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Abstract

In this paper, we first present a new bijection between RNA secondary struc-
tures and plane trees. Combined with the Schmitt-Waterman bijection between
these objects, we then obtain a bijection on plane trees that relates the horizon-
tal fiber decomposition associated to internal vertices to the degrees of odd-level
vertices while the vertical path decomposition associated to leaves is related to the
degrees of even-level vertices. To the best of our knowledge, only the former relation
(i.e., horizontal vs odd-level) due to Deutsch is known. As a consequence, we obtain
enumeration results for various classes of plane trees, e.g., refining the Narayana
numbers and the enumeration involving young leaves due to Chen, Deutsch and
Elizalde, and counting a newly introduced ‘vertical’ version of k-ary trees. The
enumeration results can be also formulated in terms of RNA secondary structures
with certain parameterized features, which might have some biological significance.

Mathematics Subject Classifications: 05C05, 05A19, 05A15

1 Introduction

Ribonucleic acid (RNA) plays an important role in various biological processes within
cells, ranging from catalytic activity to gene expression. RNA is described by its sequence
of bases: A (adenine), U (uracil), G (guanine), and C (cytosine). These single-stranded
molecules fold onto themselves forming helical structures, by forming base pairs where
A pairs with U while G pairs with C. The sequence of bases of the RNA molecule is
known as primary structure, and it is determined experimentally. A subset of the helical
structure consistent with a planar graph is known as a secondary structure.

More than three decades ago, Waterman and his coworkers pioneered the combina-
torics and prediction of RNA secondary structures [6–10]. In particular, enumeration of
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the number of secondary structures over a sequence of length n that have k base pairs has
been done in Schmitt and Waterman [6] by establishing a bijection between secondary
structures and plane trees.

In this paper, we present a new bijection between RNA secondary structures and plane
trees. Combining our new bijection and the Schmitt-Waterman bijection [6] leads to a new
bijection ϕ on plane trees which enables us to obtain many interesting results. The most
relevant studies on plane trees in the literature are as follows. In his paper [4], Deutsch
presented an implicit, iteratively constructed bijection on plane trees which allowed him
to show that the number of vertices of degree q > 0 and the number of odd-level vertices
of degree q − 1 are equidistributed on the set of all plane trees. In particular, the case
q = 1 implies that the number of plane trees with k leaves is the same as the number of
plane trees with k even-level vertices, where the former is well known to be the Narayana
number. In Chen, Deutsch and Elizalde [2], the authors classified leaves of a plane tree into
old and young leaves, where a leaf is called old if it is the leftmost child of its parent and
young otherwise, and they obtained enumerative results with respect to these bijectively.

In a plane tree, the horizontal elementary substructures are fibers associated to its
internal vertices, i.e., internal vertices and their respective children. This horizontal fiber
decomposition has been well understood through extensive studies of plane trees according
to the number of internal vertices and their degree distribution. A dual perspective
which appears to be ignored (at least less-studied) is that, vertically, a plane tree can be
decomposed into paths associated to its leaves. Through our new bijection ϕ on plane
trees, not only can we show the correspondence between horizontal fibers and odd-level
vertices established by Deutsch [4], but we can also show that the vertical paths associated
to leaves actually correspond to even-level vertices at the same time. Namely, we discover
that the joint distribution of horizontal fibers and vertical paths is the same as the joint
distribution of odd- and even-level vertices.

As a consequence, based on these equidistribution results, we can compute the number
of plane trees with certain restricted path lengths in the vertical path decomposition (and
with restriction on the horizontal fiber decomposition) via the multivariate Lagrange
inversion formula, which refines the Narayana numbers and gives rise to some new results.
For example, k-ary trees are plane trees with every horizontal fiber having a size k, which
is known to be counted by certain generalized Catalan numbers, see, e.g., Chen [3]. Here
we are interested in their vertical duals, i.e., plane trees where any vertical path associated
to a leaf somehow has a size k. We show that these ‘vertical’ k-ary trees are counted by
numbers very similar to the generalized Catalan numbers. In addition, we observe that
the lengths of the paths associated to leaves can enable us to distinguish between old
and young leaves. Accordingly, we refine some results obtained in Chen, Deutsch and
Elizalde [2].

