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Abstract

Given a graph G, we say a k-uniform hypergraph H on the same vertex set
contains a Berge-G if there exists an injection φ : E(G)→ E(H) such that e ⊆ φ(e)
for each edge e ∈ E(G). A hypergraph H is Berge-G-saturated if H does not
contain a Berge-G, but adding any edge to H creates a Berge-G. The saturation
number for Berge-G, denoted satk(n,Berge-G) is the least number of edges in a k-
uniform hypergraph that is Berge-G-saturated. We determine exactly the value of
the saturation numbers for Berge stars. As a tool for our main result, we also prove
the existence of nearly-regular k-uniform hypergraphs, or k-uniform hypergraphs in
which every vertex has degree r or r − 1 for some r ∈ Z, and less than k vertices
have degree r − 1.

Mathematics Subject Classifications: 05C65, 05C35, 05D40

1 Introduction

The main problem in extremal graph theory involves finding the extremal number of F ,
ex(n, F ), which is the maximum number of edges among all n vertex graphs that do not
contain a subgraph isomorphic to some forbidden graph F . This problem was originally
studied by Mantel for triangles, [20]. Turán’s Theorem generalized this, giving the value
of ex(n,Ks) for all s, [22].

We say a graph G is F -free if G does not contain a subgraph isomorphic to F . An easy
but interesting observation is that if G is an F -free on n vertices with |E(G)| = ex(n, F ),
then G has the property that for any edge e in the complement of G, e ∈ E(G), adding
e to G must create a subgraph isomorphic to F . This leads to the following natural
definition: We say G is F -saturated if G is F -free, but for any edge e ∈ E(F ), G + e
contains a copy of F . Thus, we can say that ex(n, F ) is the maximum number of edges in
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any F -saturated graph on n vertices. This leads to an interesting minimization problem
associated with extremal numbers.

The saturation number of a forbidden graph F , denoted sat(n, F ) is the least number
of edges over all graphs G on n vertices that are F saturated. It has been seen that
saturation numbers and extremal numbers behave very differently. Possibly the most
striking difference is in their asymptotic growth rates. The Erdős-Stone Theorem, some-
times referred to as the Fundamental Theorem of Extremal Graph Theory, characterizes
the growth rate of extremal numbers for all non-bipartite forbidden graphs. Let χ(F )
denote the chromatic number of F . Given functions f = f(n) and g = g(n), we write
f = O(g) if there exists some constant c such that f 6 cg for all sufficiently large n, and
we write f = o(g) if limn→∞ f/g = 0.

Theorem 1. Erdős-Stone Theorem, [11] For all non-empty forbidden graphs F , we have

ex(n, F ) =

(
χ(F )− 2

χ(F )− 1
− o(1)

)(
n

2

)
Thus, extremal numbers for non-bipartite forbidden graphs grow quadratically in n.

In contrast to this, we have the following theorem by Kásonyi and Tuza, which shows
that saturation numbers grow no faster than linearly in n.

Theorem 2. [18] For all forbidden graphs F , we have

sat(n, F ) = O(n).

Extremal numbers and saturation numbers have also been studied for hypergraphs. A
hypergraph H is a generalization of a graph, where the edges of H can contain arbitrarily
many vertices, rather than just two. A hypergraph is called k-uniform if every edge
contains exactly k vertices. Thus, a 2-uniform hypergraph is just a graph. Hypergraph
extremal problems are notoriously difficult, for example, let K

(3)
4 denote the complete 3-

uniform hypergraph on 4 vertices. Not even the growth rate of ex(n,K
(3)
4 ) is known, even

though this may be the easiest non-trivial hypergraph to look at. In terms of hypergraph
saturation, the saturation function for complete hypergraphs were determined exactly
in [5].

