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Abstract

For a finite abelian group G written additively, and a non-empty subset A ⊂
[1, exp(G) − 1] the weighted Davenport Constant of G with respect to the set A,
denoted DA(G), is the least positive integer k for which the following holds: Given an
arbitrary sequence (x1, . . . , xk) with xi ∈ G, there exists a non-empty subsequence
(xi1 , . . . , xit) along with aj ∈ A such that

∑t
j=1 ajxij = 0. In this paper, we pose

and study a natural new extremal problem that arises from the study of DA(G):

For an integer k > 2, determine f
(D)
G (k) := min{|A| : DA(G) 6 k} (if the problem

posed makes sense). It turns out that for k ‘not-too-small’, this is a well-posed
problem and one of the most interesting cases occurs for G = Zp, the cyclic group
of prime order, for which we obtain near optimal bounds for all k (for sufficiently
large primes p), and asymptotically tight (up to constants) bounds for k = 2, 4.

Mathematics Subject Classifications: 11B50, 11B75, 05D40.

1 Introduction

Suppose a < b are positive integers. By [a, b] we denote the set {a, a + 1, . . . , b} ⊂ N.
Throughout this paper, we shall use the Landau asymptotic notation: For functions f, g,
we write f(n) = O(g(n)) if there exists an absolute constant C > 0 and an integer n0

such that for all n > n0, |f(n)| 6 C|g(n)|. We write f = Θ(g) if f = O(g) and g = O(f).
If the constant C = C(k) depends on another parameter k (but not on n) then we shall
denote this by writing f = Ok(g), so for instance when we write Ok(1), we simply mean
a constant that depends on the parameter k.

By f � g we mean f(n)
g(n)
→ 0 as n → ∞. We shall also use some of the standard

notation from additive combinatorics: For sets A,B ⊆ Zn, A+B := {a+b : a ∈ A, b ∈ B}
and αA = {αa : a ∈ A}. Also, for sets A, the cardinality of A is denoted by |A| as usual,
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but we shall also use the notation #A to denote the same, especially when A is a set of
k-tuples of elements from some set, for some k > 2.

Let G be a finite abelian group written additively. By a G-sequence of length k, we
shall mean a sequence (x1, . . . , xk) with xi ∈ G for each i. By a zero-sum G-sequence (or
simply, zero-sum sequence) we shall mean a G-sequence (x1, . . . , xk) such that

∑
i xi = 0,

where 0 is the identity element of G. The Davenport Constant D(G), introduced by
Rogers [12], is defined as the smallest k such that every G-sequence of length k contains a
non-trivial zero-sum subsequence. As it turns out, the Davenport constant is an important
invariant of the ideal class group of the ring of integers of an algebraic number field (see
[11] for more details).

A weighted version of the Davenport constant which first appeared in a paper by
Adhikari et al ([3]), and was later generalized by Adhikari and Chen ([2]), goes as follows.
Suppose G is a finite abelian group, and let A ⊂ Z \ {0} be a non-empty subset of
the integers. The weighted Davenport Constant of G with respect to the set A is the
least positive integer k for which the following holds: Given an arbitrary G-sequence
(x1, . . . , xk), there exists a non-empty subsequence (xi1 , . . . , xit) along with aj ∈ A such

that
t∑

j=1

ajxij = 0. Here we adopt the convention that ax :=

a times︷ ︸︸ ︷
x+ · · ·+ x for a positive,

and ax := (−a)(−x) for a negative. It is clear that if G has exponent n, then one may
restrict A to be a subset of [1, n− 1].

As one might expect, the Davenport constant is best understood when G is a finite
cyclic group. Here are some well-known results:

1. D±(Zn) = blog2 nc + 1. Here our notation is a shorthand to denote that the set
A = {−1, 1}. ([3])

2. DA(Zn) = 2 if A = Zn \ {0}. ([3])

3. DA(Zn) = a + 1 if A = Z∗n and a =
∑k

i=1 ai for n = pa11 p
a2
2 . . . pakk ([10]). Here, Z∗n

denotes the set of primitive elements of Zn, i.e., the ‘invertible’ elements of Zn when
Zn is viewed as a ring.

4. DA(Zn) = dn
r
e if A = {1, . . . , r} for some 1 6 r 6 n− 1. ([4], [5])

For other results, see [1, 5].
The focal point of this paper stems from a natural extremal problem in light of the

known results on the Davenport constant of a group. Suppose G is a finite abelian group
of exponent n, and let k > 2 be an integer. Define

f
(D)
G (k) := min{|A| : ∅ 6= A ⊆ [1, n− 1] satisfies DA(G) 6 k},

:= ∞ if there is no such A.

Here is a natural extremal problem: Given a finite abelian group G, determine f
(D)
G (k)

for k ∈ N.
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It is important to note that if k is ‘too small’ relative to the group, then the parameter
as defined above is in fact infinite. For instance, consider the group G = Zrp for p prime,
and the sequence x := (e1, . . . , er) where ei = (0, . . . , 0, 1, 0 . . . , 0) has a 1 in the ith

coordinate, for 1 6 i 6 r. Then for any subset A ⊂ Z∗p and any sequence (a1, a2, . . . , ar)

with ai ∈ A the element
r∑
i=1

aiei = 0 implies ai = 0 for each i, which implies that

f
(D)
G (k) = ∞ for k 6 r. However, for k > r we do have f

(D)
G (k) < ∞. A consequence

of one of our results implies that for every group, if k is not too small (this will be more

clear when we see the statement of the theorem) then f
(D)
G (k) < ∞, so this is indeed a

non-trivial parameter. For G = Zn, we shall write f (D)(n, k) := f
(D)
G (k) for convenience.

As it turns out, the nature of this extremal problem of determining f
(D)
G (k) is most

interesting for the case when G is a cyclic group of prime order, and in that case, we
establish the following bounds.

Theorem 1. Let k ∈ N, k > 2. There exists an integer p0(k) and an absolute constant
C = C(k) > 0 such that for all prime p > p0(k)

p1/k − 1 6 f (D)(p, k) 6 C(p log p)1/k.

As some of our preliminary results will illustrate, this also determines asymptotically
(up to a logarithmic factor) f

(D)
G (k) for G = Zrp and G = Zpr and these in turn ‘almost’

determine f
(D)
G (k) in all cases up to a logarithmic factor for all integers k > 2.

