restrictions appear to be very natural, since the number of abstractions in
lambda-terms which are used for computer programming is in general assumed to be very
low compared to their size (cf. [33]).

Particular interest lies in the number and distribution of the variables within these
special subclasses of lambda-terms. We will show within this paper that the total number
of leaves (i.e., variables) in lambda-DAGs with bounded De Bruijn indices as well as
in lambda-terms with bounded number of De Bruijn levels is asymptotically normally
distributed. For the latter class of lambda-terms we will also investigate the number of
leaves in the different De Bruijn levels, which shows a very interesting behaviour. We will
see that in the lower De Bruijn levels, i.e. near the root of the lambda-DAG, there are
very few leaves, while almost all of the leaves are located in the upper De Bruijn levels
and these two domains will turn out to be asymptotically strictly separated. The same
behaviour can be shown for unary and binary nodes, which allows us to set up a very
interesting “unary profile” of this class of lambda-terms.

For lambda-terms that are locally restricted by a bound for the De Bruijn indices the
number of De Bruijn levels is not bounded and will tend to infinity for increasing size. The
expected number of De Bruijn levels is unknown, which implies that the correct scaling
cannot be determined. Thus, we have not been able to establish results concerning the
leaves (or other types of nodes) on the different De Bruijn levels for this class of lambda-
terms so far. Nevertheless, further studies on this subject seem to be very interesting.

the electronic journal of combinatorics 26(4) (2019), #P4.47 6



Plan of the paper

We will present the main results that have been derived in this paper, including all the
definitions that are necessary for their understanding, in Section 2, while the subsequent
sections are concerned with their proofs. In Section 3 we will show that the total number
of variables in lambda-terms with bounded De Bruijn index is asymptotically normally
distributed with mean and variance asymptotically Cn and C̃n, respectively, where the
constants C and C̃ depend on the bound that has been imposed. Section 4 shows the
same result for lambda-terms where the number of De Bruijn levels is bounded. Finally,
in the last section, Section 5, we show how the variables are distributed in lambda-terms
with bounded number of De Bruijn levels. We will see that there are very few leaves on
the lower De Bruijn levels, i.e., close to the root, while on the upper De Bruijn levels
farther away from the root, there are many leaves. Furthermore, these two domains are
strictly separated and we know exactly which is the first level containing a large number
of leaves, since this level can be determined by the imposed bound of the number of De
Bruijn levels. This interesting behaviour also holds for the number of binary and unary
nodes. By investigating all these numbers among the different De Bruijn levels we are
able to set up a so-called unary profile that shows that these special lambda-terms have a
very specific shape. A random closed lambda-term with a bounded number of De Bruijn
levels starts with a string of unary nodes, where the length of this string depends on the
imposed bound. Then it gets slowly filled with nodes until it reaches the aforementioned
separating level, where it suddenly starts to contain a lot of nodes.

2 Main results

In this section we will introduce the basic definitions and summarize the main results that
will be presented in this paper.

First, we will investigate the total number of variables in lambda-terms with bounded
De Bruijn index, i.e., with a bounded number of abstractions between each leaf and its
binding lambda. Our first main result concerns the asymptotic distribution of the number
of variables within this class of closed lambda-terms.

Theorem 4. Let Xn be the total number of variables in a random closed lambda-term of
size n where the De Bruijn index of each variable is at most k. Then Xn is asymptotically
normally distributed with

EXn ∼
k√

k + 2k
n, and VXn ∼

k2

2
√
k(
√
k + 2k)2

n, as n→∞.

Remark 5. Note that EXn → n
2
and VXn → 0 for k →∞. Since these values are known

for the number of leaves in binary trees, this gives a hint that almost all leaves of a large
random unrestricted lambda-term are located within an almost purely binary structure.

Next we turn to lambda-terms with a bounded number of De Bruijn levels, i.e. with a
bounded number of unary nodes (or abstractions, respectively) in the separate branches

the electronic journal of combinatorics 26(4) (2019), #P4.47 7



of the corresponding lambda-DAG. Figure 3 shows the partition of the vertex set which
is induced by the De Bruijn levels.

Remark 6. De Bruijn [16] introduced the concepts De Bruijn index and De Bruijn level
exclusively for variables and called them reference depth and level, respectively. The
notion De Bruijn level, however, can evidently be extended to all vertices of the lambda-
DAG. We will use this extension later in the paper.

(Cf. also Figure 3)

De Bruijn level 0

De Bruijn level 1

De Bruijn level 2

De Bruijn level 3

Figure 3: As an example, we present the underlying Motzkin tree of the lambda term
λx.((λy.yx)(λz.(z(λt.tx))z)), where the different De Bruijn levels are encircled.

Lambda-terms with bounded number of De Bruijn levels have been studied in [8],
where a very unusual behaviour has been discovered. The asymptotic behaviour of the
number of lambda-terms belonging to this subclass differs depending on whether the
imposed bound is an element of a certain sequence (Ni)i>0, which will be given in Defini-
tion 7, or not. Though the behaviour of the counting sequence differs for these two cases,
the result in Theorem 9 concerning lambda-terms with bounded number of De Bruijn
levels is the same after all. However, the method of proof is different in the two cases.
For our subsequent results the distinction of cases will have an impact on the asymptotic
behaviour of the counting sequence of the investigated structures. Thus, we will have to
distinguish between these two cases.

Definition 7 (auxiliary sequences (ui)i>0 and (Ni)i>0, [8, Def.6]). Let (ui)i>0 be the
integer sequence defined by

u0 = 0, ui+1 = u2
i + i+ 1 for i > 0,

and (Ni)i>0 by
Ni = u2

i − ui + i, for all i > 0.

In the last section we investigate the distribution of the different types of nodes
in lambda-DAGs with bounded number of De Bruijn levels among the separate levels
throughout the DAG.
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Remark 8. Note that the De Bruijn level in which a node is located just counts the number
of unary nodes in the branch connecting the root and the respective node.

Theorem 9. Let (Ni)i>0 be the sequence defined in Definition 7 and choose integers k
and j such that Nj−1 < k 6 Nj. Moreover, let ρk(u) be the root of smallest modulus of
the function z 7→ Rj+1,k(z, u), where

Rj+1,k(z, u) = 1−4(k−j)z2u−2z+2z

√
1− 4(k − j + 1)z2u− 2z +

√
. . .+ 2z

√
1− 4kz2u,

and let us define B(u) = ρk(1)
ρk(u)

.
If B′′(1) + B′(1) − B′(1)2 6= 0, then the total number of leaves in random closed

lambda-DAGs with at most k De Bruijn levels is asymptotically normally distributed with
asymptotic mean µn and asymptotic variance σ2n, where µ = B′(1) and σ2 = B′′(1) +
B′(1)−B′(1)2.

Remark 10. The requirement B′′(1) + B′(1) − B′(1)2 6= 0 obviously results from the
fact that otherwise the variance would be o(n) (cf. the variability condition in Hwang’s
Quasi-Powers Theorem [26]). However, this inequality seems to be very difficult to verify,
since B(u) = ρk(1)

ρk(u)
and we do not know anything about the function ρk(u), except for

some crude bounds and its analyticity. But numerical data supports the conjecture that
B′′(1) +B′(1)−B′(1)2 6= 0 always holds (cf. Table 1).

The following theorem includes the results that we will present in Section 5.1, where
we show that the number of leaves near the root of the lambda-DAG, i.e., in the lower De
Bruijn levels, is very low, while there are many leaves in the upper levels. Furthermore
these two domains are strictly separated and the “separating level”, i.e., the first level with
many leaves, depends on the bound of the number of De Bruijn levels. We will show a
very interesting behaviour, namely that with growing bound the number of leaves within
the De Bruijn level that is directly below the critical separating level increases, until the
bound reaches a certain number, which makes this adjacent leaf-filled level become the
new separating level. Thus, we can observe a “double jump” in the asymptotic behaviour
of the number of leaves within the separate levels (cf. Figure 4).

Theorem 11. Let k−lH̃k(z, u) denote the bivariate generating function of the class of
closed lambda-terms with at most k De Bruijn levels, where z marks the size and u marks
the number of leaves in the (k−l)-th De Bruijn level. Additionally, we denote its dominant
singularity (i.e., the singularity of smallest modulus) by ρ̃k(u), and B̃(u) = ρ̃k(u)

ρ̃k(1)
. Then

the following assertions hold:

• If k ∈ (Nj, Nj+1), then the average number of leaves in the first k − j De Bruijn levels
is O(1), as the size n→∞, while it is Θ(n) for the last j + 1 levels.

In particular, if B̃′′(1) + B̃′(1) − B̃′(1)2 6= 0, the number of leaves in each of the last
j + 1 De Bruijn levels is asymptotically normally distributed with mean and variance
proportional to the size n of the lambda-term.
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• If k = Nj, then the average number of leaves in the first k− j De Bruijn levels is O(1),
as n → ∞, while the average number of leaves in the (k − j)-th level is Θ(

√
n). The

last j De Bruijn levels have asymptotically Θ(n) leaves.

In particular, if B̃′′(1)+B̃′(1)−B̃′(1)2 6= 0, the number of leaves in each of the last j De
Bruijn levels is asymptotically normally distributed with mean and variance proportional
to the size n of the lambda-term..

.

.

.

.

.

.

level 0

level k − j

level k

O(1) leaves

Θ(n) leaves,
number of leaves

normally distributed

D
e

B
ru

ijn
le

ve
ls

...

.

.

.

level 0

level k − j
level k − j + 1

level k

O(1) leaves

Θ(
√
n) leaves

Θ(n) leaves,
number of leaves

normally distributed

Figure 4: Summary of the mean values of the number of leaves in the different De Bruijn
levels in lambda-terms with at most k De Bruijn levels for the case Nj < k < Nj+1 (left),
and the case k = Nj (right).

Sections 5.2 and 5.3 are concerned with the investigation of the number of unary nodes,
and binary nodes respectively, among the De Bruijn levels. Using the same techniques as
in Section 5.1 we can show that their number behaves in fact very similar to the number
of leaves.

Theorem 12. If k ∈ (Nj, Nj+1), then both the average number of unary nodes and the
average number of binary nodes in the first k − j De Bruijn levels are O(1), as n → ∞,
while they are Θ(n) in each of the last j + 1 levels.

If k = Nj, then both the average number of unary nodes and the average number of
binary nodes in the first k − j De Bruijn levels is O(1), as n → ∞, while the average
number of nodes of the respective type in the (k−j)-th De Bruijn level is Θ(

√
n). The last

j De Bruijn levels contain each asymptotically Θ(n) unary nodes, as well as Θ(n) binary
nodes.

3 Total number of leaves in random lambda-terms with bounded
De Bruijn indices

In this section we investigate the asymptotic number of all leaves in closed lambda-terms
with bounded De Bruijn indices. In order to get some quantitative results concerning
this restricted class of lambda-terms we will use the well-known symbolic method in
conjunction with analytic combinatorics (see [20]), in particular singularity analysis of
generating functions [19]. Therefore we introduce further combinatorial classes as it has
been done in [8]: Z denotes the class of atoms, A the class of application nodes (i.e.,
binary nodes), U the class of abstraction nodes (i.e., unary nodes), and P̂(i,k) the class of
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unary-binary trees such that every leaf e can be labelled in min{`(e) + i, k} ways, where
`(v) denotes the de Bruijn level of v. The objects in P̂(i,k) may be seen as lambda-DAGs
where the binding of each variable x may come from a binding unary node at most k
De Bruijn levels above x, even if this means up to i De Bruijn levels above the root.
Therefore, the class we are interested in is P̂(0,k)

The classes P̂(i,k) can be specified by

P̂(k,k) = kZ + (A× P̂(k,k) × P̂(k,k)) + (U × P̂(k,k)),

and
P̂(i,k) = iZ + (A× P̂(i,k) × P̂(i,k)) + (U × P̂(i+1,k)) for i < k.