While in general hypergraph extremal problems have been difficult to make much
progress on, recently specific interesting families of hypergraphs have been studied, and
significant progress has been made for these families. Given a graph F and hypergraph H
embedded on the same vertex set, we say a hypergraph H is Berge-F if there is a bijection
φ : E(F )→ E(H) such that e ⊆ φ(e) for all e ∈ E(F ). This can be thought of as adding
vertices to the edges of F to make them hyperedges that form a copy of H, or shrinking
down the hyperedges of H to graph edges that create F . It is worth noting that many
non-isomorphic hypergraphs can be Berge-F for the same graph F .

Analogously to the graph case, we can say a k-uniform hypergraph H is Berge-F -
saturated if H does not contain a subgraph isomorphic to a Berge-F , but adding any
hyperedge to H creates a copy of Berge-F . Based on this, we can define the k-uniform
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extremal number exk(n,Berge-F ) and saturation number satk(n,Berge-F ) to be the max-
imum, and respectively minimum, number of edges in a Berge-F -saturated k-uniform
hypergraph on n vertices. It is worth noting that Berge extremal numbers and saturation
numbers are just a special case of extremal and saturation numbers for the family of hy-
pergraphs which are Berge-F for the graph F . Extremal numbers for Berge hypergraphs
have been studied extensively, [19, 15, 7, 16, 13, 21, 14]. On the other hand, saturation
numbers for Berge hypergraphs have been mostly left untouched.

In the seminal paper on saturation numbers for Berge hypergraphs, saturation number
for Berge hypergraphs for many common classes of graphs were studied by the second au-
thor and others, including triangles, matchings, cycles, paths and stars [10]. The growth
rate of saturation numbers also have been studied by the second author and others, and it
has been determined that satk(n,Berge-F ) = O(n) for 3 6 k 6 5 [9]. Recently, Axenovich
and Winter have begun considering Berge saturation for non-uniform hypergraphs, show-
ing that there are Berge-F -saturated non-uniform hypergraphs with |E(F )| − 1 edges for
all graphs F except stars, in which there are saturated examples with |E(F )| edges [1].
Here we will study the saturation number for Berge stars in the uniform case. A special
case of stars was considered by the second author and others.

Theorem 3. [10] For all n > k2,

satk(n,K1,k+1) = n− k + 1.

Due to a certain structure necessary in the proof of the preceding theorem, it only
applies to stars where the number of leaves is exactly one greater than the uniformity of the
host hypergraph. In this note, we will extend this result by determining these saturation
numbers exactly for any uniformity and any number of leaves. Here we present our main
result

Theorem 4. For all k > 3, ` ∈ N, and large n, we have

satk(n,Berge-K1,`) = min
a∈[n],(a−1

k−1)6`−2

⌈
(`− 1)(n− a)

k

⌉
+

(
a

k

)
.

Similarly to the proof of Theorem 3 from [10], our main result involves finding a
hypergraph with certain structural properties. A hypergraph H is linear if for every pair
of edges e, f ∈ E(H), |e ∩ f | 6 1. Further, a k-uniform hypergraph is nearly-d-regular if
every vertex has degree (total number of edges that contain that vertex) either d or d−1,
and less than k vertices have degree d− 1. If dn/k is an integer, then a nearly-d-regular
hypergraph will have only vertices of degree d, so we just say the hypergraph is d-regular.
For Theorem 4, we need nearly-d-regular k-uniform hypergraphs that are also linear.

A linear k-uniform d-regular hypergraphs on n vertices with m = dn
k

edges is equivalent
to an incidence structure known as a (n,m, d, k)-configuration, which is a set of n points
and m lines such that each line contains k points, each point is contained in d lines, and
lines intersect in at most one point.
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It is known that for n large enough, as long as dn/k is an integer, (n,m = dn
k
, d, k)-

configurations exist, [8], and thus so do linear d-regular k-uniform hypergraphs. For the
purposes of this paper though, linear nearly-d-regular k-uniform hypergraphs (i.e. we
may not have dn/k ∈ Z) are necessary. This is in essence a problem of graphical degree
sequences.