In a couple of special cases, viz., k = 2, 4, we are able to obtain an asymptotically
sharper upper bound which is tight upto constant factors. In fact, for the case k = 2, the
extremal problem even achieves tight bounds in certain special cases.

Theorem 2. Let p be an odd prime.

1. If p = q2 + q + 1 for some prime q then f (D)(p, 2) = d
√
p− 1e.

2. f (D)(p, 2) 6 2d√pe.

3. f (D)(p, 4) 6 C0p
1/4 for some constant C0 > 0.

In particular, this theorem establishes that f (D)(p, k) is of the order of p1/k for k = 2, 4
upto a constant factor. As for the tightness result, there is an old conjecture of Hardy-
Littlewood that there are infinitely many prime pairs (p, q) such that p = q2 + q + 1.

The rest of the paper is organized as follows. We begin with some preliminaries before
launching into a formal description in section 3 of the extremal problem. In section 4 we
prove theorems 1 and 2. We conclude the paper with some remarks and open questions.

Before we end this section, we set up some notation and terminology. For a sequence
x = (x1, . . . , xm) and a subset I ⊆ [1,m] of the set of indices, we shall denote by xI the

sum
∑
i∈I

xi. For sequences x = (x1, . . . , xm),y = (y1, . . . , ym), we shall denote the sum

m∑
i=1

xiyi by 〈x,y〉, and 0k shall denote the k-tuple (0, . . . , 0).
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2 Preliminaries

In this section, we state a few well known results that we serve as important tools in the
proofs of theorems 1 and 2.

We start with recalling Janson’s inequality (see [7], for instance), which is our main
probabilistic tool in the proof of theorem 1. The version of the inequality that we shall
use is given below for the sake of completeness.

Suppose Ω is a finite set, and let R a random subset of Ω where each r ∈ Ω is chosen
independently with probability pr. Let Ai ⊂ Ω for i = 1, 2 . . . , t, and let Ei denote the

event: Ai ⊂ R. Let N = #{i : Ai ⊂ R}, µ := E(N), ∆ :=
∑
i∼j

P(Ei ∧ Ej), where we write

i ∼ j if Ai ∩ Aj 6= ∅. Then one of the forms of Janson’s inequality states that

P(N = 0) 6 exp(−µ+
∆

2
)

and this is what we shall use.
For the proof of theorem 2, we need the notion of a Difference set in an abelian group

(see [9]).

Definition 3. Difference Set: SupposeG is an abelian group of order v. A setD ⊂ G\{0}
is called a (v, k, λ) difference set if

1. |D| = k and

2. for each g ∈ G, g 6= 0, there are exactly λ pairs (d, d′) ∈ D×D such that d−d′ = g.

If λ = 1, then D is called a Perfect Difference Set.
The relevant theorem in our context is a classical result due to Singer ([13]):

Theorem 4. (Singer, [13]) Suppose n = q2+q+1 for q prime, then the cyclic group G = Zn
admits a perfect difference set of size q + 1.

3 The extremal problem of f
(D)
G (k)

Let k > 2 be an integer. We start by recalling the definition of f
(D)
G (k):

f
(D)
G (k) := min{|A| : A ⊆ [1, n− 1] satisfies DA(G) 6 k}. (1)

We shall (as mentioned in the introduction) write f (D)(n, k) to denote f
(D)
G (k) for G = Zn.

Proposition 3.1. Let G = H1 × · · · ×Hr be the product of pi-groups Hi with p1 < p2 <
· · · < pr. Then for all k, f

(D)
G (k) 6 min{f (D)

Hi
(k) : 1 6 i 6 r}. In particular, if G = Zp×H

is a finite abelian group with p - |H|, then for any integer k, f
(D)
G (k) 6 f (D)(p, k).
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Proof. Write ni = exp(Hi), and let n := exp(G) =
∏r

i=1 ni.

Suppose f
(D)
Hi

(k) = `, and let Ai := {a1, . . . , a`} ⊂ [1, ni−1] be such that DAi(Hi) 6 k.
Then consider the set

A = {(n/ni)a1, . . . , (n/ni)a`} ⊂ [1, n− 1].

We claim that for any G-sequence g = (g1, . . . , gk) of length k there exists an a =
(a1, . . . , ak) ∈ (A ∪ {0})k \ {0k}, for which 〈g, a〉 = 0 in G.

Write gj = (xj, yj) for j ∈ [1, k], where xj ∈ Hi and yj ∈ H :=
∏

r 6=iHr. Since
exp(H) = n/ni we have (n/ni)yj = 0 for all j. Furthermore, by the assumption, there
exists a = (a1, . . . , ak) ∈ (A ∪ {0})k \ {0k} such that 〈x, a〉 = 0, where x = (x1, . . . , xk).
Consequently,

k∑
j=1

naj
ni

(xj, yj) =

(
k∑
j=1

naj
ni
xj,

k∑
j=1

naj
ni
yj

)
= (0, 0)

and that completes the proof.
The second part of the statement is an immediate consequence of the first part.

The next proposition compares groups G,H with the same exponent.

Proposition 3.2. Let k > 2. Suppose G and H are finite abelian groups with H = G×G′
and exp(G) = exp(H). Then

f
(D)
G (k) 6 f

(D)
H (k).

In particular, if Gn = (Zp)n and we write fn := f
(D)
Gn

(k), then the sequence {fn}n>1 is
increasing.

Proof. Let f
(D)
H (k) = `. Let A ⊂ [1, exp(G) − 1] with |A| = ` such that for all H-

sequences x of length k, there exists a ∈ (A ∪ {0})k \ {0k} such that 〈x, a〉 = 0. Let
y = (y1, . . . , yk) be a G-sequence of length k, and consider the sequence x = (x1, . . . , xk),
where xi = (yi, 0) ∈ H. Let a = (a1, . . . , ak) ∈ (A∪{0})k \{0k} be such that 〈x, a〉 = 0 in
H. But since exp(G) = exp(H), this implies that 〈y, a〉 = 0 in G as well. This completes
the proof.

The second part is again a straightforward consequence of the first statement.

The next theorem contrasts f (D)(p, k) with f
(D)
G (k) for G = Zpm .

Theorem 5. Let p be a prime and m > 1, k > 2 be positive integers. Then for G = Zpm ,

p1/k − 1 6 f
(D)
G (k) = f (D)(p, k).

