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Abstract

We study a variation of Nim-type subtraction games, called Cumulative Sub-
traction (CS). Two players alternate in removing pebbles out of a joint pile, and
their actions add or remove points to a common score. We prove that the zero-sum
outcome in optimal play of a CS with a finite number of possible actions is eventu-
ally periodic, with period 2s, where s is the size of the largest available action. This
settles a conjecture by Stewart in his Ph.D. thesis (2011). Specifically, we find a
quadratic bound, in the size of s, on when the outcome function must have become
periodic. In case of exactly two possible actions, we give an explicit description of
optimal play.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

Two players, Alice and Bob, stand next to a single pile of 7 pebbles, alternately taking
pebbles from it. They compete on who takes most pebbles. However there is a restriction
on the number of pebbles they may take each turn; on each turn they can take exactly 2
or 3 pebbles. Now we ask the question: if Alice starts, should she play greedily and take
3 or make a sacrifice and take 2?
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In this paper we study generalizations of this game, called cumulative subtraction
(CS). CS is related to the famous game of nim. It has similar type of moves, but a different
winning condition. We restrict attention to games with a single heap and a common finite
action set of size at least 2.

Definition 1 (cumulative subtraction). An instance of cumulative subtraction
(CS), (S, x, p), is composed of a finite action set S, where |S| > 2, a heap of x ∈ Z>0

pebbles, and a current score p. In case p = 0, the game is also denoted by (S, x), and when
the heap size is generic, the game is simply called S (e.g. S is viewed as a ruleset). It is a
two player game, and the two players Positive and Negative take turns moving. A position
is denoted by (x, p). A Positive’s move is of the form (x, p) 7→ (x − s, p + s), for some
s ∈ S, provided that x− s > 0. A Negative’s move is of the form (x, p) 7→ (x− s, p− s),
for some s ∈ S, provided that x− s > 0. A position (t, pt) is terminal if t < minS. The
result of a game is the terminal score pt.

We are interested in optimal play of CS, which is a zero-sum game, where Positive is
the ‘maximizer’ and Negative is the ‘minimizer’. Optimal play is reflected in the outcome
function.

Definition 2 (Outcome). The outcome of the game (S, x) is

o(x) =

{
maxs∈S{s− o(x− s)}, if x > minS

0, otherwise.

Note that the maximizing action in Definition 2 might not be unique. However unique-
ness is a convenient tool in proofs of optimal play, as is further explained via Lemma 11).1

To this purpose we define the opt-function.

Definition 3 (Optimal action). Given a game S, the optimal action, opt : Z>minS → S,
is a mapping from the set of non-terminal positions to the maximum action s, such that
o(x) = s− o(x− s).

Note that increasing the starting score by p points will increase the outcome by p, but
it will not change the optimal sequence of actions.

Observation 4. The outcome is the (von Neumann [5]) game value if the initial score is
0, and Positive starts.

Definition 5 (Game convergence). A game S converges at position x > 0, if, for all
positions y > x, opt(y) is constant, but opt(x−1) 6= opt(y). This is denoted by ξ(S) = x.
If there is no such x then the game does not converge.

Observation 6. If the game S converges, then ξ(S) > maxS, because opt(maxS − 1) <
opt(maxS) = maxS.

1When we use the term maximizing action we refer to an action that maximizes the outcome. When
we say maximum action, we mean maxS.
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A sequence (xi) is periodic if there is a p such that, for all i, xi = xi+p. If p is the
smallest such number, then the sequence is periodic with period p.

Definition 7 (Eventual periodicity). A function g : Z>0 → Z is eventually periodic, if
there is a p ∈ Z>0, such that g(x) = g(x + p), for all sufficiently large x ∈ Z. It is
eventually periodic with period p′, if p′ is the smallest p such that g(x) = g(x + p′), for
all sufficiently large x ∈ Z.

Because of our convention that Positive starts, the relative number of actions that
players will have throughout the game is: either Positive and Negative play the same
number of actions, or Positive has an extra turn.

Definition 8 (Greedy action and sacrifice). Consider a game (S, x). A greedy action is
max{s ∈ S | s 6 x}, and a sacrifice is any action that is not greedy.

Is the greedy action optimal in every position of CS game? As we hinted in the first
paragraph, the answer is no.