Given a finite sequence of non-negative integers, d1 > d2 > . . . > dn, we say the
sequence is graphical if there exists a simple graph on n vertices whose degree sequence
matches this sequence. The Erdős-Gallai theorem, [12], gives an efficient characterization
of graphical degree sequences. Unfortunately there is not an analogous result known for
k-uniform hypergraphs.

A sequence of non-negative integers is called k-graphical if there exists a k-uniform
hypergraph with that degree sequence, and is called linearly-k-graphical if there exists
a linear k-uniform hypergraph with the desired degree sequence. For recent work on
k-graphical degree sequences, see [2]. In [4], the authors provide an Erdős-Gallai-type
theorem for linear hypergraphs, but only for non-uniform hypergraphs, so their results
do not apply to nearly-regular uniform hypergraphs. Thus, as a tool for determining the
saturation number for Berge stars, we also prove the existence of nearly-regular linear
hypergraphs.

Theorem 5. Let d > 1 and k > 2. Then for all sufficiently large n, there exists a
nearly-d-regular k-uniform linear hypergraph on n vertices.

In order to prove the preceding result, we will use the probabilistic method. The
main idea behind the probabilistic method is that if one can exhibit a probabilistic ex-
periment that has a positive probability of outputting a nearly-d-regular k-uniform linear
hypergraph on n vertices, then such a structure must necessarily exist.

To do this, we will use the configuration model for hypergraphs. Discussed in detail
for graphs in [17], the configuration model for hypergraphs produces uniformly at random
a k-uniform pseudo-hypergraph (a k-uniform hypergraph that may have repeated edges,
and with edges that contain the same vertex multiple times) with a prescribed degree
sequence. We will show that this model has a positive probability of producing a linear
nearly-regular uniform simple hypergraph.

The layout of the rest of the paper is as follows: In Section 2.1, the configuration
model will be discussed in more detail. In Section 2.2, the configuration model is used
to prove Theorem 5. Finally, in section 3 the main theorem, Therem 4 is proved using
Theorem 5.

2 Linear Nearly-Regular Uniform Hypergraphs

2.1 The Configuration Model

The following random model was first used implicitly by Bender and Canfield [3] and
made explicit by Bollobás [6].
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Let k > 2 be an integer and d = (d1, d2, . . . , dn) be a sequence of non-negative integers
such that k |

∑n
i=1 di. We will describe how to generate a random k-uniform pseudo-

hypergraph on n vertices with degree sequence d.
Let S = {vi,j | 1 6 i 6 n, 1 6 j 6 di} be a set of

∑n
i=1 di elements, which we

will call configuration points. For each 1 6 i 6 n, let Vi = {vi,j | 1 6 j 6 di}. A
configuration is a k-uniform perfect matching M with vertex set S. To each configuration,
we can associate a random pseudo-hypergraph H with degree sequence d: Let V (H) =
{V1, V2, . . . , Vn} and for each k-edge e ∈M , e = {vi1,j1 , vi2,j2 , . . . , vik,jk} add the k-element
multiset {Vi1 , Vi2 , . . . , Vik} to E(H). This can be thought of as taking the matching M ,
and collapsing all the configuration points in Vi down to a single vertex for each 1 6 i 6 n,
while preserving adjacencies. Let H(k)

∗ (n,d) denote the probability space whose outcome
is the k-uniform pseudo-hypergraph associated with a configuration chosen uniformly at
random. Let φ(x) denote the number of configurations on x points, and note that

φ(x) =
x!