Proof. We first prove that f
(D)
G (k) = f (D)(p, k). Let f (D)(p, k) = `. Then there exists

A = {a1, . . . , a`} ⊂ Z∗p of size ` such that for every Zp-sequence x := (x1, . . . , xk) of
length k, there exists a = (ai1 , . . . , aik) ∈ (A ∪ {0})k \ {0k} such that 〈a,x〉 = 0. Set
A′ = pm−1A ⊂ [1, pm − 1]. Consider a Zpm-sequence x′ := (x′1, . . . , x

′
k) of length k and

let xi denote the projection of x′i on Zp. By our assumption, there exist (ai1 , . . . , aik) ∈
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(A ∪ {0})k \ {0k}, such that 〈a,x′〉 = 0. Consequently, 〈pm−1 · a,x′〉 = 0 in G. This

establishes that f
(D)
G (k) 6 f (D)(p, k).

We shall now prove the reverse inequality, i.e., f
(D)
G (k) > f (D)(p, k) by means of

contradiction. Clearly, m > 2, or there is nothing to prove. Suppose if possible that there
exists A ⊂ [1, pm−1] with |A| < f (D)(p, k) such that for every G-sequence x = (x1, . . . , xk)
of length k there exists a ∈ (A ∪ {0})k \ {0k} such that 〈a,x〉 = 0 in G. Let us write

A = A0 ∪ (p · A1) ∪ · · · ∪
(
pm−1 · Am−1

)
with Ai ⊂ Z∗pm−i for each 0 6 i 6 m − 1. Let A′i := Ai (mod p), and let B = ∪m−1i=0 A

′
i.

Clearly, B ⊂ [1, p− 1] and |B| 6 |A| < f (D)(p, k).
Let y = (y1 . . . , yk) be a Zp-sequence of length k. Viewing this as a G-sequence, and

using the property of A, it follows that there exists a ∈ (A ∪ {0})k \ {0k} such that∑
A0

aiyi + p ·
∑
A1

aiyi + · · ·+ pm−1
∑
Am−1

aiyi ≡ 0 (mod pm). (2)

In this notation, if all the ai listed in a particular summand are zero, then we treat that
summand as empty.

Now, if the first summand is non-empty, then we must have
∑

A′0
a′iyi = 0 in Zp;

here by a′i we mean the corresponding projection of ai into the set A′0. In general, if
the first non-empty summand in (2) is pj

∑
Aj
aiyi, then considering (2) modulo pj it

follows that
∑

A′j
a′iyi = 0 in Zp. Since at least one summand is non-empty, this yields

a non-empty subsequence of y that admits a B-weighted zero-sum subsequence in Zp,
contradicting that |B| < f (D)(p, k). This completes the other inequality, and thereby

establishes f
(D)
G (k) = f (D)(p, k) for G = Zpm .

We finally prove that f (D)(p, k) > p1/k−1. Consider a bipartite graph G = (V,E) with
V = X ∪ Y , where X consists of all k-tuples a ∈ (A ∪ {0})k \ {0k} and Y consists of all
k-tuples x = (x1, x2, . . . , xk) where all the xi’s are non-zero elements in Zp, and a,x are
adjacent in G if and only if 〈a,x〉 = 0 in Zp. By the hypothesis on A, it follows that every
vertex of Y is adjacent to at least one vertex of X , so G has at least (p − 1)k edges. On
the other hand, fix a ∈ X , and assume without loss of generality that a1 6= 0. Then for
any possible choices for x2, . . . , xk ∈ Z∗p, the equation a1x1 = −(a2x2 + · · ·+ akxk) admits
a unique solution for x1 ∈ Zp, so that the vertex a ∈ X has degree at most (p − 1)k−1.
Hence

|X |(p− 1)k−1 > |E| > (p− 1)k,

and since |X | = (|A|+ 1)k − 1, it follows that

|A| = f (D)(p, k) > p1/k − 1

and that completes the proof.
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The last part of the proof of theorem 5 in fact can be modified mutatis mutandis to
also show that f

(D)
G (k) > |G|1/k − 1 holds for G = Zsp. To reiterate a point we mentioned

in the introduction, f
(D)
G (k) =∞ for k 6 s. In light of the remark above, it is somewhat

natural that we turn our attention to the case G = Zsn. The following proposition shows

that for k > s+ 1 and p reasonably large, the parameter f
(D)
G (k) <∞.

Proposition 3.3. Let G = Zn1 × · · · × Zns , where 1 < n1 | · · · | ns. Let 1 6 r < (n− 1)/2,
and let A = {±1,±2, · · · ,±r}. Then

1 +
s∑
i=1

⌈
logr+1 ni

⌉
> DA(G) > 1 +

s∑
i=1

⌊
logr+1 ni

⌋
for s > 2

DA(Zn) =
⌊
logr+1 n

⌋
+ 1.

Consequently, f (D)(n, k) 6 2(n1/(k−1) − 1), and f
(D)
G (k) 6 2(|G|1/(k−s−1) − 1) for s > 1.

Proof. Consider the following sequence of elements of G:

a :=(1, . . . , 0), ((r + 1), . . . , 0), · · · , ((r + 1)t1 , . . . , 0), · · · , (0, . . . , 1),

(0, . . . , (r + 1)), · · · , (0, . . . , (r + 1)ts),

where ti is defined by (r + 1)ti+1 6 ni < (r + 1)ti+2 for 1 6 i 6 s. If t is such that
(r + 1)t+1 6 n < (r + 1)t+2 then by the choice of t, all integers of the form a0 + a1(r +
1) + · · · + at(r + 1)t where ai ∈ [r] are strictly less than n, and are distinct in Zn, it
follows that no element of the form a0 + a1(r + 1) + · · ·+ at(r + 1)t where ai ∈ A equals
zero in Zn. In particular, it follows that the sequence a admits no non-trivial zero sum
subsequence. Furthermore, since a has

∑s
i=1(ti+1) =

∑s
i=1

⌊
logr+1 ni

⌋
elements, we have

DA(Zn) >
∑

i=1

⌊
logr+1 ni

⌋
+ 1.

To prove the upper bound, consider a sequence x = (x1, . . . , xt) of length

t =
s∑
i=1

⌈
logr+1 ni

⌉
+ 1,

where xi = (α
(i)
1 , α

(i)
2 , . . . , α

(i)
s ) for i = 1, . . . , t.

Let

N =

{ r∑
`=1

`xI` : I` ⊆ [1, t], Ii ∩ Ij = ∅ for i 6= j

}
.