Translating into generating functions with z marking the size and u marking the
number of leaves, we get

P̂ (k,k)(z, u) = kzu+ zP̂ (k,k)2(z, u) + zP̂ (k,k)(z, u),

and
P̂ (i,k)(z, u) = izu+ zP̂ (i,k)2(z, u) + zP̂ (i+1,k)(z, u),

which yields

P̂ (k,k)(z, u) =
1− z −

√
(1− z)2 − 4z2ku

2z
,

and

P̂ (i,k)(z, u) =
1−

√
1− 4z(izu+ zP̂ (i+1,k)(z, u))

2z
=

1−
√

1− 4iz2u− 4z2P̂ (i+1,k)(z, u)

2z
,

for i < k.
This can be written in the form

P̂ (i,k)(z, u) =
1− 1[i=k]z −

√
R̂k−i+1,k(z, u)

2z
,

with

R̂1,k(z, u) = (1− z)2 − 4kuz2, (1)

R̂2,k(z, u) = 1− 4(k − 1)z2u− 2z + 2z2 + 2z

√
R̂1,k(z, u),

and

R̂i,k(z, u) = 1− 4(k − i+ 1)z2u− 2z + 2z

√
R̂i−1,k(z, u), for 3 6 i 6 k + 1. (2)

Since the class P̂(0,k) is isomorphic to the class Gk of closed lambda-terms where all
De Bruijn indices are not larger than k, we get for the corresponding bivariate generating
function

Gk(z, u) = P̂ (0,k)(z, u) =
1−

√
R̂k+1,k(z, u)

2z
.
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We will now perform a singularity analysis of these generating functions. Recall that
we call a singularity dominant, if it is a singularity of smallest modulus. Notice further
that the behaviour of a generating function near its dominant singularities determines the
asymptotic behaviour of its coefficients.

From [8] we know that the dominant singularity of Gk(z, 1) comes from the innermost
radicand only and consequently is of type 1

2
. Due to continuity arguments this implies

that in a sufficiently small neighbourhood of u = 1 the dominant singularity ρ̂k(u) of
Gk(z, u) comes also only from the innermost radicand, i.e., R̂1,k(z, u), and is of type 1

2
.

By calculating the smallest positive root of R̂1,k(z, u) we get ρ̂k(u) = 1
1+2
√
ku
. Now we will

determine the expansions of the radicands in a neighbourhood of the dominant singularity
ρ̂k(u).

Let us briefly sketch our approach: We know that the singularity ρ̂k(u) is determined
by the equation R̂1,k(ρ̂k(u), u) = 0, provided that u is sufficiently close to 1, and that
it is likewise the dominant singularity of Gk(z, u) (seen as function of z, as all functions
in the context right now). Consequently, it is the dominant singularity of all R̂j,k(z, u),
for j = 2, . . . , k + 1. If we determine the local behaviour of R̂1,k(z, u) near z = ρ̂k(u),
then we will be able to determine Puiseux expansions of all R̂j,k(z, u) for j = 2, . . . , k+ 1
at z = ρ̂k(u). This will be done in Proposition 13. In particular, this gives us the
Puiseux expansions of Gk(z, u) from which we can derive the asymptotic behaviour of its
coefficients by transfer theorems [20, 19]. This will be the task of Theorem 14 below.

It will then turn out that the shape of ρ̂k(u) near u = 1 determines the characteristic
function of the random variable “number of leaves”, because ρ̂k(u) depends on u in a nicely
regular way. This characteristic function has then the shape of a so-called quasi-power
involving the function ρ̂k(u). Hwang’s Quasi-Powers Theorem [26] will then do the job
and yield a central limit theorem.

Proposition 13. Let ρ̂k(u) be the root of the innermost radicand R̂1,k(z, u), i.e. ρ̂k(u) =
1

1+2
√
ku
, where u is in a sufficiently small neighbourhood of 1, i.e. |u − 1| < δ for δ > 0

sufficiently small. Then the equations

R̂1,k(ρ̂k(u)− ε, u) =
(
2− 2ρ̂k(u) + 8kuρ̂k(u)

)
ε+O(|ε|2), (3)

and

R̂j,k(ρ̂k(u)− ε, u) = cj(u)ρ̂k(u)2 +

√
8ρ̂k(u)(1− ρ̂k(u)2)∏j

l=2

√
cl(u)

·
√
ε+O(|ε|), (4)

for 2 6 j 6 k+1, with c1(u) = 1 and cj(u) = 4(j−1)u−1+2
√
cj−1(u) for 2 6 j 6 k+1,

hold for ε→ 0 so that ε ∈ C \ R−, uniformly in u.

Proof. Using the Taylor expansion of R̂1,k(z, u) around ρ̂k(u) we obtain

R̂1,k(z, u) = R̂1,k(ρ̂k(u), u) + (z − ρ̂k(u))
∂

∂z
R̂1,k(ρ̂k(u), u) +O((z − ρ̂k(u))2).
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Per definition, the first summand R̂1,k(ρ̂k(u), u) is equal to zero. Setting z = ρ̂k(u)− ε
and using (1) we obtain the first claim of Proposition 13.

The next step is to compute an expansion of R̂j,k(z, u) around ρ̂k(u) for 2 6 j 6 k+1.
Using the recursive relation (1) for R̂2,k(z, u) and the formula ρ̂k(u) = 1

1+2
√
ku

yields

R̂2,k(ρ̂k(u)− ε, u) = (1 + 4u)ρ̂k(u)2 + 2ρ̂k(u)
√

2− 2ρ̂k(u) + 8kuρ̂k(u)
√
ε+O(|ε|).

We set c2(u) := 1 + 4u and d2(u) := 2ρ̂k(u)
√

2− 2ρ̂k(u) + 8kuρ̂k(u) and assume that
for 2 6 j 6 k + 1 the equation R̂j,k(ρ̂k(u) − ε, u) = cj(u)ρ̂2

k(u) + dj(u)
√
ε +O(|ε|) holds.

Now we proceed by induction.
Observe that

R̂j+1,k(ρ̂k(u)− ε, u) = 1− 4(k − j)ρ̂2
k(u)u− 2ρ̂k(u) + 2ρ̂k(u)

√
cj(u)ρ̂2

k + dj(u)
√
ε+O(|ε|).

Expanding, using again ρ̂k(u) = 1
1+2
√
ku
, and simplifying yields

R̂j+1,k(ρ̂k(u)− ε, u) = 4juρ̂k(u)2 − ρ̂k(u)2 + 2ρ̂k(u)2
√
cj(u) +

dj(u)√
cj(u)

√
ε+O(|ε|).

Setting cj+1(u) := 4ju − 1 + 2
√
cj(u) and dj+1(u) :=

dj(u)√
cj(u)

for 2 6 j 6 k, we obtain

R̂j+1,k(ρ̂k(u)− ε, u) = cj+1ρ̂
2
k(u) + dj+1

√
ε+O(|ε|). Expanding dj+1(u), using its recursive

relation and d2(u) = 2ρ̂k(u)
√

2− 2ρ̂k(u) + 8kuρ̂k(u), we get for 2 6 j 6 k

dj+1(u) =
2ρ̂k(u)

√
2− 2ρ̂k(u) + 8kuρ̂k(u)∏j

l=2

√
cl(u)

.

Finally, we show that the cl(u)’s are greater than zero in a neighbourhood of u = 1.
By induction it can easily be seen that they are always positive for u = 1, since

c1(1) = 1,

and assuming ci−1(1) < ci(1) we get

ci+1(1) = 4i− 1 + 2
√
ci(1) > 4(i− 1) + 4− 1 + 2

√
ci−1(1) = ci(1) + 4.

Using continuity arguments we can see that the functions cl(u) have to be positive in a
sufficiently small neighbourhood of u = 1 as well, which completes the proof of (4).

Theorem 14. Let for any fixed k, Gk(z, u) denote the bivariate generating function of
the class of closed lambda-terms where all De Bruijn indices are at most k. Then the
equation

[zn]Gk(z, u) =

√ √
ku+ 2ku

4π
∏k+1

l=2 cl(u)
(1 + 2

√
ku)nn−

3
2

(
1 +O

(
1√
n

))
, for n→∞,

with c1(u) = 1 and cj(u) = 4(j− 1)u− 1 + 2
√
cj−1(u), for 2 6 j 6 k+ 1, holds uniformly

in u for |u− 1| < δ, with δ > 0 sufficiently small.
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Proof. Using Gk(z, u) =
1−
√
R̂k+1,k(z,u)

2z
and (4), we get for ε ∈ C \ R− with |ε| → 0

Gk(ρ̂k(u)− ε, u) =
1−

√
ck+1(u)ρ̂k(u)

2ρ̂k(u)
− dk+1(u)

4ρ̂k(u)2
√
ck+1(u)

√
ε+O(|ε|).

Hence,

[zn]Gk(z, u) = −
dk+1(u)

√
ρ̂k(u)

4ρ̂2
k(u)

√
ck+1(u)

[zn]

√
1− z

ρ̂k(u)
+ [zn]O (ρ̂k(u)− z) . (5)

The singularity ρ̂k(u) = 1
1+2
√
ku

is of type 1
2
and if we plug

dk+1(u) =
2ρ̂k(u)

√
2− 2ρ̂k(u) + 8kuρ̂k(u)∏k

l=2

√
cl(u)

into (5) and apply the standard transfer theorems (see [20, 19]), we obtain the desired
result.

From [8, Theorem 1] we know the following result:

[zn]Gk(z, 1) =

√ √
k + 2k

4π
∏k+1

l=2 cl(1)
(1 + 2

√
k)nn−

3
2

(
1 +O

(
1√
n

))
, as n→∞, (6)

with cl(u) defined as in Proposition 13.

Now we want to apply the well-known Quasi-Powers Theorem.

Theorem 15 (Quasi-Powers Theorem, [26]). Let Xn be a sequence of random variables
with the property that

EuXn = A(u)B(u)λn
(

1 +O
(

1

φn

))
holds uniformly in a complex neighbourhood of u = 1, where λn → ∞ and φn → ∞, and
A(u) and B(u) are analytic functions in a neighbourhood of u = 1 with A(1) = B(1) = 1.
Set µ = B′(1) and σ2 = B′′(1) +B′(1)−B′(1)2. If σ2 6= 0, then

Xn − EXn√
VXn

→ N (0, 1),

with EXn = µλn+A′(1)+O(1/φn)) and VXn = σ2λn+A′′(1)+A′(1)−A′(1)2 +O(1/φn)).

Using Theorem 14 and (6), we get for n→∞

EuXn =
[zn]Gk(z, u)

[zn]Gk(z, 1)
=

(
1 + 2

√
ku

1 + 2
√
k

)n
√√√√√ku+ 2ku

2k +
√
k

k+1∏
j=2

cj(1)

cj(u)

(
1 +O

(
1

n

))
,
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where c1(u) = 1 and cj(u) = 4ju− 4u− 1 + 2
√
cj−1(u).

Thus, all assumptions for the Quasi-Powers Theorem are fulfilled, and we get that the
number of leaves in closed lambda-terms with De Bruijn indices at most k is asymptotically
normally distributed with

EXn ∼
k√

k + 2k
n, and VXn ∼

k2

2
√
k(
√
k + 2k)2

n, as n→∞,

and therefore Theorem 4 is shown.

4 Total number of leaves in random lambda-terms with bounded
number of De Bruijn levels

This section is devoted to the enumeration of leaves in closed lambda-terms with a
bounded number of De Bruijn levels. As in [8] let us denote by P(i,k) the class of unary-
binary trees that contain at most k−i De Bruijn levels and each leaf e can be coloured with
one out of i + l(e) colors, where l(e) denotes the De Bruijn level in which the respective
leaf is located. These classes can be specified by

P(k,k) = kZ + (A×P(k,k) × P(k,k)),

and
P(i,k) = iZ + (A×P(i,k) × P(i,k)) + (U × P(i+1,k)) for i < k.

By translating into generating functions we get

P (k,k)(z, u) = kzu+ zP (k,k)2(z, u),

and
P (i,k)(z, u) = izu+ zP (i,k)2(z, u) + zP (i+1,k)(z, u) for i < k.

Solving yields

P (k,k)(z, u) =
1−
√

1− 4kz2u

2z
,

and

P (i,k)(z, u) =
1−
√

1− 4iz2u− 4z2P (i+1,k)

2z
for i < k.