Example 9. Consider the game (S = {2, 3}, x = 7). The optimal action is opt(7) = 2
because o(5) = 1 and o(4) = 3 so o(7) = max{−3 + 3,−1 + 2} = 1. That is, Positive’s
optimal strategy is a sacrifice, taking 2 on her first action.

Lemma 10. For all games (S, x), the outcome is bounded between 0 and the maximum
action, i.e. 0 6 o(x) 6 maxS

Proof. Since Positive plays at least the same number of actions as Negative plays, by
playing greedily she guarantees a result of at least 0. Since Positive plays at most one
more action than Negative, if Negative plays greedily he guarantees a result of at most
maxS.

2 Contribution

Our main result (see Section 3) is that all CS games converge (to the maximum action),
and thus the outcome of any CS is eventually periodic. The results are

1. In Theorem 13 we give an upper bound on the convergence of any CS game. The
bound is quadratic in maxS.

2. In Corollary 15 we prove that any game S, is eventually periodic with period 2 maxS.
That is, o(x + 2 maxS) = o(x), for any large enough position x. This is a proof of
a conjecture by Stewart from [4].

3. In Theorem 16, we fully solve the case where all actions up to maxS are permitted
(the case of full support).

4. In Theorem 25 we describe explicitly the optimal play for the class of games with
exactly two actions, and in Corollary 26 we specify the corresponding outcome. In
Corollary 27 we give an explicit formula for convergence.
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5. Section 6 concerns so-called truncated games (small actions are cut out). We were
not able to solve the whole class, but we guide the readers towards a thrilling
conjecture, Conjecture 32.

3 CS with arbitrary support

In this section we do not restrict S beyond its definition, a finite set of size at least two.
Let us begin with a general lemma.

Lemma 11. For any pair of sequences of optimal play actions, if one of the players,
say Positive, switches the order between two actions such that the larger action is played
before the smaller one, then this switch cannot decrease the outcome.

Proof. By this switch, the opponent does not get any new playing possibilities, and thus
the opponent’s new optimal play is a sequence of actions that were available before the
switch.

By this lemma, without loss of generality, in this section we assume that both players
play non-increasing actions, and in particular, for each game, optimal play will give the
unique sequence of actions as prescribed by the opt-function.2

Definition 12. Given a game S, the endgame is the set of positions strictly smaller than
maxS. A player enters the endgame, playing from position x > maxS, if she plays action
a and x−a < maxS. The term endgame play refers to the action that enters the endgame
together with all subsequent moves.

Theorem 13. Consider a game S. The upper bound on ξ(S) is

ξ(S) 6 2(maxS)2 (1)

Proof. Consider play from some large position until one of the players enters the endgame.
Suppose that one of the players’ strategy, say Positive’s, consists in playing at least maxS
sacrifices before the endgame.

We will find a strategy σ by Negative that produces a negative outcome. By Lemma 10,
this will imply that Positive’s strategy cannot be optimal play.

Negative’s strategy σ is greedy play.
Positive played at least maxS sacrifices before the endgame. There are two cases:

(i) Positive enters the endgame

(ii) Negative enters the endgame

2This idea is useful in this section, but other tools as for example the below “complementary strategy”
does not use it.
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In case (i), the score just before Positive enters the endgame is no more than (−maxS).
In case (ii), the score after Negative entered the endgame is no more than (−maxS). This
is true in both cases because Negative’s greedy strategy σ consisted exclusively of maxS
actions, whereas Positive has played at least maxS sacrifices, so the outcome decreases
by at least 1 with each sacrifice.

By Lemma 11 we may assume that players play non-increasing actions, i.e., at each
stage of game, if more than one action produces the outcome, players will choose the
largest of those actions. Therefore, in case (i) Positive enters the endgame by a sacrifice,
hence the score remains strictly smaller than 0 after Positive’s action. Thus, Negative
assures an outcome strictly smaller than 0 (by Lemma 10 applied to the players in reversed
rolls).

In case (ii) when Negative enters the endgame, Positive plays first below the heap
size of maxS. By definition of the endgame, Positive can increase the score by at most
(maxS − 1).

Thus, either way the outcome will be negative, and by the lower bound in Lemma 10,
we have reached the desired contradiction.

Therefore any optimal strategy, by either player, must consist of less than maxS
sacrifices.

This gives the bound in the theorem because Positive plays less than maxS sacrifices
in optimal play. Namely

ξ(S) 6 maxS + (maxS − 1)(maxS − 1) + (maxS − 1) maxS (2)

6 2(maxS)2

where the terms in (2) represent: ‘upper bound on endgame size’, ‘upper bound of the
total size of Positive’s sacrificing actions’ and ‘upper bound of the total size of Negative’s
actions in response to Positive’s sacrifices’. This concludes the proof.