(k!)x/k(x/k)!
. (1)

This process may create loops, which is when some edge in M intersects some Vi in
more than one point. More formally, we will say a pair of configuration points vi,j1 , vi,j2
form a loop at Vi if they are contained in the same edge in M . For example, if four
configuration points from the same set Vi ended up all together in a single edge of M ,
we will count this as being

(
4
2

)
= 6 loops at Vi. We would like to construct a linear

hypergraph, so we are also interested in the number of edges this process creates that
overlap in two or more vertices. More formally, we will say that four configuration points
vi1,j1 , vi1,j2 , vi2,j3 , vi2,j4 form an overlap if there exist two k-edges e, f ∈ M such that
vi1,j1 , vi2,j3 ∈ e and vi1,j2 , vi2,j4 ∈ f , or vi1,j1 , vi2,j4 ∈ e and vi1,j2 , vi2,j3 ∈ f . Note that if a
configuration has no loops and no overlaps, then the associated hypergraph is a simple
linear hypergraph.

2.2 The Existence of Linear Nearly-Regular Uniform Hypergraphs

We will use the method of moments and the configuration model to show that linear
nearly-regular hypergraphs exist. More precisely, we will need the following theorem.
Here, given an integer X, let (X)t =

∏t−1
i=0(X − i) = X!

(X−t)! denote the falling factorial.

Theorem 6. (Theorem 6.10 in [17] Let X1, X2, . . . , Xn, . . . and Y1, Y2, . . . , Yn, . . . be two
sequences of random variables. If λ, µ > 0 are real numbers such that, as n → ∞, we
have

E [(Xn)`1 · (Yn)`2 ]→ λ`1 · µ`2

for all integers `1, `2 > 0, then Xn and Yn converge in distribution to independent Poisson
random variables with mean λ and µ respectively.

We now have everything we need to show the existence of nearly-d-regular linear
hypergraphs. The proof of this is a straightforward generalization of the proof provided
in [17] on the number of small cycles of different lengths in random regular graphs. For
the sake of completeness, we provide the details of this generalization here.
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Proof. proof of Theorem 5
Given integers n > d with d constant, let r = (dn mod k), and let d be the degree

sequence of a n vertex nearly-d-regular hypergraph. Let H = H(k)
∗ (n,d) be an outcome

of the configuration model. Note that we have a total of nd− r configuration points. Let
Z1 and Z2 be the random variables that tracks the number of loops and the number of
overlap in H respectively. Our goal is to show that we have Z1 = Z2 = 0 with positive
probability, which will imply the existence of the desired hypergraph. To accomplish this,
we will actually prove something much stronger; using the method of moments, we will
show that Z1 and Z2 converge to independent Poisson random variables. Since Poisson
random variables have a positive probability of being 0, this will complete the proof.

Towards applying Theorem 6, let λ = (d−1)(k−1)
2

and µ =
(

(d−1)(k−1)
2

)2
, and fix integers

`1, `2 > 0. Consider the random variable X = (Z1)`1(Z2)`2 . This counts ordered pairs,
where the first coordinate contains an ordered set of `1 distinct loops in H and the second
coordinate contains an ordered set of `2 distinct overlapping pairs in H. a collection of `1
loops and `2 overlaps involves at most `1 + 2`2 edges in M , at most `1 + 2`2 vertices Vi,
and at most 2`1 + 4`2 configuration points vi,j. This happens when each loop and overlap
in question are in distinct edges and with distinct vertices. We will show that if this is
not the case, the contribution to E(X) is negligible.

We will say a collection of `1 loops and `2 overlaps is of type (a, b, c) if the collection
involves a edges, b vertices and c configuration points. Let Y be the random variable that
counts contributions to X from collections of loops and overlaps of type (a, b, c) when one
or more of a, b, c are not at their maximum value. Recall that φ(x), from Equation (1) is
the function that counts the number of k-edge matchings on x configuration points. For
ease of notation set C1 = (db)c(ak)!, and note that C1 is constant with respect to n. Then

E(Y ) 6
∑

(a, b, c) ∈ [`1 + 2`2]
2 × [2`1 + 4`2],

(a, b, c) 6= (`1 + 2`2, `1 + 2`2, 2`1 + 4`2)

C1

(
n

b

)(
nd− r − c
ak − c

)
φ(nd− r − ak)

φ(nd− r)

=
∑

(a, b, c) ∈ [`1 + 2`2]
2 × [2`1 + 4`2],

(a, b, c) 6= (`1 + 2`2, `1 + 2`2, 2`1 + 4`2)

C1

(
n

b

)(
nd− r − c
ak − c

)
(k!)a

(
nd−r
k

)
a

(nd− r)ak

=
∑

(a, b, c) ∈ [`1 + 2`2]
2 × [2`1 + 4`2],

(a, b, c) 6= (`1 + 2`2, `1 + 2`2, 2`1 + 4`2)

O(na+b−c).