Now if we show that |N | > n1 · · ·ns then it follows that DA(Zn) 6 t. Indeed, since
|G| = n1 · · ·ns, it would follow that for some distinct collections of sets {Ij}j∈[1,r], {Jj}j∈[1,r]
with Ii ∩ Ij = Ji ∩ Jj = ∅ whenever i 6= j, we have

r∑
j=1

jxIj =
r∑
j=1

jxJj
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as elements in G. But then this yields a relation of the form
r∑
j=1

ajxIj = 0 with aj ∈

{±1, . . . ,±r} and that is what we seek.
It is now a straightforward exercise to check that |N | = (r + 1)t. Since

t =
s∑
i=1

⌈
logr+1 ni

⌉
+ 1 >

s∑
i=1

logr+1 ni,

we have |N | > n1 · · ·ns and the proof is complete.

We quickly return to a point we made in the introduction about the finiteness of
the parameter f

(D)
G (k). By propositions 3.1, 3.2, 3.3, it is easy to see that when k is

not ‘too small’ (and we shall prefer to be somewhat vague about what ‘small’ means
exactly, though it can easily be expounded in more precise terms), we necessarily have

f
(D)
G (k) <∞. But as we shall see, the bound in proposition 3.3 is far from best possible,

even in the case when G is a cyclic group of prime order.
Before we conclude this section, we make one other digressive remark. If A ⊂

[1, exp(G)−1] is somewhat ‘large’, (so that DA(G) is ‘small’) then it is probably tempting
to conclude that one must have DB(G) large where B = [1, exp(G)−1]\A; that is however
false, as the following example shows.

Let p be prime and consider G = Zp, Ar = {±1,±2, . . . ,±r}, and Br = Zp \
{0,±1,±2, . . . ,±r}. We claim that DBr(Zp) 6 2 for r < p−1

4
. Then by the previous

proposition, for somewhat large r, say r = Ω(p), we have DAr(Zp) = DBr(Zp) = 2.
To see this, consider the sequence x := (1, α) with α 6= 0. If α ∈ 1

i
Br for some i

satisfying (r + 1) 6 i 6 p − (r + 1), then it is easy to see that there exist a, b ∈ Br

such that a.1 + b.α = 0. So the only interesting case is when α ∈
p−(r+1)⋂
i=r+1

1

i
Ar. The

main observation now is that if r < p−1
4

, then
⋂p−(r+1)
i=r+1

1
i
Ar = ∅. Indeed, consider an

array whose rows are indexed by the elements of Br, the columns by the elements of Ar,
and whose (i, j)th entry is j/i. An element of the intersection corresponds to picking a
transversal for this array, i.e., a set of entries, one from each row, such that no two chosen
elements are in the same column. But this is impossible if p−2r−1 > 2r, i.e., if r < p−1

4
.

4 Proofs of theorem 1 and theorem 2

In this section, we prove theorems 1 and 2, which shall appear in the two subsections of
this section.

The main idea behind the proof of theorem 1 is to consider random sets A. To make
this more specific, suppose 0 < θ < 1. By a θ-random subset of [a, b], we mean a random
subset A ⊆ [a, b] obtained by picking each i ∈ [a, b] independently with probability θ. Also,
for a probability space we say that a sequence of events En occurs with high probability
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(abbreviated as whp) if lim
n→∞

P(En) = 1. In our results, the parameter n will be clear from

their corresponding contexts, so we do shall not draw attention to it explicitly.
Before we state our main result more precisely, we note that one can prove a more

general upper bound for f
(D)
G (k) for all abelian groups. In fact, the following proposition

also shows that f
(D)
G (k) is a relevant problem only for k 6 dlog2 |G|e+ 1.

Proposition 4.1. Suppose G is a finite abelian group of exponent n, and let A be a
θ-random subset of [1, n − 1], where θ > ω(n)√

n
, where ω(n) → ∞ as n → ∞. Then

DA(G) 6 blog2 |G|c+ 1 whp.

Proof. Suppose the set A contains x, n − x, for some x ∈ [1, n − 1]. Let y = (y1, . . . , ys)
be a G-sequence, and suppose s > log2 |G|. Consider the set

{
yI : I ⊆ [1, s]

}
; as I varies

over all subsets of [1, s] and as there are 2s > |G| such summands, it follows that there
exist J1, J2 ⊆ [1, s] with J1 6= J2 such that yJ1 = yJ2 . Set J = (J1 ∪ J2) \ (J1 ∩ J2) and
define the sequence a by setting aj = x for j ∈ J1 \ J2 and aj = n− x if j ∈ J2 \ J1. Then
clearly, 〈y, a〉J = 0, so it follows that for such A, we have DA(G) 6 blog2 |G|c+ 1.

Let A be a θ-random subset of [1, n − 1]. For each x ∈ [1, n − 1], let Ex denote the
event that both x, n− x are in A, and let E =

∧
x Ex. Since A is θ-random, it follows that

P(E) = (1− θ2)
n−1
2 6 e−θ

2(n−1).

By assumption, θ � 1/
√
n, so it follows that P(E)→ 0 as n→∞ and so we are done.

Remark: A quick consequence of proposition 4.1 is the following: Set θ =
√

logn
n

.

Then whp a θ-random subset of [1, n− 1] satisfies DA(G) 6 blog2 |G|c+ 1. In particular,

for any k 6 blog2 |G|c+ 1, we have f
(D)
G (k) 6 O(

√
n log n).

4.1 Proof of theorem 1

As mentioned earlier, the proof of theorem 1 involves understanding the asymptotic be-
haviour of DA(Zp) for random A ⊂ [1, p − 1]. The following theorem in this subsection
details the nature of DA(Zp) when A is θ-random, for prime p:

Theorem 6. Suppose p is a prime and A is a θ-random subset of [1, p−1]. Let ω(p), ω′(p) be
arbitrary functions satisfying ω(p), ω′(p) → ∞ as p → ∞. Also, suppose p is sufficiently
large.

1. If θ >
√

2 log p+ω(p)
p

, then whp DA(Zp) = 2.

2. If k > 3 is an integer and θ satisfies

(3kp(log p+ ω(p)))1/k

p
< θ <

p1/(k−1)

p ω′(p)
,

then whp DA(Zp) = k.
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Remark: One could have incorporated the first part of theorem 6 into the second
more general part, but we state the theorem as we do, because the proof of the first part
is simpler, and motivates and elucidates the general strategy better; the difference comes
in the finer details.