Lemma 14. Consider CS. If the sequence of optimal actions converges, then the sequence
of outcomes is eventually periodic.

Proof. If both players optimally play the same action s from all sufficiently large heap
sizes x, then o(x) = s− o(x− s) = s− s+ o(x− 2s) = o(x− 2s).

Corollary 15. Any game S, is eventually periodic with period 2 maxS. That is to say,
o(x+ 2 maxS) = o(x), for any large enough position x.

Proof. Combine Theorem 13 with Lemma 14.

4 CS with full support

Consider a CS where the set of possible actions contains all the integers from 1 up to s1,
i.e., S = {1, 2, . . . , s1}. We call this game CS with full support. In this game, optimal
play is to play greedy at each position.

the electronic journal of combinatorics 26(4) (2019), #P4.52 5



Theorem 16. In CS with full support, the optimal play is x for any position x < s1
and s1 for any position x > s1. That is, each CS with full support converges at s1, and
moreover its outcome is periodic with the pattern

(0, 1, . . . , s1, s1 − 1, . . . , 1). (3)

Proof. The proof is by induction. For the base case, consider 0 6 x 6 s1: when playing
from position x, Positive takes all the pebbles, and thus o(x) = x. When playing from
positions x + s1, Positive’s optimal play is to take s1 and negative takes the rest, thus
o(x+ s1) = s1 − o(x) = s1 − x. It is Positive’s optimal play since if she takes less than s1
then Negative can take more than x.

Assume k > 0 repetitions of the pattern (3). We study the next s1 positions and show
that the outcome in those positions will be exactly as in (3).

o(x+ 2(k + 1)s1) = s1 − o(x+ 2(k + 1)s1 − s1)
= s1 − o(x+ 2ks1 + s1)

= s1 − o(x+ s1)

= s1 − (s1 − x)

= x

For the following s1 positions the outcome is

o(x+ s1 + 2(k + 1)s1) = s1 − o(x+ s1 + 2(k + 1)s1 − s1)
= s1 − o(x+ 2(k + 1)s1)

= s1 − x

5 CS with two actions

In a game of just two possible actions, S = {s2, s1}, with s1 > s2 we characterize the set of
positions where it is optimal to sacrifice, and this set will be called X∗ (see Definition 17
and Theorem 25).

Notation 1. Let α = s1 − s2.

We think of α as the size of the sacrifice a player makes by taking just s2 instead of
the greedy action s1.

Definition 17. Let ∆ = {0, 1, . . . , α− 1}. For each i ∈ Z>0, such that

is2 > (i− 1)s1, (4)

let

X∗(i) = {is2 + (i− 1)s1 + δ | δ ∈ ∆}, (5)

and otherwise X∗(i) = ∅. Let

X∗ =
⋃
i∈Z>0

X∗(i)
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Inequality (4) means that i sacrifices is worth more than (i− 1) greedy actions.
A simple observation is that no player can benefit by playing more than

⌊
s1
α

⌋
sacrifices.

Lemma 18. No player benefits by playing more than imax =
⌊
s1
α

⌋
= 1 +

⌊
s2
α

⌋
sacrifices.

Proof. Suppose that i ∈ Z>0 counts the number of sacrifices by Positive, and assume
is2 < (i − 1)s1, where Negative plays i − 1 greedy actions. Then o(x) < 0, which is
impossible by Lemma 10. Hence, for any optimal strategy we must have is2 > (i− 1)s1.
Therefore, s1 > iα, which implies the lemma since i is an integer. Moreover, observe that
s1
α

= s1+s2−s2
α

= 1 + s2
α

.

Note that imax is the largest i such that (4) holds. E.g., in Example 19, imax = 3. We
will see that imax− 1 is the maximum number of sacrifices a player can beneficially make,
to win an extra turn. In Example 19, 2 sacrifices are still beneficial since 3 · 5 > 2 · 7
however 3 sacrifices are not since 4 · 5 ≯ 3 · 7.