This can be written as

P (i,k)(z, u) =
1−

√
Rk−i+1,k(z, u)

2z
,

where

R1,k(z, u) = 1− 4kz2u, (7)

and

Ri,k(z, u) = 1− 4(k − i+ 1)z2u− 2z + 2z
√
Ri−1,k(z, u), for 2 6 i 6 k + 1. (8)
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For the bivariate generating function of closed lambda-terms with at most k De Bruijn
levels we get

Hk(z, u) = P (0,k)(z, u) =
1−

√
Rk+1,k(z, u)

2z
.

Thus, the generating function consists again of k + 1 nested radicals, but as stated
in Section 2, the counting sequence of this class of lambda-terms shows a very unusual
behaviour. The type of the dominant singularity of the generating function changes when
the imposed bound equals Nj. Thus, the subexponential term in the asymptotics of the
counting sequence changes. The following result has been shown in [8]:

Theorem 16 ([8, Theorem 3]). Let (ui)i>0 and (Ni)i>0 be the integer sequences defined in
Definition 7 and let Hk(z, 1) be the generating function of the class of closed lambda-terms
with at most k De Bruijn levels. Then the following asymptotic relations hold

(i) If there exists j > 0 such that Nj < k < Nj+1, then there exists a constant hk such
that

[zn]Hk(z, 1) ∼ hkn
−3/2ρk(1)−n, as n→∞.

(ii) If there exists j such that k = Nj, then

[zn]Hk(z, 1) ∼ hkn
−5/4ρk(1)−n = hkn

−5/4(2uj)
n, as n→∞.

Thus, in order to investigate structural properties of this class of lambda-terms we
perform a distinction of cases whether the bound k is an element of the sequence (Ni)i>0

or not.

4.1 The case Nj < k < Nj+1

From [8] we know that in this case the dominant singularity of the generating function
Hk(z, 1) comes from the (j + 1)-th radicand Rj+1,k and is of type 1

2
. As in the previous

section we can again use continuity arguments to guarantee that sufficiently close to
u = 1 the dominant singularity ρk(u) of Hk(z, u) comes from the (j + 1)-th radicand
Rj+1,k(z, u) and is of type 1

2
. Now we will determine the expansions of the radicands in a

neighbourhood of the dominant singularity.

Proposition 17. Let ρk(u) be the dominant singularity of Hk(z, u), where u is in a
sufficiently small neighbourhood of 1, i.e. |u − 1| < δ for δ > 0 sufficiently small. Then
the expansions

(i) ∀i < j + 1 (inner radicands) : Ri,k(ρk(u)− ε, u) = Ri,k(ρk(u), u) +O(|ε|)

(ii) Rj+1,k(ρk(u)− ε, u) = γj+1(u)ε+O(|ε|2), with γj+1(u) = − ∂
∂z
Rj+1,k(ρk(u), u)

(iii) ∀i > j + 1 (outer radicands) : Ri,k(ρk(u) − ε, u) = ai(u) + bi(u)
√
ε + O(|ε|), with

ai+1(u) = 1− 4(k − i)ρk(u)2u− 2ρk(u) + 2ρk(u)
√
ai(u), and bi+1(u) = bi(u)ρk(u)√

ai(u)
for

j + 2 6 i 6 k, with aj+2(u) = 1 − 4(k − j − 1)ρk(u)2u − 2ρk(u) and bj+2(u) =
2ρk(u)

√
γj+1(u),
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hold for ε→ 0 so that ε ∈ C \ R−, uniformly in u.

Proof. (i) The first equation (for i < j + 1) follows immediately by Taylor expansion
around ρk(u) and setting z = ρk(u)− ε.

(ii) The equation for i = j + 1 follows analogously to the first case, knowing that
Rj+1,k(z, u) cancels for z = ρk(u).

(iii) The next step is to expand Ri,k(z, u) around ρk(u) for i > j + 1. From the second
claim of Proposition 17 and from the recurrence relation (8) for Ri,k(z, u) it results

Rj+2,k(ρk(u)− ε, u) = 1−4(k−j−1)ρk(u)2u−2ρk(u)+2ρk(u)
√
γj+1(u)

√
ε+O(|ε|).

We set aj+2(u) := 1− 4(k − j − 1)ρ2
k(u)u− 2ρk(u) and bj+2(u) := 2ρk(u)

√
γj+1(u).

Now we proceed by induction. Assume Ri,k(ρk(u)− ε, u) = ai(u) + bi(u)
√
ε+O(|ε|).

We have just checked that it holds for i = j + 2. Now we perform the induction
step i 7→ i+ 1.

Using the recursion (8) for Ri,k and plugging in the expansion ai(u)+bi(u)
√
ε+O(|ε|)

for Ri,k(ρk(u)− ε, u) yields

Ri+1,k(ρk(u)− ε, u) =1− 4(k − i)ρk(u)2u− 2ρk(u)

+ 2ρk(u)
√
ai(u) +

bi(u)ρk(u)√
ai(u)

√
ε+O(|ε|).

Setting ai+1(u) := 1−4(k−i)ρ2
k(u)u−2ρk(u)+2ρk(u)

√
ai(u) and bi+1(u) := bi(u)ρk(u)√

ai(u)

for i > j + 2 we obtain

Ri+1,k(ρk(u)− ε, u) = ai+1(u) + bi+1(u)
√
ε+O(|ε|).

Expanding bi(u), using its recursive relation and bj+2(u) = 2ρk(u)
√
γj+1(u) we get

for i > j + 1

bi(u) =
2ρi−jk (u)

√
γj+1(u)∏i−1

l=j+1

√
al(u)

.

We know that for sufficiently large i the sequence ui, defined in Definition 7, is given
by ui = bχ2ic, with χ ≈ 1.36660956 . . . (see [8, Lemma 18]). Therefore we have Nj ∼
u2
j ∼ χ2j2 and Nj < k < Nj+1 = O(N2

j ), which gives j = Θ(log log k). This implies that
j + 1 < k + 1, i.e., that the dominant singularity ρk(u) cannot come from the outermost
radical.

Remark 18. Obviously the same is true for the case k = Nj. Thus, the dominant singu-
larity never comes from the outermost radical.
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Using Proposition 17 and Hk(z, u) = 1
2z

(1−
√
Rk+1,k(z, u)) we get

Hk(ρk(u)− ε, u) =
1−

√
ak+1(u)

2ρk(u)
− bk+1,k(u)

4ρk(u)
√
ak+1(u)

√
ε+O(|ε|),

which yields

[zn]Hk(z, u) = hk(u)ρk(u)−n
n−

3
2

Γ(−1
2
)

(
1 +O

(
1√
n

))
, (9)

with

hk(u) = −
bk+1(u)

√
ρk(u)

4ρk(u)
√
ak+1(u)

.

Taking a look at the recursive definitions of ai(u) and bi(u) (see Proposition 17),
it can easily be seen that these functions are not equal to zero in a sufficiently small
neighbourhood of u = 1. We know that aj+2(1) is positive, since

aj+2(1) = 1− 4(k − j − 1)ρk(1)2 − 2ρk(1) = 1− 4(k − j)ρk(1)2 − 2ρk(1) + 4ρ2
k,

and 1−4(k− j)ρk(1)2−2ρk(1) > 0 (see [8]). By induction we can show that the sequence
ai := ai(1) is monotonically increasing. Let us assume that ai−1 < ai, then we get

ai+1 > 1− 4(k − i)ρk(1)2 − 2ρk(1) + 2ρk(1)
√
ai

> 1− 4(k − i+ 1)ρk(1)2 − 2ρk(1) + 2ρk(1)
√
ai−1 + 4ρk(1)2 > ai + 4ρk(1)2.

It is obvious that if bj+2 := bj+2(1) is non-zero, than all the bi’s, which are defined by

bi =
ρk(1)bi−1

ai−1

,

are non-zero. In order to prove that bj+2 = 2ρk(1)
√
− ∂
∂z
Rj+1,k(ρk(1), 1) is non-zero, we

also proceed by induction. Since

R1,k(z, 1) = 1− 4kz2,

we can see that ∂
∂z
R1,k(ρk(1), 1) < 0, and assuming ∂

∂z
Ri,k(ρk(1), 1) < 0 and using

∂

∂z
Ri+1,k(z, 1) = −8(k − i)z − 2 + 2

√
Ri,k(z, 1) +

z√
Ri,k(z, 1)

∂

∂z
Ri(z, 1),

we proved that all bi’s are non-zero. Thus, we get that hk(u) 6= 0.

Using (9) and Theorem 16 we get for n→∞

[zn]Hk(z, u)

[zn]Hk(z, 1)
=

hk(u)

hkΓ(−1/2)

(
ρk(1)

ρk(u)

)n(
1 +O

(
1

n

))
. (10)
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Assuming that σ2 = B′′(1) + B′(1) − B′(1)2 6= 0 with B(u) = ρk(1)
ρk(u)

we can apply the
Quasi-Powers Theorem. As stated in Section 2 the proof of this assumption appears to
be quite difficult, since there is only very little known about the function ρk(u). However,
it seems very likely that this condition will be fulfilled for arbitrary k ∈ (Nj, Nj+1), so
that the Quasi-Powers Theorem can be applied and we get that the number of leaves
in lambda-terms with bounded number of De Bruijn levels is asymptotically normally
distributed with asymptotic mean µn and variance σ2n, respectively, where µ = B′(1)

and σ2 = B′′(1) +B′(1)−B′(1)2, with B(u) = ρk(1)
ρk(u)

.

bound k j + 1 B′′(1) +B′(1)−B′(1)2 B′(1)

1 2 0 0
2 2 0.0385234386 0.4381229337
3 2 0.0210625856 0.4414407371
4 2 0.0167136805 0.4463973717
5 2 0.0148700270 0.4504258849
6 2 0.0138224393 0.4536185043
7 2 0.0131157948 0.4561987871
8 3 0.0125868052 0.4583333333
9 3 0.0582322465 0.4566104777
10 3 0.0470481360 0.4560418340
11 3 0.0396601986 0.4560810348
12 3 0.0345090124 0.4564489368
...

...
...

...
133 3 0.0077469541 0.4821900098
134 3 0.0077234960 0.4822482745
135 4 0.0077002803 0.4823059361
136 4 0.0132855719 0.4823515285
137 4 0.0131816901 0.4823968564
138 4 0.0130800422 0.4824419195
139 4 0.0129805564 0.4824867175

Table 1: Table summarizing the coefficients occurring in the variance and the mean for
some initial values of k.

4.2 The case k = Nj

We know from [8] that in the case k = Nj both radicands Rj,k(z, 1) and Rj+1,k(z, 1) vanish
simultaneously and the dominant singularity is therefore of type 1

4
. This is not true for

the radicands Rj,k(z, u) and Rj+1,k(z, u) when u is in a neighbourhood of 1. Thus, we
have a discontinuity at ρk(1), which is why we do not get any uniform expansions of the
radicands in a neighbourhood of ρk(1).

In order to overcome this problem we proceed as follows (see Figure 5 for a sketch of
the idea of the proof): First, we show that the dominant singularity of the generating
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function Hk(z, 1 + ε) comes solely from the radicand Rj,k(z, 1 + ε) (cf. Lemma 19).
Then we investigate the expansions of the radicands thoroughly for u = 1 + s√

n
in a

neighbourhood of z = ρk(1) with radius t
n
, where s and t are both bounded complex

numbers (cf. Lemma 20). This approach of choosing the considered neighbourhoods of
z = ρk(1) and u = 1 to be dependent on each other constitutes the main idea of the
applied method. By use of Cauchy’s coefficient formula we are then able to obtain an
asymptotic expression for the n-th coefficient of the generating function Hk

(
z, 1 + s√

n

)
by choosing a suitable integration contour (cf. Proposition 21). Finally, we show that the
characteristic function of the random variable counting the total number of variables in a
random lambda-term with at most k De Bruijn levels tends to the characteristic function
of the normal distribution as the size tends to infinity (cf. Lemma 22). For convenience,
we will subsequently use the abbreviation ρk := ρk(1).

ρk(1)

u = 1 : Rj = Rj+1 = 0

u ∼ 1 : Rj = 0

→ 4
√

→ √

ρk

(
1 + s√

n

)
ρk

(
1 + s√

n

) (
1 + t

n

)

Figure 5: Sketch of the idea of the proof.