It is clear that theorem 6 implies the result of theorem 1. Also, theorem 6 is clearly

not tight as in that the theorem makes a statement only for (p log p)1/k

p
� θ � p1/(k−1)

p
. The

constant 3 in the statement of the theorem is definitely not tight (even by our method of
proof), but we make no attempt to improve it to find the best possible constant in order
to make the presentation more lucid.

Proof. 1. First observe that DA(Zn) > 2 follows trivially by considering the sequence
x = (1). Fix a sequence x = (x1, x2) of length 2 in Zp. Without loss of generality,
we may assume that both xi ∈ Z∗p. Write u = x2/x1 6= 0.

For this given sequence, consider the graph Gu = (Vu, Eu), where Vu = Z∗p and for
a, b ∈ Vu, {a, b} ∈ Eu if and only if a = −bu or b = −au. If A ⊂ [1, p−1] is regarded
a subset of the vertex set of Gu, and if A is not independent in Gu, then by the
definition of Gu, it follows that the sequence (x1, x2) admits a pair a, b ∈ A such
that ax1 + bx2 = 0.

Suppose A is a θ-random subset of [1, p− 1] and let Nu = |{e ∈ Eu : e ⊂ A}|. Since
each vertex of Gu has degree 2, Gu is a union of cycles, so it is straightforward to
see that

E(Nu) = (p− 1)θ2, ∆ :=
∑
e∩e′ 6=∅
e6=e′∈Eu

P(e, e′ ⊂ A) = (p− 1)θ3.

By Janson’s Inequality we have P(Nu = 0) 6 e−(p−1)θ
2(1−θ/2). Hence by the hypoth-

esis on θ,

P(There exists u ∈ Z∗p such that Nu = 0) 6 exp(−(p− 1)θ2(1− θ/2) + log p)

6 exp (−ω(p)) ,

and that completes the proof.

2. The proof of this part is very similar to the proof of part 1, with the crucial differ-
ence being that rather than evaluate µ,∆ precisely (which is messy), we shall use
appropriate bounds in this case.

Let X be the set of all k-tuples x = (x1, . . . , xk) of elements in Zp such that xI 6= 0
for all non-trivial subsets I ⊆ [1, k].

Fix x ∈ X and call a k-tuple a = (a1, . . . , ak) ∈ (Z∗p)k good for x if 〈x, a〉 = 0. For
each i ∈ [1, k], let Ni := Ni(x) denote the set of good k-tuples (a1, . . . , ak) with
exactly i distinct aj’s, and let ni = |Ni|. We claim that

the electronic journal of combinatorics 26(4) (2019), #P4.51 10



(a) If i < k then ni = Ok(p
i−1).

(b) nk > (p− 1)(p− 2) · · · (p− k + 1)−Ok(p
k−2) > pk−1/2 for p� k.

To see why, first let i < k; suppose a ∈ Ni is good for x, and let a, b1, . . . , bi−1 be
the distinct elements of a. Then there is a corresponding partition [1, k] = ∪i−1j=0Ij
into i non-empty, disjoint sets satisfying axI0 + b1xI1 + · · · + bi−1xIi−1

= 0. Fix
such a partition of [1, k] and consider the aforementioned equation. For each set of
pairwise distinct choices for b1, . . . , bi−1 ∈ Z∗p, there is a unique a ∈ Zp that satisfies
this equation. In other words, every set of pairwise distinct b1, . . . , bi−1 gives rise to
at most one set {a, b1, . . . , bi−1} that satisfy the equation above. Since each element
of Ni arises from some such set of i distinct elements, and since each such set of i
distinct elements gives rise to at most kk different elements of Ni, it follows that for
p� k, ni = Ok(p

i−1).

For i = k, again, for distinct choices of b1, . . . , bk−1, the equation ax1 + b1x2 + · · ·+
bk−1xk = 0 admits a unique solution for a ∈ Zp. Hence the number of (k − 1)-
tuples (b1, . . . , bk−1) of pairwise distinct elements of Z∗p either counts some a ∈ Nk
(if a 6= 0, bi for any of the bi) or enumerates a sequence b ∈ Nk−1(y) for the sequence
y = (x2, . . . , xk) of length (k − 1) (if a = 0), or enumerates a sequence in Nk−1(x).
Hence by induction on k for instance, and the preceding discussion, we have

nk > (p− 1)(p− 2) · · · (p− k + 1)−Ok(p
k−2) >

pk−1

2

and that proves the claim.

Let Nx denote the number of good k-tuples for x arising from the θ-random set A.
Then

µ = E(Nx) =
k∑
i=1

niθ
i >

1

2
pk−1θk,

by the discussion above, for p sufficiently large.

To give an upper bound for ∆, we set up some additional notation. For k-tuples
a,b, we write a ∼ b if there is some common element (not necessarily in the same
position) in the sequences, and by |a ∩ b| we shall denote the number of common
elements in the two k-tuples.

First, observe that

∆ =
∑
a∼b

a,b good

P(a,b ⊂ A) =
∑

26j6i6k

j∑
`=1

∑
a∼b

a∈Ni,b∈Nj
|a∩b|=`

P(a,b ⊂ A) (3)

=
∑

26j6i6k

j∑
`=1

#
{

(a,b) ∈ Ni ×Nj : |a ∩ b| = `
}
· θi+j−`

(4)
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To bound this expression, we claim

(a) For all j 6 i 6 k and all 1 6 ` 6 j we have

#
{

(a,b) ∈ Ni ×Nj : |a ∩ b| = `
}

= Ok(p
i+j−`−2).

(b) In the special case i = j = k, ` = 1, we have

#
{

(a,b) ∈ Nk ×Nk : |a ∩ b| = 1
}
6 k2p2k−3.

Indeed, there are ni = Ok(p
i−1) choices for a ∈ Ni. Fix a ∈ Ni, and let {ai1 , . . . , ai`}

be a set of ` distinct elements that appear in a. Choose a subset L ⊂ [1, k] of size `,
and consider an arrangement (b1, . . . , b`) of these elements in the positions of L. Now
for a partition [1, k] = ∪jt=1It with bt ∈ It for t ∈ L it follows that there are at most
pj−`−1 sequences b that are good for x and extend the partial sequence (b1, . . . , b`).
Since there are Ok(1) choices for the sequence (ai1 , . . . , ai`), Ok(1) choices for the
set L, Ok(1) choices for the arrangement (b1, . . . , b`) and a further Ok(1) choices for
the partition (I1, . . . , Ij) with bt ∈ It for each t ∈ L, it follows that there are at most
Ok(1)pj−`−1 sequences b that are good for x which satisfy a ∼ b and |a ∩ b| = `.
Since this holds for each a, the first claim holds.