Example 19. Consider the game S = {5, 7}. The only positions where playing s2 = 5
is strictly better than playing s1 = 7 are X∗ = {5, 6, 17, 18, 29, 30}. Table 1 presents the
optimal actions and outcomes for the first 55 positions of S = {5, 7}.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13
opt(x) - - - - - 5 5 7 7 7 7 7 7 7
o(x) 0 0 0 0 0 5 5 7 7 7 7 7 2 2

x 14 15 16 17 18 19 20 21 22 23 24 25 26 27
opt 7 7 7 5 5 7 7 7 7 7 7 7 7 7
o(x) 0 0 0 3 3 5 5 7 7 7 4 4 2 2

x 28 29 30 31 32 33 34 35 36 37 38 39 40 41
opt(x) 7 5 5 7 7 7 7 7 7 7 7 7 7 7
o(x) 0 1 1 3 3 5 5 7 6 6 4 4 2 2

x 42 43 44 45 46 47 48 49 50 51 52 53 54 55
opt(x) 7 7 7 7 7 7 7 7 7 7 7 7 7 7
o(x) 0 1 1 3 3 5 5 7 6 6 4 4 2 2

Table 1: Positive’s (largest) optimal action, and the outcome for CS with action set
S = {5, 7}, starting from position x.

Next, we develop a tool, Positive’s ‘complementary strategy’, which gives a lower
bound on the result, and it equals the outcome if Negative plays optimally (see Lemma 21).

Definition 20 (Complementary strategy). Positive plays on the first action s2. From
now on Positive’s actions complement Negative’s actions modulo (s1 + s2), that is, if
Negative’s action is s1 then Positive’s action is s2 and vice versa.
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Lemma 21. From position x ∈ X∗(i) Positive’s optimal play is the complementary strat-
egy and Negative’s optimal play is the greedy strategy. The outcome is

o(x) = is2 − (i− 1)s1 > 0. (6)

Proof. If Positive plays the complementary strategy, this produces at least the result in
(6). Moreover, Positive gets i turns by the complementary-strategy vs. Negative’s (i− 1)
turns. By definition of X∗(i), we let x = is2 + (i− 1)s1 + δ, for some δ ∈ {0, . . . , α− 1}.
Suppose that Positive deviates from the complementary strategy and plays at least one
greedy action, then Negative can play only greedy actions and play the last turn. By
estimating the number of remaining pebbles for Positive, x−s1−(i−1)s1 = is2−s1+δ <
(i− 1)s2, Positive can play at most i− 1 actions. If this were optimal play, the outcome
would be at most 0, which contradicts (6). Suppose that Negative deviates from the
greedy strategy, then Positive still plays the Complementary-strategy and gets an extra
α for each deviation of Negative.

Equivalently, for x ∈ X∗(i),

o(x) = s1 − iα, (7)

and a consequence of this is Lemma 22. Look at Table 1. For any position in X∗(i), the
outcome equals the number of consecutive positions with outcome 0 immediately to the
left of X∗(i). For example o(17) = 3, and the relevant positions are 14, 15, 16. This holds
for any S = {s2, s1}. The outcome is 0 in those positions since both players will play s1
until the game ends, and they will have equal numbers of turns.

Lemma 22. Suppose that x = min{X∗(i)}, for any 1 6 i 6 imax, and y is such that
x− o(x) 6 y < x. Then

o(y) = 0, (8)

and the optimal action is opt(y) = s1.

Proof. By Lemma 21, since o(x) = is2 − (i− 1)s1, we get

2(i− 1)s1 6 y < is2 + (i− 1)s1,

where the upper bound is by x = min{X∗(i)}. If Positive starts by playing s2, then
by the lower bound, Negative can play i − 1 turns of s1, whereas by the upper bound,
Positive can play at most (i − 1) actions in total. Hence the result is negative, which is
not optimal, by Lemma 10.

On the other hand, by the lower bound if both players play greedily, the result is 0.
This is the outcome, because Positive cannot do better, and by Lemma 10, neither can
Negative.
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Proposition 23. If (2i − 1)s1 6 y 6 i(s1 + s2), for any 1 6 i 6 imax, then o(y) = s1,
and opt(y) = s1.

Proof. Combine Lemma 22 with Lemma 10, to see that opt(y) = s1, which implies o(y) =
s1, by Lemma 22.

The following result is used in the second part of the proof of Theorem 25.

Lemma 24. Consider S = {s2, s1} and α = s1 − s2. If x 6∈ X∗, and x > α then

o(x)− o(x− α) 6 α. (9)

Proof. We study the function

η(x) := α + o(x− α)− o(x),

and show that η(x) > 0, if x 6∈ X∗ and x > α. We think about o(x) as the outcome when
Positive starts, and −o(x) as the outcome when Negative starts. It suffices to show that,
for all plays by Negative from x, there is a response by Positive such that the inequality
(9) holds.

