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Abstract

Let n, s be positive integers such that n is sufficiently large and s < n/3. Suppose
H is a 3-uniform hypergraph of order n without isolated vertices. If deg(u) +
deg(v) > 2(s — 1)(n — 1) for any two vertices w and v that are contained in some
edge of H, then H contains a matching of size s. This degree sum condition is best
possible and confirms a conjecture of the authors [Electron. J. Combin. 25 (3),
2018], who proved the case when s = n/3.

Mathematics Subject Classifications: 05C70,05C65

1 Introduction

A Ek-uniform hypergraph H (in short, k-graph) is a pair (V) E), where V is a finite set
of vertices and FE is a family of k-element subsets of V. Note that a 2-graph is simply
a graph. Let V(H) and E(H) denote the vertex set and edge set of H, respectively. A
matching of size s in H is a family of s pairwise disjoint edges of H. If the matching covers
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all the vertices of H, then we call it a perfect matching. Given a set S C V', the degree
degy(S) of S is the number of the edges of H containing S. We simply write deg(.S) when
H is obvious from the context. Further, let 6,(H) = min{deg(S) : S C V(H),|S| = ¢}.

Given integers ¢ < k < n such that k divides n, let my(k, n) denote the smallest integer
m such that every k-graph H on n vertices with §;(H) > m contains a perfect matching.
In recent years the problem of determining my(k,n) has received much attention (see
2, 5,6, 7, 8,9, 10, 12, 14, 17, 16, 18, 20, 21, 22]|). In particular, R6dl, Ruciniski and
Szemerédi [18] determined my_(k, n) for all £ > 3 and sufficiently large n. Treglown and
Zhao [20, 21] determined my(k, n) for all £ > k/2 and sufficiently large n. More Dirac-type
results on hypergraphs can be found in surveys [15, 27].

A well-known result of Ore [13] extended Dirac’s theorem by determining the smallest
degree sum of two non-adjacent vertices that guarantees a Hamilton cycle in graphs. Ore-
type problems for hypergraphs have been studied recently. For example, Tang and Yan
[19] studied the degree sum of two (k — 1)-sets that guarantees a tight Hamilton cycle in
k-graphs. Zhang and Lu [23] studied the degree sum of two (k — 1)-sets that guarantees a
perfect matching in k-graphs. Zhang, Zhao and Lu [26] determined the minimum degree
sum of two adjacent vertices that guarantees a perfect matching in 3-graphs without
isolated vertices, see Theorem 2 (two vertices in a hypergraph are adjacent if there exists
an edge containing both of them). Note that one may study the minimum degree sum
of two arbitrary vertices and that of two non-adjacent vertices that guarantees a perfect
matching instead. In fact, it was mentioned in [26] that the former equals to 2m;(3,n) —1
while the latter does not exist.

Let us define (potential) extremal 3-graphs for the matching problem. For 1 < ¢ < 3,
let Hflys denote the 3-graph of order n, whose vertex set is partitioned into two sets S and
T of size n—sf+1 and sl —1, respectively, and whose edge set consists of all triples with at
least ¢ vertices in T'. A well-known conjecture of Erdés [3], recently verified for 3-graphs
[4, 11], implies that H , or H;  is the densest 3-graph on n vertices not containing a
matching of size s. On the other hand, Kiithn, Osthus and Treglown [10] showed that for
sufficiently large n, H}hs has the largest minimum vertex degree among all 3-graphs on n
vertices not containing a matching of size s.

Theorem 1. [10] There exists ng € N such that if H is a 3-graph of order n = ng with
o (H) > 6(H,,) = (")) = ("}°) and n > 3s, then H contains a matching of size s.

Given a 3-graph H, let 09(H) denote the minimum deg(u)+deg(v) among all adjacent
vertices u and v. It is easy to see that

o2(H? ) = 2(382_ 2), oy(HL,) =2 ((” ) 1) - (” ) 5)) , and

oo(H,) = (232_ 2) +(n—2s+1) (281_ 2) + <232_ 1) — (25— 2)(n—1).

The following is [26, Theorem 1], which implies that, when n is divisible by 3 and
sufficiently large, H 2n /3 has the largest oo(H) among all n-vertex 3-graphs H containing
no isolated vertex or perfect matching.
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Theorem 2. [26] There exists ng € N such that the following holds for all integers
n = ng that are divisible by 3. Let H be a 3-graph of order n without an isolated vertex.
If o9(H) > ag(HfL’n/?)) = in® — %n + 2, then H contains a perfect matching.

Zhang, Zhao and Lu [26, Conjecture 12] further conjectured that for sufficiently large
n and any s < n/3, H?  has the largest o,(H) among all n-vertex 3-graphs H containing
no isolated vertex or matching of size s. In this paper we verify this conjecture.

Theorem 3. There exists ny € N such that the following holds for all integers n = ny and
s <n/3. If H is a 3-graph of order n without an isolated vertex and oo(H) > 02(H; ) =
2(s —1)(n— 1), then H contains a matching of size s.