Lemma 19. For u = 1 + ε with ε → 0 so that ε ∈ C \ R−0 , the dominant singularity
ρk(u) = ρk(1 + ε) of the bivariate generating function Hk(z, 1 + ε) comes from the j-th
radicand Rj,k(z, u).

Proof. Setting u = 1 + ε, expanding ρk(u) around 1 and plugging this expansion into the
recursive definition of the radicands yields

Rj,k (ρk(1 + ε), 1 + ε) =1− 4(k − j + 1)(ρ2
k + 2ρkρ

′
kε+ (ρ′2k + 2ρkρ

′′
k)ε

2 + ρ2
kε)

− (2ρk + 2ρ′kε+ 2ρ′′kε
2)

(
1−

√
Rj−1,k (ρk(1 + ε), 1 + ε)

)
+O(|ε|).

Using 1−4(k−j)ρ2
k−2ρk = 0 and

√
Rj−1,k (ρk(1 + ε), 1 + ε) =

√
Rj−1,k (ρk, 1) +O(|ε|) =

2ρk +O(|ε|), which are both shown in [8], we get

Rj,k (ρk(1 + ε), 1 + ε) =− 4(k − j + 1)(2ρkρ
′
kε+ (ρ′2k + 2ρkρ

′′
k)ε

2)

− (2ρ′kε+ 2ρ′′kε
2) (1− 2ρk +O(|ε|)) +O(|ε|).

Thus, Rj,k (ρk(1 + ε), 1 + ε) = Θ(|ε|).
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Using this result and again the recursive definition of the radicands results in

Rj+1,k (ρk(u), 1 + ε) = 2
√
Rj,k(ρk(u), 1 + ε) +O (|ε|) = Θ(

√
|ε|).

Thus, we see that |Rj+1,k(ρk(u), u)| � |Rj,k(ρk(u), u)| in a neighbourhood of u = 1,
which implies that the dominant singularity has to come from the j-th radicand, i.e.
Rj,k(ρk(u), u) = 0 for u being sufficiently close to 1.

Lemma 20. Let z = ρk(u) = ρk(1 + s√
n
) be the dominant singularity of the bivariate

generating function Hk(z, 1 + s√
n
) with bounded s ∈ C. Then, as n→∞,

(i) Rj,k

(
ρk(u)

(
1 + t

n

)
, 1 + s√

n

)
= 1

n
pj(t) +O

(
1

n3/2

)
,

with pj(t) := −8t(k − j + 1)ρ2
k − 2ρkt + 4ρ2

kt + 2tρkf( t
n
) where f is an analytic

function around 0;

(ii) Rj+1,k

(
ρk(u)

(
1 + t

n

)
, 1 + s√

n

)
= 1√

n
pj+1(s, t) +O

(
1
n

)
,

where pj+1(s, t) = 2ρk
√
pj(t)− 4(k − j)(2ρkρ′ks+ ρ2

ks)− 2ρ′ks;

(iii) Ri,k

(
ρk(u)

(
1 + t

n

)
, 1 + s√

n

)
= Ĉi + 1

4√npi(s, t) +O
(

1√
n

)
for i > j + 2,

where Ĉi are constants and pi are analytic functions in the variables s and t.

Proof. We start with setting u = 1 + s√
n
and z = ρk(u)(1 + t

n
) with bounded s, t ∈ C (cf.

Figure 5), which results in

Rj+1,k

(
ρk(u)

(
1 +

t

n

)
, 1 +

s√
n

)
=

1− 4(k − j)ρk(u)2

(
1 +

t

n

)2(
1 +

s√
n

)
− 2ρk(u)

(
1 +

t

n

)(
1−

√
Rj,k

)
,

and

Rj,k

(
ρk(u)

(
1 +

t

n

)
, 1 +

s√
n

)
=

1− 4(k − j + 1)ρk(u)2

(
1 +

t

n

)2(
1 +

s√
n

)
− 2ρk(u)

(
1 +

t

n

)(
1−

√
Rj−1,k

)
,

where the radicand in the square root in the last bracket of both equations is of course
also evaluated at (z, u) =

(
ρk(1 + s√

n
)(1 + t

n
), 1 + s√

n

)
, but we will omit this notation

from now on to ensure a simpler reading, i.e., subsequently we will write Ri,k instead of
Ri,k

(
ρk(1 + s√

n
)
(
1 + t

n

)
, 1 + s√

n

)
.

the electronic journal of combinatorics 26(4) (2019), #P4.47 21



Expanding ρk(1 + s√
n
) around 1 and using the recursive definition for the radicands

yields

Rj,k =1− 4(k − j + 1)

(
ρ2
k + 2ρkρ

′
k

s√
n

+ (ρ′2k + 2ρkρ
′′
k)
s2

n
+ ρ2

k

s√
n

+ 2ρkρ
′
k

s2

n
+ ρ2

k

2t

n

)
− 2

(
ρk + ρ′k

s√
n

+ ρ′′k
s2

2n
+ ρk

t

n

)(
1−

√
Rj−1,k

)
+O

(
1

n3/2

)
. (11)

From Lemma 19 we know that for u in a sufficiently small vicinity of 1 the dominant
singularity of Hk(z, u) comes from the j-th radicand, i.e. Rj,k (ρk(u), u) = 0. Expanding
Rj,k

(
ρk(1 + s√

n
), 1 + s√

n

)
this yields

1− 4(k − j + 1)

(
ρ2
k + 2ρkρ

′
k

s√
n

+ (ρ′2k + 2ρkρ
′′
k)
s2

n
+ ρ2

k

s√
n

+ 2ρkρ
′
k

s2

n

)
− 2

(
ρk + ρ′k

s√
n

+ ρ′′k
s2

2n

)(
1−

√
Rj−1,k

(
ρk

(
1 +

s√
n

)
, 1 +

s√
n

))
+O

(
1

n3/2

)
= 0.

Thus, Equation (11) simplifies to

Rj,k = −4(k − j + 1)ρ2
k

2t

n
− 2ρk

t

n
+ 4ρ2

k

t

n
+ 2ρk

t

n
f

(
t

n

)
+O

(
1

n3/2

)
, (12)

where t
n
f
(
t
n

)
=
√
Rj−1,k −

√
Rj−1,k

(
ρk(1 + s√

n
), 1 + s√

n

)
. Notice that f(x) is analytic

around x = 0.
Therefore, the proof of (i) is finished.
Proceeding equivalently for Rj+1,k results in

Rj+1,k =
1√
n

(
− 4(k − j)(2ρkρ′ks+ ρ2

ks)− 2ρ′ks
)

+ 2ρk
√
Rj,k +O

(
1

n

)
.

Finally, to complete the proof of the second statement of the assertion we simply have to
replace Rj,k by the right-hand side of (12). Going one step further leads to

Rj+2,k = Ĉj+2 +
1
4
√
n
pj+2(s, t) +O

(
1√
n

)
,

with Ĉj+2 := 4ρ2
k and pj+2(s, t) := 2ρk

√
pj+1(s, t), where pj+1(s, t) is defined as in

Lemma 20.
Now we proceed by induction. Therefore we assume that Ri,k = Ĉi + 1

4√npi(s, t) +

O
(

1√
n

)
with i > j + 2. Thus, we get

Ri+1,k =1− 4(k − i)
(
ρ2
k + 2ρkρ

′
k

s√
n

+ (ρ′2k + 2ρkρ
′′
k)
s2

n
+ ρ2

k

s√
n

+ 2ρkρ
′
k

s2

n
+ ρ2

k

2t

n

)
− 2

(
ρk + ρ′k

s√
n

+ ρ′′k
s2

2n
+ ρk

t

n

)(
1−

√
Ri,k

)
+O

(
1

n3/2

)
.
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Inserting the induction hypothesis and simplifying yields

Ri+1,k = 4(i− j)ρ2
k + 2ρk

√
Ĉi +

1
4
√
n

ρkpi(s, t)√
Ĉi

+O
(

1√
n

)
.

Setting Ĉi+1 := 4(i− j)ρ2
k +2ρk

√
Ĉi and pi+1(s, t) := ρk√

Ĉi
pi(s, t) completes the proof.

Proposition 21. Let Hk(z, u) be the bivariate generating function of the class of closed
lambda-terms with at most k De Bruijn levels. Then the n-th coefficient of Hk(z, 1 + s√

n
)

with bounded s ∈ C is given by

[zn]Hk(z, 1 +
s√
n

) = Ck(s)ρ
−n
k n−

5
4

(
1 +O

(
n−

3
4

))
, as n→∞,

with a constant Ck(s) 6= 0.

Proof. Let us remember that Hk(z, 1 + s√
n
) =

1−
√
Rk+1,k(z,1+ s√

n
)

2z
. Thus, with the well-

known Cauchy coefficient formula we get

[zn]Hk

(
z, 1 +

s√
n

)
=

1

2iπ

∫
γ

Hk

(
z, 1 + s√

n

)
zn+1

dz

=
1

2iπ

∫
γ

1−
√
Rk+1,k

(
z, 1 + s√

n

)
2zn+2

dz,

where γ encircles the dominant singularity ρk(u) as depicted in Figure 6. We denote
the small Hankel-like part of the integration contour γ that contributes the main part
of the asymptotics by γH (cf. Figure 6). The curve γH encircles ρk(u) at a distance 1

n

and its straight parts (that lead into the direction ρk(u) · ∞) have the length log2(n)
n

. On

γ \ γH we have |z| = |ρk(u)|
∣∣∣1 + log2(n)

n
+ i

n

∣∣∣. This enables use to estimate the contribution
of γ \ γH , which turns out to be exponentially small. Next, we use the transformation
z = ρ(u)

(
1 + t

n

)
, which changes the integration contour γH to γ̃H . On the new contour

γ̃H the integrand is now represented in a way that Lemma 20 becomes directly applicable.
Summarizing all those arguments, we know now that there exisits a K > 0 such that

[zn]Hk

(
z, 1 +

s√
n

)

=
1

2iπ

∫
γ̃H

1−
√
Ĉk+1 + 1

4√npk+1(s, t) +O
(

1√
n

)
2ρn+1etn

dt+O
(
e−K log2(n)

)

=
1

2iπ

∫
γ̃H

1−
√
Ĉk+1 − 1

2 4√n
√
Ĉk+1

pk+1(s, t) +O
(

1√
n

)
2ρn+1

k etn
dt+O

(
e−K log2(n)

)
. (13)
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γH

γ

ρk(u)

H

Figure 6: The integral contours γ and H.

Now, let us observe how the function pk+1(s, t) looks like by using the recursive defi-

nition pi+1(s, t) = ρk√
Ĉi
pi(s, t) and pj+2(s, t) = 2ρk

√
2ρk
√
pj(t) + q(s), with a polynomial

q(s) = s (−4(k − j)(2ρkρ′k + ρ2
k)− 2ρ′k) that is linear in s. Thus, pk+1(s, t) = D · pj+2(s, t)

with a constant D. Inserting this into (13) and splitting the integral yields

[zn]Hk

(
z, 1 +

s√
n

)
=

ρ−nk
4iπρkn

·

(∫
γ̃H

(
1−

√
Ĉk+1

)
e−tdt

−
∫
γ̃H

De−t

2 4
√
n

√
Ĉk+1

√
2ρk

√
pj(t) + q(s)dt+

∫
γ̃H

O
(

1√
n

)
e−tdt

)
.

The first integral is zero and the third integral contributes O
(

1√
n

)
. Thus, the main

part of the asymptotics results from the second integral: There are some constants A(s)
and B(s) such that

−
∫
γ̃H

De−t

4
√
n

√
Ĉk+1

√
2ρk

√
pj(t) + q(s)dt

= −
∫
γ̃H

De−t

4
√
n

√
Ĉk+1

√
A(s)t+B(s) +O

(
log4(n)

n

)
dt

= −
∫
γ̃H

De−t

4
√
n

√
Ĉk+1

√
A(s)t+B(s)dt+O

(
log6(n)

n

)

= −
∫
H

De−t

4
√
n

√
Ĉk+1

√
A(s)t+B(s)dt+O

(
e−K̃ log2(n)

)
∼ C̃(s)

1
4
√
n
.