Case 1: If there is no move from x (because s2 > x) then η(x) = α > 0.

Case 2: If there is a move from x, but no move from x− α, then x < s1; thus x ∈ X∗(1),
and the only possible action is s2, then η(x) = α− o(x) = α− s2 > 0 since 2s2 > s1.

Case 3: If there is a move from x, and a move from x− α, then

1. If Negative plays optimally s1 from x, and Positive plays s2 from x− α, we get

η(x) > α + o(x− s1)− s1 − o(x− α− s2) + s2

= o(x− s1)− o(x− s1)
= 0

2. If Negative plays optimally s2 from x, and Positive plays s2 from x− α, we get

η(x) > α + o(x− s2)− o(x− α− s2),

and we note that, if Negative has no move from x−α−s2 = x−s1, then this implies
η(x) > 0. Assume Negative has a move then there are two cases:

2.1 On the second move, if Negative plays optimally s2, and Positive plays s1, we
get

η(x) > α− s2 + o(x− s1 − s2) + s1 − o(x− s2 − s1) = 2α > 0
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2.2 On the second move, if Negative’s optimal move is s1, and Positive responds
with s1, we get

η(x) > α + o(x− s1 − s1)− o(x− s2 − s1) = η(x− s2 − s1)

and since, by definition of X∗, if x 6∈ X∗ then x − s1 − s2 6∈ X∗. Therefore
η(x− s2 − s1) > 0 by induction.

This concludes the proof of inequality (9).

The following theorem is the main result for CS with two actions.

Theorem 25. Let the action set be S = {s2, s1}, with s1 > s2. Then opt(x) = s2 if and
only if x ∈ X∗.

Proof. We prove that opt(x) = s2 if and only if x ∈ X∗. The proof is split into two cases.

(i) 2s2 6 s1: greedy play is optimal.

(ii) 2s2 > s1: sacrifice is optimal if and only if x ∈ X∗

In Case (i), imax = 1, which means that it is never beneficial to sacrifice. Thus, in this
case the optimal play, game convergence and periodicity is analogous to the full support
case, (Theorem 16).

Consider Case (ii). For the direction “x ∈ X∗ implies opt(x) = s2”, by Lemma 21
we know that optimal play from position x ∈ X∗ is given by Positive’s complementary
strategy, which starts by playing action s2.

The proof of the reverse direction “opt(x) = s2 implies x ∈ X∗” uses Lemma 24. We
prove by induction that for each position x 6∈ X∗, if x > s1 then s1 is an optimal move.
We begin by stating the base case.

Consider x ∈ {0, . . . , 2s1 − 1}. If x < s2, no action is available. (For positions
x ∈ X∗(1), only action s2 is available, so it is optimal.) For positions x ∈ {s1, . . . , 2s1 −
1} ⊂ Z \X∗, s1 is the unique optimal action, since it can be countered with at most one
s2 action before the end of play, and 2s2 + s1 > 2s1, by Case (ii).

Assume next that x > 2s1. It suffices to prove that playing s1 is weakly better than
playing s2, i.e.

if x 6∈ X∗, then −o(x− s1) + s1 > −o(x− s2) + s2,

or equivalently

if x 6∈ X∗, then α > o(x− s1)− o(x− s2).

There are three cases, depending on whether x−s1 or x−s2 belongs to X∗ respectively.
Note that both cannot belong to X∗, because x− s2 − (x− s1) = α, and, for all i, X∗(i)
contains at most α − 1 consecutive numbers (and more than s1 numbers separate two
disjoint sets X∗(i) and X∗(j)).
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1. x− s1 ∈ X∗, x− s2 6∈ X∗

2. x− s1 6∈ X∗, x− s2 6∈ X∗

3. x− s1 6∈ X∗, x− s2 ∈ X∗

For 1., use the statement of the theorem as induction hypothesis, that is s2 ∈ opt(x−
s1) and s1 ∈ opt(x− s2). We get

o(x− s1)− o(x− s2) = −o(x− s1 − s2) + s2 + o(x− s2 − s1)− s1
= −α
< α.