2 A new bijection

We first recall the definition of RNA secondary structures. Let [n] = {1, 2, . . . , n}. An
RNA secondary structure of length n is a simple graph with vertices in [n] and edges in
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E satisfying

• if (i, j) ∈ E, then |i− j| > 2;

• if (i, j) ∈ E and (k, l) ∈ E, where i < j and k < l, and [i, j]
⋂

[k, l] 6= ∅, then either
[i, j] ⊂ [k, l] or [k, l] ⊂ [i, j] (where [i, j] denotes the interval {r : i 6 r 6 j}).

We typically draw an RNA secondary structure in the following manner: we place all
vertices in a horizontal line and we draw an edge as an arc in the upper half-plane. Then,
the second condition in the above definition guarantees that any two arcs do not cross.
The vertex of an arc with a smaller label is called the left-end of the arc, and a vertex not
adjacent to any edge is called an isolated base. In addition, if (i, j) is an arc, we say that
an arc (i1, j1) (resp. an isolated base k) is covered by (i, j) if [i1, j1] ⊂ [i, j] (resp. k ∈ [i, j]),
and we also say that the arcs (i, j) and (i1, j1) nest with each other.

A plane tree T can be recursively defined as an unlabeled tree with one distinguished
vertex v called the root of T , where the unlabeled trees T ′ obtained by deleting v as well
as its incident edges from T are linearly ordered, and T ′ is a plane tree with the vertex
adjacent to v in T as its root. In a plane tree T , the number of edges in the unique path
from a vertex v to the root of T is called the level of v, and the vertices adjacent to v
on a lower level are called the children of v. The vertices on level 2i for i > 0 are called
even-level vertices and the rest are called odd-level vertices. A vertex is called a leaf if it
has no children, and is called an internal vertex otherwise. We will draw plane trees with
the root on the top level, i.e., level 0, and with the children of a level i vertex arranged
on level i+ 1 left-to-right following their linear order.

Theorem 1. There is a bijection φ between the set of RNA secondary structures of length
2a + k with k isolated bases and the set of plane trees with a + k edges and k even-level
vertices.

Proof. Let R be an RNA secondary structure of length 2a+ k with k isolated bases. We
construct a plane tree φ(R) as follows:

S1: Put a big arc covering all existing arcs and isolated bases of R and still refer to
the obtained structure as R in the following. Label the isolated bases in R with
b1, b2, . . . , bk left-to-right, and label the arcs with e0, e1, . . . , ea based on the left-to-
right order of their left-ends;

S2: Start with a vertex that will be the root of φ(R) and label the vertex with b1, and
generate k1 children for b1 if there are k1 arcs covering the isolated base b1 in R,
where the children from left to right correspond to these k1 arcs from the outermost
to the innermost and are labeled correspondingly, respectively;

S3: Set j = 2. While j 6 k, put a new child to the left of all existing children of the
vertex that corresponds to the innermost arc covering the isolated base bj in the
current partially constructed tree and label the newly generated child with bj, and
next generate kj children for the vertex bj if there are kj unused arcs (i.e., those with
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labels not appearing in the current partial tree) covering the isolated base bj, where
again the children from left to right correspond to these kj arcs from the outermost
to the innermost and are labeled correspondingly, respectively, and set j = j + 1.

The following properties are observed in the above construction: (i) the vertices bi for all
i are even-level vertices, and vice versa; (ii) the sequence e0e1 · · · ea will be obtained if
the children of the even-level vertices (in the order b1b2 · · · bk) are collected left-to-right
sequentially; (iii) the sequence b1b2 · · · bk will be obtained if the even-level vertices are
searched by depth-first search from right to left. (i) and (ii) should be straightforward,
and (iii) can be shown by induction. Hence, the labels of the vertices can be easily
and uniquely recovered after being removed whence the obtained structure with labels
removed is a plane tree with a+ k edges.

Before we specify the reverse algorithm, we mention two additional properties in the
above forward algorithm which are important to better understand the reverse algorithm
to come: (iv) the number of children of an isolated base (as a vertex in φ(R)) is the
number of left-ends of arcs between the present isolated base and the one immediately to
the left of it if any; (v) the parent of an isolated base if any is the innermost arc, excluding
those with the left-ends identified in (iv) if any, that covers the isolated base.