The explanation for the the first line of the preceding inequality is as follows. If we fix
a, b, c, we can choose the b vertices involved in

(
n
b

)
ways. There are at most db configuration

points in these b vertices, so we can choose and order the c configuration points in at most
(db)c ways. The ordering of these vertices gives an overcount of the number of ways we
can choose which of these c configuration points belong to which of the loops and overlap
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pairs. We then choose the remaining ak − c vertices in the a edges, and then (ak)!
overcounts the number of ways we can distribute the configuration points into the edges.
Finally, φ(nd− r − ak) counts the number of ways to choose the remaining edges in the
matching.

From the preceding inequality, if we show that c > a + b, we have E(Y ) = o(1).
Consider the `1 pairs of vertices in our loops and the `2 quadruples of vertices in our
overlapping edges one at a time, and as we do, we will mark each unmarked edge, vertex
and configuration point involved with the pair. Each time we add a loop, if one of the
configuration points in the loop is already marked, then both the edge and the vertex
involved with the loop must have already been marked as well. Thus, each loop marks at
least as many configuration points as vertices and edges. Similarly, if we add a quadruple
involved with overlapping edges, if one configuration point was already marked, then both
an edge and a vertex involved has already been marked. If two configuration points were
already marked, then actually at least three edges and vertices must have already been
marked (either two edges and one vertex, or two vertices and one edge, depending). If
three or four configuration points were already marked, then all four of the edges and
vertices involved in the overlap were already marked. In any case, we always mark at
least as many cluster points as we do edges and vertices, so c > a+ b.

To see strict inequality, it suffices to note that if c = 2`1 + 4`2, by the fact that
(a, b, c) 6= (`1 + 2`2, `1 + 2`2, 2`1 + 2`2) gives the result, and if c < 2`1 + 4`2, there must
have been a first loop or pair of overlapping edges in which there was already a marked
configuration point, say vi,j. If before this there was never a case where we ran into a
pre-marked vertex or edge, then the second configuration point vi,j∗ in the same vertex
as vi,j must not have been marked, but both the edge and the vertex that vi,j is in were
pre-marked. If this was a loop, then we are done. If it was a quadruple involved in an
overlap, then in the vertex that vi,j is not in, we must also have at most one pre-marked
configuration point, and if so, the second vertex involved was also pre-marked. Thus, the
first time we encounter a pre-marked configuration point, it must be that either there is
one pre-marked configuration point and two pre-marked edges and vertices, or there are
two pre-marked configuration points and at least three pre-marked edges and vertices. In
either case, this is enough to guarantee c > a+ b. Thus E(Y ) = o(1).

Now, let S be the contribution to X − Y in which at least one vertex with a loop
or involved in an overlap is degree d − 1. We will show E(S) = o(1). Let ` = `1 + 2`2,
m = min{`1 + 2`2, r} and C2 = (d`)2`(k`)!. We have

E(S) 6
m∑
i=1

C2

(
r

i

)(
n− r
`− i

)(
nd− r − 2`

(k − 2)`

)
φ(nd− r − k`)
φ(nd− r)

=
m∑
i=1

C2

(
r

i

)(
n− r
`− i

)(
nd− r − 2`

(k − 2)`

)
(k!)`

(
nd−r
k

)
`

(nd− r)`k
=

m∑
i=1

O(n−i) = o(1).