For 2., use induction to conclude s1 ∈ opt(x− s1) and s1 ∈ opt(x− s2). We get

o(x− s1)− o(x− s2) = −o(x− s1 − s1) + s1 + o(x− s2 − s1)− s1
= −o(x− s1 − s2 − α) + o(x− s2 − s1)
6 α,

if Lemma 24 applies, i.e. if x− s1 − s2 6∈ X∗. Thus, in this case we are done.
The other case is whenever x− s1 − s2 ∈ X∗. Since x 6∈ X∗, this case happens if and

only if x− s2 − s1 ∈ X∗(imax). By (7) and Lemma 10, in this case,

o(x− s2 − s1)− o(x− s2 − s1 − α) 6 s1 − αimax − 0 (10)

< α, (11)

where the inequality (11) is by imax = b s2
α
c+ 1 > s2

α
.

For 3., consider first the case i < imax. We use the ‘duality’ (8) between outcomes and
number of consecutive positions with outcome 0 just below X∗(i). Indeed, in this case,
Lemma 22 implies that there are at least α such consecutive positions with outcome 0,
that is, o(x− s2)− o(x− s1) = s1 − iα− 0 > α, and so

o(x− s1)− o(x− s2) < −α 6 α.

The remaining case is for x − s2 ∈ X∗(imax). We use that o(x − s2) > 0, and prove
that o(x− s1) = α. This suffices, to prove the theorem.

Let us first sketch the idea, of this final part of the proof. In fact, by our previous
items, playing optimally from x − s1, there will be an even number of greedy actions,
namely 2imax, of which the last one is s2. This follows because, none of the greedy actions
will end up in X∗, and we showed already that s1 is optimal if a player does not start in
X∗(i), with i < imax. Indeed, this gives the outcome α.

To finish the proof, let us justify the claim in the previous paragraph. Since x− s2 ∈
X∗(imax), we have that x− s1 = imax(s1 + s2)− s1 − α+ δ1, for some δ1 ∈ {0, . . . , α− 1}.
Let X∗ = {imax(s1 + s2) − s1 − α + δ2}, where δ2 ∈ {0, . . . , α − 1}. If we show that, for
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all 0 < j, δ2 6≡ −α + δ1 − js1 (mod s1 + s2), the claim follows. So, assume that there is
an integer k, such that −α − js1 + k(s1 + s2) ∈ {−α + 1, . . . , α − 1}, for some j. That
is, we have that (k − j)s1 + ks2 = −js1 + k(s1 + s2) ∈ {1, . . . , 2α − 1}. By s1 − s2 = α,
this implies that k − j = k + 1, i.e. j = −1. But, this contradicts the assumption that
j > 0. Therefore, if the players play greedily, they will never play to the set X∗. In the
proofs of item 1., item 2., and the first part of item 3., we already proved that, for smaller
positions than X∗(imax), sacrificing is optimal if and only if playing from X∗.

This proves the theorem.

Let us denote by [x]y the smallest non-negative number congruent to x modulo y.

Corollary 26. The outcomes of the game S = {s2, s1} are

o(x) =



is2 − (i− 1)s1 = s1 − iα, if x ∈ X∗(i)
0, if y − s1 + iα 6 x < y,where y ∈ X∗(i)
o(y), if there is y ≡ x (mod 2s1),

s.t. y ∈ X∗(i), with y < x

s1 − o(x− s1), for all [x]2s1 ∈ {s1, . . . , 2s1 − 1}

Proof. This follows from proof of Theorem 25.

In particular, the periodic outcome pattern, at convergence, is obtained by applying
i = imax. See also Figure 2.

Note that the first three items concern the outcomes of the positions in the congruence
classes 0, . . . , s1−1 (mod 2s1) and the last item concerns the ‘anti-symmetric’ part among
the heap sizes s1, . . . , 2s1 − 1 (mod 2s1). The third item shows that once the outcomes
for positions in X∗(i) have been computed, then they stabilize, for congruent larger heap
sizes modulo 2s1.

Another consequence is that if [x]2s1 ∈ {s1, . . . , 2s1 − 1}, then s1 ∈ opt(x).

Corollary 27. Consider CS with two possible actions, S = {s2, s1}, with s1 > s2 > s1/2.
Then the largest heap size for which Positive can play the smaller action s2 until the game
ends, and obtain the optimal play outcome, is

s1

⌊s2
α

⌋
+ s2

⌊s1
α

⌋
+ α− 1

Proof. This follows by Theorem 25.