Let T be a plane tree with a + k edges and k even-level vertices. It is not hard to
verify that we can construct φ−1(T ) following the steps below:

SS1: Label the even-level vertices of T with b1, b2, . . . , bk respectively in the depth-first
searching manner from right to left, and label the left-to-right children of even-level
vertices arranged in the order b1b2 · · · bk sequentially with e0, e1, . . . , ea;

SS2: On a horizontal line, start with an isolated base labeled with b1, cover b1 with k1
mutually nesting arcs if the vertex b1 in T has k1 children, and label these arcs based
on the order of their left-ends left-to-right with e0, e1, . . . , ek1−1;

SS3: Set j = 2. While j 6 k, place an isolated base with a label bj to the right of all
existing isolated bases such that, (I) the newly placed isolated base is covered by
the arc et but not by es for any s > t if the vertex bj is a child of the vertex et in T ,
and (II) generate kj mutually nesting arcs to cover the isolated base bj if bj has kj
children in T , (II1) without crossing with any existing arcs, as well as, (II2) without
covering bj−1, and label these kj arcs left-to-right correspondingly, and set j = j+1.
Suppose we have just completed all steps though j − 1. Then, it is clear that the
left-ends of all already generated arcs are to the left of bj−1. Next consider j. If the
vertex bj is a child of the vertex et in T , then the innermost arc, excluding those
later added by (II), that covers bj should be et. Thus the condition (I) is necessary.
Next, if bj has kj children in T , then according to (iv), in φ−1(T ), there should be
kj arcs whose left-ends lie between bj and bj−1. In order to guarantee this, we need
to generate kj arcs to cover bj. The condition (II1) is clearly required to not violate
the definition of secondary structures, while (II2) is essentially the same as (iv).

Finally, removing the arc e0 as well as all e-labels and b-labels will give us a secondary
structure φ−1(T ).
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See Figure 1 for an illustration of the bijection φ.

1 2 3 4 5 6 7 8 9 10 111213
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Figure 1: An RNA secondary structure (left) and the process of constructing its corre-
sponding plane tree (right).

Remark 2. There are several variations of the bijection φ. For instance, we can put the
covering arcs of an isolated base right-to-left as children, or we can put a newly generated
child of an arc to the right of existing ones, or we can read the isolated bases from right
to left, or different combinations of these.

3 Consequences

In this section, we present a number of applications by combining the bijection φ and the
Schmitt-Waterman bijection [6].

The Schmitt-Waterman bijection from RNA secondary structures to plane trees can
be briefly summarized as follows: for a given RNA secondary structure, put a big arc
covering everything. Next, view each arc and isolated base as a vertex in a tree rooted at
the vertex corresponding to the big arc, where the left-to-right children of a vertex v in
the tree are the vertices corresponding to the left-to-right arcs and isolated bases directly
covered by v (if v is an arc). Therefore, the Schmitt-Waterman bijection maps an RNA
secondary structure with k isolated bases to a plane tree with k leaves. Thus, combined
with our bijection φ, with RNA secondary structures serving as intermediate objects, we
immediately obtain the following well-known result [4].

Corollary 3. The number of plane trees with n edges and k leaves equals the number of
plane trees with n edges and k even-level vertices.
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Proof. Let f be the Schmitt-Waterman bijection from RNA secondary structures to plane
trees. Clearly, ϕ = φ ◦ f−1 gives a bijection from the set of plane trees with n edges and
k leaves to the set of plane trees with n edges and k even-level vertices.

Figure 2 gives an example of the bijection ϕ.

level 0

level 1

level 2

level 3

level 4

Figure 2: Correspondence between a plane tree with 5 leaves and a plane tree with 5
even-level vertices.

The following corollary which is implied in [4] can be obtained as well.

Corollary 4. The bijection ϕ restricts to a bijection between the set of plane trees of n
edges with a k-element multiset M as its outdegree distribution of the internal vertices
and the set of plane trees of n edges having the multiset M′ = {z − 1 | z ∈ M} as the
outdegree distribution of the odd-level vertices.