Here K̃ denotes a suitable positive constant, and H denotes the classical Hankel curve,
i.e., the noose-shaped curve that winds around 0 and starts and ends at +∞ (cf. Figure 6).
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Finally, using this result we get

[zn]Hk

(
z, 1 +

s√
n

)
= C(s)ρk

(
1 +

s√
n

)−n
n−5/4

(
1 +O

(
1
4
√
n

))
, for n→∞,

with a constant C(s) that depends on s.

Now we show that the characteristic function of our standardized sequence of random
variables tends to the characteristic function of the normal distribution.

Lemma 22. Let Xn be the total number of variables in a random lambda-term with at
most k De Bruijn levels. Set σ2 := −ρ′k(1)

ρk(1)
− ρ′′k(1)

ρk(1)
+

ρ′k(1)2

ρk(1)2
. If σ2 6= 0, then

Zn =
Xn − EXn√

n
→ N

(
0, σ2

)
.

Proof. For the standardised sequence of random variables Zn we have with µ := EXn
n

Zn =
Xn − EXn√

n
=
Xn√
n
− µ
√
n.

Its characteristic function reads as

φZn(s) = E(eisZn) = e−isµ
√
nφXn

(
s√
n

)
= e−isµ

√
nE(e

isXn√
n ) = e−isµ

√
n [zn]Hk(z, e

is√
n )

[zn]Hk(z, 1)
.

From Proposition 21 we know

[zn]Hk(z, 1 + s√
n
)

[zn]Hk(z, 1)
∼ C(s)

(
ρk(1 + s√

n
)

ρk(1)

)−n
,

where the constant C(s) ∼ 1 for n→∞.
Thus,

φZn(s) = e−isµ
√
n [zn]Hk(z, e

is√
n )

[zn]Hk(z, 1)
∼ e−isµ

√
n

ρk
(

1 + si√
n
− s2

2n
+O

(
|s3|
n3/2

))
ρk(1)

−n

= e−isµ
√
n exp

(
−n ·

(
log

(
1 +

ρ′kis

ρk
√
n
− s2

2n

ρ′k
ρk

+
s2

2n

ρ′′k
ρk

)
+O

(
|s3|
n3/2

)))
∼ e−isµ

√
ne
−is
√
n
ρ′k
ρk e

s2

2

(
ρ′k
ρk

+
ρ′′k
ρk
− ρ
′2
k
ρ2
k

)
.

Since we know that the expected value of the standardised random variable is zero, we
get µ = −ρ′k(1)

ρk(1)
+ o

(
1√
n

)
, and thus

φZn(s) ∼ e−
s2σ2

2 ,

with σ2 = −ρ′k(1)

ρk(1)
− ρ′′k(1)

ρk(1)
+

ρ′k(1)2

ρk(1)2
, which completes the proof.

Thus, we get that the total number of leaves in lambda-terms with a bounded number
of De Bruijn levels is asymptotically normally distributed.
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5 Unary profile of random lambda-terms with bounded number
of De Bruijn levels

5.1 Leaves

The aim of this section is the investigation of the distribution of the number of leaves
in the different De Bruijn levels in closed lambda-terms with bounded number of De
Bruijn levels. In order to do so, observe that each De Bruijn level in such a lambda-term
corresponds to one or more binary trees that contain different types of leaves, where the
maximal number of types corresponds to the respective level (cf. Figure 3), i.e., in the
i-th De Bruijn level there may be i different types of leaves. Let C be the class of binary
trees. Using the notation from the previous sections we can specify this class by

C = Z + (A× C × C).

Translating into bivariate generating functions C(z, u) with z marking the size (i.e., the
total number of nodes) and u marking the number of leaves, yields C(z, u) = 1−

√
1−4uz2

2z
.

Let k−lH̃k(z, u) be the generating function of closed lambda-terms with at most k De
Bruijn levels, where z marks the size and u marks the number of leaves on the (k − l)-th
unary level (0 6 l 6 k). The corresponding structures can be seen as k+ 1 nested binary
trees, matching the k + 1 De Bruijn levels. Each such level is a binary tree where some
of its leaves are replaced by a unary node with a binary tree (belonging to the next level)
attached to it. Thus, in the associated generating function, C(z, u), the variable marking
the leaves is replaced by m + C(z, . . .), where m is the number of possible De Bruijn
indices (i.e. types of leaves) and C(z, . . .) the generating function of the binary trees in
the next level. Altogether, we have

k−lH̃k(z, u) = C(z, C(z, 1 + · · ·+C(z, (k − l) · u+ · · ·+C(z, (k − 1) +C(z, k))) . . .) . . .)).

This can be written as

k−lH̃k(z, u) =
1−

√
R̃k+1,k(z, u)

2z
,

with
R̃1,k(z, u) = 1− 4z2k,

R̃i,k(z, u) = 1− 4z2(k − i+ 1)− 2z + 2z

√
R̃i−1,k(z, u), for 2 6 i 6 k + 1, i 6= l + 1,

and
R̃l+1,k(z, u) = 1− 4z2u(k − l)− 2z + 2z

√
R̃l−1,k(z, u).

Remark 23. Note that the radicands R̃i,k that are introduced above are very similar to
the radicands Ri,k that were used in the previous section. The only difference is that now
we have a u only in the (l+ 1)-th radicand, while in the previous case u was occurring in
all radicands. Thus, from now on we will have further distinctions of cases now depending
on the relative position (w.r.t. l) of the radicand(s) where the dominant singularity comes
from.
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.

l = k
level 0

level k − jl = j

level kl = 0 R̃1,k

R̃j+1,k

R̃k+1,k

Figure 7: A schematic sketch of a lambda-term with at most k De Bruijn levels that
exemplifies the notation that is used within this section: If we investigate the number of
leaves in the (k− l)-th De Bruijn level, for 0 6 l 6 k, a factor u is inserted in the recursive
definition of the (l + 1)-th radicand.

This subsection consists of two subsubsections. In the first part we will derive the
mean values for the number of leaves in the different De Bruijn levels and the second part
deals with the distributions of the number of leaves in these levels.

5.1.1 Mean values

Now we want to determine the mean for the number of leaves in the different De Bruijn
levels, i.e.

EXn =

[zn]
(
∂
∂u k−lH̃k(z, u)

) ∣∣∣∣
u=1

[zn]k−lH̃k(z, 1)
,

where Xn denotes the number of leaves in the (k − l)-th De Bruijn level of a random
closed lambda-term of size n with at most k De Bruijn levels.

In order to do so, we start with the following observations:

• ∂
∂u
R̃i,k(z, u) = 0 for i < l + 1,

• ∂
∂u
R̃l+1,k(z, u) = −4z2(k − l),

• ∂
∂u
R̃i,k(z, u) = z ·

∂
∂u
R̃i−1,k(z,u)√
R̃i−1,k(z,u)

for i > l + 1.

Therefore we get(
∂

∂u
k−lH̃k(z, u)

) ∣∣∣∣
u=1

= zk−l+1(k − l)
k+1∏
i=l+1

1√
R̃i,k(z, 1)

. (14)

Again we perform a distinction of cases starting with k not being an element of the
sequence (Nj)j∈N.

the electronic journal of combinatorics 26(4) (2019), #P4.47 27



The case: Nj < k < Nj+1 Let ρ̃k(u) be the dominant singularity of k−lH̃k(z, u),
which we know comes from the (j+1)-th radicand R̃j+1,k(z, u). Obviously, ρ̃k(1) = ρk(1).
Therefore we will again use the abbreviation ρk := ρ̃k(1).

From Proposition 17 we get the following expansions of the radicands for u = 1 and
ε→ 0 so that ε ∈ C \ R−:

• ∀i < j + 1 (inner radicands) : R̃i,k(ρk − ε, 1) = R̃i,k(ρk, 1) +O(|ε|),

• R̃j+1,k(ρk − ε, 1) = γ̃j+1ε+O(|ε|2), with γ̃j+1 = − ∂
∂z
R̃j+1,k(ρk, 1),

• ∀i > j + 1 (outer radicands) : R̃i,k(ρk − ε, 1) = ãi + b̃i
√
ε+O(|ε|),

with

ãi+1 = 1− 4(k − i)ρ2
k − 2ρk + 2ρk

√
ãi, (15)

and

b̃i+1 =
b̃iρk√
ãi

for j + 2 6 i 6 k, (16)

where

ãj+2 = 1− 4(k − j − 1)ρ2
k − 2ρk and b̃j+2 = 2ρk

√
γ̃j+1. (17)

Thus, we have

• ∀i < j + 1 (inner radicands) : 1√
R̃i,k(ρk−ε,1)

= 1√
R̃i,k(ρk,1)

+O(|ε|),

• 1√
R̃j+1,k(ρ1−ε,1)

= 1√
γ̃j+1

ε−
1
2 +O(|ε| 12 ),

• ∀i > j + 1 (outer radicands) : 1√
R̃i,k(ρk−ε,1)

= 1√
ãi
− b̃i

2
√
ã3i
ε
1
2 +O(|ε| 32 ).

Now we have to perform a distinction of cases whether the De Bruijn level that we are
focusing on is below the (k − j)-th level or not (i.e., whether l is below j or not).

First case: l > j First let us remember that l > j implies that the u is inserted in
a radicand that is located outside the (j + 1)-th. From (14) we get for ε → 0 so that
ε ∈ C \ R− (

∂

∂u
k−lH̃k(ρk − ε, u)

) ∣∣∣∣
u=1

=

ρk−l+1
k (k − l)

(
k+1∏
i=l+1

1√
ãi
−

k+1∑
m=l+1

(
b̃m

2
√
ã3
m

k+1∏
i=l+1,i 6=m

1√
ãi

)
ε
1
2 +O(|ε|)

)
.
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By denoting the sum in the equation above with δ̃l we can determine the coefficient
of zn asymptotically for n→∞ by

[zn]

(
∂

∂u
k−lH̃k(z, u)

) ∣∣∣∣
u=1

= −ρk−l+1
k (k − l)δ̃l

(
1

ρk

)n
n−

3
2

Γ(−1
2
)

(
1 +O

(
1√
n

))
,

and by using the asymptotics of the n-th coefficient of k−lH̃k(z, 1) = Hk(z, 1) (see Theo-
rem 16) we finally get for the mean, asymptotically as n→∞,

[zn]
(
∂
∂u k−lH̃k(z, u)

)
|u=1

[zn]k−lH̃k(z, 1)
=
−ρk−l+1

k (k − l)δ̃l
hk

(
1 +O

(
1√
n

))
.

Thus we showed that there is only a small number of leaves in the De Bruijn levels
below the (k − j)-th level. More precisely, the asymptotic mean of the number of leaves
is O(1) for all these lower levels.
Remark 24. The constant hk can be expressed by means of the sequences ãi and b̃i defined
in Eqs. (15)–(17), thereby enabling a representation of the constant Ck,l :=

−ρk−l+1
k (k−l)δ̃l

hk
that reads as

Ck,l =
2(k − l)ρ2

k

al+1

(
1 +

ρkal+1

al+2
√
al+1

+
ρ2
kal+1

al+3
√
al+2
√
al+1

+ · · ·
)
. (18)

This term can be used in order to investigate the asymptotic number of leaves in the lower
De Bruijn levels more thoroughly.

Second case: l 6 j Similar to the first case we get(
∂

∂u
k−lH̃k(ρk − ε, u)

) ∣∣∣∣
u=1

=

ρk−l+1
k (k−l)

 j∏
i=l+1

1√
R̃i,k(ρk, 1)

( k+1∏
i=j+2

1√
ãi

)
1√
γ̃j+1

ε−
1
2 + const. term +O(|ε|

1
2 )

 .

By setting φ̃j+1,l :=

(∏j
i=l+1

1√
R̃i,k(ρk,1)

)(∏k+1
i=j+2

1√
ãi

)
1√
γ̃j+1

, we obtain for n→∞

[zn]

(
∂

∂u
k−lH̃k(z, u)

) ∣∣∣∣
u=1

= ρk−l+1
k (k − l)φ̃j+1,l

(
1

ρk

)n
n−

1
2

Γ(1
2
)

(
1 +O

(
1

n

))
.