Note that the formula in Corollary 27 implies explicit game convergence at ξ(S) =
s1
⌈
s2
α

⌉
+s2

⌈
s1
α

⌉
−2s2 = (s1+s2)

⌈
s2
α

⌉
−s2; for example in case s1 = s2+1, then ξ(x) = 2s22.

In Figures 1 and 2 we sketch the optimal actions modulo s2 + s1 and the outcomes
modulo 2s1, of the two-action games with 2s2 > s1.
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Pile size

0

s2s1

s1 ∈ opt(x) s1 ∈ opt(x)

opt(s2 + δ) = {s2}

Optimal actions before convergence modulo (s1 + s2)

Figure 1: Optimal actions before convergence, for pile sizes modulo (s1+s2). The positions
in X∗ are of the form x + (s1 + s2)i, for 0 6 i < b s1

α
c, and where s2 6 x < s1. The pile

sizes are pictured on the inside and the optimal actions on the outside.

6 CS with truncated support

In Section 4 we have a simple proof for the full support case, and this might lead one to
think that the generalized case of truncated support is similarly simple. However we do
not yet understand the full class of truncated support games. So far, our efforts lead us
to the intriguing Conjecture 32.

Definition 28 (Truncated support games). Consider a game S, with m = maxS > 2, of
the form S = {a, a+ 1, . . . ,m}, where a ∈ {1,m− 1}, so that |S| = m− a+ 1 and we say
that S is (a− 1)-truncated.

The truncated support games includes as special cases both all games with full support
(a = 1, 0-truncated) and some games with two actions (a = m − 1, m − 2-truncated)
which are the games that have the slowest convergence.

For each a, we estimate in which interval of size 2m, optimal play converges to the
maximal action m.

Definition 29 (Convergence interval). If ξ(S) ∈ {2(j− 1)m, . . . , 2jm}, then the interval
of convergence is trma = j. Let trm denote the sequence of the form trm = (trma )m−1a=1 .

Example 30. When m = 5, then the sequence is tr5 = (tr51, tr
5
2, tr

5
3, tr

5
4) = (1, 2, 2, 4).

Here, the first entry tr51 = 1 shows that when S = {1, 2, 3, 4, 5} (which is the full support
game of size 5), then the convergence to greedy action in optimal play occurs already in
the first interval of size 10 (convergence at position x = 10). The last entry, tr54 = 4,
concerns the game S = {4, 5}, and convergence occurs by the 4th interval of size 10.

The ath column in Table 2 shows the convergence for (a−1)-truncated support games,
for m ∈ {2, . . . , 10}. The #x column is the number of unique values of trma .
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Pile size

The outcomes of the first 2s1 positions

x = 0

x = s2

o(s2 + δ) = s2

o(x) = 0

o(x) = s1

o(2s1 − δ) = s1 − s2

Pile size

modulo 2s1

s1 − imaxα + δ

s2 − α + δ
s2 + δ

o(x) = s1 − o(x− s1)

s1 − imaxα

s2 − α

0

s2

The outcomes at convergence modulo 2s1

Figure 2: Initial outcomes (top) and outcomes at convergence (bottom) for pile sizes
modulo 2s1, for 2-action games. The pile sizes are pictured on the inside and the outcomes
on the outside of the respective circle.

From this table alone, for a > 2, the sequence of number of occurrences is non-increasing.
But this is not true in general. To obtain some more insight, we plot the entries for
m = 25, 50, 100. Via early observations, these pictures seem to converge to some function
of the form A√

B−x ; the appearing symmetry has a precise formulation, explained in the
below conjecture.

For each m = maxS, shrink the trm sequence to the set xm = x = {trma } and
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m \ a 1 2 3 4 5 6 7 8 9 #x
2 1 1
3 1 2 2
4 1 2 3 3
5 1 2 2 4 3
6 1 2 2 3 5 4
7 1 2 2 2 3 6 4
8 1 2 2 2 3 4 7 5
9 1 2 2 2 2 3 4 8 5
10 1 2 2 2 2 3 3 5 9 5

Table 2: The convergence interval trma for every m ∈ {2, . . . , 10} and every a < m

Figure 3: trm as a function of a for games with m = 25, 50, 100 (left, middle and right
figures respectively)

enumerate the elements in increasing order; we interpret x as a sequence xm = (xa) with
x1 = 1 (by the theorem for full support) and maxxm = m − 1 (by the support size 2
result). We have, for all a > 1, xa < xa+1. But, what is the number of elements in x, for
each m? The initial sizes of these sets are displayed in the last column of the table, as
#x.