Proof. Let R be a secondary structure (with the big arc added). An arc e corresponds
to an internal vertex in the plane tree f(R), and corresponds to an odd-level vertex in
the plane tree φ(R). If e covers t disconnected components (here a component is either
an isolated base or an arc and everything covered by the arc), then the outdegree of the
corresponding vertex in f(R) is t. Note that, in each component, by definition of RNA
secondary structure, there is at least one isolated base. By construction of φ(R), the arc
e is a child of the vertex corresponding to the first (left-to-right) isolated base in the first
component covered by e, while the first isolated base in each other component covered by
e must be a child of e as a vertex in φ(R). Thus, the outdegree of the odd-level vertex
corresponding to e in φ(R) is t− 1. The converse can be argued analogously, completing
the proof.

Remark 5. The reader can check that the outcomes of the implicit, iterative bijection
of Deutsch [4] are quite similar to those of our bijection ϕ. In fact, we believe that
the former can be transformed into the latter by specifying further steps in the iterative
construction there. However, our bijections in this paper are not motivated by revising
the former bijection. Nevertheless, we believe that our bijection ϕ discovered in the study
of RNA secondary structures is more explicit and more constructive. More importantly,
the results in the rest of this paper are not discussed in [4].
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By inspecting our bijections more carefully, we can obtain more properties on plane
trees, which will be the main theme of the rest of the paper. Note that there is a unique
path from a leaf to the root of a plane tree. Then, we can decompose a plane tree into a
set of paths where each path has a leaf as a terminate vertex. The decomposition works
as follows: suppose all leaves are ordered by their relative order in the depth-first search
from left to right. The first path is the path from the first leaf to the root. For t > 1,
the t-th path is the remaining part of the path from the t-th leaf to the root after the
previously obtained paths are removed from the tree, or equivalently, the t-th path should
go from the t-th leaf up to the first vertex that is already in a path that has been obtained.
We refer to this decomposition as the vertical path decomposition associated to leaves.
See Figure 3 (left) for an illustration. We will call the multiset consisting of the lengths
of the obtained paths the path distribution of the given tree.

Theorem 6. The bijection ϕ restricts to a bijection between the set of plane trees of n
edges with a k-element multiset M as its path distribution and the set of plane trees of n
edges having M as the degree distribution of the even-level vertices.

Proof. Let R be a secondary structure with an added big arc. In the Schmitt-Waterman
bijection f , the path from a leaf to the root in f(R) consists of the leaf itself (an isolated
base) and all arcs (including the added big arc) covering the isolated base. Thus, the first
path is determined by the first isolated base b1 and all arcs covering b1. So the length of
the first path is the number of these arcs which equals the number of children (hence the
degree) of b1 in φ(R). It is not hard to see that the length of the i-th (i > 1) path is the
number one larger than the number of ‘unused’ arcs covering the i-th leaf after the first
i− 1 paths have been obtained in the decomposition process. Thus, the length of the i-th
path is one larger than the number of children of bi in φ(R) which is the degree of bi in
φ(R). The converse is also not hard to see whence the theorem.

Based on Corollary 4 and Theorem 6, we can conclude that, in a sense, the vertical
determines the even-levels while the horizontal determines the odd-levels. Although the
horizontal-odd relation is known, to the best of our knowledge, the two relations as a
whole have not been addressed. We also remark that it seems not easy to motivate the
vertical-even relation from Deutsch’s bijection [4] due to its implicit, iterative nature.

Let T be a plane tree with k leaves. Let lt be the number one less than the length of
the t-th path in the path decomposition of T for 1 < t 6 k, and let l1 be the length of the
first path in the path decomposition. We denote the multiset consisting of these numbers
lt (1 6 t 6 k) as M̃(T ). With an application of the multivariate Lagrange inversion
formula, we will obtain the forthcoming theorem. Let us first recall the following version
of the multivariate (bivariate) Lagrange inversion formula [1, 5]:
Let g(x1, x2), f1(x1, x2), f2(x1, x2) be formal power series in x1, x2 such that fi(0, 0) 6= 0.
Then, the set of equations wi = tifi(w1, w2) for 1 6 i 6 2 uniquely determine the wi as
formal power series in t1, t2, and