Indeed, we first choose how many vertices will be of degree d−1, then choose the ` vertices
involved in all the loops and overlapping pairs. The constant (d`)2` overcounts the number
of ways to choose and order the 2` configuration points involved in loops and overlaps,
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and the ordering overcounts how many ways we can choose which configuration points
belong to which loops and overlaps. Then we choose the remaining (k− 2)` configuration
points involved in the ` edges that contain loops and overlaps. The constant factor (k`)!
then gives an ordering of these configuration points, which overcounts the number of ways
the k` configuration points can be sorted into the ` edges.

Let X∗ = X−Y −S. We now assume that all the loops and overlaps occur in vertices
of degree d, and each loop and overlap occur with different configuration points, on all

different vertices, with all different edges. Recall that λ = (d−1)(k−1)
2

and µ =
(

(d−1)(k−1)
2

)2
.

Here we get

E(X∗) =
(n− r)`

2`2

(
d

2

)`(
nd− r − 2`

(k − 2)`

)
2`2

((k − 2)`)!

((k − 2)!)`
φ(nd− r − k`)
φ(nd− r)

= (1 + o(1))n`
(
d(d− 1)

2

)` (nd− r − 2`)(k−2)`
((k − 2)`)!

((k − 2)`)!

((k − 2)!)`
(k!)`

(
nd−r
k

)
`

(nd− r)`k

= (1 + o(1))n`
(
d(d− 1)

2

)`
(nd)(k−2)`

(k(k − 1))`
(
nd
k

)`
(nd)`k

= (1 + o(1))

(
(d− 1)(k − 1)

2

)`
= (1 + o(1))λ`1 · µ`2

Since X counts ordered pairs of ordered sets of loops and overlaps, the factor (n−r)`
2`2

chooses which vertices are involved in the loops and overlaps, and orders then, while
the corrective term in the denominator accounts for the fact that overlaps involve two
unordered vertices. Then the power of

(
d
2

)
chooses which configuration points are in the `

loops and overlaps. We then choose the remaining (k − 2)` configuration points involved
in the ` edges. Now, we sort the configuration points into edges. First, for each overlap
with configuration points vi1,j1 , vi1,j2 , vi2,j3 , vi2,j4 , we need to choose if vi1,j1 is in an edge
with vi2,j3 or vi2,j4 , giving us a factor of 2`2 . Then we choose an ordered (k− 2)-matching

on the (k − 2)` configuration points in ((k−2)`)!
((k−2)!)` ways. The ordering given here gives a

pairing between the pairs of vertices in overlaps and loops and the (k − 2)-edges in the
matching, which gives us our ` edges. Then the final term counts how many ways we can
put a k-matching down on the rest of the configuration points.

Now, since E(X) = E(X∗) + o(1), the conditions of Theorem 6 are met, so we have
that Z1 and Z2 converge to independent Poisson random variables with mean λ and µ
respectively. This implies that Pr(Z1 = Z2 = 0) = (1+o(1))e−(λ+µ), so for large enough n,

there is a positive probability of H(k)
∗ (n,d) producing a simple linear hypergraph, finishing

the proof.

3 Saturation of Berge Stars

To determine the saturation number for Berge stars, we need to give a few definitions.
Let F be a graph. Then a vertex v in some Berge-F is called a core vertex if there exists
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a way to shrink the edges of Berge-F down to create a copy of F that contains the vertex
v. When we consider a Berge-K1,`, we will say a core vertex corresponding to a leaf of
K1,` is a core leaf.

Theorem 7. For all k > 3, ` ∈ N, and large n, we have

satk(n,Berge-K1,`) = min
a∈[n],(a−1

k−1)6`−2

⌈
(`− 1)(n− a)

k

⌉
+

(
a

k

)
.

Proof. First we will establish the lower bound. Let H be a k-uniform Berge-K1,` saturated
hypergraph on n vertices. Let A ⊆ V (H) be the set of vertices with degree less than `−1.