Since the two theorems have different extremal hypergraphs, Theorem 3 does not
imply Theorem 1 (analogously Theorem 1 does not imply Erdés’ matching conjecture
for 3-graphs). On the other hand, one may wonder why we assume that H contains
no isolated vertex in Theorem 3 (especially when s < n/3). In fact, as shown in the
concluding remarks of [26], Theorem 3 implies another conjecture [26, Conjecture 13],
which determines the largest oo(H) among all 3-graphs containing no matching of size s.
Note that oo(H} ) > 02(H},) if and only if s < (2n 4 4)/9.

Corollary 4. There exists no € N such that the following holds. Suppose that H is a
3-graph of order n > ny and 2 < s < n/3. If 02(H) > max{oy(H?,),02(H},)}, then H
contains a matching of size s.

Let us explain our approach towards Theorem 3. The case when s < n/13 was
already solved by Zhang and Lu [24] in a stronger form. Note that oo(H? ) > 02(H, ).
The following theorem shows that, when n > 13s, not only is His the (unique) 3-graph
with the largest oo(H) among all H containing no isolated vertex or a matching of size s,
but also H, , is the sub-extremal 3-graph for this problem. (In fact, Zhang and Lu [24]
conjectured that Theorem 5 holds for all n > 3s. If true, this strengthens Theorem 1 and
actually provides a link between Ore’s and Dirac’s problems.)

Theorem 5. [25] Let n, s be positive integers and H be a 3-graph of order n > 13s without
an isolated vertex. If o3(H) > oa(HY,) = 2((";") = ("}°)). then either H contains a
matching of size s or H is a subgraph of Hﬁﬁs

Therefore it suffices to prove Theorem 3 for reasonably large s. For such s, we actually

prove a (stronger) stability theorem.

Theorem 6. Given 0 < e < 7 K 1, let n be sufficiently large and ™n < s < n/3. If H is
a 3-graph of order n without an isolated vertex such that oo(H) > 2sn — en?, then either
H is a subgraph of HZ,S or H contains a matching of size s.

Theorem 3 follows from Theorem 6 immediately. Indeed, if oo(H) > 05(H; ), then
it is easy to see that H is not a subgraph of Hfhs.l Suppose instead, that V(H) can be

Unfortunately oo is not a monotone function: for example, adding an edge to H,QL’S indeed reduces

the value of oy because two vertices in S now become adjacent and their degree sum is smaller than
02 (HrQLG)

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(4) (2019), #P4.5 3



partitioned S UT such that |S| =n —2s+1, |T| = 2s — 1, and every edge of H contains
at least two vertices of 7. Since H contains no isolated vertices, every vertex of S is
adjacent to some vertex of 7. Thus o9(H) < deg(u) + deg(v) for some u € S and v € T.
Consequently oo(H) < 02(H,, ,), a contradiction. We therefore apply Theorem 6 to derive
that H contains a matching of size s. Furthermore, Theorem 6 implies that HfL,s is the
unique extremal 3-graph for Theorem 3 because all proper subgraphs H of Hﬁﬁs satisfy
oa(H) < oo(H ).

In order to prove Theorem 6, we follow the same approach as in [26]: using the con-
dition on o9(H), we greedily extend a matching of H until it has s edges. An important
intermediate step is finding a matching that covers a certain number of low-degree ver-
tices (see Lemma 7). Nevertheless, the proof of Theorem 6 does require new ideas: in
particular, the meaning of an optimal matching is more complicated (see Definition 8);
we proceed differently depending on whether the number of low-degree vertices in the op-
timal matching is at the threshold. In one case we reduce the problem to that of finding
a perfect matching in a subgraph of H and apply the main result of [26] (see Theorem 9).

This paper is organized as follows. In Section 2, we give an outline of the proof along
with some preliminary results. We prove Lemma 7 in Section 3 and complete the proof
in Section 4.

Notation: Given a graph GG and a vertex u in G, Ng(u) is the set of neighbors of v in G.
Suppose H is a 3-uniform hypergraph. For v # v € V(H), let Ny(u,v) = {w € V(H) :
{u,v,w} € E(H)} (the subscript is often omitted when H is clear from the context).
Given three subsets Vi, V, V3 of V(H), we say that an edge {v1,vs,v3} € E(H) is a type
of iVoVs if v; € V; for 1 <4 < 3. Given a vertex v € V(H) and a subset A C V(H), we
define the link L,(A) = {uw : u,w € A and {u,v,w} € F(H)}. When A and B are two
disjoint subsets of V(H), we let L,(A, B) ={uw :u € A, w € B and {u,v,w} € E(H)}.

We write 0 < a; < ay < ag if we can choose the constants ai, as, a3 from right to
left. More precisely there are increasing functions f and g such that given as, whenever
we choose some ay < f(a3) and a; < g(ag), all calculations needed in our proof are valid.