[tp1t
q
2]g(w1, w2) = [xp1x

q
2]g(x1, x2)f

p
1 (x1, x2)f

q
2 (x1, x2) det

{
1− x1

f1

∂f1
∂x1

−x1

f2

∂f2
∂x1

−x2

f1

∂f1
∂x2

1− x2

f2

∂f2
∂x2

}
,
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level 1

level 2

level 3

level 4
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2

2

1

1

3

{2,2,1,1,3}

1

2 3

4

5

1 2

3 4

5

Figure 3: The bijection ϕ preserves the multiset {2, 2, 1, 1, 3}.

where [tp1t
q
2] denotes the coefficient of tp1t

q
2.

Theorem 7. The number Ck,h(n) of plane trees T with n > 0 edges and k leaves such

that maxM̃(T ) 6 h is given by

Ck,h(n) =
1

n

(
n

k

) i6n+1−k
h+1∑

i>0

(−1)i
(
k

i

)(
n− i(h+ 1)

k − 1

)
. (1)

Proof. Based on Theorem 6, the number of plane trees T with n edges and k leaves where
maxM̃(T ) 6 h is equal to the number of plane trees of n edges with k even-level vertices
such that every even-level vertex has at most h children. The latter can be computed as
shown below:

Given two sets E and O of vertices, we call a plane tree T on E
⋃
O a set-alternating

tree if vertices on any path starting from the root of T alternate in the two sets. Let

w1(t1, t2) =
∑

T∈PE

t
#vertices in E in T
1 t

#vertices in O in T
2 ,

w2(t1, t2) =
∑

T∈PO

t
#vertices in E in T
1 t

#vertices in O in T
2 ,

where PE denotes the set of set-alternating plane trees with root in E and every E-vertex
having at most h children while PO denotes the set of set-alternating plane trees with
root in O and every E-vertex having at most h children. Then, it is obvious that

w1 = t1
1− wh+1

2

1− w2

, w2 = t2
1

1− w1

.
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Clearly, the number of plane trees with n edges and k even-level vertices such that every
even-level vertex has at most h children is the same as the number of set-alternating trees
of n edges with root in E and with every E-vertex having at most h children, which is
obviously [tk1t

n+1−k
2 ]w1.

In terms of the above bivariate Lagrange inversion formula, we have

g(x1, x2) = x1, f1(x1, x2) =
1− xh+1

2

1− x2
, f2(x1, x2) =

1

1− x1
.

[tp1t
q
2]w1 = [xp1x

q
2]g · f

p
1 · f

q
2 · det

{
1− x1

f1

∂f1
∂x1

−x1

f2

∂f2
∂x1

−x2

f1

∂f1
∂x2

1− x2

f2

∂f2
∂x2

}

= [xp1x
q
2]

(1− xh+1
2 )p

(1− x2)p
x1

(1− x1)q

(
1− x1x2(1− x2)

(1− x1)(1− xh+1
2 )

[ 1− xh2
(1− x2)2

− hxh2
1− x2

])
= [xp−11 xq2](1− x1)−q−1(1− x2)−p−1(1− xh+1

2 )p−1

× [(1− x1)− x2(1− xh+1
2 )− xh+1

2 + (h+ 2)x1x
h+1
2 − (h+ 1)x1x

h+2
2 ]

=

(
q + p− 2

p− 1

) i6 q
h+1∑

i>0

(−1)i
(
p− 1

i

)(
p+ q − i(h+ 1)

q − i(h+ 1)

)
(A1)

−
(
q + p− 1

p− 1

) i6 q−1
h+1∑

i>0

(−1)i
(
p

i

)(
p+ q − 1− i(h+ 1)

q − 1− i(h+ 1)

)
(A2)

−
(
q + p− 1

p− 1

) i6 q−1−h
h+1∑

i>0

(−1)i
(
p− 1

i

)(
p+ q − h− 1− i(h+ 1)

q − h− 1− i(h+ 1)

)
(A3)

+ (h+ 2)