Thus, we get for the mean, asymptotically as n→∞,

[zn]
(
∂
∂u k−lH̃k(z, u)

)
|u=1

[zn]k−lH̃k(z, 1)
=
ρk−l+1
k (k − l)Γ(−1

2
)φ̃j+1,l

Γ(1
2
)hk

· n
(

1 +O
(

1

n

))
.

Hence, we proved that the asymptotic mean for the number of leaves in the De Bruijn
levels above the (k− j)-th is Θ(n). So, altogether we can see that almost all of the leaves
are located in the upper j + 1 De Bruijn levels.
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The case: k = Nj Now we will deal with the second case, where the bound k is an
element of the sequence (Nj)j∈N.

We start by determining the expansions of the radicands around the dominant singu-
larity ρ̃k(u) of k−lH̃k(z, u) for u = 1 and ε→ 0 so that ε ∈ C \R− (cf. [8, Proposition 9]):

• ∀i < j (inner radicands) : R̃i,k(ρk − ε, 1) = R̃i,k(ρk, 1) +O(|ε|),

• R̃j,k(ρk − ε, 1) = γ̃jε+O(|ε|2) with γ̃j = − ∂
∂z
R̃j,k(ρk, 1),

• R̃j+1,k(ρk − ε, 1) = 2ρ̃k
√
γ̃jε

1
2 +O(|ε|),

• ∀i > j + 1 (outer radicands) : R̃i,k(ρk − ε, 1) = ãi + b̃iε
1
4 +O(|ε|),

with ãi+1 = 1− 4(k − i)ρ2
k − 2ρk + 2ρk

√
ãi, and b̃i+1 = b̃iρk√

ãi
for j + 2 6 i 6 k, with

ãj+2 = 1− 4(k − j)ρ2
k − 2ρk and b̃j+2 = 2ρk

√
γ̃j.

Thus, we get

• ∀i < j (inner radicands) : 1√
R̃i,k(ρk−ε,1)

= 1√
R̃i,k(ρk,1)

+O(|ε|),

• 1√
R̃j,k(ρk−ε,1)

= 1√
γ̃j
ε−

1
2 +O(|ε| 12 ),

• 1√
R̃j+1,k(ρ̃k−ε,1)

= 1√
2ρk

4
√
γ̃j
ε−

1
4 +O(|ε| 14 ),

• ∀i > j + 1 (outer radicands) : 1√
R̃i,k(ρk−ε,1)

= 1√
ãi
− b̃i

2
√
ã3i
ε
1
4 +O(|ε|).

We proceed analogously to the case where Nj < k < Nj+1, with the only difference
that we have to distinguish between three cases now and since for u = 1 the j-th and
the (j + 1)-th radicand vanish simultaneously, we get a closed formula for the dominant
singularity ρk = 1

1+
√

1+4(k−j)
.

First case: l > j Let us again remember that l > j implies that the u is inserted in
the p-th radicand with p > j + 1. From (14) we get for ε ∈ C \ R− with |ε| → 0

(
∂

∂u
k−lH̃k(ρk − ε, u)

) ∣∣∣∣
u=1

=ρk−l+1
k (k − l)

k+1∏
i=l+1

(
1√
ãi
− b̃i

2
√
ã3
i

ε
1
4 +O(|ε|)

)

=

(
1

1 +
√

1 + 4(k − j)

)k−l+1

(k − l)

(
k+1∏
i=l+1

1√
ãi

−
k+1∑

m=l+1

(
b̃m

2
√
ã3
m

k+1∏
i=l+1,i 6=m

1√
ãi

)
ε
1
4 +O(|ε|

1
2 )

)
.
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As in the previous case, we set δ̃l :=
∑k+1

m=l+1

(
b̃m

2
√
ã3m

∏k+1
i=l+1
i 6=m

1√
ãi

)
. Extracting the n-th

coefficient and using the asymptotics of

[zn]k−lH̃k(z, 1) = [zn]Hk(z, 1) =
−ρk−j−1

k bj+2n
−5/4

4ρkΓ(−1/4)
∏k+1

i=j+2

√
ai
ρ−nk

(
1 +O

(
1

n

))
,

we have for n→∞

[zn]
(
∂
∂u k−lH̃k(z, u)

)
|u=1

[zn]k−lH̃k(z, 1)
=
−4ρj−l+3

k (k − l)δ̃l
∏k+1

m=j+2

√
am

bj+2

(
1 +O

(
n−

1
4

))
.

Thus, as in the previous case (k ∈ (Nj, Nj+1)) the asymptotic mean for the number of
leaves in the De Bruijn levels below the (k − j)-th level is O(1).

Furthermore the constant Dk,l :=
−4ρj−l+3

k (1)(k−l)δ̃l
∏k+1
m=j+2

√
am

bj+2
can be simplified to

Dk,l =
k − l
2λl−j

(
1 +

√
λl−j

2λl−j+1

+

√
λl−j

4λl−j+2

√
λl−j+1

+

√
λl−j

8λl−j+3

√
λl−j+2

√
λl−j+1

+ · · ·

)
(19)

with the sequence λi defined by λ0 = 0 and λi+1 = i+ 1 +
√
λi for i > 0.

Second case: l = j Thus, the u is inserted in the (j + 1)-th radicand. In this case we
get

[zn]
(
∂
∂u k−lH̃k(z, u)

)
|u=1

[zn]k−lH̃k(z, 1)
=
−4ρ3

k(k − j)Γ(−1/4)ψj
∏k+1

m=j+2

√
am

Γ(1
4
)bj+2

·
√
n
(

1 +O
(
n−

1
4

))
(20)

with

ψj =
1

√
2ρk 4
√
γ̃j

k+1∏
i=j+2

1
√
ai
. (21)

The constant D̂k,l :=
−4ρ3k(k−j)Γ(−1/4)ψj

∏k+1
m=j+2

√
am

Γ( 1
4

)bj+2
simplifies to

D̂k,l =
−Γ(−1/4)(k − j)√ρk

Γ(1/4)
√
γ̃j

.

In order to get some information on the magnitude of this factor we would have to
investigate γ̃j = − ∂

∂z
R̃j,k(ρk, 1), which seems to get rather involved. However, taking a

look at Equation (20) we can see that there are already considerably more unary nodes
in the (k − j)-th De Bruijn level, namely Θ(

√
n).
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Third case: l < j The third case gives for n→∞

[zn]
(
∂
∂u k−lH̃k(z, u)

)
|u=1

[zn]k−lH̃k(z, 1)
=
−4ρj−l+3

k (k − l)Γ(−1/4)χj
∏k+1

m=j+2

√
am

Γ(3/4)bj+2

n
(

1 +O
(
n−

1
4

))
,

with

χj =
1√
γ̃j
ψj

 j−1∏
i=l+1

1√
R̃i,k(ρk, 1)

 ,

where ψj is defined as in (21).
Thus, we proved that on average there are Θ(n) leaves in the upper j De Bruijn levels.

The constant D̃k,l :=
−4ρj−l+3

k (k−l)Γ(−1/4)χj
∏k+1
m=j+2

√
am

Γ(3/4)bj+2
can be rewritten as

D̃k,l =
−Γ(−1/4)(k − l)ρj−lk

Γ(3/4)γ̃j

j−1∏
i=l+1

1√
R̃i,k(ρk, 1)

.

The following proposition sums up all the results that we obtained within this section.

Proposition 25. Let Xn denote the number of leaves in the (k− l)-th De Bruijn level in
a random lambda-term of size n with at most k De Bruijn levels.

If k ∈ (Nj, Nj+1), then we get for the asymptotic mean when n→∞

• in the case l > j:

EXn =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1)
= Ck,l

(
1 +O

(
1

n

))
,

• and in the case l 6 j:

EXn =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1)
= C̃k,l · n

(
1 +O

(
1

n

))
,

with constants Ck,l and C̃k,l depending on l and k.
If k = Nj, then the asymptotic mean for n→∞ reads as

• in the case l > j:

EXn =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1)
= Dk,l

(
1 +O

(
n−

1
4

))
,

• in the case l = j:

EXn =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1)
= D̂k,l ·

√
n
(

1 +O
(
n−

1
4

))
,
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• and in the case l < j:

EXn =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1)
= D̃k,l · n

(
1 +O

((
n−

1
4

)))
,

with constants Dk,l, D̂k,l and D̃k,l depending on l and k.

All the constants occurring in Proposition 25 have been calculated explicitly and can
be obtained for every fixed k. In particular, we investigated Dk,l in order to show that for
large k the number of leaves in the De Bruijn levels that are closer to the root is smaller
(cf. Figure 8). In fact, they rapidly tend to zero for k tending to infinity.

Proposition 26. Let us consider a random closed lambda-term of size n with at most k
De Bruijn levels and let us consider the case k = Nj. Then the average number of leaves
in De Bruijn level L, with 0 6 L 6 k − j − 1, is asymptotically equal to Dk,k−L, defined
in (19). It behaves like

Dk,k−L ∼
L

2(k − j − L)
as k →∞.

Proof. The proposition follows directly by investigating this constant Dk,l. The asymp-
totics for the sequence λi (defined by λ0 = 0 and λi+1 = i + 1 +

√
λi for i > 0) can be

obtained by bootstrapping (see [20]). We obtain λi ∼ i, as i→∞.

Remark 27. Note that the expression for Dk,l (cf. Equ. (19)) can be obtained by plugging
ãj+l = 4ρ2

kλl−1 into the equation for Ck,l (cf. Equ. (18)). However, this relation is solely
valid for the case k = Nj and thus, Proposition 26 holds just for the constants Dk,l.
Nonetheless, we expect that by means of some suitable estimates for the ã′is one can
obtain a similar behaviour for the constants Ck,l. Since computations get rather involved,
we omitted any further investigations of these constants within this paper. Anyway, we
can conclude that in both cases, whether k is an element of (Ni)i>0 or not, a random
closed lambda-term with at most k De Bruijn levels has very few leaves in its lowest levels
if k is large.

5.1.2 Distributions

Now that we derived the mean values for the number of leaves in the different De Bruijn
levels, we are interested in their distribution. Therefore we distinguish again between the
cases of k being an element of the sequence (Ni)i>0 or not.

The case: Nj < k < Nj+1 We know that the generating function k−lH̃k(z, u) consists
of k+ 1 nested radicals, where a u is inserted in the (l+ 1)-th radicand counted from the
innermost one. Additionally we know that for Nj < k < Nj+1 the dominant singularity
ρ̃k(u) comes from the (j + 1)-th radicand. Therefore, for l > j the function ρ̃k(u) is
independent of u, which is the reason why we do not get a quasi-power in that case.
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Thus, for the first k − j levels of the lambda-DAG (i.e. the case l > j), where there are
just a few leaves, we can not say something about the distribution of the leaves so far. It
might be a degenerated distribution.

However, in case that l 6 j (i.e., for the upper levels where there are a lot of leaves)
we will use the Quasi-Powers Theorem to show that the number of leaves in the (k− j)-th
until the k-th level is asymptotically normally distributed.

Analogously as we did in Section 4.1 we can show that

[zn] k−lH̃k(z, u)

[zn] k−lH̃k(z, 1)
=
h̃k(u)

hk

(
ρk

ρ̃k(u)

)n(
1 +O

(
1

n

))
. (22)

We can easily see that Equation (22) has the desired shape for the Quasi-Powers
Theorem. Hence, assuming that B̃′′(1) + B̃′(1) − B̃′(1)2 6= 0, where B̃(u) = ρk

ρ̃k(u)
, the

Quasi-Powers Theorem can be applied, which proves that the number of leaves in a De
Bruijn level that is above the (k − j − 1)-th level is asymptotically normally distributed.

The case: k = Nj As is the previous case we do not know the distribution of the
number of leaves in the lowest k − j De Bruijn levels (i.e., the levels 0 to k − j − 1), due
to the fact that for these levels the function ρ̃k(u) does not depend on u. It might also be
a degenerated distribution.

In Section 4.2 we showed that the dominant singularity comes from the j-th radicand
when u is in a neighbourhood of 1. Thus, for the case that l = j, where we insert a u
in the j + 1-th radicand, the dominant singularity ρk(u) does still do not depend on u.
Therefore we also do not know the distribution of the leaves in the (k − j)-th De Bruijn
level. It seems very unlikely that the number of leaves in this level will be asymptotically
normally distributed, but further studies on this subject might be very interesting.