For the second claim, we only need to note that in the case i = j = k, and ` = 1,
there are k choices for picking the common element ai, and a further k choices for
choosing a position for that ai in the sequence b = (b1 . . . , bk). The rest of the
argument is exactly as before.

Now, piecing all the observations from above, and using the expression for ∆ (see
(4) above), it follows that for p sufficiently large, we have

∆ =
∑
a∼b

a,b good

P(a,b ⊂ A) 6 2k2θ2k−1p2k−3.

Consequently, by Janson’s Inequality

P(Nx = 0) 6 e−µ+
∆
2 6 exp

(
−1

2
θkpk−1 + 2k2θ2k−1p2k−3

)
.

So, again as before,

P(There exists x such that Nx = 0) 6 exp

(
−1

2
θkpk−1 + 2k2θ2k−1p2k−3 + k log p

)
< exp (−Cω(p))

for some absolute constant C > 0, by the bounds on θ.

For the final part of the theorem, consider the sequence 1k−1 := (1, . . . , 1︸ ︷︷ ︸
k−1 times

). We claim

that whp there is no sequence a ∈ (A(∪{0})(k−1) \ {0k−1} such that 〈1k−1, a〉 = 0.
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Again, let Tk−1 denote the number of (k−1)-tuples a = (a1, . . . , ak−1) ∈ Zk−1p \{0k−1}
satisfying 〈1k−1, a〉 = 0. Again, let Ni denote the number of (k − 1)-tuples a with
exactly i distinct elements that are enumerated in Tk−1. Then by arguments very
similar to the one outlined earlier, it is straightforward to see that

E(Nk−1) 6 pk−2θk−1,

E(Ni) 6 E(Nk−1) for all 2 6 i 6 k − 1,

so that we have

E(Tk−1) 6 kpk−2θk−1 <
k

ω′(p)k−1

where the last inequality holds by the hypothesis on θ. Consequently E(Tk−1)→ 0
as p→∞, and so it follows that there exists no a ∈ (A∪{0})k−1 \ {0k−1} for which
〈1k−1, a〉 = 0 whp. This completes the proof of theorem 6.

4.2 Proof of theorem 2

1. Proof. (of part 1) First by theorem 5 we have f (D)(p, 2) >
√
p−1. However, a closer

inspection of the same proof for the case k = 2 reveals that the corresponding set
X (in the proof of theorem 5) consists of all pairs (a1, a2) ∈ A2 itself, so we actually
have a (slightly) better bound, viz., f (D)(p, 2) >

√
p− 1, so f (D)(p, 2) >

⌈√
p− 1

⌉
.

Suppose p = q2+q+1 and let D ⊂ Z∗p be a perfect difference set of size q+1, which is
assured by Singer’s theorem. Set A = {θi : i ∈ D}, where θ is a primitive element of
Z∗p. We claim that DA(Zp) = 2, so that this establishes that f (D)(p, 2) 6

⌈√
p− 1

⌉
and completes the proof.

In order to show that DA(Zp) = 2, it suffices to show that for every u ∈ Z∗p,
the sequence (1, u) admits a pair (a1, a2) ∈ A2 such that a1 + ua2 = 0. Write
−u = θiu for a unique iu ∈ [1, q2 + q], and since D is a perfect difference set, write
iu = d1(u) − d2(u) for a unique pair (d1(u), d2(u)) in D. Then if we set ai = θdi(u)

then we have −u = a1/a2, or equivalently, a1 + ua2 = 0. This completes the proof
of the first part.

2. Proof. (of part 2) For k = 2, and all primes p, we now prove the more general bound
f (D)(p, 2) 6 2

√
p− 1. Again, we ignore the ceiling/floor notation for simplicity. In

what follows, if A is a set containing 0 then by A∗ we shall mean A\{0}. If a, b ∈ Zp
and b 6= 0, then a

b
shall denote ab−1 where b−1 is the unique element of Zp satisfying

bb−1 = 1. For sets A,B ⊂ Zp with 0 /∈ B, A
B

shall denote the set {a
b

: a ∈ A, b ∈ B}.
Observation 4.2. Suppose A,B ⊂ Z∗p and satisfy |A| · |B| > p. Then B−B

(A−A)∗ = Zp.

To prove the observation, for each x ∈ Z∗p, consider the map φx : A×B → Z∗p given
by φx(a, b) := ax + b. Then by the assumption that |A| · |B| > p it follows that
this map is not injective, so there exist pairs (a, b) 6= (a′, b′) such that φx(a, b) =
φx(a

′, b′). By the definition of φx, this implies that a 6= a′, which then implies
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that x = b′−b
a−a′ ∈

B−B
(A−A)∗ , and since x was arbitrary, the proof of the observation is

complete.

Let ` = d√pe, and consider the set A = [−`, `]∗. Then note that A = (B − B)∗
where B = [1, `]. Since |B|2 > p, by observation 4.2, we have A

A
= (B−B)∗

(B−B)∗
= Z∗p.

Consequently, for every u ∈ Z∗p,−u ∈ A
A

, and as we have seen above, this implies
that DA(Zp) = 2. Since |A| = 2`, the proof is complete.

3. Proof. (of part 3) Before we start with the proof of the 3rd part of this theorem, we
shall state a reformulation of what we seek: For any k > 1, to find an upper bound
for f (D)(p, 2k), it suffices to construct a set A ⊂ Z∗p of the requisite size such that
for any α1, . . . , αk−1, β1, . . . , βk−1 ∈ Z∗p,

Z∗p ⊆
A+ α1A+ · · ·+ αk−1A

A+ β1A+ · · ·+ βk−1A
. (5)

To see why, note that DA(Zp) = 2k implies that for any sequence (x1, . . . , x2k) with
xi ∈ Z∗p for all i, we have 0 ∈ Ax1 + · · ·+ Ax2k, or equivalently,

− x1
xk+1

=
ak+1 + ak+2(xk+2/xk+1) + · · ·+ a2k(x2k/xk+1)

a1 + a2(x2/x1) + · · ·+ ak(xk/x1)
,

and if (5) holds, then this is indeed satisfied. So in order to show that f (D)(p, 4) 6
O(p1/4), it suffices to construct a set A ⊂ Z∗p with |A| 6 C0p

1/4 for some constant
C0 > 0 such that

Z∗p ⊆
A+ αA

A+ βA
(6)

for all α, β ∈ Z∗p.