(
q + p− 2

p− 2

) i6 q−1−h
h+1∑

i>0

(−1)i
(
p− 1

i

)(
p+ q − h− 1− i(h+ 1)

q − h− 1− i(h+ 1)

)
(A4)

− (h+ 1)

(
q + p− 2

p− 2

) i6 q−2−h
h+1∑

i>0

(−1)i
(
p− 1

i

)(
p+ q − h− 2− i(h+ 1)

q − h− 2− i(h+ 1)

)
. (A5)

The last quantity can be simplified into(
p+ q − 2

p− 1

) i6 q−1
h+1∑

i>0

(−1)i
(
p

i

)(
p+ q − i(h+ 1)

p

)
1

p+ q − i(h+ 1)
(B1)

+ (h+ 1)

(
q + p− 2

p− 2

) i6 q
h+1∑

i> q−1
h+1

(−1)i−1
(
p− 1

i− 1

)(
p+ q − i(h+ 1)

p

)
(B2)

+

(
q + p− 2

p− 1

) i6 q
h+1∑

i> q−1
h+1

(−1)i
(
p

i

)(
p+ q − i(h+ 1)

p

)
, (B3)
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where more detailed manipulations can be found in Appendix A.
Note that there is at most one integer in the interval ( q−1

h+1
, q
h+1

] for any integer h > 0.
Specifically, if h + 1 | q, there exists exactly one integer m in the interval such that
m(h+ 1) = q. In this case, the sum of B2 and B3 is

(−1)m
[(
q + p− 2

p− 1

)(
p

m

)
− (h+ 1)

(
q + p− 2

p− 2

)(
p− 1

m− 1

)]
=

(−1)m

p

(
p+ q − 2

p− 1

)(
p

m

)
,

which can be merged into B1 by changing i 6 q−1
h+1

into i 6 q
h+1

. If h + 1 - q, there is no
integer in that interval, thus B2 and B3 are both zero. Furthermore, any integer i 6 q

h+1

must satisfy i 6 q−1
h+1

. Hence, changing i 6 q−1
h+1

into i 6 q
h+1

in B1 makes no difference.
Therefore, the sum of B1, B2 and B3 can be written in a unified form in all cases, which
gives the quantity in the theorem after setting p = k, q = n+ 1− k.

For example, there are 14 plane trees T with five edges and three leaves such that
maxM̃(T ) 6 2, which are shown below:

Figure 4: The 14 plane trees.

Note that for any plane tree T with n edges, we have maxM̃(T ) 6 n. Then, we
immediately have

Corollary 8. The number of plane trees with n edges and k leaves is given by the Narayana
number

1

n

(
n

k

)(
n

k − 1

)
= Cn,k(n).

Theorem 9. The number of plane trees T with n > 0 edges and k leaves such that lt = h
for 1 6 t 6 k is given by h

n

(
n

k−1

)
if (h+ 1)k = n+ 1, and 0 otherwise.

Proof. It is easy to see that n+ 1 = (h+ 1)k if lt = h for 1 6 t 6 k. The remaining part
can be shown analogously as Theorem 7.
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An equivalent formulation of Theorem 9 is that the number of plane trees T with k
leaves such that lt = h for 1 6 t 6 k is given by h

(h+1)k−1

(
(h+1)k−1

k−1

)
, which is very similar

to the number 1
hk+1

(
hk+1
k

)
of h-ary trees with k internal vertices (e.g., see [3]). So, to

some extent, these trees can be viewed as ‘h-ary’ trees defined from another angle, i.e.,
vertically.

As a corollary of Theorem 7 and Theorem 9, we obtain a new curious identity below.

Corollary 10. For n > 0, k > 1, we have

i6n+1−k
h+1∑

i>0

(−1)i
(
k

i

)(
n− i(h+ 1)

k − 1

)
=

{
0, for n+ 1 > (h+ 1)k, h > 0;

1, for n+ 1 = (h+ 1)k, h > 0.
(2)

Proof. Note that a plane tree T with k leaves and maxM̃(T ) 6 h can have at most
(h + 1)k vertices. Thus, Ck,h(n) = 0 for n + 1 > (h + 1)k, which gives the first case. If
the number of vertices n+ 1 = (h+ 1)k, then lt = h for 1 6 t 6 k. Applying Theorem 7
and Theorem 9 gives the second case, completing the proof.