2 Outline of the proof and preliminaries

Let n be sufficiently large and 7n < s < n/3. Suppose H is a 3-graph of order n without
an isolated vertex and op(H) > 2sn—en?. Let U = {u € V(H) : deg(u) > sn— $n*} and
W =V \U. Then any two vertices of W are not adjacent — otherwise o3(H) < 2sn —en?,
a contradiction. If |[U| < 2s — 1, then H is a subgraph of H? , and we are done. We thus
assume that |U| > 2s.

Throughout the proof we use small constants

I<exkedgdKmEpgyy <Kr< 1. (1)
We first prove the following lemma, which is an extension of [26, Lemma 4].

Lemma 7. Given 0 < ¢ < 7 < 1, let n be sufficiently large and ™m < s < n/3.
Suppose H is a 3-graph of order n without an isolated vertex and oo( H) > 2sn —en?. Let
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U={ue€V(H):deg(u) > sn —en?/2} and W =V \U. If 2s < |U| < 3s, then H
contains a matching of size 3s — |U|, each of which contains exactly one vertex of W.

Definition 8. We call a matching M optimal if (i) M contains a submatching M; = {e €
M :enW # 0} of size at least 3s — |U]; (ii) subject to (i), |M] is as large as possible;
(iii) subject to (i) and (ii), | M| is as large as possible.

Lemma 7 shows that H contains an optimal matching M. We separate the cases when
|Mi| = 3s — |U| and when |M;| > 3s — |U|. When |M;| = 3s — |U|, we first consider
the case when s < n/3 —mn. If no vertex of Us := U \ V(M) is adjacent to any vertex
of Wy := W \ V(M), then the assumption |M;| = 3s — |U| forces 7, deg(u;) to be
smaller than 3sn — %5712 for any three vertices wuy, us, ug € Us. If some vertex u; € Us is
adjacent to v; € W, then the fact v; € W reduces Z?Zl deg(u;) + deg(v1) to a number
less than 3sn— 3en? (where us is another vertex of Us). When s > n/3 —mnn, we consider
H' = H[V \ Ws]. Since |W3| = n—3s is very small, we deduce that o5(H') is greater than
2sn — nen?. This allows us to apply the following theorem from [26] to obtain a perfect
matching of H’, which is also a matching of size s of H.

Theorem 9. [26] There exist ny > 0 and ng € N such that the following holds for all
integers n = ng that are divisible by 3. Suppose that H is a 3-graph of order n without
an isolated vertex and oo(H) > 2n*/3 — man?, then either H is a subgraph of Hin/:g or H
contains a perfect matching.

Now consider the case when |[M;| > 3s — |U|. Let W' := {v € W : deg(v) <
sn—s%/2+~'n?}. If [W'] is very small, then we can find a matching of size s in H[V \ W]
by Theorem 1. When |W’| is not small, we consider uy,us,us € Us. If one of uy, us,
usz is adjacent to one vertex from W’ then 2?21 deg(u;) becomes much larger than 3sn;
otherwise we show that Zf’zl deg(u;) < 3sn — 2en? by proceeding with the cases when
(W' N Wy| > yn/2 and when |W’' N Wy| > yn /2 separately.

In the proof we need several (simple) extremal results on (hyper)graphs. Lemma 10 is
Observation 1.8 of Aharoni and Howard [1]. Lemmas 11 and 12 are from [26]. A k-graph
H is called k-partite if V(H) can be partitioned into Vi, ..., Vi, such that each edge of
H meets every V; in precisely one vertex. If all parts are of the same size n, we call H
n-balanced.

Lemma 10. [1] Let F be the edge set of an n-balanced k-partite k-graph. If F does not
contain s disjoint edges, then |F| < (s — 1)nF~1L.

Lemma 11. [26] Let G1,Go,G3 be three graphs on the same set V. of n > 4 wver-
tices such that every edge of Gy intersects every edge of G; for both i = 2,3. Then
SO Y weadegg (v) < 6(n—1) for any set A CV of size 3.

Lemma 12. [26] Let G1,Gy,G3 be three graphs on the same set V of n > 5 wver-
tices such that for any © # j, every edge of G, intersects every edge of G;. Then
SO Y veadegs. (v) < 3(n+1) for any set A CV of size 3.
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Following the same proof of Lemmas 11 and 12 from [26], we obtain another lemma
and omit its proof.

Lemma 13. Let Gy,...,Gy be k graphs on the same set V. of n > 4 vertices such
that for any 1 < @ < j < k, every edge of G; intersects every edge of G;. Then
S Y veadegg (v) < kn for any set ACV of size 2. O

The following lemma needs slightly more work so we include a proof.

