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Abstract

Egge, Loehr, and Warrington proved a formula for the Schur function expansion
of a symmetric function in terms of its expansion in fundamental quasi-symmetric
functions. Their formula involves the coefficients of a modified inverse Kostka ma-
trix. Recently Garsia and Remmel gave a simpler reformulation of Egge, Loehr,
and Warrington’s result, with a new proof. We give here a simple proof of Garsia
and Remmel’s version, using a sign-reversing involution.

Mathematics Subject Classifications: 05E05

Egge, Loehr, and Warrington [1] proved a formula, involving the coefficients of a mod-
ified inverse Kostka matrix, for the Schur function expansion of a symmetric function in
terms of its expansion as a linear combination of fundamental quasi-symmetric functions.
We recall that for a composition L = (L1, . . . , Lk), the fundamental quasi-symmetric
function FL is defined by

FL =
∑
i1,...,ik

xi1 · · ·xik ,

where the sum is over all positive integers i1, . . . , ik satisfying i1 6 i2 6 · · · 6 ik and
ij < ij+1 if j ∈ {L1, L1 + L2, . . . , L1 + L2 + · · ·+ Lk−1}.

Garsia and Remmel [2] gave a simpler reformulation of Egge, Loehr, and Warrington’s
result. For any composition L, we define the Schur function sL by the Jacobi-Trudi
determinant of complete symmetric functions: sL = det(hLi−i+j), where hk is the complete
symmetric function and hk = 0 for k < 0. As explained below, for every composition L, sL
is either an ordinary Schur function (indexed by a partition), the negative of an ordinary
Schur function, or zero.
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Garsia and Remmel’s reformulation is that if f is symmetric and f =
∑

L cLFL, then
f =

∑
L cLsL. (There will usually be some cancellation in this formula.)

We give here a short combinatorial proof of Garsia and Remmel’s reformulation. By
linearity, it is sufficient to prove the formula for the case in which f is a Schur function.
We will show that for any partition λ, if sλ =

∑
L cLFL then sλ =

∑
L cLsL.

For example, if λ = (4, 1) then sλ = F(4,1) + F(3,2) + F(2,3) + F(1,4). We have s(2,3) = 0
and s(1,4) = −s(3,2), so

s(4,1) + s(3,2) + s(2,3) + s(1,4) = s(4,1) + s(3,2) + 0− s(3,2) = s(4,1),

confirming the formula in this case.
Let L = (L1, . . . , Lk) be a composition. If 2 6 i 6 n and Li > 2, then we define the

composition L(i) to be (L1, . . . , Li−2, Li− 1, Li−1 + 1, Li+1, . . . , Lk). In other words, L(i) is
obtained from L by replacing Li−1, Li with Li − 1, Li−1 + 1, and leaving the other parts
of L unchanged. It follows from the Jacobi-Trudi determinant that sL(i) = −sL. Thus if
L(i) = L then sL = 0 and an easy induction argument shows that for any composition L,
sL is either 0 or ±sλ for some partition λ. (This can also be shown by rearranging the
rows of the Jacobi-Trudi determinant.)

The reduction of sL to 0 or ±sλ can be described graphically through the well-known
“slinky rule,” which we illustrate by example with L = (1, 4, 4). We first draw a Ferrers
diagram for L, with Li dots in row i, for i = 1, 2, . . . , k and connect the dots in each row
with edges, forming chains:

(We are using English notation, so the first row is at the top.) Then for i from 2 to k, if
the chain in row i extends beyond the dots in row i − 1, we bend it upwards, along the
preceding dots, but not going above row 1:

If we end up with the Ferrers diagram of a partition λ, then sL is equal to (−1)vsλ,
where v is the number of vertical steps in the final diagram. If a Ferrers diagram of a
partition is not obtained, then sL = 0. In our example with L = (1, 4, 4), bending the
second row corresponds to s(1,4,4) = −s(3,2,4) and then bending the third row corresponds
to s(3,2,4) = −s(3,3,3), so s(1,4,4) = s(3,3,3).