Note that Eq. (2) can be rewritten as

i6hk+δ
h+1∑

i>0

(−1)i
(
k

i

)(
(k − i)(h+ 1) + δ − 1

k − 1

)
=

{
0, for δ > 0, h > 0;

1, for δ = 0, h > 0.
(3)

It might be interesting to find a direct combinatorial proof for the identity.
The leaves of a plane tree are classified into old and young leaves in Chen, Deutsch and

Elizalde [2]: a leaf is an old leaf if it is the leftmost child of its parent, and it is a young
leaf otherwise. We can identify young and old leaves from the above path decomposition
of a plane tree.

Lemma 11. In the path decomposition of a plane tree, a leaf contained in a length one
path other than the first path is a young leaf, and vice versa.

Proof. Let T be a plane tree and v is an old leaf there. Suppose the parent of v is u1.
We have the following two cases: (i) If u1 is the root of T , then the path containing v is
the first path and has length 1 since v is the leftmost child of the root; (ii) Otherwise, u1
has a parent u2. By definition, v is the leftmost child of u1. Then, the path from v to the
root is the ‘leftmost’ path containing the edge (u1, u2). Thus, the edge (u1, u2) can not
be contained in any previous path in the path decomposition. So, the path containing v
has length at least 2. In summary, an old leaf either induces a path of length at least two
or the first path with a length one. Conversely, the first leaf is clearly always an old leaf
regardless of the length of the first path. For t > 1, if the t-th path has a length at least
two, then we can conclude the t-th leaf to be old by arguing analogously as the case (ii),
whence the lemma.
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Corollary 12. The number of plane trees with n edges, k leaves and i young leaves is the
same as the number of plane trees with n edges and k even-level vertices where i of them
are leaves.

Proof. Considering Theorem 6 and Lemma 11 together completes the proof.

Based on Corollary 12, we can compute the number of plane trees with restrictions on
path lengths and the number of young leaves.

Theorem 13. The number Ch,y,k(n) of plane trees T with n > 0 edges and k leaves such

that maxM̃(T ) 6 h and y out of k leaves are young leaves is given by

1

k − y

(
n− y − 1

k − y − 1

)(
n− 1

y

) i6n+1+y−2k
h∑

i>0

(−1)i
(
k − y
i

)(
n− k − ih

n+ 1 + y − 2k − ih

)
. (4)

Proof. Let C̄h,j(m) be the number of plane trees with m edges and j leaves such that
1 6 lt 6 h for 1 6 t 6 j. We first show that

Ch,y,k(n) =

(
n− 1

y

)
C̄h,k−y(n− y).

This can be seen as follows: On the one hand, for each plane tree T with n edges and
k leaves such that maxM̃(T ) 6 h and y out of k leaves are young leaves, if we delete
the young leaves, we will obtain a plane tree with n− y edges and k − y leaves such that
1 6 lt 6 h for 1 6 t 6 k − y due to Lemma 11. On the other hand, for each plane tree
of the latter case, inserting y leaves into the sectors other than the leftmost ones around
these n + 1− k internal vertices will generate a plane tree of the former case. There are
2(n−y)− (k−y)− (n+1−k)+1 = n−y such sectors, which gives in total

(
n−1
y

)
different

ways of inserting y leaves, whence we have the desired relation.
Next, based on Theorem 6, the number C̄h,k−y(n − y) also counts plane trees T of

n − y edges with k − y even-level vertices such that every even-level vertex has at least
one child and at most h children. Employing an analogous computation as in Theorem 7,
we obtain

C̄h,k−y(n− y) =
1

k − y

(
n− 1− y
k − y − 1

) i6n+1+y−2k
h∑

i>0

(−1)i
(
k − y
i

)(
n− k − ih

n+ 1 + y − 2k − ih

)
,

and the proof follows.

As an immediate consequence, we recover the following result obtained in [2].