Lemma 14. Given two disjoint vertex sets A = {uy,us, ..., u,} and B = {vy,vq,...,0p}
with a > 3 and b > 1. Let G;, i = 1,2,3, be graphs on AU B such that every vertex of
B is an isolated vertex in Gy, and every edge of G; (i = 2,3) contains at least one vertex
of A. If there are no two disjoint edges (i) one from G and the other from Go or Gs; or
(ii) one from Go and the other from Gs, and at least one of them contains a vertex from
B, then

3 2
Z (Z degg, (u;) + degg, (Ul)> < max{4a + 7,3a + 20 + 5}.

i=1 \j=1

Proof. For convenience, let s; = 232':1 degg, (uj) + degg, (v1) for i = 1,2,3 and y =
$1 + $2 + s3. Below we show that y < max{4a + 7,3a + 20 + 5}.

We first observe that if degg, (v1) > 3 for some i € {2,3}, then E(G;) = 0 and Gy is a
star centered at vy, where ¢/ =5 — i. Indeed, if G; or G contains an edge e not incident
to vy, then e is disjoint from some edge of G; that is incident to v; — this contradicts
our assumption. The observation implies that if degg, (vi) > 3 for both ¢ = 2,3, then
E(Gy) = 0 and both G5 and G5 are stars centered at v;. In this case, s; < a + 2 for
i =2,3 and thus y < 2(a + 2). If degg, (v1) > 3 and degg, (v1) < 2, then E(G:) = () and
G5 consists of at most two edges incident to v;. In this case, s;1 < 2(a+b—1)+a, so < 4
and thus y < 3a + 2b + 2. The case when degg, (v1) < 2 and degg, (vy) > 3 is analogous.
We thus assume that

degg,(v1) <2 fori=2,3 (2)

for the rest of the proof.

Next, we observe that if |[Ng,(u;) N B| > 2 for some ¢ € {2,3} and some j € {1,2},
then Gy is a star centered at u; for " € {1,2,3}\ {¢}. This is again due to our assumption
on Gy, Gy and G5. The observation implies that if |Ng,(u;) N B| > 2 for both j = 1,2,
then F(Gy) C {wujus} and consequently, sy < 2 for ' € {1,2,3} \ {i}. By (2), we
have s; < 2(a + b — 1) + 2. Therefore, y < 2(a+b—1)+2+4 = 2a+ 2b+ 4. The
observation also implies that if [Ng, (u;) N B| > 2 for both i = 2,3, then G4, G5, G5 are
all stars centered at ;. In this case, s; < a and s; < a+ b+ 1 for i« = 2,3, which
implies that y < a +2(a+ b+ 1) = 3a + 2b + 2. We now consider the case when
|Ng,(u1) N B| = 2, |[Ng,(u2) N B] < 1, and |Ng, (uy) N B| < 1. Thus Gj is a star (centered
at uy) of size at most a, which yields s3 < a + 2. Now suppose Ng,(u2) N B C {v,}
for some p. Let A’ := AU {v,} (note that |[A'| = a+ 1 > 4). Since every edge of G,

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(4) (2019), #P4.5 6



intersects every edge of Go, we can apply Lemma 13 to G1[A] and G5[A’] and obtain that
S22 232':1 degg,1an(u;) < 2a+2. Since [Ng,(u1) N (B\{v,})| < b—1 and degg, (v1) < 2,
it follows that s1+s2 < 2a+2+b—14+2=2a+b+3 and y < 2a+b+3+a+2 = 3a+b+5.

We thus assume that |Ng, (u;)NB| < 1fori = 2,3 and j = 1,2. Suppose Ng, (u2)NB C
{v,} for some p and let A" := AU {v,}. We apply Lemma 13 to G;[A’] and G,[A’] and
obtain that 37 | 232':1 degg,a(u;) < 2a+2. Since [Ng,(u1) N B| < 1 and degg, (v1) < 2,
it follows that s; + s9 < 2a + 2+ 1 + 2. On the other hand, we have s3 < 2a + 2 because
degg, (u;) < afor j =1,2 and degg,(v1) < 2. Thus y <2a+5+2a+2=4a+7. ]

3 Proof of Lemma 7

The proof is similar to that of [26, Lemma 4]|. Let M be a largest matching of H such
that each edge of M contains (exactly) one vertex of W. To the contrary, assume |M| <
3s—|U|—=1. Let Uy = V(M)NU, Uy = U\Uy, Wy =V (M)NW and Wy = W\ W;. Since
|U| > 2s, we have |Uy| = |U| — 2|M| > 2. Since |Wy| = |W| — |M] and |W| > 3s — |U|, it
follows that W, # ().

Below is a sketch of the proof. We first assume |U| < 2s + &'n. In this case every
vertex in U is adjacent to some vertex in W. If | M| is not close to s, then we easily obtain
a contradiction because Us is not small. When | M| is close to s, we consider three vertices
uy # ug € Uy and vy € Wy, and derive a contradiction on deg(uy) + deg(uz) + deg(vp).
Next we assume |U| > 2s+¢'n. In this case Us is not small. If no vertex of W is adjacent
to any vertex of Us, then consider two adjacent vertices vy € Wy and ug € U;. We have
deg(vg) < (2|]2V[|), which eventually yields that deg(vg) +deg(ug) < 2sn—en?. Now assume
vy € Wy is adjacent to some vertex ug € U,. In this case we define M’ consisting of all
e € M that contains a vertex «’ € U such that |N(vg,u") NUs| > 3. We show that if | M’|
is small, then deg(vg) is small; otherwise deg(ug) is small. In either case we derive that
deg(vp) + deg(ug) < 2sn — en?.