Now we are going to show that the number of leaves in the upper j De Bruijn levels
(i.e., from the (k− j + 1)-th to the k-th level) is asymptotically normally distributed. In
order to do so we proceed analogously as in Section 4.2 for the total number of leaves.
Therefore for l < j we set again z = ρ̃k(u)(1 + t

n
) and u = 1 + s

n
and obtain expansions

that behave just as the ones in Lemma 20. The only differences that occur concern the
constants and therefore do not alter our results for the normal distribution.

Thus, Theorem 11 is proved. Figure 8 summarizes the results that we obtained in
Section 5.1 and illustrates a combinatorial interpretation of the occurring phenomena.

5.2 Unary nodes

Now we want to investigate the number of unary nodes among the different De Bruijn
levels. Let C(z, u) again denote the generating function of the class of binary trees where
z marks the total number of nodes and u marks the number of leaves, i.e., C(z, u) =
1−
√

1−4z2u
2z

. The bivariate generating function k−lH̄k(z, w) of the class of closed lambda-
terms with at most k De Bruijn levels, where z marks the size and w the number of unary
nodes in the (k − l)-th De Bruijn level, can then be expressed in terms of C(z, u) by

C(z, C(z, 1 + · · ·+ C(z, (k − l) + w · C(z, . . . (k − 1) + C(z, k)) . . .) . . .)).
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k − j

k = Nj

k − j

Nj < k < Nj+1

k − j − 1

k = Nj+1

Figure 8: (1) In the (k − j)-th Be Bruijn level (l = j) are considerably more leaves than
in the lower levels, but still less leaves then in the levels above. (2) With growing k the
(k − j)-th Be Bruijn level gets filled with leaves, while the number of leaves in the next
level below (i.e., the (k − j − 1)-th) slowly increases. (3) As soon as k reaches the next
element of the sequence (Nj)j>0, namely k = Nj+1 the (k − j − 1)-th De Bruijn level
immediately contains considerably more leaves than the levels below.

This can be rewritten to

k−lH̄k(z, w) =
1−

√
R̄k+1,k(z, w)

2z
,

with

R̄1,k(z, w) = 1− 4z2k,

R̄i,k(z, w) = 1− 4z2(k − i+ 1)− 2z + 2z
√
R̄i−1,k(z, w) for 2 6 i 6 k + 1, i 6= l + 1,

R̄l+1,k(z, w) = 1− 4z2(k − l)− 2zw + 2zw
√
R̄l,k(z, w).

Thus, for the derivatives we get

∂R̄i,k(z, w)

∂w
= 0 for i < l + 1,

∂R̄l+1,k(z, w)

∂w
= −2z + 2z

√
R̄l,k(z, w),

∂R̄i,k(z, w)

∂w
=

z√
R̄i−1,k

∂R̄i−1,k(z, w)

∂w
for i > l + 1,

which implies

∂k−lH̄k(z, w)

∂w

∣∣∣
w=1

=
zk−l

2

k+1∏
i=l+1

1√
R̄i,k

(
1−

√
R̄l,k

)
.

As in the previous section we distinguish between different cases.

5.2.1 The case: k = Nj

First case: l > j + 1 Inserting the expansion of the radicands R̄i,k and simplifying
yields for n→∞
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[zn]k−lH̄k(z, w)
∣∣∣
w=1

= ρk−lk 2αl
n−5/4

Γ(−1/4)
ρ−nk

(
1 +O

(
n−

1
4

))
,

with

αl = − bl
2
√
al

k+1∏
i=l+1

1
√
ai
−

k+1∑
m=l+1

bm

2
√
a3
m

k+1∏
i=l+1
i 6=m

1
√
ai

(1−
√
al) , (23)

where ai := ãi = ai(1) and bi := b̃i = bi(1) are defined in the previous sections and result
from the expansions of the radicands.

Thus, in this case the expected value of the number of unary nodes in the (k − l)-th
De Bruijn level reads as

[zn] ∂
∂wk−lH̄k(z, w)

[zn]k−lH̄k(z, 1)
=
−2αlρ

j−l+2
k

∏k+1
m=j+2

√
am

bj+2

(
1 +O

(
n−

1
4

))
, as n→∞.

Furthermore, the constant −2αlρ
j−l+2
k

∏k+1
m=j+2

√
am

bj+2
can be simplified to

1 +

(
1

4ρkλl−j
−
√
λl−j−1

2λl−j

)(
1 +

λl−j

2λl−j+1

√
λl−j

+
λl−j

22λl−j+2

√
λl−j+1

√
λl−j

+ · · ·

)
,

with the sequence λi defined by λ0 = 0 and λi+1 = i+ 1 +
√
λi for i > 0.

Since the second summand is almost zero for l being close to k and large k, this implies
that the number of unary nodes in these levels (close to the root) is close to one for large
k.

Second case: l = j + 1 For n→∞ we get

[zn]k−lH̄k(z, w)
∣∣∣
w=1

= ρk−lk 2ζl
n−5/4

Γ(−1/4)
ρ−nk

(
1 +O

(
n−

1
4

))
,

with

ζl = −
√

2ρk(ρkγ̃)1/4

k+1∏
i=j+2

1
√
ai
−

k+1∑
m=j+2

bm

2
√
a3
m

k+1∏
i=j+2
i 6=m

1
√
ai
.

Thus,

[zn] ∂
∂wk−lH̄k(z, w)

[zn]k−lH̄k(z, 1)
=
−2ζlρ

j−l+2
k

∏k+1
m=j+2

√
am

bj+2

(
1 +O

(
n−

1
4

))
, as n→∞.
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In this case the constant −2ζlρ
j−l+2
k

∏k+1
m=j+2

√
am

bj+2
simplifies to

1 +
1

4ρk

(
1 +

1

2λ2

+
1

22λ3

√
λ2

+ · · ·
)
.

So, the expected number of unary nodes in the (k− j − 1)-th De Bruijn level behaves
exactly like in the lower levels. Starting from the next level a change in the behaviour
can be determined, as we will see in the following.

Third case: l = j For n→∞ we have

[zn]k−lH̄k(z, w)
∣∣∣
w=1

= ρk−lk 2βl
n−3/4

Γ(1/4)
ρ−nk

(
1 +O

(
n−

1
2

))
,

with

βl =
1

√
2ρk 4
√
ρkγ̃j

k+1∏
i=j+2

1
√
ai
.

Thus,

[zn] ∂
∂wk−lH̄k(z, w)

[zn]k−lH̄k(z, 1)
=
−2βlρ

2
kΓ(−1/4)

∏k+1
m=j+2

√
am

Γ(1/4)bj+2

·
√
n
(

1 +O
(
n−

1
2

))
, as n→∞.

The constant −2βlρ
2
kΓ(−1/4)

∏k+1
m=j+2

√
am

Γ(1/4)bj+2
can be written as

−Γ(−1/4)

2Γ(1/4)
√
ρkγ̃j

.

The expected number of unary nodes in this “separating level” is therefore asymptot-
ically Θ(

√
n) (as was the number of leaves).

Fourth case: l < j For n→∞ we get

[zn]k−lH̄k(z, w)
∣∣∣
w=1

= ρk−lk 2εl
n−1/4

Γ(3/4)
ρ−nk

(
1 +O

(
n−

1
4

))
,

with

εl =
1

√
2ρk 4
√
ρkγ̃j

√
ρkγ̃j

k+1∏
i=j+2

1
√
ai

j−1∏
m=l+1

1√
R̃m,k

(
1−

√
R̄l,k

)
.

Thus, as n→∞,

[zn] ∂
∂wk−lH̄k(z, w)

[zn]k−lH̄k(z, 1)
=
−2εlρ

j−l+2
k Γ(−1/4)

∏k+1
m=j+2

√
am

Γ(3/4)bj+2

· n
(

1 +O
(
n−

1
4

))
.
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The constant −2εlρ
j−l+2
k Γ(−1/4)

∏k+1
m=j+2

√
am

Γ(3/4)bj+2
can be simplified to

−ρj−l+1
k Γ(−1/4)

2Γ(3/4)γ̃j

j−1∏
m=l+1

1√
R̃m,k

(
1−

√
R̄l,k

)
.

Hence, analogously to the number of leaves, we proved that the number of unary nodes
on the upper j + 1 De Bruijn levels is Θ(n).

5.2.2 The case: Nj < k < Nj+1

This case works analogously to the previous one. Thus, we just give the results for the
expected values.

First case: l > j+1 In this case, the expected value is entirely equal to the mean for
the case k = Nj and l > j + 1. So, with αl defined as in (23), we have for n→∞

[zn] ∂
∂wk−lH̄k(z, w)

[zn]k−lH̄k(z, 1)
=
−2αlρ

j−l+2
k

∏k+1
m=j+2

√
am

bj+2

· n
(

1 +O
(
n−

1
2

))
.

Second case: l = j + 1 In the second case, the constant differs a little bit, but the
result stays qualitatively unaltered. We get

[zn] ∂
∂wk−lH̄k(z, w)

[zn]k−lH̄k(z, 1)
=
−2µlρ

j−l+2
k

∏k+1
m=j+2

√
am

bj+2

· n
(

1 +O
(
n−

1
2

))
, as n→∞,

with

µl = −
k+1∑

m=j+2

bm

2
√
a3
m

k+1∏
i=j+2
i 6=m

1
√
ai

+
√
ρkγ̃j+1

k+1∏
i=j+2

1
√
ai
.

Third case: l < j + 1 For n→∞ we have

[zn] ∂
∂wk−lH̄k(z, w)

[zn]k−lH̄k(z, 1)
=
−2θlΓ(−1/2)ρj−l+2

k

∏k+1
m=j+2

√
am
∏j

s=l+1

√
R̄s

bj+2Γ(1/2)
· n
(

1 +O
(

1

n

))
,

with

θl =
k+1∏
i=j+2

1
√
ai

1√
ρkγ̃j+1

(
1−

√
R̄j,k

)
.

Thus, the expected number of unary nodes in the last j+ 1 De Bruijn levels is asymp-
totically Θ(n).
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5.3 Binary nodes

In this section we want to calculate the mean values of the number of binary nodes in the
different De Bruijn levels. We denote by C(z, v, u) the generating function of the class
of binary trees where z marks the total number of nodes, v marks the number of binary
nodes, and u marks the number of leaves. Thus, we have

C(z, v, u) =
1−
√

1− 4z2uv

2zv
. (24)

Using this generating function, we can write the bivariate generating function of the
class of closed lambda-terms with z marking the size, and v marking the number of binary
nodes on the (k − l)-th De Bruijn level as

k−lHk(z, v) =

C(z, 1, C(z, 1, 1 + C(z, 1, 2 + · · ·+ C(z, v, (k − l) + · · ·+ C(z, 1, k)) . . .) . . .))). (25)

Plugging (24) into (25) gives

k−lH̆k(z, v) =
1−

√
R̆k+1,k(z, v)

2z
,

with

R̆1,k(z, v) = 1− 4z2k,

R̆i,k(z, v) = 1− 4z2(k − i+ 1)− 2z + 2z
√
Ri−1,k(z, v),

for 2 6 i 6 k + 1 and i 6= l + 1, l + 2,

R̆l+1,k(z, v) = 1− 4z2(k − l)v − 2zv + 2zv

√
R̆l,k(z, v),

R̆l+2,k(z, v) = 1− 4z2(k − l − 1)− 2z

v
+

2z

v

√
R̆l+1,k(z, v).