The expansion of a Schur function into fundamental quasi-symmetric functions is a
well-known consequence of Richard Stanley’s theory of P-partitions [3, Theorem 7.19.7,
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p. 361]. A descent of a standard tableau T is an integer i such that i + 1 appears in a
lower row in T (in English notation) than i. Let the descents of the standard tableau
T with entries 1, . . . , n be d1 < d2 < · · · < ds. The descent composition of T , which we
denote by C(T ), is the composition (d1, d2 − d1, . . . , ds − ds−1, n− ds) of n. Then for any
partition λ, we have

sλ =
∑
T

FC(T ),

where the sum is over all standard tableaux T of shape λ. So we need to prove that

sλ =
∑
T

sC(T ). (1)

There is a unique standard tableau of shape λ with descent composition λ, called
the superstandard tableau. It has entries 1, 2, . . . , λ1 in the first row, entries λ1 + 1, λ1 +
2, . . . , λ1 + λ2 in the second row, and so on. If T is superstandard of shape λ then
C(T ) = λ, so sC(T ) = sλ.

We will define a shape-preserving involution θ on standard but not superstandard
tableaux, with the property that sC(θ(T )) = −sC(T ). This property implies that if θ(T ) = T
then sC(T ) = 0. So in the sum on the right side of (1) everything cancels except the term
corresponding to the superstandard tableau of shape λ, which contributes sλ, thus proving
(1).

Let T be a standard tableau with descent set S = {d1 < d2 < · · · < ds}. We define
the ith run of T , for i from 1 to s + 1, to be the skew subtableau of T consisting of the
elements di−1 + 1, di−1 + 2, . . . , di, where we set d0 = 0 and ds+1 = n. Thus the number
of elements in the ith run of T is the ith part in the descent composition of T .

For example, in the following tableau, the elements of the first run, 1, 2, 3, are colored
red, the elements of the second run, 4, 5, 6, 7, are colored green, and the elements of the
third run, 8, 9, are colored blue.

1 2 3 6 7 9

4 5

8

We define the involution θ first for tableaux with exactly two runs. If the tableau T
has two runs then the shape of T has two parts. There are λ1− λ2 + 1 standard tableaux
of shape (λ1, λ2) with two runs. Each such tableau is uniquely determined by an integer
j with λ2 6 j 6 λ1 for which the first run contains 1, 2, . . . , j, all in the first row, and the
second run contains j + 1, j + 2, . . . , λ1 + λ2, with j + 1, j + 2, . . . , j + λ2 in the second
row and j+λ2 + 1, . . . , λ1 +λ2 in the first row. Let Tj be this tableau, where λ = (λ1, λ2)
is fixed. Then the descent composition for Tj is (j, n− j), where n = |λ| = λ1 + λ2.

The superstandard tableau of shape λ is Tλ1 . For λ2 6 j 6 λ1 − 1, we define θ(Tj) to
be the tableau with descent composition (n− j − 1, j + 1); i.e., θ(Tj) = Tn−j−1. To show
that this is a valid definition, we must show that λ2 6 n − j − 1 6 λ1 − 1. For the first
inequality we have (n− j−1)−λ2 = (λ1 +λ2− j−1)−λ2 = (λ1−1)− j > 0, and for the
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second inequality we have (λ1−1)− (n− j−1) = (λ1−1)− (λ1 +λ2− j−1) = j−λ2 > 0.
Thus θ is well-defined and sC(θ(Tj)) = −sC(Tj).

For example, if λ = (4, 2) and j = 3 then T3 is

1 2 3 6

4 5

with descent composition (3, 3), and θ(T3) = T2 is

1 2 5 6

3 4

with descent composition (2, 4).
Next, we define θ for tableaux T of arbitrary shape λ in which the first row is not

1, 2, . . . , λ1. Here we apply θ as defined above to the first two runs of T and leave the rest
of T unchanged. So, for example, θ applied to

1 2 3 6 8 9

4 5 7

gives

1 2 5 6 8 9

3 4 7

Note that we may extend θ as just defined in an obvious way to tableaux with any
distinct entries, not necessarily 1, 2, . . . , n.

In the general case, suppose that the first k rows of T constitute a superstandard
tableau but the first k + 1 rows do not. (So T must have at least k + 2 rows.) Then to
compute θ(T ) we leave the first k rows unchanged and apply θ to the subtableau of T
consisting of rows k + 1, k + 2, . . . . It is clear that θ has the desired property: for every
non-superstandard tableau T , we have sC(θ(T )) = −sC(T ).

For example, suppose that T is the standard tableau

1 2 3 4 5

6 7 9

8

with descent composition C(T ) = (5, 2, 2). The first row of T is superstandard but the
first two rows are not. So θ(T ) is

1 2 3 4 5

6 8 9

7

with descent composition (5, 1, 3), and s(5,2,2) = −s(5,1,3).
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