We now give the details of the proof.

Case 1. 2s < |U| < 2s+é'n.
In this case we have the following two claims.

Claim 15. |M| > s —&"n.

Proof. To the contrary, assume that |M| < s —&’n. Fix vy € W;. Then deg(vg) <
('g') — ('gﬂ) because there is no edge of type UsUsWs,. Since vy is not an isolated vertex,

v is adjacent to some vertex u € U. Trivially deg(u) < (‘Ulgl) + (|JU| = 1)|W]. Thus

dogo) + degtu) < (177 1) g = o+ (1) = (19)
— (1)U - 1) - (“f‘).

Since |U| > 2s and |M| < s — ¢"n, it follows that |Us| = |U| — 2| M| > 2¢"n. As a result,

deg(u) + deg(vg) < (n —1)(2s +en—1) — <252”n)7
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which contradicts the condition that deg(u) + deg(vg) > 2sn — en? because ¢ < & <
o 0

Claim 16. Every vertex in U is adjacent to one vertex in W.

Proof. To the contrary, assume that v € U is not adjacent to any vertex in W. Then

dogle) < <|U|2— 1) 3 <28—;5’n)7

which contradicts the condition that deg(u) > sn — 1en? because Tn < s < n/3 and
eeEKT. O

Fix uy; # ug € Uy and vy € Wo. Trivially deg(w) < ('U‘) for any vertex w € W and

deg(u) < (|U|2_1) + |W|(|U] = 1) for any vertex u € U. Furthermore, for any two distinct
edges e1,e5 € M, we observe that at least one triple of type UUW with one vertex in

e1, one vertex in ep and one vertex in {uy, us, vo} is not an edge by the choice of M. By
Claim 15, |M| > s — ¢"n. Thus,

deg(ur) + deg(uy) + deg(up) < 2 <(|U|2_ 1) WU - 1)) T ('g') _ (S —¢ ”)

On the other hand, Claim 16 implies that u; is adjacent to some vertex in W for z =1,2.
We know that vy is adjacent to some vertex in U. Therefore, deg(u;) > (2sn — en?) |U|)

for i = 1,2, and deg(vg) > (2sn — en?) — <(|U|2_1) + |[W(|U| — 1)) It follows that

deg(u1) + deg(us) + deg(vg) > 3 (2sn — en®) — 2<|[2]‘) — <‘U|2_ 1> — [W(|U| - 1).

The upper and lower bounds for deg(u;) + deg(us) + deg(vg) together imply that

s (1) w0+ (1)) - 8_8”) 3 (20n — en?)

1
or (JU—1)(n—1) —§<8 )>25n—5n
<

which is impossible because |U| < 2s +¢'n, 7n < s
Case 2. 2s+¢'n < |U| < 3s.

We consider the following two subcases.
Subcase 2.1. No vertex in Us is adjacent to any vertex in W5.

Fix vy € Ws. Then deg(vy) < (|U21|) = (2|]2w). Since v is not an isolated vertex, vg is
adjacent to some vertex ug € U;. We know that deg(ug) < (|U|2_1) +(|U|=1)|W|—|Us||Ws3|

n/3,and e € &’ K " K 7.
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because no vertex in U, is adjacent to any vertex in Ws. Since |W| = n — |U|, |Us| =

|U| — 2|M| and |Ws| = n — |U| — |M|, we derive that
o9(H) < deg(vy) + deg(up)

< <2U2W> i (‘U\Q— 1) + (U] = 1)(n = |U]) = (U] = 2M])(n = U] - |M])

U2
< (2n—|U))|M| + |T
Since |M| < 3s — |U], it follows that

U|? 3
oo(H) < (2n —|U|)(3s — |U]) + % = 6sn — (3s +2n)|U| + §|U\2.

Note that the quadratic function %xz — (3s + 2n)x is minimized at z = s + %n Since
2s +¢e'n < |U] < 3s < s+ 2n, we derive that

3
oo(H) < 6sn— (3s+2n)(2s +e'n) + 5(25 +&'n)?

3 3
— 2sn — 2e'n? 4 3se'n + 55’2712 < 2sn —en? + 55'2712
because s < n/3. Since € < €', this contradicts the assumption that oo(H) > 2sn — en.
Subcase 2.2. Two vertices uyg € Uy and vy € W5 are adjacent.
Let M' ={ee M :3u € e, |N(vo,u')NUs| = 3}. Assume {uy,us,v1} € M’ such that
uy, ug € Uy, vy € Wy and |N(vg, uy) NUs| = 3. We claim that

N(Uo,Ul) N UQ = @ (3)

Indeed, if {ug, v1,us} € E(H) for some uz € Us, then we can find ug € Us \ {ug, us} such
that {vg,u1,us} € E(H). Replacing {uy,us,v1} by {uo,vi,us} and {vg,u,us} gives a
larger matching than M, a contradiction.