Thus, for the derivatives we get

∂R̆i,k(z, v)

∂v
= 0 for i < l + 1,

∂R̆l+1,k(z, v)

∂v
= −4z2(k − l)− 2z + 2z

√
R̆l,k(z, v),

∂R̆l+2,k(z, v)

∂v
=

2z

v2
− 2z

v2

√
R̆l+1,k +

z

v

1√
R̆l+1,k

∂R̆l+1,k(z, v)

∂v
,

∂R̆i,k(z, v)

∂v
= z

1√
R̆i−1,k

∂R̆i−1,k(z, v)

∂v
for i > l + 2.

the electronic journal of combinatorics 26(4) (2019), #P4.47 39



Finally, we have

∂k−lH̆k(z, v)

∂v

∣∣∣
v=1

=
k+1∏
i=l+2

1√
R̆i,k

−zk−l−1

2
+

√
R̆l+1,kz

k−l−1

2
+

zk−l

2
√
R̆l+1,k

−
zk−l

√
R̆l,k

2
√
R̆l+1,k

+
zk−l+1(k − l)√

R̆l+1,k

 . (26)

Analogously to the previous sections we have to distinguish between different cases.
For the case k = Nj and l > j + 1 we get for n→∞

[zn]k−lH̆k(z, v) = ξl
n−5/4

Γ(−1/4)
ρ−nk

(
1 +O

(
n−

1
4

))
,

with

ξl =−
k+1∑

m=l+2

bm

2
√
a3
m

∏
i=l+2
i 6=m

1
√
ai

(
ρk−l−1
k (

√
al+1 − 1)

2
+
ρk−l+1
k (k − l)
√
al+1

+
ρk−lk (1−√al)

2
√
al+1

)

+
k+1∏
i=l+2

1
√
ai

ρk−l−1
k bl+1

2
√
al+1

− ρk−l+1
k (k − l)bl+1

2
√
a3
l+1

+
bl+1

2
√
a3
l+1

(
√
al − 1)− ρk−lk bl

4
√
al
√
al+1

 .

Thus,

[zn] ∂
∂v k−lH̆k(z, v)

[zn]k−lH̆k(z, 1)
=
−4ξl

∏k+1
m=j+2

√
am

ρk−jk bj+2

(
1 +O

((
n−

1
4

)))
, as n→∞.

We performed a thorough investigation of the constant −4ξl
∏k+1
m=j+2

√
am

ρk−jk bj+2
and showed

that it is almost zero, in case l is close to k + 1 and k is large„ i.e., if we consider a very
low De Bruijn level, that is close to the root.

Due to Equation (26) calculations get rather involved. Since the methods that are
used are the same as in the previous section, we will omit further calculations. However,
the results resemble the ones that we got in Section 5.1 for the number of leaves. The only
difference appears in the constants, but qualitatively also these constants behave equally.

6 Conclusion

Our investigation was triggered by the striking observation that the asymptotic number of
lambda-DAGs with bounded number of De Bruijn levels, say bounded by k, and n vertices
is of the form ρnn−3/2 except if the bound k belongs to some peculiar doubly exponentially
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growing sequence. There was no apparent reason why bounding the number of De Bruijn
levels by 8 is substantially different from setting the bound to 7 or 9.

The results in this paper showed that the vertices corresponding to the variables in
the associated lambda-terms gather at the bottom of the lambda-DAG, meaning the De
Bruijn levels of highest order within the lambda-DAG. Precisely, in each of the last `n
levels, where `n = Θ(log log k), we find Θ(n) variables. The other levels contain only a
bounded number of variables. As the bound grows, the higher levels become fuller and
fuller and whenever k reaches a value that makes `n jump to the next integer, a further
De Bruijn level becomes populated with variables. In this stage, there are only Θ(

√
n)

variables, but for the next value of k this level gets densely populated with variables, just
as the other levels of high order. This shows that there is a structural difference within the
classes of lambda-terms with at most k De Bruijn levels, depending on whether the bound
belongs to (Ni)i>0 or not. The distribution of the variables, in particular the fact that a
further level has to contain a larger but still fairly small number of variables apparently
has some slight affects on the degrees of freedom to choose the bindings which modifies
the subexponential term in the asymptotics.

Acknowledgements

We thank an anonymous referee for several comments leading to an improvement of the
presentation.

We also thank Zbigniew Gołębiewski for providing us with some preliminary compu-
tations on the topic. Our approach eventually took a different path, but his computations
led us to the conjecture about the nature of the phase transition in the unary profile.

References

[1] Henk P. Barendregt. The Lambda Calculus, its Syntax and Semantics, volume 40 of
Studies in Logic (London). College Publications, London, 2012. [Reprint of the 1984
revised edition, MR0774952], With addenda for the 6th imprinting, Mathematical
Logic and Foundations.

[2] Maciej Bendkowski, Olivier Bodini, and Sergey Dovgal. Polynomial tuning of mul-
tiparametric combinatorial samplers. In 2018 Proceedings of the Fifteenth Work-
shop on Analytic Algorithmics and Combinatorics (ANALCO), pages 92–106. SIAM,
Philadelphia, PA, 2018.

[3] Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc. Com-
binatorics of λ-terms: a natural approach. J. Logic Comput., 27(8):2611–2630, 2017.

[4] Maciej Bendkowski, Katarzyna Grygiel, and Paul Tarau. Boltzmann samplers for
closed simply-typed lambda terms. In Practical aspects of declarative languages,
volume 10137 of Lecture Notes in Comput. Sci., pages 120–135. Springer, Cham,
2017.

the electronic journal of combinatorics 26(4) (2019), #P4.47 41



[5] Maciej Bendkowski, Katarzyna Grygiel, and Marek Zaionc. On the likelihood of
normalization in combinatory logic. J. Logic Comput., 27(7):2251–2269, 2017.

[6] O. Bodini, D. Gardy, and A. Jacquot. Asymptotics and random sampling for BCI
and BCK lambda terms. Theoret. Comput. Sci., 502:227–238, 2013.

[7] Olivier Bodini, Danièle Gardy, and Bernhard Gittenberger. Lambda terms of
bounded unary height. In ANALCO11—Workshop on Analytic Algorithmics and
Combinatorics, pages 23–32. SIAM, Philadelphia, PA, 2011.

[8] Olivier Bodini, Danièle Gardy, Bernhard Gittenberger, and Zbigniew Gołębiewski.
On the number of unary-binary tree-like structures with restrictions on the unary
height. Ann. Comb., 22(1):45–91, 2018.

[9] Olivier Bodini, Danièle Gardy, Bernhard Gittenberger, and Alice Jacquot. Enumer-
ation of generalized BCI lambda-terms. Electron. J. Combin., 20(4):#P30, 2013.

[10] Olivier Bodini and Bernhard Gittenberger. On the asymptotic number of BCK(2)-
terms. In ANALCO14—Meeting on Analytic Algorithmics and Combinatorics, pages
25–39. SIAM, Philadelphia, PA, 2014.

[11] Olivier Bodini, Bernhard Gittenberger, and Zbigniew Gołębiewski. Enumerating
lambda terms by weighted length of their de Bruijn representation. Discrete Appl.
Math., 239:45–61, 2018.

[12] Olivier Bodini and Yann Ponty. Multi-dimensional Boltzmann sampling of languages.
In 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Meth-
ods in the Analysis of Algorithms (AofA’10), Discrete Math. Theor. Comput. Sci.
Proc., AM, pages 49–63. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2010.

[13] Olivier Bodini and Paul Tarau. On uniquely closable and uniquely typable skeletons
of lambda terms. In Logic-based program synthesis and transformation, volume 10855
of Lecture Notes in Comput. Sci., pages 252–268. Springer, Cham, 2018.

[14] Haskell B. Curry, Robert Feys, William Craig, J. Roger Hindley, and Jonathan P.
Seldin. Combinatory Logic, volume 1. North-Holland Amsterdam, 1958.

[15] René David, Katarzyna Grygiel, Jakub Kozik, Christophe Raffalli, Guillaume
Theyssier, and Marek Zaionc. Asymptotically almost all λ-terms are strongly nor-
malizing. Log. Methods Comput. Sci., 9(1):1:02, 30, 2013.

[16] Nicolaas G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the church-rosser theorem.
Indagationes Mathematicae (Proceedings), 75(5):381–392, 1972.

[17] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann
samplers for the random generation of combinatorial structures. Combin. Probab.
Comput., 13(4-5):577–625, 2004.

[18] Philippe Flajolet, Éric Fusy, and Carine Pivoteau. Boltzmann sampling of unlabelled
structures. In Proceedings of the Ninth Workshop on Algorithm Engineering and
Experiments and the Fourth Workshop on Analytic Algorithmics and Combinatorics,
pages 201–211. SIAM, Philadelphia, PA, 2007.

the electronic journal of combinatorics 26(4) (2019), #P4.47 42



[19] Philippe Flajolet and Andrew Odlyzko. Singularity analysis of generating functions.
SIAM J. Discrete Math., 3(2):216–240, 1990.

[20] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge Uni-
versity Press, Cambridge, 2009.

[21] Bernhard Gittenberger and Isabella Larcher. On the number of variables in special
classes of random lambda-terms. In 29th International Conference on Probabilistic,
Combinatorial and Asymptotic Methods for the Analysis of Algorithms, volume 110 of
LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 25, 14. Schloss Dagstuhl. Leibniz-
Zent. Inform., Wadern, 2018.

[22] Clemens Grabmayer. Linear depth increase of lambda terms in leftmost-outermost
rewrite sequences. In A tribute to Albert Visser, volume 30 of Tributes, pages 125–139.
Coll. Publ., [London], 2016.

[23] Katarzyna Grygiel, Paweł M. Idziak, and Marek Zaionc. How big is BCI fragment
of BCK logic. J. Logic Comput., 23(3):673–691, 2013.

[24] Katarzyna Grygiel and Pierre Lescanne. Counting and generating terms in the binary
lambda calculus. J. Funct. Programming, 25:e24, 25, 2015.

[25] Ryu Hasegawa. The generating functions of lambda terms (extended abstract). In
Combinatorics, complexity, & logic (Auckland, 1996), Springer Ser. Discrete Math.
Theor. Comput. Sci., pages 253–263. Springer, Singapore, 1997.

[26] Hsien-Kuei Hwang. On convergence rates in the central limit theorems for combina-
torial structures. European J. Combin., 19(3):329–343, 1998.

[27] Pierre Lescanne. On counting untyped lambda terms. Theoret. Comput. Sci., 474:80–
97, 2013.

[28] Małgorzata Moczurad, Jerzy Tyszkiewicz, and Marek Zaionc. Statistical properties
of simple types. Math. Structures Comput. Sci., 10(5):575–594, 2000.

[29] Zbigniew Paiłka. Testing an optimising compiler by generating random lambda terms.
In Proceedings of the 6th International Workshop on Automation of Software Test,
pages 91–97. ACM, 2011.

[30] Ryoma Sin’ya, Kazuyuki Asada, Naoki Kobayashi, and Takeshi Tsukada. Almost ev-
ery simply typed λ-term has a long β-reduction sequence. In Foundations of software
science and computation structures, volume 10203 of Lecture Notes in Comput. Sci.,
pages 53–68. Springer, Berlin, 2017.

[31] Paul Tarau. A hiking trip through the orders of magnitude: deriving efficient genera-
tors for closed simply-typed lambda terms and normal forms. In Logic-based program
synthesis and transformation, volume 10184 of Lecture Notes in Comput. Sci., pages
240–255. Springer, Cham, 2017.

[32] Jue Wang. Generating random lambda calculus terms. 2005. Unpublished
manuscript.

the electronic journal of combinatorics 26(4) (2019), #P4.47 43



[33] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding
bugs in c compilers. In ACM SIGPLAN Notices, volume 46, pages 283–294. ACM,
2011.

[34] Noam Zeilberger. Linear lambda terms as invariants of rooted trivalent maps. J.
Funct. Programming, 26:e21, 20, 2016.

[35] Noam Zeilberger and Alain Giorgetti. A correspondence between rooted planar maps
and normal planar lambda terms. Log. Methods Comput. Sci., 11(3):3:22, 39, 2015.

the electronic journal of combinatorics 26(4) (2019), #P4.47 44


	Introduction
	Motivation
	Previous work and the considered model
	The considered model

	Main results
	Total number of leaves in random lambda-terms with bounded De Bruijn indices
	Total number of leaves in random lambda-terms with bounded number of De Bruijn levels
	The case Nj < k < Nj+1
	The case k = Nj

	Unary profile of random lambda-terms with bounded number of De Bruijn levels
	Leaves
	Mean values
	Distributions

	Unary nodes
	unary nodes, case k=Nj
	unary nodes, case Nj<k<Nj+1

	Binary nodes

	Conclusion