Note that H[A] = K
(k)
|A| since if any k vertices in A are not in an edge together, adding

this edge cannot create a Berge-K1,`. This implies that
(|A|−1
k−1

)
6 `− 2 since the vertices

of |A| have degree 6 `− 2.
Now we can count the number of edges in H that are not completely contained in A.

Since the vertices in B = V (H) \ A all have degree at least `− 1, we have the following:∑
e∈E(H)

|e ∩B| > (`− 1)|B|.

If e ⊆ A, then |e ∩B| = 0, and otherwise, |e ∩B| 6 k, so(
|E(H)| −

(
|A|
k

))
k > (`− 1)|B|,

so

|E(H)| >
⌈

(`− 1)|B|
k

⌉
+

(
|A|
k

)
.

Since |B| = n− |A| and |A| ∈ [n], the lower bound follows.
Now, let us consider the upper bound. We will give a construction that is Berge-K1,`-

saturated with the correct number of edges. Let c be such that

min
a∈[n],(a−1

k−1)6`−2

⌈
(`− 1)(n− a)

k

⌉
+

(
a

k

)
=

⌈
(`− 1)(n− c)

k

⌉
+

(
c

k

)
.

Let |V | = n. Let C ⊆ V be such that |C| = c. First, add all the edges in
(
C
k

)
. Now,

construct a k-uniform nearly-(`− 1)-regular linear hypergraph on V \ C. We know such
a structure exists for large enough n by Theorem 5. Let D ⊆ V \C be the set of vertices
in the nearly-regular hypergraph that have degree `− 2. If D is empty, the construction
is done. Otherwise, add one more edge containing D and k − |D| vertices from C. Note
that C is large enough for this since the fact that

(
a
k

)
= 0 for 1 6 a 6 k − 1, and the

fact that
⌈
(`−1)(n−a)

k

⌉
is strictly decreasing with a implies that c > k − 1 > k − |D|. This

completes the construction. It is clear from the construction that this hypergraph has the
desired number of edges.
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Note that the construction is Berge-K1,`-free since no vertex has degree `. We now
will show this construction is Berge-K1,`-saturated. First, note that any edge e we add
must contain at least one vertex from V \C, say v ∈ V \C. Due to the linear hypergraph
structure on V \ C, if v 6∈ D, it is clear that before e was added, v was the center of a
Berge-K1,`−1, and that any choice of vertices from the `− 1 edges incident with v gives a
legal choice for the core vertices of this Berge-K1,`−1. Thus, as long as we first choose a
vertex in e \ v to be the core leaf in e in the Berge-K1,` we are building, we always have
a choice for a core leaf in the remaining edges incident with v (note, k > 3, so each edge
from the linear hypergraph has at least two choices for a core leaf, and only one could
have been used already). If v ∈ D, this is only slightly harder as we need to be careful
about which vertex we choose to be the core leaf in the edge that contains D and vertices
from C. By choosing this core leaf from C, we guarantee this will not conflict with any
vertices in the edges of the linear hypergraph, and so again we can proceed as before by
choosing the core leaf in e, then choosing the remaining core leaves. Thus, adding e has
created a Berge-K1,`, and thus the construction is saturated.

4 Conclusion

We were able to determine exactly the saturation number of Berge stars. There are many
other families of graphs that would be interesting to study though. The first family that
comes to mind is complete graphs. The exact saturation numbers for Berge triangles were
determined in [10], but not much is known about larger complete graphs. If ` > k + 2,
then it can be seen that satk(n,K`) 6

(
`−1
k

)
(n − ` + 2). Indeed, given a vertex set V

with |V | = n, let A ∪ B = V be a partition with |A| = `− 2. Then the hypergraph that
contains every edge that intersects B in at most one vertex is Berge-K`-saturated. It is
unclear if this is the optimal construction though, and this construction no longer works
for ` 6 k + 1.

Determining the saturation numbers for Berge cycles would also be very interesting.
Some upper bounds on cycles are given in [10], but no non-trivial lower bounds are known.
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