By the definition of M’, we have

Ui |

deg(vg) < < 5

! / U !
> —|—2|M HU2| +2(|U1| —2|M |) = <| 21|> —|—2|U1| + |M ‘(2|U2| —4).
By (3), we have
U] —1 )
deg(ug) < 5 + [ W]+ (|Us| = 1)(|Wh| — [M])

and consequently

dogoo)-+degtuo) < (151) + (7)ot 2)+ oal = 0w+ 1 - ).
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Since |M'| < |M| = |W| = 54, it follows that

U1l
deg(vo) + deg(u ( ) (|U| ) + |+ |(|W] + 2) + (|Us] — 2)|U4|
(5

)-(2)< (75 o

= (o1 - 17 = (5) + 2ot - o),

Since |M| < 3s — |U| and |Usy| = |U| — 2|M| = 3|U| — 6s, we have
9 3|U| — 6s
deg(vo) +deg(uo) < (|U|=1)" - 5 +2(3s —[U]) (n - [U)
— —2|U|2+ (125—2n——) |U| + 6sn — 185 — 3s + 1

3
< —§|U|2 + (125 — 2n) |U| + 6sn — 185>

Note that the quadratic function —éx + (125 — 2n)z is maximized at © = 4s — %n Since
3s 2 |U| =2 2s+¢e'n>4s — nwehave

3
o9(H) < deg(vg) + deg(ug) < —5(23 +emn)? + (125 — 2n) (25 + &'n) + 6sn — 185
3 3
= 2sn —2e'n? + 6¢'sn — 25’2 2 < 28n — 25’2712

because s < n/3. Since € < €', this contradicts the assumption that oo(H) > 2sn — en.

4 Proof of Theorem 6

Suppose H is a 3-graph of order n without an isolated vertex and ao(H) > 2sn —en?. Let
U={ueV(H):deg(u) >sn—en?/2} and W =V \ U. We know that no two vertices
in W are adjacent and |U| > 2s. Let M be an optimal matching as in Definition 8.
By Lemma 7, such M exists. Let My = M \ My, Uy = V(M) NU, Uy = V(My),

=U\V(M), Wy, = V(M) N W and Wy = W \ Wj. Since M is optimal, no edge of
H is of type WoU3Us or WoUsUs. In addition, for any e € My, there are no two disjoint
edges €1, ey € e UW, U Us such that (e Uey) N Wy # (.

Suppose to the contrary, that |M| < s — 1. We know that |Us| = |U|+ |M;| — 3| M| >
3+ |My| — (3s —|UJ|) = 3. Let uy,uq,us € Us. Since u; € U for i = 1,2,3, we have

: 3

Z deg(u;) > 3sn — 55712. (4)
i=1

On the other hand, if u; is adjacent to some v; € W5, then

2
3
Z deg(u;) + deg(vy) = 02(H) + deg(ug) > 3sn — §€n2. (5)

=1
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Claim 17. For any two distinct edges 1, ey from M, we have S0 | Ly, (e1, €2)| < 18 and
Z?:l |Lui(€1762)| +|LU1 (61762)| < 18

Proof. Let H; be the 3-partite subgraph of H induced on three parts {uy, us,us}, e1, and
es. We observe that H; does not contain a perfect matching by the choice of M. By
Lemma 10, we have |E(H))| = 30 |Ly,(e1,e2)| < 18. The same argument shows that
S L (er, )| + Ly (e1,€2)] < 18, O

We proceed in two cases.
Case 1. |M;]| =3s—|U|.
In this case, we have |My| = |M| + |U| — 3s, |Us| = 3s — 3| M| and |W3| = n — 3s.

Claim 18. For any e € My, we have

(i) Zle | Ly, (e, UsUW3) |+ | Ly, (e, UsUWs) | < max{4|Us| + 7, 3|Us| +2|W5|+ 5}, where
U1 € WQ;

(”) Z?:l |Lui(6’ U3)| < 6|U3’

Proof. Assume e = {u), uy, us} € My with v} € Wy and ub, ufy € Uj.

(i) Let A = Us, B = Ws, and E(G;) = Ly (Us UW,) for i = 1,2,3. By the choice of
M, there are not two disjoint edges, one from (; and the other from G5 or G3; or one
from (G5 and the other from (3, and at least one of them contains one vertex from B.
Furthermore, it is easy to see that

2

D L (e, Us UWR)| + | Loy (6, Us US| = > <Z degg, (u;) + deg@-(”l)) :

=1 i=1

The desired inequality thus follows from Lemma 14.