Study the first differences ∆m
a = xma+1 − xma , a > 1.

Define, for all m > 3, and for all 1 6 j 6 #x, Mj := #{a | xmj = trma }.
One can prove the following result by combining methods and results in Theorem 16

and Theorem 25.

Theorem 31. For a ∈ {2, . . . , dm/2e}, trma = 2, and moreover, ∆m
m−1 = trmm − trmm−1 =

bm/2c = #{a | trma = 2} = M2.

This result reflects an emerging ‘duality’ between individual games and sequences of
games, which appears to continue in the inner regions of the pictures. We make the
following conjecture.

Conjecture 32 (Duality). Consider any truncated CS.
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• For all m > 2, #xm =
⌊√

4m− 7
⌋

(corresponding to sequence OEIS: A000267).

• The first differences, ∆m, equal in reverse order the number of multiplicities of the
numbers in trm. That is, for all a, Mm+1−a = ∆m

a .

Consider for example tr10. Then ∆ = (1, 1, 2, 4), and M = (4, 2, 1, 1). Careful inspec-
tion reveals that the pictures for m = 25, 50, 100 satisfy this precise correspondence (and
we checked many cases up to m = 200), but we have up to date no means of explaining
this proposed ‘duality’.

7 Discussion

In our work we study four classes of CS games, all with a finite support. The convergence
theorem, Theorem 13, tells how to play for any given game with large heap size; however
when the heap size is small, we only have full understanding of optimal play in the classes
of 2-actions and full support. As future work we suggest to study optimal play when
heaps are small, in other classes of CS, in particular the class of truncated games.3

Figure 4: CS classes studied in this paper.

For the case |S| = 2, Theorem 25 states the positions where it is optimal to sacrifice.
The following two observations are immediate from this result.

Observation 33. Consider a game with exactly two actions. In optimal play, if a player
makes a sacrifice, then she plays the last move.

Observation 34. Consider a game with exactly two actions. In optimal play, at least
one of the players plays only greedy actions.

For games with more than 2 possible actions the observations do not hold any more.

3A class of games should be described by a small finite number of game parameters (on the action
set), and the optimal play solution should be described in terms of these parameters only.

the electronic journal of combinatorics 26(4) (2019), #P4.52 16



Example 35. Let S = {1, 5, 7} played from position x = 18. The (unique) optimal play
sequence is 5; 7; 5; 1, showing that sometimes it is beneficial to sacrifice without playing
last. Actually Positive sacrifices in order to play the last ‘big’ action.

For games with |S| > 4 It is not true that only one player sacrifices in optimal play.
Consider the following example

Example 36. Let S = {2, 10, 13, 14} played from position x = 35. The unique optimal
play sequence is 10; 13; 10; 2, and the first two actions are both sacrifices.

This example triggers another question: is it true that when both players sacrifice,
Negative makes a smaller sacrifice than Positive?

Conjecture 37. In a game were optimal play includes sacrifices by both players, Neg-
ative’s sacrifice is smaller than Positive’s sacrifice. (In Example 36 Positive sacrifices 4
while Negative sacrifices 1).

8 Multiple piles of CS

CS can be extended naturally to multiple piles. In CS with multiple piles, on each turn
the active player first chooses a pile, then plays as in the single pile game on that pile.
(In the CGT jargon, this is disjunctive sum play.)

By looking at many games with two piles such as in Figures 5 and 6 we observe con-
vergence to the greedy action and periodicity in the outcome. By using similar arguments
as in the folklore for classical subtracting games, one can show that in CS with two piles,
the outcome is eventually periodic on any horizontal or vertical line. Here, we strengthen
this result to a conjecture in the spirit of Theorem 13.

Conjecture 38. Consider CS on two piles. The outcome is eventually periodic on any
horizontal or vertical line, with period at most 2 maxS.

In addition, we observe regularity of the outcomes along diagonal half-lines of the form
(x, k + x), called k-diagonals, for any constant k ∈ Z.

Conjecture 39. Consider CS on two piles. The outcome is eventually periodic along any
k-diagonal.
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Figure 6: Outcomes for the game S = {2, 10, 13, 14} with two piles, starting from a
position of the form (x1, x2). The outcome is bounded between 0 and 14, low outcomes
are painted in blue while high outcomes in red.
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