Corollary 14. The number of plane trees with n > 0 edges, i old leaves and j young
leaves is 1

n

(
n
i

)(
n−i
j

)(
n−i−j
i−1

)
.
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Proof. Obviously, the desired number is

Cn,j,i+j(n) =
1

i

(
n− 1− j
i− 1

)(
n− 1

j

)(
n− i− j
i− 1

)
=

1

n

(
n

i

)(
n− i
j

)(
n− i− j
i− 1

)
,

and the proof follows.

The number of plane trees with n edges and i old (resp. young) leaves can be obtained
by summing over all possible j’s (resp. i’s) in Corollary 14, which can be found in Chen,
Deutsch and Elizalde [2] as well.

Based on Theorem 6 and Corollary 4, we can also count plane trees with both ver-
tical and horizontal restrictions. It should be noted that it is generally not possible to
have a plane tree with every vertex having k children while every path (from the path
decomposition) has exactly length k, i.e., in a sense being regular both ‘horizontally’ and
‘vertically’. However, we can have a weaker version of these regular trees, called strong
k-ary trees. A k-ary tree T is called strong if maxM̃(T ) 6 k. Applying an analogous
computation as in Theorem 7, we obtain

Theorem 15. The number of strong k-ary trees with n internal vertices is given by

i6 n
k+1∑

i>0

(−1)i
1

(k − 1)n+ 1

(
(k − 1)n+ 1

i

)(
kn− i(k + 1)

n− i(k + 1)

)
.

Finally, we remark that the computational results in this paper can be also formulated
in terms of RNA secondary structures with certain parameterized features (similar to,
e.g., hairpins and cloverleaves [10]), which might have some biological significance. For
instance, the path distribution represents the distribution of the sizes of parallel base pairs
(or arcs) ‘induced’ by isolated bases.
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A From A-terms to B-terms

Combining A1 and A2, we obtain

1

p+ q − 1

(
p+ q − 1

p

)(
p+ q − 1

p− 1

)
(C1)

+

(
q + p− 2

p− 1

) i6 q
h+1∑

i>1

(−1)i
(
p− 1

i

)(
p+ q − i(h+ 1)

p

)
(C2)
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−
(
q + p− 1

p− 1

) i6 q−1
h+1∑

i>1

(−1)i
p

p− i

(
p− 1

i

)(
p+ q − i(h+ 1)

p

)
q − i(h+ 1)

p+ q − i(h+ 1)
, (C3)

where C1 is the sum of the terms for i = 0 in A1 and A2. Combining A3–A5 by writing
h+ 2 = (h+ 1) + 1 and using

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
twice, we obtain

(
q + p− 2

p− 2

) i6 q−1
h+1∑

i>1

(−1)i−1
i(h+ 1)

p− i

(
p− 1

i

)(
p+ q − i(h+ 1)

p

)
p

p+ q − i(h+ 1)
(C4)

−
(
q + p− 2

p− 1

) i6 q
h+1∑

i>1

(−1)i−1
i

p− i

(
p− 1

i

)(
p+ q − i(h+ 1)

p

)
(C5)

+ B2.

Combining C2 and C5, we have

(
q + p− 2

p− 2

) i6 q
h+1∑

i>1

(−1)i
qp[p+ q − i(h+ 1)]

(p− 1)(p− i)[p+ q − i(h+ 1)]

(
p− 1

i

)(
p+ q − i(h+ 1)

p

)
.

(D1)

Note that C3 can be rewritten as

−
(
q + p− 2

p− 2

) i6 q−1
h+1∑

i>1

(−1)i
(
p− 1

i

)(
p+ q − i(h+ 1)

p

)
q − i(h+ 1)

p+ q − i(h+ 1)

p

p− i
p+ q − 1

p− 1
.

(C3)

Combining C4, D1 (i.e., C2 and C5) and C3 together, C4 will be cancelled, D1 will be
cancelled except for the part B3, and the remaining part of C3 is

(
p+ q − 2

p− 2

) i6 q−1
h+1∑

i>1

(−1)i
(
p

i

)(
p+ q − i(h+ 1)

p

)
q

[p+ q − i(h+ 1)](p− 1)
. (D3)

It is easy to see that C1 equals the term for i = 0 of D3. Thus, C1 and D3 give B1. In
conclusion, we have arrived at the B-terms from the A-terms.
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