(ii) For i = 1,2, 3, let Gi; be the graph obtained from L,/ (Us) after adding an isolated
vertex u*. Then |V(G;)| = |Us| + 1 > 4. By the choice of M, every edge of G intersects
every edge of G5 and (3. The desired inequality thus follows from Lemma 11. O

Claim 19. For any e € Ms, we have
(1) Z;%l | L, (e, Us)| < 3(|Us| +3);
(1) 25y [Lui (e, Us)| < 3(|Us| + 1).

Proof. Assume e = {u}, ub, us} € My with u), ub, uy € Us.

(i) For i = 1,2,3, let G; be the graph obtained from L,/ (Us) after adding two isolated
vertices v’ and u”. Then |V (G;)| = |Us|+2 > 5. Since M is optimal, the desired inequality
follows from Lemma 12.

(ii) For i = 1,2, 3, let Gi; be the graph obtained from L,/ (Us) after adding an isolated
vertex u*. Then |V(G;)| = |Us|+1 > 4. Since M is optimal, the desired inequality follows
from Lemma 13. [
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Claim 20. s > n/3 —nn.

Proof. Suppose s < n/3 —mmn. We first consider the case that uy, us, uz are not adjacent
to any vertex of W.
Following Claim 17, we have

3 3 3
|M|>
deg(u;) < 18 + M|+ Ly, (V(M), Us)| + Y | Ly, (V(M,),Us)|. (6

> aegtu) < 18(1 ) o1+ D1 0/00). U+ Sl (VOB TN ()
Furthermore, by Claims 18 (ii) and 19 (i), we obtain that

- M|

> deg(u) < 18( ) )+9]M|+6|M1||U3\+3|M2\(|U3|+3)

=1

- 18(“‘5’) FO|M| +6(3s — |U]) (35 — 3| M)

+3(|M]| + |U| - 3s)(3s — 3| M| + 3)
= (9|U| — 185 4 9)| M| + (35 — |U|)(9s — 9).

Since |M| < s — 1, it follows that
3
> " deg(u;) < (9|U| — 185+ 9)(s — 1) + (35 — |U])(9s — 9) = 95> — 9.
i=1

Since Tn < s < n/3 —mn and n; < 7, we know that
35 — sn = 5(3s —n) < max {—mn(n — 3mn), —mn(n — 3rn)} = —mn(n — 3mn). (7)

Consequently, Zle deg(u;) < 9s? < 3sn — 3mn(n —3mn). Since € < 1y, this contradicts
(4).

Now we assume, without loss of generality, that u; is adjacent to v;. The choice of M
implies that L, (e, Us) = Ly,(e, W3) = () for any v € Wa, u € Us and e € M,. By Claim 17,
we have

| M

2 2
Z deg(u;) + deg(vy) < 18( 5 |) + 9| M| + Z | Ly, (V(My),Us UWs)|
i=1 i=1

Lo (VM) Ug)| + 3 L (V (M), Us). (8)
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We know that 4|Us|+7 > 3|Us|+2|W3|+5 if and only if |Us| > 2|Ws|—2. If |Us| > 2|Ws|—2,
then by (8), Claim 18 (i) and Claim 19 (ii), we have

2
M

E deg(u;) + deg(vy) < 18(’ 5 |) + 9| M| + | Mq|(4|Us| + 7) + 3| Ms|(|Us| + 1)

i—1

_ 18(|J\2/[|) - O|M]| + (35 — |U)(4(3s — 3|M]) +7)

+3(|M| + |U| — 3s)(3s — 3| M| + 1)
= (3|U| + 3)|M| — 3s|U| — 4|U| + 9s* + 12s.
Since |[M| < s — 1 and |U]| > 2s, it follows that
2
> " deg(u;) + deg(v1) < (3|U| +3)(s — 1) = 3s|U| — 4|U| + 95 + 125

=1
= —T|U| +9s* + 155 — 3 < 9s* + 5 — 3.

Following (7), we have 327, deg(u;) + deg(vy) < 3sn — 3mn(n — 3mn) +n/3 — 3. Since
e < m and n is sufficiently large, this contradicts (5).
If |Us| < 2|Ws| — 2, by (8), Claim 18 (i) and Claim 19 (ii), we have

2
M
> deg(u;) + deg(v1) < 18(| ) |> + 9| M| + | M| (3|Us| + 2|Wa| + 5) + 3| Ma|(|Us] + 1)
=1

= (95 + 3)| M| + (=2n + 65 — 2)|U| + 6sn — 185 + 6s.

Since |M| < s — 1 and |U]| > 2s, it follows that

2
Z deg(u;) + deg(vy) < (95 +3)(s — 1) + (—2n + 65 — 2)(25) + 6sn — 185> + 6s
i=1

= 2sn + 3s® — 4s — 3.
Applying (7), we have 37 deg(u;) + deg(vi) < 3sn — mn(n — 3mn), which contradicts
(5) because € < ;. O

By Claim 20, we have |Wy| = n — 3s < 3mn. Let H = H[V \ W;]. We claim that
o2(H') > 2n?/3 — nen?. Indeed, recall that degy, (u) + degy (v) = 2n%/3 — en? for any two
adjacent vertices u and v of H'. Since |Ws| < 3mn and € < 1y < 12, it follows that

degy (u) + degy: (v) = 2n%/3 — en® — 2|Wy|n > 2n%/3 — non’.