Let L = b30p1/4c. For a positive integer t, let

Xt := t[−L,L] = {−Lt, . . . ,−t, 0, t, . . . , Lt}.

The following observations regarding Xt are evident:

Observation 4.3. (i). αXt = Xαt.

(ii). For s 6= t, Xs +Xt contains a subset Ys,t of size at least |Xs +Xt|/4 such that
Ys,t−Ys,t ⊆ Xs+Xt. This follows from the simple fact that this is a generalized
arithmetic progression (GAP) of rank 2, and this is a general property of GAPs.
(see for instance [14], chapter 2. However, this property is easily verified, and
does not need any specialized tools).

We shall denote by I, the set X1 = [−L, . . . ,−1, 0, 1, . . . , L], for convenience.
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We shall now introduce some further terminology. For integers ξ, η ∈ [1, p− 1], we
shall regard the sets [−ξ, ξ] = {−ξ,−ξ + 1, . . . ,−1, 0, 1, . . . ξ − 1, ξ} and [1, η] =
{1, 2, . . . , η} as subsets of Zp. Define

S(ξ, η) :=
[−ξ, ξ]∗

[1, η]
.

For a given t ∈ Z∗p, we say that α ∈ Z∗p is good for t if |(I + αXt)∗| > L2

200
. For

t, s ∈ [1, (p− 1)/2], since |Xs + αXt| = |I + αX(t/s)| it follows that

|Xs + αXt| >
L2

200
if and only if α is good for (t/s).

Lemma 7. Suppose α ∈ Z∗p is not good for t, then α ∈ t−1S(2L, L
200

).

Proof. (of the lemma): Since αXt = Xαt, it will suffice if we show the following:
If |I +Xt| < L2

200
then t ∈ S(2L,L/200).

Set X+
t = {0, t, . . . , Lt}. Note that I+X+

t =
L⋃
i=0

[it−L, it+L]. Set X0 = [−L,L], and

recursively define Xi+1 = Xi∪ [it−L, it+L] for 0 6 i 6 L−1. We say that the set Xi
is valid if it is the union of pairwise disjoint intervals each of length 2L and centred
around an element of X+

t . Clearly, X0 is valid. If Xi is valid for all i 6 L/200,
then in particular, for M = dL/400e, we have |XM | = 2LM > (2L) L

400
> L2

200

contradicting the hypothesis. Hence there is a smallest i such that Xi is not valid.
Since i is the least such index, it follows that the addition of the latest interval
[it− L, it + L] non-trivially intersects some other such interval so that there exists
j < i with [it − L, it + L] ∩ [jt − L, jt + L] 6= ∅. But this implies that there exist

ξ1, ξ2 ∈ [−L,L] such that it + ξ1 = jt + ξ2, or equivalently, t = ξ2−ξ1
i−j ∈

[−2L,2L]
[1,L/200]

and
that completes the proof of the lemma.

We now return to complete the proof of the last part of theorem 2. Recall that
L = b30p1/4c. We shall now denote by S the set S(2L, L

200
).

Consider the hypergraph H = (V,E) whose vertex set V = Z∗p and whose edge set
consists of all dilates of S, i.e., E(H) = {xS : x ∈ Z∗p}.

Claim 1. If there exist x1, . . . , xN ∈ Z∗p such that
N⋂
i=1

xiS = ∅ then the set

A =

(
I ∪

N⋃
i=1

Xx−1
i

)
∗

⊂ [1, p− 1]

satisfies DA(Zp) 6 4. In particular, f (D)(p, 4) 6 (2L+ 1)N .

the electronic journal of combinatorics 26(4) (2019), #P4.51 15



(Proof of claim 1) We shall show that for any α ∈ Z∗p, |I + αXx−1
i
| > 4

√
p for some

1 6 i 6 N . Then by observation 4.3, there exists Ỹα ⊂ I + αXx−1
i

with |Ỹα| > p1/2

such that Ỹα − Ỹα ⊆ I + Xx−1
i

. Since this holds for all α, β ∈ Z∗p, it follows by

observation 4.2 that Z∗p ⊆ A+αA
A+βA

and that completes the proof of claim 1.

Suppose α ∈ Z∗p. Since
N⋂
0

xiS = ∅, α 6∈ xiS for some i. This in turn (by lemma 7)

implies that α is good for x−1i , or equivalently, |I+αXx−1
i
| > L2

200
> 4p1/2 as required.

For x ∈ Z∗p, define

N(x) = #

{
(s1, s2) : si ∈ S satisfying x =

s1
s2

}
and let NORMAL := {x ∈ Z∗p : N(x) 6 650}.

Claim 2. Now suppose x ∈ NORMAL. Then |S ∩ xS| 6 650.

(Proof of claim 2) Indeed, if S ∩ xS = ∅ then there is nothing to prove. Let
S ∩ xS = {y1, . . . , yk}. Then yi = xsi = s′i for some si, s

′
i ∈ S where 1 6 i 6 k,

and the si are all distinct. Hence x =
s′i
si

for 1 6 i 6 k, which implies that x can be
expressed as the ratio of two elements of S in at least k different ways. Since x ∈
NORMAL, it follows that k 6 650 and proves claim 2.

Claim 3. There exists N = O(1) such that the hypergraph H is not N-intersecting,

i.e., there exist x1, . . . , xN ∈ Z∗p such that
N⋂
i=1

xiS = ∅.

(Proof of claim 3) Suppose x is chosen uniformly at random from Z∗p. Then

E(N(x)) =
∑

(s1,s2)∈S2

P
(
x =

s1
s2

)
=
|S|2

p− 1
< 325

whenever p > 325. Hence by the Markov Inequality,

P(x 6∈ NORMAL) 6
1

2
(7)

for a uniformly randomly chosen x ∈ Z∗p. Consequently,

|NORMAL| > p− 1

2
. (8)

Let x1 ∈ NORMAL be an arbitrary element. By the preceding discussion, |S ∩
x1S| 6 650. Write S ∩ x1S = {a1, . . . , ak} for some k 6 650. Now inductively,
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having picked x1, . . . , xi−1 ∈ NORMAL pick xi ∈ NORMAL \ {x1, . . . , xi−1} such
that ai−1 /∈ xiS (so we pick at most k + 1 6 651 such xi). Since |S| 6 18

√
p the

number of forbidden choices (at each step of this process) is at most |S| + k 6
18
√
p+ 651� p−1

2
6 |NORMAL| (by (8)) for sufficiently large p, so there is always

a valid choice for xi.