Since 1o < 1, we may apply Theorem 9 and conclude that either H' is a subgraph of Hgs,s
or H' contains a perfect matching. In the former case, there is a partition of V' (H’) into
two sets |T| = 2s — 1 and |S| = s + 1 such that for every vertex u € S,

dog ) < (@) _ (232— 1) . (Qn/?;— 1) 3 ;n?
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On the other hand, since U C V(H’) and |U| > 2s, there exists a vertex u € U N S such
that

deg (u) = degy(u) — |[Waln > sn — %n2 — [Waln

n € 2
(= - n)n——n2—3 n? > ~n?
= (3 m 5 U 9"
which is a contradiction. Therefore H' must contain a perfect matching, which is a

matching of size s in H.

Case 2. |M;| > 3s — |U|.
The difference from Case 1 is that, for any edge e € M, we cannot find two disjoint
edges ey, €2 from eUU3UW; — otherwise we can replace M by M\{e}U{ey, e2} contradicting

the assumption that M is an optimal matching.

Note that |Us| = |U| + |M;| — 3|M| > 3s+ 1 —3|M| > 4.
Claim 21. For anye € M, 30 | |Ly.(e,Us UWa)| < 3(|Us| + |Wa| + 2).
Proof. Assume e = {u},u),us} € M. For i = 1,2,3, let G; be the graph obtained from
Ly (Us UWs) after adding an isolated vertex u*. Then |V(G;)| = |Us| + [Wa| +1 = 5.
Since H contains no two disjoint edges ey, ey from e U U3 U W5, we know that for any

t # 7, every edge of G, intersects every edge of G;. The desired inequality thus follows
from Lemma 12. O

By Claims 17 and 21, we obtain that

3 3
M
> deg(u;) < 18 (' ) ') + M|+ Ly (V(M), Us UTW,))|
=1

i=1
M

< 18(‘ 9 ‘) + 9| M| + 3| M| (|Us| + |Ws| + 2)

= (3n+6)| M| < 3sn + 6s. 9)

Let W = {v € W : deg(v) < sn — s?/2 ++/n?}. If [W'| < yn, then we let H' :=
H[V \W’|. By the definition of W’ deg(u) > sn— s*/2+~'n? for every u € V(H')NW.
For any u € V(H') N U, degy(u) > sn —en?/2 > sn — s%/2 + 4'n? because s > tn and
e € 7 < 7. Therefore every vertex u € V(H') satisfies

2 1 _
degy (u) > degy (u) — n|W'| > sn — % +9'n* —n® > (n 5 ) - (n 5 S) +1,
because |[W’'| < yn, v < 4/, and n is sufficiently large. By Theorem 1, H’ contains a
matching of size s.
We thus assume that |W’| > yn for the rest of the proof. If one of uy, us, us is adjacent
to a vertex of W', then

2

3 2
Z deg(u;) > 4 (sn - 2712) - (sn - % + 7’”2) = 3sn + % —2en® —4'n?,
i=1
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which contradicts (9) because s > 7n is sufficiently large and ¢ < 7/ < 7.

If none of wuy, us, us is adjacent to a vertex of W', then we distinguish the following
two subcases.
Subcase 2.1. W' N Wy| > yn/2.

Let M' ={ee€ M :enW'# 0}, thus |[M'| > yn/2. Since uy, us, us are not adjacent
to any vertex in W’ N Wy, then for any distinct e, e; from M’, we have

3

D Ly (€1, 2] < 12. (10)

i=1

By Claims 17, 21 and (10), we have
3
M M’
3 deg(u;) < (18(‘ ) ‘) - 6(’ 5 ’)) 9| M| + 3|M]| (n — 3| M| +2)
i=1

M’
< (3n+6)|M| —6(| 5 |>
Since |M'| > yn/2, it follows that

m/z) |

Zdeg(ui) <Bn+6)(s—1)— 6( 5

which contradicts (4) because s < n/3 and ¢ < 7.
Subcase 2.2. [W'NW;| < yn/2.

Since |W'| > yn, we have |[W'NW;| > yn/2. Let Wi = Wo\W'. Then Wo\W5 = W’'N
W,. By Claim 21, we obtain that Y27 | L, (V (M), Us UW3)| < 3|M| (|Us| + [Wy| + 2).
Therefore,

3 3
M
S deg(us) < 18(’ h ') oM+ 3 L, (V(M), Uy U
=1

i=1

M
< 18(| 5 |> + 9| M| + 3| M| (|Us| + |W5| + 2)
M
= 1s(M1) s+ olary - sjar i + v+ 2) - sparye

3
= <3n+6— iyn) | M|,

which contradicts (4) because |[M| < s, 7n < s, and ¢ < v < 7. This completes the
proof of Theorem 6.
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