Now observe that S
⋂
x1S

⋂
· · ·
⋂
xk+1S = ∅ since any element x in the intersection

must be ai for some i, but by the choices of the xi, we have ai 6∈ xi+1S, and that
is a contradiction. In summary, we may take N = 651 in the statement of claim 3.
This completes the proof of claim 3, and hence also the proof of part 3 of theorem
2 with C0 = 40000, for instance, when p is sufficiently large.

Remark: We have not made any attempts to determine an optimal value for the
constant C0 in the proof of the last part of the theorem above. We believe that in reality
f (D)(p, 4) 6 (1 + ε))p1/4 (for all ε > 0; please see the first remark in the next section) and
it doesn’t seem possible to be able to prove this by optimizing for C0 along these lines.

5 Concluding Remarks

• As we have stated earlier, we believe that f (D)(p, k) = Θ(p1/k) for all sufficiently
large p. But in fact, we are also inclined to believe that in fact f (D)(p, k) 6 (1 +
o(1))p1/k though we can prove neither statement now.

• The best upper bound for f (D)(p, 2) that one could prove (for all prime p) is
(2/
√

3)
√
p = 1.154 . . .

√
p. This needs some recent results on the existence of small

differences bases for [1, n], (see [8]), which again crucially rely on Singer’s theorem
on the existence of perfect difference sets in Zn for n = q2 + q + 1.

• One may frame the problem of obtaining an upper bound for f (D)(p, 2k − 1) (in an
analogous manner to that in the proof of theorem 2) by constructing a set A such
that for any α1 . . . , αk, β1, . . . , βk−1 ∈ Z∗p such that

Z∗p ⊆
A+ α1A+ · · ·+ αkA

A+ β1A+ · · ·+ βk−1A
.

So, for instance, to prove that f (D)(p, 3) 6 O(p1/3) amounts to constructing a set
of the appropriate size such that Z∗p ⊆ A+αA

A
. But this asymmetry in the framing

makes the problem of f (D)(p, 2k) easier to approach in this manner.

• One very natural counterpart to the problem that is the focus of this paper is the
corresponding dual problem: For a given finite group G, determine

max{DA(G) : |A| = k,A ⊆ [1, exp(G)− 1]}.

For instance, it is known that DA(Zp) = dp/ke if A = {1, . . . , k} for 1 6 k 6 p− 1
(see [4], [5]), so this corresponding maximum is at least dp/ke. It turns out, that for
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p prime, one can show that this maximum is at most dp/ke as follows (this result
also appears in [1], with a different proof):
Suppose A is a set of size k. We shall show that for any sequence x of length
dp/ke, there exist a ∈ (A ∪ {0})k \ {0k} such that 〈x, a〉 = 0. Write p = (m −
1)k + r for 0 < r < k, so that m = dp/ke . Let X := (x1 . . . xm) be a se-
quence of non-zero elements of Zp, and let S = A ∪ {0}. Consider the polyno-
mial g(X1, · · · , Xm) = ((

∑m
i=1 xiXi)

p−1 − 1)Xk+1−r
1 . The coefficient of

∏m
i=1X

k
i in

g equals
(

p−1
r−1,k,··· ,k

)
xr−11

∏m
i=2 x

k
i 6= 0, since xi 6= 0, so by the Combinatorial Nullstel-

lensatz (see [6]) it follows that there is a choice of ai ∈ S for each 1 6 i 6 m with
a1 6= 0 (since k+1−r > 0) such that

∑
i aixi = 0. In fact this proof also works even

when we assign arbitrary lists Si of size dp/ke for each non-zero element of Zp and
we are only allowed to pick coefficients from the corresponding list of each element,
so that a corresponding list-weighted version of the Davenport constant also admits
the same upper bound.

The same ideas can be extended to show that if n = p1 · · · pr is square-free, and A is
a subset of [1, n− 1] of size k such that the set A (mod pi) := {a (mod pi) : a ∈ A}
also has size k, then any sequence (x1 . . . , xm) in Zn with m > dpi/ken

pi
admits an

A-weighted zero-sum subsequence. Indeed, suppose Ai := A (mod pi) has size k.
Since n is square-free, Zn ∼= Zpi × Zn/pi . Write pi = kλi + ri, for some λi, ri where
0 6 ri < k, so that dpi/ke = λi+1. Let X = (x1, . . . , xmi) be a sequence of elements

in Zn, where mi = ndpi/ke
pi

. Write xj = (yj, zj) ∈ Zpi × Zn/pi for each j = 1, . . . ,mi;

similarly, write a = (a′, a′′) where a′ ∈ Zpi and a′′ ∈ Zn/pi . Regroup the sequence X
into n/pi segments of length dpi/ke each. It follows that for each 1 6 j 6 n/pi and
1 6 ` 6 dpi/ke, there exist a′`,j ∈ Ai ∪ {0}, not all zero, such that

jdpi/ke∑
`=(j−1)dpi/ke+1

a′`,jy` = 0

in Zpi . Writing t = dpi/ke for convenience, we note that in particular, we have the
sequence (from our regrouping)

Y =

(0,
t∑

`=1

a′′`,1z`

)
,

(
0,

2t∑
`=t+1

a′′`,2z`

)
, . . . ,

0,

nt/pi∑
j=(n/pi−1)t+1

a′′`,(n/pi−1)z`


in Zpi × Zn/pi of length n/pi. Note that the first coordinates are all zero by our
choices of a ∈ Ai ∪ {0}. But since D(Zm) = m, every sequence of length n/pi in
Zn/pi admits a non-trivial zero-sum subsequence, so we are through. An immediate
consequence of this is the following:

For N := max
{⌈

pi√
k

⌉
n
pi

: 1 6 i 6 r
}
, any set A ⊂ [1, n − 1] of size k, and any

Zn-sequence x = (x1, . . . , xN) of length N , there exists a ∈ (A ∪ {0})k \ {0k} such
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that 〈x, a〉 = 0, so in particular,

max{DA(Zn) : |A| = k} 6 max

{⌈
pi√
k

⌉
n

pi
: 1 6 i 6 r

}
.
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